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Single-Shot Generation and Detection of a Two-Photon Generalized Binomial State
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A “quasi-deterministic” scheme to generate a two-photon generalized binomial state in a single-
mode high-Q cavity is proposed. We also suggest a single-shot scheme to measure the generated
state based on a probe two-level atom that “reads” the cavity field. The possibility of implementing
the schemes is discussed.

PACS numbers: 03.65.-w, 42.50.Dv, 32.80.-t

Generation of nonclassical states of the electromag-
netic field holds an important role in quantum optics
both from the theoretical and experimental point of view.
In fact, these states may give information about funda-
mentals of quantum theory and lead to applications in
quantum information processing [1, 2]. Due to the exper-
imental improvement of the quality factors of the cavities,
Rydberg atoms lifetimes and control of the atom-cavity
interactions [3, 4, 5, 6], cavity quantum electrodynamics
(CQED) is particularly indicated for quantum field state
engineering. In this context, several schemes have been
proposed to generate, for example, Fock states using the
interaction of consecutive atoms with a high-Q cavity
[3, 7]. Recently a two-photon Fock state was generated
and probed [8].

An important class of quantum non-classical states of
the electromagnetic field is constituted by the binomial
states, introduced by Stoler et al. [9], whose properties
[9, 10, 11, 12] and interaction with atoms [13] have been
studied. These states exhibit non-zero field expectation
values, are characterized by a finite maximum number of
photons and interpolate between the coherent state and
the number state. They also have interesting applica-
tions. For example, binomial states have been proposed
as reference field states in schemes to measure the canon-
ical phase of quantum electromagnetic fields [14, 15].
Generation of entanglement between atoms and electro-
magnetic field was analyzed when a binomial state in-
teracts with a mixed two-qubit system (two-level atoms)
[16]. It was also recently shown that a binomial state
gives an interesting transient spectrum when it consti-
tutes the initial field state of a single-Cooper-pair box
[17]. Thus, for its characteristic features and applica-
tions, it appears of interest to develop implementable
procedures for the generation of binomial states.

A conditional scheme to generate binomial states in
a cavity was proposed [18], in the CQED context, that
exploits the quantum field state engineering in a single-
mode cavity introduced by Vogel et al. [19]. This scheme
utilizes the resonant interaction of N consecutive two-
level atoms with the cavity initially prepared in its vac-
uum state. The desired cavity field state is then obtained

through a total state reduction by a measurement on the
atoms coming out of the cavity. This scheme is condi-
tional and results to have a low efficiency for generat-
ing binomial states with a maximum number of photons
larger than one.
Here we propose an efficient, “quasi-deterministic”

scheme for the generation and detection of a two-photon
generalized binomial state in a single-mode high-Q cav-
ity. Moreover, we discuss its implementation by consid-
ering the typical experimental errors involved in CQED
systems.
Our generation scheme exploits two consecutive two-

level atoms resonantly interacting, one by one, with the
cavity initially prepared in its vacuum state. The inter-
action of each two-level atom with the single-mode cav-
ity field is assumed to be well described by the Jaynes–
Cummings Hamiltonian HJC = ~ωσz/2 + ~ωa†a +
i~g(σ+a−σ−a†) [20], where ω is the cavity field mode, g
the atom-field coupling constant, a and a† the field anni-
hilation and creation operators and σz = | ↑〉〈↑ |−| ↓〉〈↓ |,
σ+ = | ↑〉〈↓ |, σ− = | ↓〉〈↑ | the pseudo-spin atomic op-
erators, | ↑〉 and | ↓〉 being respectively the excited and
ground state of the two-level atom. It is well known that
the Hamiltonian HJC generates the transitions [7, 21]

| ↑ n〉 → cos(g
√
n+ 1t)| ↑ n〉 − sin(g

√
n+ 1t)| ↓ n+ 1〉

| ↓ n〉 → cos(g
√
nt)| ↓ n〉+ sin(g

√
nt)| ↑ n− 1〉, (1)

where | ↑ n〉 ≡ | ↑〉|n〉, | ↓ n〉 ≡ | ↓〉|n〉 and a†a|n〉 = n|n〉.
It is useful, at this point, to recall that the single-

mode generalized binomial state (GBS) with a maximum
number of photons N , normalized and characterized by
the probability of single photon occurrence 0 ≤ p ≤ 1
and the mean phase φ is defined as [9, 10, 22, 23]

|N, p, φ〉 =
N
∑

n=0

[(

N

n

)

pn(1− p)N−n

]1/2

einφ|n〉. (2)

This GBS is reduced to the vacuum state |0〉 when p = 0
and to the number state |N〉 when p = 1. In the par-
ticular case where φ = 0, the GBS of Eq. (2) is named
“binomial state” [9]. Here we concentrate on the 2GBS
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FIG. 1: Experimental setup for the generation of a two-
photon generalized binomial state (2GBS) in a cavity.

|2, p, φ〉 that can be explicitly written putting N = 2 in
Eq. (2)

|2, p, φ〉 = (1− p)|0〉+
√

2p(1− p)eiφ|1〉+ pei2φ|2〉. (3)

