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Abstract 1 

Detection of homogeneous climate areas is a challenging issue, which can be affected by different criteria. One 2 

of the most prominent factors is choosing the time scale, which can lead to different spatial and temporal 3 

patterns. Total precipitation is a key factor in climatological studies, and studying its distribution is of utmost 4 

importance. The combination of Principal Components Analysis (PCA) and Cluster Analysis (CA) is used for 5 

homogeneous precipitation areas detection. Hence, the spatial pattern of total precipitation was investigated in 6 

northwestern Iran during the past two decades (1991-2010) on seasonal and annual time scales. The results of 7 

clustering on each time scale were validated and well-defined clusters were investigated and compared with 8 

each other. Two homogeneous sub-regions were recognized in spring, the best duration for depicting 9 

homogeneous precipitation clusters at seasonal resolution. The annual pattern of precipitation delineated three 10 

clusters in the study region. Finally, the characteristics of the well-clustered maps reveal the importance of time 11 

scale in detection of homogeneous precipitation sub-zones.  12 

Key words Cluster analysis, GIS, Principal Component Analysis, Time scale, Total precipitation 13 
 14 

Introduction 15 

Regional studies on spatial and temporal climate variability are as vital as that of global studies, especially in 16 

large countries with different climate regimes (Türkeş et al. 2009). Moreover, the changing spatio-temporal 17 

patterns of the individual climatic variables are region specific, and vary from one region to another region 18 

(Qian & Qin 2006). Because, climate variables vary in time and space, and their spatio-temporal behavior 19 

depends on spatial and temporal scales. Some researchers have incorporated spatial and temporal information, 20 

and have found that trend for different climate variables differ significantly from region to region (Adamowski 21 

et al. 2013). Therefore, studying the spatial and temporal variability of climate variables at regional scale is of 22 

utmost importance. 23 

Temporal trend analysis and spatial interpolation methods have been widely used in spatio-temporal climate 24 

variability studies (Shahid 2009; Santos et al. 2010; Martins et al. 2012). The majority of the previously 25 

performed researches in climate trend analysis focused on long-term trend detection of the main climate 26 

variables such as precipitation and temperature (Haylock & Nicholls 2000; Griffiths et al. 2003; Qian & Qin 27 

2006; Shahid 2009; Martins et al. 2012; Taxak et al. 2014; Arab Amiri et al. 2016). Regarding spatial 28 

variability, a set of possible local and regional factors can contribute to the delineation of homogeneous climatic 29 

sub-zones (Adamowski et al. 2013). Moreover, homogeneous regions with similar behavior in terms of 30 
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climatological variables can play an important role in decision making procedure. Because, identification of 1 

homogeneous climate areas at regional scale can be considered as an important issue in spatial and temporal 2 

analysis of climate time series, and have been proved to be extremely important in a wide range of fields, such 3 

as agriculture, hydrology, energy, ecology, engineering and natural resources management. Hence, spatial 4 

variability analysis of climate data is an issue of great importance. 5 

A classification of homogeneous climate sub-regions can be obtained based on the spatial and temporal 6 

patterns in climate time series (Vicente‐Serrano et al. 2015). Principal Component Analysis (PCA) is a 7 

commonly used approach for investigating the spatial variability of climate time series (Türkeş et al. 2009; 8 

Santos et al. 2010; Martins et al. 2012; Gocic & Trajkovic 2014; Vicente‐Serrano et al. 2015; Arab Amiri & 9 

Mesgari 2016), and a combination of PCA and Cluster Analysis (CA) is the most widely used approach for 10 

delineation of homogeneous climate sub-zones. Hence, Richman (1986), Dinpashoh et al. (2004), Huth (2006), 11 

Raziei et al. (2008), Vicente‐Serrano et al. (2015), and other researchers have been widely utilised the procedure 12 

in detection of homogeneous climate zones. 13 

Another issue in spatio-temporal variability analysis is the time scale or temporal resolution of the data, 14 

which can affect the results of analysis (Wu et al. 2015). The choice of temporal resolution is as important as the 15 

choice of spatial scale. Because, the time scale is the key factor when working with periodic data. Furthermore, 16 

using different time scales can influence the results of the analysis (Maurya 2013). In other words, the 17 

delineated homogeneous sub-zones vary when analyzed at multiple temporal resolutions (Wu et al. 2013). 18 

