Building Agents withAgents and Patterns

L. Sabatucct®, M. Cossenino ??¥, S. Gaglid>?
(1) DINFO - Dipartimento di hgegneia Informatica,Universitadegli Studi di Palemo - Viale delle Scienze90128 Paleno, Italy
(2) Istituto di Calcolo delle Reti ad Alferestazioni, Consiglio Nazionale delle Ricerche;
(3) SET - Université de Echnologie BelfarMontbéliad - 90010 Belfot cedexFrance

sabat ucci @sai . unipa.it; cossentino@a.icar.cnr.it; gaglio@nipait

Abstract—The use of design pattens proved suaessful in
lowering the development time and number of errors when
producing software with the object-oriented paradigm. Now the
need for a reuse technique is occurin g for the emergen agert
paradigm, for which a great effort is currently spending in
methodology definitions. In this work we present our experiences
in the identific ation, desaiption, production and use of agents
patterns. A repostory of patterns was erriched during thes
years so to request a clasification criteria and a documentation
template usdul to help user during the sdection.

Index Terms—M ultiagent systems, patterns, reuse modds and
tools.

. INTRODUCTION

N the last years, miti-agent systens (MAS) aclieved a

remarkable success and ffiusion in enployment for
distributed and cormplex applcaions. In ourresearctwe focus
on the desjn process of agesbceties, acivity thatinvolves
a setof implicaions such as caping the ontology of the
domain, repeseiting sccial asgcts, ad intelligent
behaviours. In the fdlowing, we will pursut a specific goal:
lowering the time andcoss of devebping a MAS appicaion.
We think that a fundanental contibution coutl cone by the
definition of reuse @chngues and dols provding a strong
support during the desgn phase. W idenified in desgn
paterns a good saltion © this need. Sinificant motivations
to the use of deghn paterns in a projectare:
Patterns communicate knowledgethey allonv expertsto
docurrent reason and dtuss sgtermaticaly about
solutions apgled to specfic probkems. Paterns also help
peopk © learn a newdesgn paradgm or archiectural
style, and hgd new devebpers gnore taps and pfalls
that have beengarned ont by costy experenceq11].
Patterns increment quality of software desgn paterns
are signs of quality because their useplies safe and
elegant solutions thaare validated by the experience
rather than from testirg [19].
Patterns improve the documentation process the
pattern catalogue constituteasdocunentation repository
where he desgner nmay explbre possble solutions for
his/her problemeach pattermprovides acomprehensible
way of docurrening conplex softvare archiecures by
expressig te stucture and the collaboraton of
paricipant ata level higher han source codg0].
Patterns decrease developmentime: desgn paterns

are stategies heping peopté © find their way through
complex situations by appling readysoltion © solve
diffi cult problenms. Also hey hebp in diagnosng, revising,
and mproving a groups work[11][14].

Patterns improve software maintenance a project
obtained wih paterns reuse § robust and smpler to
modify with resgect totradtional projects[19].

Our definition of patern cone from traditional object
oriented desgn paterns, revised for he agentparadgm. In
paricular we use an oalogical approach, sbngly influenced
by the study of multi-agent system(MAS) meta-nodels.

In this paper we will presemn AgenFactoy I, a tool for
working with patterns for agentsntegrating a user interface
to sekectandapply paterns froma reposiory. Agentacory Il
is basedon the experence done wi a prevous reéase oftie
software[7] that was wseful for exploring the possibility of
designing a multi-agent system using design patterrs as
building blocks and successly to generat code fromthem
The major innovaton of the ol is an expertsystem ablk to
reason abouhe projectand paterns, and a coplex systtmto
generat source code and docemgtion.

The paperd organzed as fdbwing: in the sedn Il we
discussthe PASSI degin processhat is the base of our
approach;in secton Ill we irtroduce ar agert patterrs
definition whereasn secton IV we illustrate tle arclitecture
adoped D reaize he tol; in secion V we illustrate tk
DocWeavera spedic agentof this sockty, thatis respondile
to genera¢ the docunenttion in a specific agent-oriented
style. Firally in section VI we reportsorre conclsions.

