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Abstract

Three methods to analyse longitudinal wave propagation in metallic rods are
discussed. Two of these methods also prove to be useful for measuring
the sound propagation speed. The experimental results, as well as some
interpretative models built in the context of a workshop on mechanical waves
at the Graduate School for Pre-Service Physics Teacher Education, Palermo
University, are described. Some considerations about observed modifications in
trainee teachers’ attitudes to utilizing physics experiments to build pedagogical
activities are discussed.

1. Introduction

The physics of mechanical wave propagation plays an important role in the education of
physicists and engineers. In fact, it provides a simple introduction to wave phenomena and
can be helpful in making sense of more complex subjects such as physical optics, quantum
mechanics and electromagnetic radiation.

It has been shown [ 1-3] that many students, also at university level, have many difficulties
in understanding the basic concepts of mechanical wave phenomena such as, for example,
what a wave is and how propagation is influenced by the properties of the medium. This fact
can be surely related to significant time constraints in today’s undergraduate mechanics college
courses, which make it difficult to treat this subject in detail and to deepen understanding of
the relevant conceptual points. However, we think that more ‘structural’ educative issues
can bias the students’ understanding of mechanical wave phenomena. For example, the rigid
body is very often not described as a model of real bodies and its study is rarely followed by
deepening the understanding of the fundamental role of wave propagation in the motion of
real, elastic bodies [4].
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It is generally acknowledged that laboratory activity has to be a standard component
in physics courses in schools and universities and many experiments related to mechanical
waves can be easily carried out, allowing students to better understand wave properties.
Moreover, the use of computer-assisted data acquisition systems (often known as MBL systems
[5-7]) can greatly enhance students’ learning and stimulate their interest, mainly when these
are connected to pedagogical methods that engage students in activities which address the
cognitive difficulties identified by physics education research [8].

The measurement of sound speed in air is a routine task [9], but the measurement of sound
speed in solids, especially in metals, can be more difficult due to the much higher values with
respect to air. Some papers report measures of longitudinal wave speed in solids based on the
method of vibrating rods [10, 11]. A thin rod is clamped at its midpoint and an acoustic wave
is generated at one end of the rod by a sound generator or by rubbing it by the thumb and the
forefinger fingertips. In this way, stationary longitudinal waves are established and the rod
oscillations can be detected and analysed in their frequency components. An estimate of the
speed of longitudinal waves is then given by using the well-known resonance relation between
the wavelength and the length of the rod itself.

This experimental method, although easy to implement, is based on the understanding
of many relevant concepts of wave physics, such as the spectral analysis of signals or the
relationship between stationary and progressive waves. Moreover, many students, also at
university level, do not understand how the speed of progressive waves can be measured by
using a method based on the idea of stationary waves.

In this paper, we describe three different experimental methods to measure the acoustic
wave speed in metallic rods and present the related experimental results, obtained by
using commercial MBL systems for data acquisition. The sound speed is obtained
by directly measuring distances travelled by longitudinal pulses and the related times.
Some relevant implications will be drawn about the relationships between experimental
methods and construction of appropriate models to describe and explain mechanisms of
functioning. Considerations about observed modifications in trainee teachers’ attitudes to
utilizing physics experiments and performing data analysis will be presented in the last part
of the paper.

The experiments were performed during the mechanical wave lab section of the Graduate
School for Pre-Service Physics Teacher Education curriculum, at Palermo University, where
the lab work is aimed at giving explanations of observed practical and real-life situations as
well as at introducing and/or deepening the understanding of relevant physics topics [12].

2. Longitudinal wave propagation in elastic bodies

It is well known that the theory explaining the motion of elastic bodies has to take into
account wave propagation inside the bodies. This theory has received detailed treatment in the
scientific literature [13, 14], but the role of wave propagation in the motion of elastic bodies
is a topic usually not well dealt with in introductory physics courses, as well as in courses for
teacher preparation.