Moreover, it is noteworthy to investigate how the choice of time scale may affect the results of the spatial 19 

variability analysis at regional scale. Therefore, in this study, the spatial patterns in the precipitation data were 20 

investigated on seasonal and annual time resolutions.  21 

Spatial variability analysis of climate parameters in large countries with different climate regimes is of great 22 

importance. Iran is a large country with different climate regimes, and climate of more than 80% of Iran is 23 

classified as semi-arid and arid. Thus, the country experiences both droughts, as well as floods (Madani 2014; 24 

Tabari et al. 2014). Having considered the great effects of climate changes on the natural physical environment, 25 

the significance of climate variability studies over Iran could be highlighted (Tabari et al. 2014). 26 

Due to the sparsity of weather station network, the relatively short period of data availability, different 27 

recorded lengths of meteorological data and missing values in the climatic dataset across Iran, only a few studies 28 

about spatial and temporal variability analysis of meteorological variables have been carried out (Dinpashoh et 29 

al. 2004; Raziei et al. 2008; Zoljoodi & Didevarasl 2013). The main objective of this research is to investigate 30 
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the effects of using different time scales on homogeneous sub-regional climatic areas revealed through spatial 1 

regionalization. It is of great importance to study how the choice of temporal scale may affect the results of the 2 

spatial variability analysis at regional scale in the study region. For this purpose, a combination of PCA and CA 3 

was applied to the precipitation data in northwestern Iran between the years 1991 and 2010. Consequently, time 4 

series and Geographic Information System (GIS) analysis methods can be used in order to evaluate the spatial 5 

variability of climatic time series. The paper is structured as follows. The study area and the data used for the 6 

analysis are presented in the first part of section 2, and the methodological framework is described in the second 7 

part of this section. The main results of the study are presented and discussed in section 3, and the last section 8 

(section 4) provides the conclusions and recommendations for future work. 9 

Materials and methods 10 

Study area and data 11 

Northwest Iran has been selected for this study. Six provinces located within the study area, including West 12 

Azerbaijan, East Azerbaijan, Ardabil, Gilan, Zanjan and Kurdistan. The study region extends between the 13 

latitudes 34o 35’ N and 40o 2’ N, and the longitudes 43o 59’ E and 50o 41’ E, with a total area of approximately 14 

169,723 km2 including Lake Urmia, about 10% of the total land area of Iran. According to the latest census in 15 

2011, this area accounts around 16% of the national population (Figure 1). The Thiessen polygon map based on 16 

geographic coordinates of all synoptic stations is depicted in Figure 1. The polygones can be used to define the 17 

area influenced by each station for illustrating the spatio-temporal patterns present in the data set (Wu et al. 18 

2015). 19 
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 1 
Figure 1: (a) Location of the study area, and (b) the Thiessen polygon map of the study region to define influenced area of 2 
each station. 3 

 4 
Monthly total precipitation records from 24 synoptic stations out of 38 existing stations in the northwestern 5 

corner of Iran, for the time interval from January 1991 to December 2010, recorded by the Islamic Republic of 6 

Iran Meteorological Organization (IRIMO), were used in this study. The 24 selected stations have no missing 7 

data. The geographic coordinates of the chosen stations, and mean and standard deviation of the time series of 8 

the total precipitation amount for each station, are presented in Table 1.  9 

 10 
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Table 1 Geographical descriptions, mean and standard deviation of annual total precipitation amount of the synoptic stations 1 
used in the study 2 

Station name Longitude 
(dd) 

Latitude 
(dd) 

Altitude 
(m) 

Annual total precipitation amount 

Mean (mm) Standard  
deviation (mm) 