Il. THE PASSIDESIGNPROCESS

In our work we will refer tothe PASSI[4] methodobgy
that represergtthe sarting point and he natral conext of our
patern defnition and apptaion. PASSI (Proces®r Agent
Societies Specification andmplenmertation) drives the
desgnerfrom the requrements anaysis to the implementtion
phasefor the construction of a multi-agert system The cesign
work is carried outthrough he constuction of five nodek
obtained by performng twelve sequentl and iterative
activities. Briefly, the phases ad activities o PASSI are:
System Requirements It produces a desption of he
functionalities fa the systerrto-be, diving an initial
deconposition of the problemaccording to the agent
paradgm. The four activities are: (i) te Damain

124

Agent Solution Agent

Problem
Implementation

- = 5

Fig. 1 — The three levels architecture for our pattern definition

Requirements Descrption, where he systemis descrbed
in terns of the functionalities; (ii) the Agert Idertification
where agents are introducefibr dealing with identified
requiremerts; (iii) the Rde ldentification where agerts'
interactons are descrbed by the introducion of roks;
(iv) the Task Specification whetthe plan of eacagentis
draft

is fully exploited. It is canposed of four activities: i) in
the Domain Ontology Descrigiion the systemdomain is
represented in tersnof concepts, predicatesmd actions;
ii) the Communicaion Onblogy Descrption focuseson
the agent communicaions, desched n terms of
referred ontological elements, conent language and
protocdl; iii) in the Rde Descripion the distinct roles
played byagens are degiled within their dependenes.
Agent Implementation. It is a nmodel of the sdution
architecture in terms of required classes with their
atributes and nethods. It is conmposed of wo man
streans d activties (stricture definition and behaviour
descrigion) both performedat the sirgle-agert and multi-
agent levels of abstraction.

Code It is amodel of the sdution at tte cale lewel. It is
largely supporéd by paterns reuse and aarnatic code
generabon.

Deployment It is a nodel of the distribution of the pars
of the system acress lardvare pocessitg unit; it
describes the allccation of agerts in the units ard any
constraint on migration ard mobility.

Testing. It hasbeendivided into two differert activities:
the Agent and the Society ste In the first onethe
behavior of each agent iserified with regards to the
original requrements whereas dung the Socety Test
integration verification is carriedout together with the
validation of the overall resits of the iteration.

In order to work with agentdesgn paterns we need a
definition of what sich a pattern is. We agee with the
traditional objectoriented defnition for desyn paterns, but
we introduced sane changes inorder to adap it for the agert
paradgm.

We look ata patern as “a prol#m which occursoverand
over agan in our envionment and hen desches he core
sdution to that poblent’ [1]; the conmon use of degn
paterns s to descrbe bestpractces, good degns, and
capture experience in such a wthgt it is possble for ohers
to rewse them([11].

Our desgn paterns approach was conged durng the

AGENT PATTERNS

Agent Society It is the phase where the agent paradigm Postconditions the agentis able of regstering andde-

Table 1 — Description for the GenericAgent pattern

Name GenercAgent

Classification: interral archtecture/single-agent

Intent: this pattern may ke wed as tke root before
applying all single-agent pattas because it gives to an
agent the ablity of regsterirg/deregsterig to the
platformservices (AMs and DF).

Moativation : this patternis wsefd for agernts who wart to
discover if the sgtemoffers a specific service andihat
agens canprovide t. The GenedAgent patern adds lhe
ahlity of regstratian to the datform (white/yellow pages)
so that the agent is accessible for conversations.
Preconditions none.

registering o AMS e DF.

Solution (Structure, Particirnts ard Cdlaboration): the
target agent is emiched with an attribute for listing the
descrigion of all its serices dfered to the canmunity. A
registerDF() and registerAMS() methods wth their
correspondentderegsterDF() and deregsterAMS] are
introduced to agent class.

Related Patterns this pattern may be the predecessp
for all single-agentpaterns. The LogAgenis a variant of
this pattern which may be wed specifically for
debuggngtesting aims.

devebpment of the PASSI process[4] with the goa of
introducng a vable reuse ¢chngue forthe devebpment of
MASSs: our reuse gchngue uses somPASSI diagrans for
descrbing the proposed sation. In his way the “solution”
introduced is expressedin agert oriented terns, far instarce
ageni role, communicaion, goaland so on.