A recent paper [4] describes the motion of solid bodies, under the action of impulsive
forces, in terms of motion of wave pulses propagating to and fro into them. In particular, the
authors describe the time dependence of the centre-of-mass position in an elastic rod of length
L, cross-sectional area S and mass density p, on which a compressional constant force, F, acts
at one of its ends (say the left) for a time interval Ar and then drops instantaneously to zero.

The impulse generates at t = 0 a compressional wave pulse that propagates along the rod
with velocity ¢. We assume the rod length L to be much greater than the length cAt of the
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Figure 1. A hammer, of head mass m, colliding at velocity v with a rod of length L, and producing
a compressional wave pulse travelling along the rod with velocity c.

rod part involved in the wave pulse. The change in the length of the rod due to either the
compression or extension is assumed to be small in comparison with the rod length. Taking
into account a generic particle, p, internal to the rod, placed at a distance d with respect to
the left end of the rod, the propagation of the compressional pulse produces a particle motion
along the direction of propagation. At ¢ = d/c the particle starts to move, with velocity u, for
the time interval At and then stops. It is assumed # < c. The wave pulse reaches the free end
of the rod at the instant 7 = L /c and it is partially reflected and partially transmitted.

It can be easily shown that the particle velocity due to the reflected wave pulse is related
to the characteristic impedance, Z = pc, of the materials on both sides of the boundary [15].
If u; indicates the particle velocity due to the incident wave pulse and u, the particle velocity
due to the reflected pulse, we have

= M u;i, (1)

Zn+2Zy
where Z,, and Z, are the characteristic impedances of the metallic rod and air, respectively.
Because Z,, > Z,, u, has the same direction of u; and u; ~ u;. So, the reflected pulse is
an extensional wave and when it reaches p, the particle again starts to move during the time
interval Ar with velocity ~ u along the x-axis in the same direction as before. Finally, at r =
2T the extensional wave pulse reaches the left end of the rod and a compressional wave pulse
arises, propagating again along the rod, as happened at the instant t = 0.

Kaufmann et al [4] show that the velocity of particle p during each period T is either zero
or 1 and that a relationship can be established between the velocity of the rod centre of mass,
V, the mean velocity of particle p during each period T and the value of the particle speed, u.

We now consider the impulse, F'At, as exerted by a massive body (for example a hammer
head of mass m), colliding at velocity v with the end of the rod along the x-axis, as shown in
figure 1.

We assume that the force exerted by the hammer on the rod rises instantaneously from
zero to a constant value F then after a time, At, it drops instantaneously to zero again. We
also assume that the hammer can be considered a rigid body (a good approximation for non-
rod-shaped, massive hammer heads, small with respect to the rod’s length). Since the force
on the rod’s end is constant for a time A¢, the particle velocity, u, in the rod is the same over
the entire length c At and we assume that u < c.

In order to find a relationship between the speed, v, of the colliding body and the particle
velocity in the rod, we consider the simple case in which the colliding body, of mass m, comes
totally at rest after the stroke (i.e. after the time Ar). Conservation of momentum requires that
the body initial momentum, mv, is transmitted to the wave in the rod. So we can write

mv = pScult, 2)
where pScu At represents the momentum of the wave pulse.

The wave pulse energy is pScu?At, and from the conservation of energy we can write

1

Emv2 = ,oScuzAt.

Uy
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Figure 2. Method 1 experimental apparatus. The two sound sensors are connected by an MBL
interface for data collection.

Combining these two relations, we obtain

v

-, 3
5 3)
that is, when the hammer comes totally at rest after the stroke, the particle velocity is half the
initial velocity of the colliding body. By (2) and (3), we can now obtain the value of the body
mass producing a total transmission of momentum to the wave pulse

pScAt
m= 7 4)
This value is equal to half the mass involved in the wave pulse and is independent of the
velocity, v, of the body colliding with the rod.

If we use a colliding body of mass in accordance with (4), after the stroke the body is at
rest, in contact with the rod where the wave pulse is propagating. This contact will be lost
when the extensional pulse arrives at the struck end and the extreme metal layers move away
from the colliding body.