1. Aahar 47.067 38.433 1390.5 283.445 58.110 
2. Ardabil 48.283 38.250 1332.0 286.720 58.918 
3. Astara 48.850 38.367 -21.1 1357.610 235.200 
4. Bandar Anzali 49.450 37.483 -23.6 1662.000 260.270 
5. Bijar 47.617 35.883 1883.4 335.435 74.170 
6. Ghorveh 47.800 35.167 1906.0 347.265 74.090 
7. Jolfa 45.667 38.750 736.2 210.015 67.870 
8. Khalkhal 48.517 37.633 1796.0 367.705 58.340 
9. Khoramdareh 49.183 36.183 1575.0 300.400 82.270 
10. khoy 44.967 38.550 1103.0 255.310 54.470 
11. Mahabad 45.717 36.767 1351.8 411.170 114.050 
12. Makoo 44.433 39.333 1411.3 303.605 70.720 
13. Maragheh 46.267 37.400 1477.7 292.475 91.060 
14. Mianeh 47.700 37.450 1110.0 274.045 67.140 
15. Urmia 45.050 37.667 1328.0 308.600 105.740 
16. Parsabad Moghan 47.917 39.650 31.9 267.935 63.650 
17. Rasht 49.617 37.317 -8.6 1306.475 268.160 
18. Saghez 46.267 36.250 1522.8 458.340 142.390 
19. Sanandaj 47.000 35.333 1373.4 397.560 97.980 
20. Sarab 47.533 37.933 1682.0 249.520 42.060 
21. Sardasht 45.483 36.150 1556.8 874.255 199.480 
22. Tabriz 46.283 38.083 1361.0 245.955 57.100 
23. Takab 47.100 36.400 1817.2 318.420 90.410 
24. Zanjan 48.483 36.683 1663.0 290.420 65.100 
 3 

The data used in this study are the monthly total rainfall values recorded by synoptic stations. Since the main 4 

objective of the study is evaluating the effects of using different time scales on the results of defining 5 

homogeneous areas in terms of precipitation, we aggregated the monthly data in two levels (i.e. seasonal and 6 

yearly). It should be noted that for the computation of cumulated seasonal precipitation, we arranged time series 7 

as hydrological seasons: winter (January, February, March), spring (April, May, June), summer (July, August, 8 

September) and autumn (October, November, December) (Raziei et al. 2008). Therefore, the precipitation data 9 

series were used in this study at two different levels, namely seasonal and annual. 10 

An extensive pre-processing procedure applied to precipitation time series data sets, before using data series 11 

in the study. For this purpose, five homogeneity tests, including the standard normal homogeneity test, the 12 

Buishand range test, the Pettitt test, the Von Neumann ratio test, and the double-mass curve analysis were 13 

applied to the time series of the total precipitation amount at the 5% significance level. Finally, all the used tests 14 

recognized all series as sufficiently homogeneous data sets for entering into the analysis.  15 
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Methodological framework 1 

The methodology used in this study is summarized in Figure 2. 2 

 3 

Figure 2: The methodology used in this study 4 
 5 

Principal component analysis 6 

PCA is a statistical multivariate technique that has been widely applied in various applications such as 7 

climatology and meteorology for dimensionality reduction. The method is used for forming new orthogonal 8 

uncorrelated variables that are linear combinations of the original highly inter-correlated variables (Vicente‐9 

Serrano et al. 2015). PCA uses the characteristic equation for computing the eigenvalues and eigenvectors. PCA 10 

computations can be done based on either the correlation matrix or the covariance matrix of the observed 11 

variables. Moreover, PCA is not being affected by the lack of independence between the original variables, and 12 

using normalized data series is not necessary for analysis by such a method (Kalayci & Kahya 2006; Santos et 13 

al. 2010). Consequently, PCA can be used for capturing information about spatial or temporal co-variability 14 

pattern in climate data. 15 

We used the T mode PCA defined by Richman (1986) for matrix configuration. The T-mode PCA can be 16 

applied to meteorological data in order to derive general spatial patterns (Vicente‐Serrano et al. 2015). For this 17 

purpose, a data matrix where rows correspond to the stations and columns for the observations is constructed for 18 

analyzing precipitation time series. Therefore, the formed matrix is used as input data arrangement for PCA. 19 



8 
 

 