Jackson n an analsis of softvare degin phases[15]
distinguishes beteen he probem andthe solution conext
the roblem ard its sdution are sepratedertities locatedin
two different conceptial postions. The saftion shys in the
compuer and h its sotware (machine dorain) whereasthe
problemisin the world ouside fom t (applcaion donain).
Our approacha the definition of agent patterns spreads across
both of the appicaion and machne donains. However we
needto specialize the Jacksendonmains b cope wih the
agent concept. Wen using agents as a desigaradigmthe
sdution is gererally quite alstract with resgect to its
expressian in terns d object aiented concefs. We sgit the
machine donain in two sub-donains, ntroduchg te “agency
domain” betwveen he probem and the implementtion
domains (see K. 1). Our patrn archtecure s basedon
these thee lewels:

Pattern problem. A fundanental part of a patern is the
textual descrption of the probem for which it may be useful
It is conposed by (i) maivation, an explanaton of how (and
why) the pattern works, ral why it is good, putting into
evidence steps amdllesrequiredto resdve the problen (ii)
the appicaion conext descrbes he condiions under whth
the probemand he soltion seento recur, andor which the

125

Table 2 - Rules for the GenericAgent pattern

(edd rewagerteme)

(ecd newagert adon'fegser DF*reme)

(edd newagert adon'Unieger DPrarme)

(acd newagert adon'fegeer AVIS'Yee)

(ecd newagert adon‘Unegser AVIS' 2 ene)
)

(@diundingenaic agert pecod(ame)
(festegertrane)ten
(eumFALSE)
e
) s

)

sdution is desiralbe; (iii) related patterns elermrent describes
other paterns that could sove a smilar problem As an
instarce d patternwe remrt the GenercAgentdescrbedin
details inTade 1

Pattern solution. It represerd the soution (introduced
when adopting the pmatter) in ternms of agent-oriented
elerents. The sdution descrigion illustrates tb static
structure and lbe dynarnic behavour introduced bythe patern
in terms d resaurces, @rticipants ard cdlaborations. The
formal descrption is a setof rules expressedsing a logical
languagebasedon Jess. These red are chssfied in three
groups: i) the preconditions hauwe be verified before to
introduce the pattern ii) the postconditions are rudes toverify
after the pattern application (they may condition future
patterrs application), ard iii) the sdution rules that are a
logical descrigtion of the elenents constituting the sdution
and their behavourfnteracions. Our paerns for agert are
explicitly defined to be wsed in conjunction with the PASSI
methodobgy [4]; asa consequenceénd soltion is descrbed
using sone diagrans from the PASSIphasesiepccting agens
internal stucture and soel behavour. Roles, tasks,
conmunicaions, andnteracion probcols are examles of he
involved eknment. An instance of rules for the patern
sdution for the previously introduced GenercAgentis shown
in Table 2;in the subse¢bn IV.B we will descrite how these
rules irfluence tre design whenthe patternis introducedin the
project

Pattern implementation. This represetts the lower lewel of
the sdution containing the effective implementation in object
oriented erms. It uses digrans of PASSI depiting the static
structure of he involved agert in terms of classesatributes
and methods using converibnal UML class dagrans and
dynamic behavour of one or rore agerg involved in
interactions using activity or state-chrt dagans.

The mein featue d our tool is to auomatically generatethe
sdution at this implemertation level. This featue will be
discussedn the subsecdn1V.C.

IV. THE AGENTFACTORY TOOL

The AgenFacory Il tool was degined andievebpedafter
sonme experencesdone devalping and usig te prevous
verson of he ol [5][8]. The stategic choice distinguishing

this new verson of he ol from the prevbusoneis that we
are ceveloping it as a rolti-agern system

The swtem as shownn Fig. 2 5 bastaly composedby
four agentorganzations[11] (or groups of agestrespondile
of a functional area): i) tle pattern architect,ii) the agn
model, iii) the asgct weaers aml iv) the object model. Each
organization will be dscwssedin details in the following
subsedbns. The UserAgent exermal to all these
organkatons, B respondile to interact with the desjner,
using a GUI (a screenshds repored in Fig. 3);this agenthas
the goal of adapting its GUI to the agns pesen in the
system (that are nota-priori known);in order b dealwith an
ontlogy that is not a-priori known we used an gin level
ontlogy an refecion techngues[21][2]. In Fig. 3 we show
an instance of th&JserAgentGUI: the tree o the left parel
repors the nodel hierarchyof the project in the right panelit
is possilde to marually edt data fa the elenert selectedn the
tree (often elenents are introduced usig paterns);
specifically, in the exaple, the ParticipanfRole role is
sekckedandthe right panelshows éxt-fields for his element
the rde name, the auhor and te docunengtion, the agent
who phys the role, the tasks nvolved n the roke andfinaly
some cusbm atributes.