The estimated value of collision times between a hammer and a metallic rod is At &~ 10~
[15]. As a consequence, a portion of length [ = cAtr ~ 0.5 m of an aluminium rod (¢, =
5 x10* ms~! [16]) is influenced by the wave pulse. If we consider a thin rod of the same metal
(S =8x107° m?, py = 2.7x10° kg m~3), it is also possible to find a value of the rod mass,
M, involved in the wave pulse and, consequently, the mass of the colliding body producing a
total transmission of momentum to the wave pulse: M = SpcAt =~ 0.10 kg; m ~ 0.05 kg.

By considering a colliding mass velocity equal to 3 m s~! (as is in our experimental
setting, see section 3.2 for detail), the particle velocity due to the wave pulse should be u =
1.5 m s~!. During the time At, the end of the rod should displace u At = 1.5 x 10~*m to the
right.

u =

3. Experimental methods

3.1. Method 1

The speed of sound, c, in a solid rod of length L can be easily calculated by evaluating the
time, ¢, in which a longitudinal wave pulse goes from one end of the rod to the other. A very
simple way of measuring ¢ is to generate a wave pulse at one end of the rod, for example by
means of a hammer stroke, and make use of two sound sensors placed at the rod ends to detect
signals, as shown in figure 2.

The sound sensor placed near the end of the rod hit by the hammer should detect a signal
before the other one. The delay time, ¢, between the two signals represents the travelling
time of the longitudinal wave pulse, generated by the stroke. A greater delay time should be
expected for the wave pulse propagating in air. Measurements are performed using 3 m long
metallic rods (much longer rods are not easily manageable in school laboratories).



Measuring longitudinal wave speed in solids 691

354 (a)

Mic 2 (Arb. units)
>
Mic 2 {Arb. units)

R z
S 2.5+ 5
g g
<e | e
2 1 2
= 2.0+ =
T L 20 T i y | - \
0435 0437 0.439 0.441 0.443 0.341 0.343 0.345 0.347
Time (s) Time (s)

Figure 3. Typical signals detected by the sound sensors of the apparatus as shown in figure 2.
Measurements are performed with (a) a brass rod and (b) an aluminium rod, 3 m long. Circles and
triangles represent data taken by the sensors placed near the end of the rod hit by the hammer and
near the rod’s other end, respectively.

(This figure is in colour only in the electronic version)

From the known values of the sound speed in metals, typical values expected for ¢ are of
about 1073 s or less. As the uncertainty of the time intervals measured with an MBL system is
equal to a sampling point, we should use a sampling rate of at least 20 000 points s~ in order
to have an acceptable experimental error (of about 5%). On the other hand, the commercial
data acquisition systems available in schools are limited to data sampling rates of about 5000
points s~!, when two sensors are used. As a consequence, the experimental uncertainty on
time measurements is 8t = 2 x 10™* s, corresponding to a percentage error of about 20% or
more. However, in our opinion this experiment can still be considered conceptually effective
in order to show the lowering of time of pulse propagation in solids, when compared with the
time of propagation in air, that can be measured with the same set-up, with an accuracy of
about 10 times higher.

Typical results are shown in figures 3(a) and (b), obtained by using a brass (measured
density pp = 8400 #+ 100 kg m—>) and an aluminium (o, = 2800 £ 30 kg m~3) rod. The
rods are cylindrical, 3 m long and have a cross-sectional diameter equal to 1 cm.

The figures show that the delay times, ¢, are of four and two sampling intervals in brass
and aluminium rods, respectively. These results give values of # = (8 & 2) x 10™* s in brass
and f = (4 £ 2) x 10~* s in aluminium. As considered before, these values are affected by
large percentage errors, 25% in the case of brass rods and 50% in the case of aluminium.

Measurements show reliable delay times but, being affected by relevant uncertainty, they
can only give qualitative evidence of the dependence of the travelling times from the material.

3.2. Method 2

A nice demonstration of the mechanical wave propagation in metallic rods can be obtained
by producing a shock wave at one end of a fixed rod and observing a small pendulum bob,
initially in contact with the rod’s other end, displacing after a definite time interval.