Having applied PCA to the precipiotation data, the obtained principal components (PCs) were rotated for 1 

achieving more stable spatial patterns (Santos et al. 2010). The Varimax method is the most widely used 2 

technique for producing rotated PCs, and attempts to maximize the inter-correlation between the variables and 3 

the components (Ercan et al. 2008; Santos et al. 2010). Hence, in this study, the Varimax procedure is used for 4 

rotating the obtained PCs in order to achieve more spatially localized PCs. 5 

Cluster analysis 6 

The spatial structure of the precipitation data can be more simplified by determining regions which have 7 

similar behavior in different time spans. The output of PCA (the rotated PC scores) can be used subsequently in 8 

cluster analysis. Hence, clustering is applied to the PC scores for homogeneous precipitation areas detection.  9 

Choosing the right clustering method for categorizing the stations into groups with similar recorded 10 

observations is another issue of great importance. For this porpuse, stations can be regarded as objects and the 11 

Varimax rotated PC scores can be treated as attributes, and the clustering algorithm can partition objects 12 

(stations) into sub-groups based on their similarities (Wu et al. 2015). Gong and Richman (1995) concluded that 13 

the K-means as a non-hierarchical technique outperformed hierarchical methods such as the Wards’s algorithm 14 

when working with precipitation data sets (Santos et al. 2010). Fovell and Fovell (1993) also noted that the 15 

Euclidean distance is the most relevant mathematical criterion or distance measure for classification purposes. 16 

From spatial perspective, K-means starts with the initialization of randomly chosen k stations as cluster 17 

centroids; then, the sum of squared errors between each station and its corresponding cluster centroids is 18 

computed (Wu et al. 2015). In other words, k-means clustering aims to minimize the within-cluster sum of 19 

squares by iteratively assigning each station to the closest cluster centroid and re-calculating new cluster 20 

centroids. Thus, K-means clustering method was applied to the rotated PC scores in order to classify the stations 21 

into groups with minimum within-group variability and maximum between-group variability. 22 

The Variance Ratio Criterion for cluster validation 23 

There are many approaches for cluster validation and determining how many clusters are needed to optimize 24 

the definition of homogeneous objects/observations in various applications, such as Ball-Hal, Banfeld-Raftery, 25 

C index, and Variance Ratio Criterion (VRC)  (Liu et al. 2010). One of the most commonly used methods is the 26 

VRC defined by Caliński and Harabasz (1974). The index has some advantages over other indices, such as its 27 

ease of calculation and its effectiveness in different clustering approaches. The VRC evaluates the cluster 28 

validity based on the average between- and within-cluster variances (Liu et al. 2010); and can be used to 29 

determine the proper number of clusters in cluster analysis. The VRC is defined as follows: 30 
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(1)  𝑉𝑅𝐶𝑘 =
(𝐵𝐶𝑉/(𝐾 − 1))
(𝑊𝐶𝑉/(𝑁 − 𝐾)) 

where BCV is the overall between-cluster variance (inter-cluster), and WCV is the overall within-cluster variance 1 

(intra-cluster) with regard to all clustering variables; K is the number of clusters, and N is the number of 2 

observations/objects. The BCV is defined as: 3 

(2)  𝐵𝐶𝑉 =∑𝑛𝑘‖𝐶𝑘 − 𝐶‖2
𝐾

𝑘=1

 

where Ck is the center of cluster k, C is the overall mean of data, ||.||2 is the Euclidean distance between the two 4 

vectors. 5 

The overall within-cluster sum of squares WCV is defined as: 6 

(3)  𝑊𝐶𝑉 =∑ ∑‖𝑥 − 𝐶𝑘‖2
𝑥∈𝐶𝑘

𝐾

𝑘=1

 

Where x is a data point, and Ck is the kth cluster. 7 

Well-defined clusters are determined by maximizing the value of this index; because, a large between-cluster 8 

sum of squares and a small within-cluster sum of squares lead to a large VRC, and the larger the VRC, the better 9 

the data clustering. Therefore, the optimal number of clusters is determined by maximizing VRC (Liu et al. 10 