A. The AgenModelOrganzaion

This organkaion is respondile to manage he “agent
solution” level of our archiecure (reporéd in Fig. 2). Ths
organkaton is desgned o front a hard prol@m maintaining
the meta-model of our paterns independenfrom the specfic
methodobgy enployed b desgn a sgtem Thisis a hard goal
because all the agent-oriedt methodologies use specific
meta-modek, involving different concep$ or assyning them
differentmeanngs.

We structured he “AgentModel’ as aholonic organkaion
[12] (shown n Fig. 4) based orthree bast roles (that are
playedby the agerts of the agarization): i) the MMDF is tre
head of the hierargh ii) the Fragnent Agents stay at the
intermedate level, whereas iii) tle Model Agerts are tle
bodies of his holonic stucture.

Agent Model
Pattern Architect

X ey,

(j\mnmm Weavee)

Object Madel -
Aspect Weavers
Fig. 2 — Organizations and agens involved in the
AgentFactory Il tool

126

File Edit View Code Documentation Options ?

WMAS Knowledge (23) :
i]sls
¢ CJRD
D Raole_change
[PredicateConstraint
[RD_attribute
D RD_communication
¢ I Rale
0

[y nitiatorRole
[Textconstraint
D Dependency
o= Al
-Ts
~JcoD
o~ [JFD

Role name
Role author
Role doc
ngent owner

[Tasks invoived

Role attributes

¥ Role fields:

WYalues:

ParticipantRole

Alessandro Giambruno

This is the role of any paricipant agentint
he Query pattern.

Listener_c...
Register ToDF

Fig. 3 - A screenshot of the AgentFactory UserAgent

The mostimportant role of the organzaion is played bythe
MMDF (MetaMadel Directay Facilitata) agent, that is
inspred to the FIPA [8] Directay Facilitata (DF); in the

order bBnguage;we have choseto extnd the Jessanguage
[16] that is a lisp-like languagadding the ability to access to
the services offered e Agert Model (for instarceto query
for a specific elerant, orto introduce a new eleemt). In

abstract architecture defined BYPA, the DF is the agent Table 2 there is an exate of apattern:the GenercAgent

respondile to maintain the yellow pages for dlthe servees n
the systenby communicating withthe DF all the agents ag
register their own services or dscoveryservces offered by
other agerd The MMDF agenthasa similar functon but
focused on blding the meta-modelused dumg desgn: atthe
beghning the meta-model is enpty; when he model agens
are executedthey register one or wre nmeta-nmodel elenents:
therefore the MMDHs populatedat run-timre (according to a
specfic methodobgy).

Fragment agentsrepresent'pieces of a rathodology” and
are responsie to group nodel agens coming from the sane
methodobgy in a nodel holon; this was donefor two
motivations: i) fragment agens coordnat the work anong
their model agerts (internal cdlaboration); ii) fragmert agens
enablethe collaboration of eleemts coring from different
methodologies (externatollabordions). For illustrating this
concept in Fig. 4 we show gossble configuraton for the
“Agent Model' organkaion. We have wo fragments coming
from two agent oriented nethodobgies: PASSI [4] and
Tropos [4]. Each of hese fragmnt is respondile for
different element of the meta-model (requirement role and
agent for PASSI, goal, resource and agent for Tropos);
intersectons anong nodel agens may be treakd in two
different ways: a conceptmay be shared aong dfferent
fragments (as theagentin Fig. 4) or may be exclsive of a
methodobgy.