With this method it is possible to give an estimate of the propagation speed of wave pulses
in the metal by measuring the length of the rod and the time interval the wave pulse takes to
travel along the rod. In order to obtain reproducible measurements we arranged the colliding
body as a pendulum falling from a given height, so as to control the impulse on the rod. The
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Figure 4. Method 2 experimental apparatus. A small metallic pendulum bob (B), initially in
contact with the right end of the rod, is displaced by the perturbation generated by a body (A)
colliding with the left end of the rod.
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Figure 5. Typical signal detected by the voltage sensor in the experiment of figure 4. The sampling
rate is 50 000 samples s~

time measurement can be performed by using a voltage sensor to detect a signal in the electric
circuit composed by the colliding body, the metallic rod and the pendulum bob, all conductive,
as shown in figure 4.

The electric circuit is closed when both the colliding body and the pendulum bob are in
contact with the metallic rod, secured to a heavy desk by means of a single vice placed near
the right end of the rod. The idea is to exert a stroke to the rod when the pendulum bob is at
rest; the action closes the circuit, so that a dc voltage is detected by the voltage sensor. The
signal lasts until the wave pulse arrives at the other end of the rod and makes the pendulum
bob displace, actually opening the electric circuit. An estimate of the time interval that the
pulse takes to travel between the two rod ends can be obtained by the duration of the voltage
peak detected by the voltage sensor.

Measurements are performed by using several brass and aluminium rods of different
lengths and cross sections. Figure 5 reports a typical signal detected by the MBL system when
a colliding mass equal to 398.0 + 0.1 g, falling from a well-defined position (# = 30° £
1°, see figure 4), hits an aluminium rod of length L = 2.995 m and cross-sectional diameter
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Figure 6. An enlargement of the voltage peak reported in figure 5. The error bars are equal to
2 x1077s.

D =1.00cm. All rod lengths are measured using a 5 m long metric tape, with 1 mm sensitivity.
The rods’ diameters are measured using a vernier calliper, with 1/10 mm sensitivity.

The sampling speed is set to 50000 points s~! (the maximum available with our data
acquisition system when using a single sensor set-up). An enlargement of the detected voltage
peak is reported in figure 6.

The travelling time, t (i.e. the time the wave pulse takes to travel through the rod and make
the pendulum bob displace, actually opening the measuring electric circuit), can be easily
measured by considering the time interval corresponding to the constant part of the peak.
We also take into account the two points belonging to the leading edge of the voltage
peak, since they are due to electric latency in MBL hardware circuits. The value of 7 for
the data depicted in figure 6 is T = (1.06 £ 0.02) x1073 s, the experimental error being
calculated as a time interval between two successive data points.

3.3. Method 3

An experimental approach to the measurement of sound speed in solids is suggested in the
teacher’s guide of the classic textbook [10]. We modified the suggested method in order to
utilize commercial devices and performed different kinds of experiments in order to deepen
the students’ understanding of the pulse propagation process.

The experimental apparatus can be considered as a variation of method 2 apparatus. Here
the metallic rod, of length L, is hung on non-conductive elastic bands below another rod
supported by stands. A dc power supply is connected, through an MBL voltage sensor, to one
end of the suspended rod and to a metallic body, arranged as a pendulum and set to collide
with the rod, as shown in figure 7.

If the electric circuit is closed by making the colliding body come into contact with the
rod’s left end, a voltage signal can be detected by the data logger. The body, of mass m,
falling from a given height will collide with the rod’s end, exerting an impulse on it. The body
remains in contact with the rod while a compression pulse travels along the rod. Because the
right end of the rod is free, the reflected pulse is an expansion pulse and when it reaches the
rod’s left end, the contact is broken, actually triggering the end of signal detection.

The signal duration is related to the distance travelled by the pulse (two times the rod’s
length), so the speed of the acoustic waves in the rod can be easily calculated.
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Figure 7. Method 3 experimental apparatus. The voltage sensor detects the dc power supply
voltage when the colliding body is in contact with the rod.
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Figure 8. Signal detected by the voltage sensor with the experimental apparatus sketched in
figure 7. The MBL sampling rate is 50 000 samples s~'. The error bars are equal to 2x 1077 s.