2010).  11 

Results and discussions  12 

As stated earlier, the data used in this study were the recorded monthly total precipitation at synoptic stations 13 

in the studied area. Having applied the T-mode PCA to the input data, the Varimax procedure was used for 14 

rotating the obtained PC scores. Before rotating the obtained PC scores, we used the Kaiser's criterion to decide 15 

how many PCs should be retained for rotation. Therefore, PCs correspond to all eigenvalues greater than one 16 

were retained and rotated with Varimax method. The number of PCs retained, the cumulative percentage of total 17 

variation, the explained percentage of variances for either un-rotated PCs, and Varimax rotated PCs for each 18 

time scale, are shown in Table 2. 19 

 20 
Table 2: Explained variance (%) by the loadings with and without rotation for total precipitation in each time scale. 21 
Time Time Explained Principal components Cumulative 
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Scale Period  variance 
(%) PC-1 PC-2 PC-3 PC-4 PC-5 PC-6 PC-7 

percentage 
of total 
variation 

Seasonal 

Winter 
Un-rotated  42.57 13.81 10.05 7.15 6.32 4.74  

84.64 Varimax 
rotated  25.14 12.13 11.37 16.68 12.44 6.88  

Spring 
Un-rotated  54.19 18.05 6.56 4.88    

83.66 Varimax 
rotated  24.95 17.99 24.31 16.42    

Summer 
Un-rotated  29.45 17.05 14.00 7.21 6.60 5.56 4.50 

84.37 Varimax 
rotated  17.40 11.21 14.21 11.85 13.55 9.02 7.13 

Autumn 
Un-rotated  62.92 9.14 6.19 4.39    

82.65 Varimax 
rotated  32.59 8.57 25.23 16.25    

Annual year 
Un-rotated  50.34 13.24 9.34 5.60    

78.51 Varimax 
rotated  34.55 12.15 14.75 17.06    

 1 

The rotated PC scores were used as inputs for CA. For this purpose, the K-means clustering algorithm was 2 

used to identify homogeneous precipitation sub-regions in the study area. The optimum number of clusters was 3 

determined through a trial and error procedure; i.e. we applied the K-means algorithm six times (one cluster to 4 

six clusters) for each time scale, and the optimum number of clusters were determined by means of calculating 5 

the VRC index. Hence, the number of clusters which maximize the VRC index was considered as the optimum 6 

number of clusters for each time scale. Variance decomposition for the optimal classification of homogeneous 7 

precipitation regions and the optimum number of clusters, are shown in Table 3. 8 

 9 
Table 3: Variance decomposition for the optimal classification, VRC, and the optimum number of clusters for each time 10 
scale 11 

Time Scale Time Period  Variance 
decomposition 

Between-
classes 
variance 

Within-
class 
variance 

Total 
variance VRC 

Number 
of 
Clusters 

 
Seasonal 

 
Winter 

Absolute (mm2) 7.69 3.43 11.12 8.06 6 Percent (%) 69.12 30.88 100.00 
 
Spring 

Absolute (mm2) 3.66 3.73 7.39 21.53 2 Percent (%) 49.46 50.54 100.00 
 
Summer 

Absolute (mm2) 8.34 5.39 13.73 7.35 5 Percent (%) 60.76 39.24 100.00 
 
Autumn 

Absolute (mm2) 4.32 1.11 5.43 13.99 6 Percent (%) 79.54 20.46 100.00 

Annual year 
Absolute (mm2) 5.50 3.18 8.68 18.16 3 Percent (%) 63.37 36.63 100.00 

 12 

In the following sections, the properties of each delineated sub-region in each temporal resolution will be 13 

briefly described, and the effects of using different temporal scales will be investigated. The best time scale for 14 

homogeneous precipitation area detection in the studied area in each time scale will be introduced and the 15 

results of clustering homogeneous areas in different time scales will be compared. 16 
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Spatial regionalization at seasonal time scale 1 

The seasonal pattern of total precipitation is shown in Figure 3. The studied area was classified into six, two, 2 

five and six homogeneous sub-regions in winter, spring, summer and autumn, respectively. Table 2 and Table 3 3 

also showed that the maximum amount of the VRC index belongs to spring with only 4 PCs retained which 4 

explained more than 83 percent of the total variance. The results of clustering in spring illustrate that the study 5 

area is divided into two separate regions, namely the northern and eastern parts, and the southern part.  6 