B. The Patern ArchitectOrganizaion

This is the organtaion respondle for managhg the
patern repostory and introduchg seécied paterns into the
system Ou pattern implemertation is realizedusing a first

that is wed for giving to an agent the allity of
registering/deregstering in/from the platform servies
(white/yellow pages). THs pettern is wsefd for agerts wio
want to discover f the system offers a specific service and
what agens can provile i. The patern is doneby a rule,
generc_agent that is acivated ushg a paramer (the nane
of the new agmn). This simple set & rules \erifies
(precandition) if an agert with the sane rame exsts in the
project, anthen (pattern sdution) adds the agn with same
abilities (register_DF unregister DF, register_ AMS
unregster AMS. In this exarple there are no postconditions.

C. The AspecWeavers Orgazaion

A significant characteristic of AgentFactory (already
presen in the early versim of the tool) is the adomatic cale
generation for diffenst platforms (until now we supported
only Jade[2] and FIPA-OS[10], but it was conceied for
being exended wth other agenplatforms that are conpliant
with the abstracFIPA architecturd8]). The prevous versin
of the ool had acodegenersion engne based on a sequence

Head of
Fragment holons

Fragment agents
(head of Model
holons)

{Tropos)
Early Req

(PASSI) System
Analysis

Requirement Role

Fig. 4 — Agens and roles in he holonic structure for the “Agent
Model” organization

127

| Root Node Flements | n 1
tof b P — F the gras Agent Society Index | I Agent I—I Role l—l Task |

Aganfs : Hep

List of the agants of the sociaty Agent : Initiator Agent

Name Documentation

- -~ This 15 the model of any initiator agent
This 1¢ the model for any participant Ontology

agent Authors

. [Thas is the model of any mitiator .
o agent * Alessandro Grambruno

ParscpantAgent

3 I Concept I I Predicate I I Action I

Deployment informations:

This MAS was created with PASST methodelogy, Chek on the byperlink for details. Jade platform should be uzed No special devices (PDA, smantphones.) are
necessary, Please send an emad to [emad] for more detaded aformations

Other Nodes Elements

;(_:omm unicatibns :

Roles :
List of the communications where the agent partecipate
List of the roles of the societ
L. Nama Role of the agent
QueryCommunication rorF.ol
Name Documentation S SN ety pratierb ol
is the role of any mihator
agorRole |12 5 e role of aty iiatr
agent m the Cuery pattern
PaticipantRole [Fhir 16 the r-j_l" Dl ki it les :
agent m the Cluery pattern Roles :

List of the roles of the agent

= - Name Documantation
Communications :

InstratorBole Thas 1 the role of any mshator agent m the Query patterm

List of the communications of the society

Name Documentation
Knnwladna -

Fig.5-The portlonofthe PASSI MAS reta-model usd to generate the documntation with the DocAgent; on the right a screenshot of the
hypertextual documentation generated for the case stug

of transfornations accordigto the MDA architecturgl?7]. In fundanentally carries outhe code generation functionality of
this new versin we are re#ing a more conplex the previous verson of AgenFacbry, generang the base
transformation ergine, that is irspred to Aspect Oriented archtectue o the agrns within their allities/tasks. The
Progranming (AOP)[17] in order b reduce lte gapbetveen OntologyWeaveradds be nanagenent of the onblogy.
the agent soution (introduced usig paterns from the concepts, predicates and actichst are used in the agent
repostory and refned bythe desjner) andte objectoriened knowledge and comunicaions.
sdution (that is typically an object aiented system. We D. The ObictModelOrganizaion
referredto collaboraive ttamwork as a mtaphor for where o i] i o
different human-roks (that are expertin their own seapr) 1S organzaion is conceved for realzing he agent
individualy work in a specfic conpetence area, giving their Implemertation level of our arcfitectue (see Fig2); it is
personal conribution to the final soltion. In our corgxt 'elative to the dject aiented sdution. Agerts of this
agentsare the experts and eactiea of corpetence is an organzalon are responiie to treat elements Qf the object
asgect d the agrt-oriented sdution to take in consideratin ©riented paradim (such as eses, rethods, atibutes and so
for code produdon. Agens have o collaborak in orderto ©M)- The orgamiaion is conposed bythreeagens: i) the MAS
convergeall their single contibuiion in the sane final object 2%, ii) the Ontology agert ard iii) the Testirg agent. The
oriented code. Inte AOP erminology the engie reaizing MAS agent is responsible to handle dataaohole multi-
this convergence si caled ‘aspect weaver’; this is the 2adentsysemtaking in consderaion boh the stic structure
motivaiion for he nane chosen for his organzaion: an Of the agert and the behaviour of the multi-agert system The
aspectweaver agent is the xpert' of a specific area of the organkaion is ablke to exportthe sourcecode'for Jadeapd
project it is respondile to a spedic aspecof the projectand FIPA-OS agent platfors TheOntology agentis responsile
it is abe to gererate anoutput in terms of object-aiented to _gfanerate classes for ethsystem ontology: these are
solution. The erite organzaion is organized to weave all the S€ralizabe classeshat are usedri the agers knowledge and
contibutions coring from different agens and b meetthem cOMMunicaions. TheTest agent (still under develogent)
in an ungue soltion. will be responsible to generate stub and drisgentsfor
We actually realized only tiee weaver agents: i) an simulating the communicaions and cdéboratons anong