Measurements are performed using the same cylindrical aluminium and brass rods of
method 2. Figure 8 shows the enlargement of the voltage signal detected by the MBL system
when using the same colliding body used in method 2, falling again from 8 = 30° £ 1° (see
figure 7). Here we use an aluminium rod of length L = 2.995 m and cross-sectional diameter
D =1.00 cm.

The travelling time, t (i.e. the time the wave pulse takes to travel through the rod and then
back to the end that was hit, actually opening the electric circuit), can be easily measured
by considering the time interval corresponding to the constant part of the peak. In the case
reported in figure 8, we obtain T = (1.24 £ 0.02) x 1073 s, a value that is in good agreement
with expected travelling times in a 3 m long aluminium rod.

More measurements have been performed using aluminium and brass rods of different
lengths and cross-sectional diameters and they will be discussed in the following section.

4. Sound speed calculation

Travelling times obtained with rods of different lengths and cross-sectional diameter
D = 1.00 cm are reported in figures 9 and 10 for brass and aluminium rods, respectively.
Similar results are obtained for sets of rods with different D.
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Brass

Linear Fitfor: Data Set A : method 2
t=mD+b

m (Slope).(0.274 * 0.011)- 107 sim

b (Y-Intercent):(0.36 + 0.04)-10% g
Correlation: 0.995

ﬁ;[

Linear Fitfor: Data Set B : method 3
t=mD+b
m (Slope): (0.291 * 0.004)-107 sim
b (Y-Intercept):(0.04+ 0,02)-10% ¢
Correlation: 0,998

Measured time interval (ms)

Distance (m)

Figure 9. Time interval versus travelled distance measured by using brass rods of different lengths
and cross-sectional diameters equal to 1.00 cm. Continuous lines are experimental data fittings.
The dashed line is the linear relation of time versus distance for the accepted value of sound speed
in brass rods.

Aluminium

Linear Fitfor: Data Set A method 2
t=mD+b

m (Slope):(0,209 £ 0,008)-107 sim

b (Y-Intercept) (0. 42 £ 0,02)-10% 5
Correlation: 0,995

(=]
Linear Fitfor: Data Set B method 3
t=mD+b
m (Slope):(0.201 + 0.003)-10° sim
b (Y-Intercept) (0,024 0,02):10% 5
Correlation: 0,998

Measured time interval (ms)

0.0 T T T
0 1 2 3 4 5 6

Distance (m)

Figure 10. Time interval versus travelled distance measured by using aluminium rods of different
lengths and cross-sectional diameters equal to 1.00 cm. Continuous lines are experimental data
fittings. The dashed line is the linear relation of time versus distance for the accepted value of
sound speed in aluminium rods.

In both figures, data marked as A and B represent the travelling times measured with
methods 2 and 3, respectively. Each point is the mean value of ten measurements and the
error bars are standard deviations of mean values. The lines are least-squares fittings of
experimental data and the fit parameter values are reported in the tables on the right-hand sides
of the figures. The dashed lines represent the travelling time—distance relation obtained by
using accepted values for the sound speed in brass and aluminium rods reported in handbooks
[16] and summarized in table 1.

The figures show that the slopes of all the fitting lines are in accordance with the accepted
values. Moreover, the y-axis intercepts of fitting lines to method 3 data can be considered
zero. The y-axis intercepts of fitting lines of method 2 data are significantly different from
zero and this result deserves more attention.

The existence of non-zero y-axis intercepts of method 2 data fittings means that the
measured time intervals, 7, are systematically higher than the expected values. This can be
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Table 1. Values of the sound speed in aluminium and brass rods, calculated using methods 2 and
3, and accepted values, as reported in handbooks [15].