 7 
Figure 3: The delineated clusters at seasonal time scale; the numbers within each polygon and the used grayscales are for 8 
visually discriminating the clusters. 9 

 10 

The average amounts of the recorded total precipitation and the standard deviations for the delineated 11 

clusters for each season are shown in Figure 4. In winter, the average amount of total rainfall varied in the range 12 
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between 68 mm (the first and the fourth clusters) and 395 mm (the fifth cluster). The second cluster also showed 1 

the second highest mean precipitation at about 322 mm. In spring, the first cluster (the north and east of the 2 

study region) showed an average amount of total rainfall at about 127 mm. It is also noteworthy that there is a 3 

little difference between the average total rainfall values of the second cluster at just above 113 mm in 4 

comparison with the first cluster. 5 

In summer, the average values of precipitation were less than 30 mm in four out of five delineated clusters; 6 

while the whole average of the recorded precipitation in the second sub-region was about 267 mm, the highest 7 

amount of average precipitation in comparison with other clusters. In autumn, the average cumulative rainfall 8 

ranged between approximately 76 mm (the fifth sub-region) and 505 mm (the third sub-zone). Autumn also 9 

showed the most recorded average precipitation amount in comparison with other seasons.  10 

 11 
Figure 4: Mean and standard deviation of the recorded total precipitation amounts for each cluster in: (a) winter, (b) spring, 12 
(c) summer, and (d) autumn. 13 

 14 

In general, the investigation of variances within and between clusters indicated that the definition of 15 

homogeneous sub-regions in spring are more reasonable compared with other seasons. The other well-defined 16 

clusters at seasonal time resolution were defined in autumn with relatively high values of the VRC index. 17 

Winter and summer on the other hand showed meaningless delineated clusters; and it can be perceived that the 18 

delineated clusters are not meaningful in northwest of Iran in winter and summer. The overall pattern of 19 

precipitation showed that there are four distinct parts over the study region, including eastern part, southern part, 20 
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northwestern part, and northern part. The results of homogeneous precipitation areas delineation can be used in 1 

water resources management, irrigation control, rain-fed agriculture and soil erosion prevention (Shahid 2009). 2 

As an example, Figure 5 depicts the spatial distribution of the first four rotated PC scores across the study 3 

area during spring. The first PC score, PC-1, has the highest positive score over the southern part of the region, 4 

including the regions with lower average amounts of precipitation in spring. The second PC score, has high 5 

positive values in the northern part and low positive and negative values in the southern part. The third PC score 6 

has the highest negative score over the southern part, and low negative and positive values in the northern part. 7 

The PC-4 score, also has high positive values in the eastern part, including regions with the highest amount of 8 

precipitation during spring. Finally, the patterns of all PC scores are identical, delineating the two clusters, as 9 

two distinctive sub-regions with different spatial variability of total precipitation in spring. 10 
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 1 
Figure 5: Varimax rotated scores of total precipitation in spring; note that the background map shows clusters delineated 2 
through PCA and CA. 3 

 4 

Spatial regionalization at yearly time scale 5 

The precipitation-based regionalization using annual data sets is shown in Figure 6. The study area was 6 

classified into three clusters using annual time series. Table 2 and Table 3 also showed that the retained four 7 

PCs explained more than 78 percent of the total variation, and the VRC index is relatively high as a result of 8 

using annual data sets. 9 
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 1 
Figure 6: The delineated clusters at yearly time scale; the numbers within each polygon and the used grayscales are for 2 
visually discriminating the clusters. 3 

 4 

The study area was divided into three homogeneous precipitation sub-regions at yearly resolution. The 5 

northern part of the study area and the domain of influence belongs to Khalkhal and Ardebil stations were 6 

classified as the first cluster. The eastern region of the study area which is located near the Caspian Sea was 7 

categorized as the second cluster. The third cluster consists of the central, the southern and western parts of the 8 

study area, and is the biggest cluster. 9 

Figure 7 illustrates the average amount of annual total precipitation for each station and also for each cluster. 10 