ArchitectureWeaverrespondile of the agentskekton and SyStemagents (integration testing).

communicaions), i) an OntologyWeave(respondile to add

ontology to the messags exharged by acerts) ard iii) a V. A WEAVERAGENT. DOCWEAVER
DocWeaver (that creates th dcumentation; it will be In the past, diring the developmert of multi-agert systens
discissedin details in sectim V). The ArchitectureWeaver we suffered he lack of a spedic techngue for docurening

128

our source codewe usedJavadoc for generatg the API
docurrentation (fromconments insource code), but weoted
it is difficult to navigate becae it inplies a shift in the

paradigm (from agent-orientedto object-oriented and vice-

versa); wlereas tk sdution is expressedn agentoriented
terms, the docunenttion is expressed ni object oriented
terms: the mapping is not direct and easy Therefore we
demandeda way for docunening our salttion ushg drecly
an agent oriented style.

From these consderatons we deduet the requiements
for the AgentDoc, an agentiented style for docurening a
multi-agent system the terns included in this documertation
are not fixed, but are dependig from the spedic
methodobgy usedandtherefore fromthe spedic MAS neta-
model adoped. Agentracory Il is naurally inclined b use
different neta-nodels, so we create BocWeaveragent
responsible to generate the AgentDocdachdesignedVAS.
In order b generag this docunenttion the AgentDoc usesthe
meta-model stored in the MMDF. This is nehoughbecause
the agentrequires nformation abouthow anelement of the
MAS meta-model influences he docurenttion conéent In
order to sdve ths problem the DocWeaveruses a (mnually
built) configuration graph that specifies wrat elenents (gaph
nodes) have to be included ihe docurrentation (for each
instance of the included elemts an HTML page is
generatd); whereas tie rektionshps anong he elenents
(graph arcs) generags links anong pages:ithe resul is a
navigabk hyperextual docunenttion.

In the grey box in Fig. 5 we reportthe graph used for
generaing the docunenttion for a PASSI projectlt is a
simplified verson of the PASSI nstamodel conposedby
Agent Role, Task, @mmunicaion and Ordlogy. Fig. 5
shows an exapie of he generadd docunenttion concernig
an agent of the systerthe pagepresents a left fraewith a
list of the systenelenents (agets,roles...), and a right fram
with detailsof the selectedtem; for instarce we f@us an an
agentand ts detils are:roles, conmunicaions and ordlogy
(thatare he nodes vih distance one fronthe agennode).

VI.

Our conviction is that patern reuse s a very chalenging
ard interesting isste in multi-agert systens asit hasbeenin
objectoriened ones. However ware aware that thgroblens

CONCLUSIONSAND FUTURE WORK

involving other aspect as ro, task, pan and so onin this
conext we requie a nore precge coordiaion mechansm
anmongthe weavers. Andter improvenent under devalpment
is the Testirg agent that would be erployed for ntegraton
testirg on multi-agent system

REFERENCES

AlexanderC. 1979.The Timeless Way of Building. Oxford University
Press

Arnold, K. and GoslingJ. 1998.The Java Rygranming Language 2nd
Ed.). ACM Press/Addison¥esley Publishing Co.