Sound speed (m s~ 1)

Rod material ~ Method 2 Method 3 Accepted values

Aluminium 4800+ 120 4980+£80 5000
Brass 3600 £ 150 344050 3480

explained by considering that the process of contact loss between the pendulum bob and the
rod’s right end involves some additional time, 6¢. The measured time intervals include the
time taken by the wave pulse to travel along the rod plus a delay time ¢ that can be considered
as the time needed by the bob to actually lose contact with the rod. A similar effect is reported
by Mak et al [17], who use an experimental method similar to our method 2 to measure the
speed of sound in metal rods. They employ a fast timer (sensitivity 1 us) to measure the
time required for a compressional pulse to travel along a rod from end to end and a crystal
earphone as a pulse collector-detector. They also point out a lag time in the measured times
and perform an end correction by comparing the timing of two rods of different lengths for
each tested material.

An analogous delay time is not observed in method 3 data. Here the start and the end of
data collection are triggered by the onset and loss of the electric contact of the colliding body
with the rod, respectively. We can suppose that if a delay time exists at the creation of the
shock pulse, an analogous delay time is present at the arrival of the reflected wave pulse at the
left end of the rod. Since the start and end of data collection are triggered by the same body, it
is reasonable to assume that these two delay times are almost equal and so cancel each other.

This ‘symmetry’ is not present in method 2, where the start of data collection is triggered
by the onset of electric contact between the colliding body and the rod, but the end is controlled
by the loss of contact between the rod and a different body, the pendulum bob.

Table 1 summarizes the sound speed values obtained in aluminium and brass rods with
methods 2 and 3, together with accepted values. The error bars are calculated by using the
uncertainties on the slope of the fitting lines, reported in figures 9 and 10.

Literature references [10, 17] use a hammer head to hit the rod and generate the wave
pulse, without other considerations about its mass. A crucial point in this experiment is the
mass value of the colliding body that makes it stay in contact with the rod for all the time the
wave pulse takes to go from an end of the rod to the other and back to the first. Looking at
(2) and (4), one can expect that if the colliding body mass is too small, it will bounce back
before the reflected wave pulse can return to the rod end where the pulse originated. As a
consequence, care should be taken in choosing the colliding body mass, as it depends on both
the density and the section of the rods.

By following these considerations, more measurements have been performed with method
3 using different colliding masses falling from the same position (6 = 30°). Figure 11 shows
the plot of the measured travelling times as a function of the colliding body masses, detected
in the brass rod with L = 3.010 m and D = 1.00 cm.

Figure 11 shows that by using colliding bodies of mass equal to or greater than 0.32 kg
all the detected time intervals, T, are almost constant, with a mean value of t = 1.75 £
0.02 x1073 s. If lower values of the colliding body mass are used, the detected values of
T appear to be remarkably smaller. By taking into account equation (4), we can infer the
existence of a minimal value of the mass, m*, for which the colliding body remains in contact
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Figure 11. Plot of measured travelling time versus mass value of the colliding body in a 3 m long
brass rod. Each point is the mean value of ten measurements performed using the same colliding
body mass. Error bars are the standard deviations of mean values.
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Figure 12. Plots of the minimal values of colliding body mass as a function of the cross-sectional
area of 3 m long brass and aluminium rods.

with the rod for the whole pulse travelling time. This also happens for mass values greater
than m*, but not for smaller mass values.

Data reported in figure 11 allow us to give an estimate of this mass: m* = 0.32 +
0.01 kg. The experimental uncertainty is due to the resolution used for the mass values in the
zone at the beginning of the plateau in figure 11, where we increment the colliding body mass
by 10 g steps. Time intervals detected when using colliding mass values greater than m™ give
all sound speed values in good agreement with the accepted values for brass rods [16].

More data were obtained by performing measurements with brass rods of equal length
(3.010 m) and different cross-sectional diameters (0.51 cm, 0.81 cm and 1.60 cm), with
the colliding bodies falling from the same angular position. Measurements have also been
performed with aluminium rods of similar lengths and cross-sectional diameters. The data
obtained again attest to the existence of a minimal value for the colliding body mass. Figure 12



698 C Fazio et al

2.0
A A
E A
1.5
O ]
[ . .
2 ] A
£ 104 Py A Brass
o 1
-:..E' 4 & Aluminium
°
f=d
3
= 0.5
.
0.0 g ) y ! T ! g y 2 T T ! y ) T
0 1 2 3

Vice position (m)

Figure 13. Plot of the pulse wave propagation time intervals as a function of the vice position,
measured using method 3. Data refers to 3 m long aluminium and brass rods.