The average amount of yearly precipitation in the first cluster varied between approximately 210 mm (Jolfa 11 

station) and 367 mm (Khalkhal station). The stations situated in this cluster seem to be more homogeneous than 12 

other clusters; and the average amount of precipitation for the first cluster is about 281 mm. The second cluster 13 

with extremely high amount of precipitation consists of three stations near the Caspian sea. The average total 14 

yearly precipitation in this cluster is about 1442 mm. The third cluster, which its average precipitation varied 15 

between 246 mm (Tabriz station) and 874 mm (Sardasht station), had an average amount of yearly precipitation 16 

at about 359 mm. Therefore, the three clusters depicted at yearly resolution, are distinctive sub-regions with 17 

different annual precipitation variability and characteristics. 18 
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 1 
Figure 7: Mean and standard deviation of annual total precipitation amounts: (a) for each station, and (b) for each cluster. 2 

 3 

The spatial distributions of all four rotated PC scores are shown in Figure 8. The first PC score has the 4 

highest positive score over the southern and central parts (cluster 3), including regions with moderate amounts 5 

of annual precipitation. The PC-2 score on the other hand has the highest positive values in the eastern part 6 

(cluster 2), which is the region with the highest amount of annual total precipitation. Interestingly, the PC-3 7 

score depicts the highest amount of positive score in the first cluster. Thus, the spatial distribution of the third 8 

PC score delineates regions categorized as cluster 1. The PC-4 score, has the lowest negative values in 9 

northwestern and northeastern parts, including regions with the lowest amount of annual total precipitation. 10 

Finally, the spatial distributions of all PC scores delineate the borders of the obtained clusters at yearly 11 

resolution.  12 

 13 
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 1 
Figure 8: Varimax rotated PC scores of the annual total precipitation; note that the background map shows clusters 2 
delineated through PCA and CA. 3 

 4 

Conclusions 5 

The spatial variability of total precipitation was investigated in northwestern Iran using precipitation time 6 

series from 24 synoptic stations during the period of 1991-2010. The spatio-temporal pattern of precipitation 7 

was analyzed using the T-mode PCA. The PCA was applied to time series of the total precipitation at different 8 

time scales, and then the CA was used for clustering the rotated PC scores. The number of clusters delineated by 9 

K-means algorithm, was selected based on the VRC index in each time scale.  10 
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The results reveal the importance of using different time scales in changing the spatial pattern of total 1 

precipitation over the study region; i.e. selecting different time scales (seasonal and annual) and also different 2 

durations in each time scale (such as spring and winter in the seasonal time resolution), lead to different spatial 3 

patterns of total precipitation across the study area. The clustered maps of total precipitation in each time scale 4 

were compared using the VRC index.  5 

Having compared the homogeneous sub-regions in each time scale, well-defined regionalized maps could be 6 

determined. The results of the analysis at seasonal time scale depict that spring had the most well-defined 7 

clusters in comparison with other seasons. The precipitation pattern of spring depicts that there are two separate 8 

sub-regions across the region, including the northern and eastern parts, and the southern part, where the latter 9 

had a slightly lower average amount of precipitation during spring. Moreover, the spatial characteristics of the 10 

annual precipitation delineate three homogeneous sub-regions; and the regions classified in the eastern part had 11 

the most annual precipitation in comparison with the other two clusters. The delineated homogeneous sub-zones 12 

can be used for agriculture, disaster mitigation, soil degradation and desertification prevention programmes, 13 

water resources planning and management in the context of regional climatic change. 14 

This paragraph provides recommendations for future work. The topographic characteristics of the region is 15 

an important factor that should be considered in defining the boundaries of homogeneous precipitation sub-16 

regions to have more accurate clusters. More research using longer time series is needed to further approve the 17 

accuracy of the spatially homogeneous areas detected at each time scale in this study. The use of satellite images 18 

and other sources of raw data could also be beneficial in order to decrease the uncertainty arisen due to the 19 

sparsity of the climate stations. Furthermore, other variables can be used in order to give more accurate results 20 

regarding precipitation-based regionalization. However, these recommendations were not considered in this 21 

study because the main purpose of this study was to only  investigate the impacts of time scale on the 22 

precipitation-based spatial regionalization. 23 

 24 
  25 
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