Bellifemine F., Poggi A. and Riassa G. 2001. Developing Multi-agent
Systens with JADE. In proceedings The 7th international \dtkshop
on intelligent Agents. Agdrtheories Architectures and Languages (July
07 -09,2000) LNCS 1986 SpiingerVerag, London,pp.89-103.
Bresciani P.Giorgini P, Giunchidia F., Mylopoulos J.and Peini A.
2004.TROPOS: An AgenBriented Softwae Developnent
Methodology Journal of AutonomusAgents and Multi-Agent Sstens,
Kluwer Acadenic Publishes 8(3), pp.203236

Chella A, Cossentino Mand Sabatucci .L2003. Designing JADE
systens with the supparof CASEtools and pattes. Exp Jounal, Sept;
3(3):86-95.

Cossentino M2005.From Requiements to Code with the PASSI
Methodology In Agent-Oriented Methodologiesgdited byB.
HendesonSelleis and PGiorgini, Idea Goup Inc., Hershey PA, USA
Cossentino M., Sabatucci L. and @ae&\. 2003. A Possible Approach
to the Developrant of Robotic Mdti-Agent Systers. IEEE/WIC Conf
on Intelligent Agent Technolog§yAT'03). Halifax (Canada), October,
13-17,pp 539-44.

CossentindM., Sabatucci L. and CHa A. 2003. A Possible Approach
to the Developrent of Robotic Muti-Agent Systens - IEEE/WIC Conf
on Intelligent Agent Technology(IAT'03). October, 13-17, 2003.
Halifax (Canada).

FIPA Abstract Architecture -Available on Internet]
http://www.fipa.org/repositorfarchitecturespecs.htm

FIPA-OS Website - [Available on Integt], http:/fipaossourceforge.net
Ferber J, Gutknecht 01998.A Meta-Model forthe Analysis and
Design of Organizations in Multi-Agésystens. In Third International
Conference on Multi Agent Syens (ICMAS'98); p 128.

Fischer K., Schillo M. and Siekann J. 2003. Holonic Multiagent
Systens: A Foundation for the Organisation of Multiagens@yrs,
Lectue Notes in ComputerScienceVolume 2744,Jan 2003Pages 71 —
80

GammaE., HelmR,, Johnson RandVlissides J1994.Design Patters:
Elements ofReusable Object-Grnted Softwae. AddisonWesley.
Greenfield Jand SharK. 2003.Softwake factolies: asseinling
applications with patterns,gdels,framewoiks and toolsin Conpanion
of the 18th Annual ACMSIGPLAN Conference on Objec®riented
Programming, Systens, Languagesand ApplicationsAnaheim CA,
USA, October26 -30,2003) OOPSIA '03. ACM Press,New Yok,

NY, pp.16-27

Jackson M2001.ProblemFrames: Analysing and Sticturing Softwae
Developnent Poblens, AddisonWesley

[16] Jess Rule Engine — available fattp://herzberg.ca.sandia.gov/jess/

(1]
(2]
(3]

(4

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

(23]

[14]

[15]

arising from this subject are quite delicate and riskyl[17] Kiczales, G. 1996. Aspect-orientptbgranming. ACM Conput. Surv.

Noneteless,we believe, thanks b the experences we e
in application fields such asformative systers ard robotics,

that it is psside to obtain great results with a correct [19]

approach.

In order to support the design ofuliragent systemwe
deweloped a camplex multi-agert systemfor building agents
with a patern support This tool is also abé to generas the
docunenttion and e source code fohé project Actually
the code generad is just a bt richer hat the code genered
in the prevous versbn, however weare working on a more
conmplex organizaion with a greagér nunber of weaver agesit

28,4es Dec.1996)
[18] OMG Model Driven Architecture -Available on Internet]
http://www.ong.org/nda/
Prechelt L, Unger B., Philippsen M and Tichy W. 2002. Two
Controlled Expeliments Assessing th Usefulness of Design Patter
Docunentation in Pogram MaintenancelEEE Trans. Softw. Erg. 28(6),
pp.595606.
Schnidt D. and Stephenson R995.Expelience Using Design Patter
to Evolve Conmunication Softwag Across Diverse OS Platforms, In
proceedings ofthe 9th European Conference on ObjeCriented
Programming LNCS 952 pp.399 — 423
Sun Mcrosystens. Java eflection. 2002. Available on intemet at
http://java.sun.cofi?se/1.3/dos/quide/reflection/index.htm

[20]

[21]

129