Table 2. Values of the colliding time intervals for mass m*, in aluminium and brass rods.

Rod material Az (x107%s)

Aluminium 1.9 £0.1
Brass 29+£0.1

shows plots of the minimal value of the mass, m*, of the colliding body as a function of the
cross-sectional area, S. Linear relationships between m* and S are evident for both brass and
aluminium, in accordance with (4).

By taking into account this equation and the slope of the best-fitting lines, it is possible
to estimate the value of the time interval, Af, necessary for a colliding body of mass m*
to transfer all its momentum and energy to the rods. Table 2 summarizes the values of Af
for brass and aluminium rods. The values are calculated from the slopes of the mass versus
cross-sectional area in 3 m long rods. Error bar values are obtained from the uncertainties on
the slopes of the fitting lines. Note that these time values are coherent with typical times for
collisions given in the literature [15].

A modification of the experimental set-up of method 3 can be introduced by blocking the
rod by means of vices to a very heavy laboratory desk. We verified that only by blocking the
rods by means of a single vice, placed at the far end of the rod, do we obtain the same values
of time intervals detected by using the suspended rods. If the vice is closer to the end of the
rod hit by the body, the measured time intervals are smaller than those obtained with the freely
suspended rod, as shown in figure 13. This behaviour can be explained by the action of the
vice: when the wave pulse created by the stroke arrives at the vice, it is partially reflected. It
returns to the left end of the rod and makes the colliding body displace, actually triggering the
end of data detection. This happens well before the arrival of the wave pulse reflected by the
right end of the rod. The action of the vice is not evident when the vice is placed at the right
end of the rod because in this case both the reflected wave pulses are created almost at the
same time.

The data reported in figure 13 seem to suggest a linearity in the propagation of the wave
pulse in the rods. On the other hand, we found an appreciable scattering of the measured
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time values depending on the strength with which the vice is applied to the rod, i.e. from the
‘efficacy’ of the constraint. This prevented us using figure 13 data for further analysis.

4.1. What students learned from the experiments

All the reported experiments were performed by a group of trainee teachers (TTs) attending
the pedagogical laboratory mechanical waves propagation course. They were graduates in
mathematics and engineering. Their university curricula included two or three introductory
physics courses dealing with theory, without any laboratory activity. Consequently, the TTs’
attitude to experimental work was mainly oriented towards verification of already studied and
well-formalized laws.

A comparison between results obtained by methods 1, 2 and 3 makes evident the role
of the accuracy of experimental devices in measurements. The majority of the TTs declared
that method 1 is conceptually effective at showing the time lowering of pulse propagation in
solids when compared with the time of propagation in air, even if it is not suitable for giving
quantitative estimates of sound speed in metals. For this reason, our students called it a ‘half’
measuring method.

Many discussions among the TTs were initiated by the experimental results of methods 2
and 3. In particular, the first lab results stimulated the TTs to read further examples reported
in papers and textbooks in order to gain insight into the physics of collisions and the role of
wave propagation in explaining the motion of real, elastic bodies.

It was initially not clear to the majority of the TTs that a sufficiently massive body, after
colliding with the rod end, does not instantaneously rebound in accordance with the common
interpretation of phenomena easily observed in real life and the rigid body mechanics studied
in their introductory physics courses.

The plots of experimental data obtained with method 2 (see figures 9 and 10) led the
TTs to discuss what they actually measured during the experiments performed. In particular,
they did not understand why the fitting lines did not pass for the axis origin. They initially
tried to repeat the measure many times, aiming to eliminate possible accidental error. The
very fact that the measured time intervals were systematically higher than the expected
values made the TTs suspect that the process of contact loss (between the pendulum bob
and the rod’s right end) added a delay time to the actual event they were studying. The
search for an explanation of the results, and the analysis of the paper [17], suggested to
them the possibility of a correction to the experimental data, as reported in the previous
section.

Experiments performed using method 3 stimulated many discussions about the physics
of wave propagation. The TTs found difficulty in understanding why the rod motion was not
an instantaneous effect of the collision and why a massive body, after colliding with the rod
end, can lose its contact only because of the reflected pulse returning from the free end of
the rod. Moreover, the idea that in our experimental arrangement the reflected pulse is an
extensional one was somehow passively accepted by the TTs; they recalled some previously
studied theoretical concepts about waves (especially the transverse ones, the more widely
studied in their university courses). On the other hand, the translation of this theoretical
statement into the fact that the microscopic motion of the rod’s particles is always in the
same direction of the body stroke was not immediate for many TTs. This can be attributed
to some unfamiliarity with longitudinal waves, but is more probably due to the way the
TTs have learned physics in their introductory university courses: a set of formulae to
memorize and general concepts treated simply as facts without meaningful understanding.
The experimental evidence unquestionably contributed to clarifying the physical concepts
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involved, by supplying mechanisms of functioning that affected the TTs’ understanding more
than mere learnt formulae.

Other discussions were triggered by the experimental set-up for method 3: the metallic
rods suspended by elastic bands. The TTs initially thought that firmly attaching the rod to a
heavy body by means of vices could avoid the rod escaping from the colliding body before
the reflected pulse returns back.

The experiments performed by applying method 3 with blocked rods (see figure 13)
stimulated the TTs to reflect about the role of constraints in wave propagation and the general
meaning of the constraint concept. They thought that the presence of the constraint, due to the
vice, was sufficient to immediately bounce back a colliding body. The TTs did not understand
that the constraint can only be detected by the colliding body when a compressional wave
pulse, due to the action of the constraint, arrives at the end of the rod where the collision
occurs. The awareness that the constraint can act only when it is ‘informed’ of the action of
the colliding body by the wave pulse arrival contributed to the TTs’ understanding.

All these considerations made the TTs make sense also of the shortening of time intervals
measured when the vice was placed near the end of the rod hit by the body.

The TTs’ behaviour, together with their interest in performing the experiments, allow us to
make some conclusions about a new TT’s attitude to approaching physics experiments. Many
of them developed interesting discussions and reflections about what actually one measures
when performing a physical experiment, by also reasoning on possible interpretative models
of observed phenomena and quantitative results. This last point also represents a modification
of the TTs’ approach to modelling, which was initially mainly of a descriptive kind; they
initially searched for a mere description of an observed phenomenon or for mathematical
formulae making sense of the numerical results of measurements. After the lab part of the
workshop, the TTs showed a renewed interest in searching for interpretative models, even
involving microscopic interactions, explaining why a phenomenon develops in a given way or
some specific experimental results are obtained.

5. Conclusions

In this paper, we discuss three different methods to analyse the acoustic wave propagation in
metallic rods, also reporting experimental results. The method characteristics are described
in the literature [10, 16] but the measurements have been performed by using different sensor
and data logging devices. We adapted the experimental set-up to commercial microcomputer-
based laboratory technology and developed a modelling of experimental results involving a
pedagogical deepening of mechanical waves propagation concepts.

We show that two experimental methods give values of sound speed in metallic rods that
are in good agreement with the accepted values reported in handbooks. The first experimental
method can be considered only useful to give good qualitative evidence of differences in
propagation times of wave pulses in rods of different materials. The hardware constraints
of the commercial data acquisition systems, very affordable and available in high school
laboratories, imply that acceptable estimates of the sound speed can be obtained only using
sample rods of a length not easily manageable in a pedagogical laboratory.

The experimental data were obtained during the physics lab section activities of the
mechanical waves propagation course, dedicated to trainee physics teachers of the Graduate
School of Pre-Service Physics Teacher Education at Palermo University. The experiments
performed and the discussions about the results allow us to conclude that trainee teachers have
modified their initial attitude to physics laboratory activities and deepened their understanding
of the physics content involved.
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