A sketch of our generation procedure is represented
in Fig.1. Before entering the cavity, the k-th two-level
atom (k = 1, 2) is injected into an appropriate Ramsey
zone where it is prepared in the superposition

|χk〉 =
√
p| ↑〉+ eiϕk

√

1− p| ↓〉 (k = 1, 2) (4)

where 0 ≤ p ≤ 1. The values of p and ϕk can be ar-
bitrarily fixed by adjusting the Ramsey zone settings,
i.e. the classical field amplitude and the atom-field in-
teraction time. After crossing the Ramsey zone, the first
atom resonantly interacts for a time T1 with the cav-
ity initially in the vacuum state |0〉. Using Eq. (1) to-
gether with Eq. (4) and choosing an interaction time
T1 = π/2g, we obtain the factorized total atom-cavity
state |Ψ1(T1)〉 = eiϕ1 |p, π−ϕ1〉| ↓〉 where the cavity field
state

|p, π − ϕ1〉 =
√

1− p|0〉+ ei(π−ϕ1)
√
p|1〉, (5)

is the GBS with N = 1 and mean phase φ = π−ϕ1, also
called “generalized Bernoulli state” [9]. So, the field state
inside the cavity is generated, in principle, exactly in a
deterministic way. At this stage our scheme is identical
to that one proposed in Refs. [18, 19]. It is worth to
underline here that this (N = 1) GBS is measurable by
a probe atom and this provides also a method to test a
Bell’s inequality violation for an entanglement of these
states in two separate cavities [2].
After the exit from the cavity of the first atom, i.e.

after preparing the cavity in the state |p, π− ϕ1〉, a time
interval ∆t will elapse before the second atom enters the
cavity. During this time, the free field evolution induces
a shift of the mean phase of the cavity field state equal
to −ω∆t. So, the second two-level atom finds the cavity
field in the state |p, π − ϕ′〉 with ϕ′ = ϕ1 + ω∆t. This
second atom, prepared by the Ramsey zone in the su-
perposition |χ2〉 of Eq. (4) with ϕ2 = ϕ′, interacts with
the cavity for a time T2. Exploiting once again Eq. (1)
together with Eqs. (4), (5) and with ϕ′ in place of ϕ1,

at the end of the atom-cavity interaction the state of the
total system can be written, within a global phase factor,
as follows

|Ψ2(T2)〉 =
[

(cos gT2 − sin gT2)
√

p(1− p)ei(π−ϕ′)|0〉

+ cos(g
√
2T2)pe

2i(π−ϕ′)|1〉
]

| ↑〉 −
[

(1 − p)|0〉

+ (sin gT2 + cos gT2)
√

p(1− p)ei(π−ϕ′)|1〉
+ sin(g

√
2T2)pe

2i(π−ϕ′)|2〉
]

| ↓〉. (6)

It is immediate to observe that, if the following conditions
were simultaneously satisfied

sin(gT2 + π/4) = 1, sin(g
√
2T2) = 1, (7)

then the state |Ψ2(T2)〉 would be reduced to a factorized
state given by the product of the ground atomic state | ↓〉
and the 2GBS |2, p, π−ϕ′〉 of Eq. (3). Unfortunately the
conditions of Eq. (7) cannot be simultaneously satisfied.
However, we shall see that, by satisfying the first condi-
tion of Eq. (7), the function sin(g

√
2T2) takes a value dif-

ferent from one for an amount δ smaller than the uncer-
tainty due to the typical experimental errors. In fact, the
first condition of Eq. (7) is satisfied for gT2 = π/4+2m2π,
where m2 is a non-negative integer. We now look for
suitable values of m2 such that the second condition of
Eq. (7) is as near as possible to one. The typical experi-
mental conditions limit the interaction times T in CQED
systems inside the range 10−1 ≤ gT ≤ 102 [3], and these
in turns confine the possible values of m2 inside the in-
terval 0 ≤ m2 ≤ 16. Among these possible values of m2,
we find numerically that the best approximation of the
second condition of Eq. (7) occurs for m2 = 5 which cor-
responds to T2 = 41π/4g. For this value of T2 we have
sin(g

√
2T2) = 1− δ where δ ∼ 10−4. On the other hand,

the deviation δexp, induced by typical experimental er-
rors, may be estimated as δexp ≈ 2(gT2)

2(∆T2/T2)
2 and,

being ∆T2/T2 ∼ 10−2 [4, 24], we have δexp ≈ 10−1 hence
δ ≪ δexp. Summing up, in correspondence to the inter-
action time T2 = 41π/4g, the cavity field state factor of
| ↓〉 in Eq. (6) is given by

|ψ2,p,π−ϕ′〉 ≡ 1

N2

2
∑

n=0

c(2)n

[

pn(1 − p)2−n
]1/2

ein(π−ϕ′)|n〉

(8)

where the coefficients are c
(2)
0 = 1, c

(2)
1 =

√
2, c

(2)
2 = 1−δ

and N2 ≈ (1 − 2δp2)1/2 is a normalization constant. In
order to estimate how much the state |ψ2,p,π−ϕ′〉 is near
to the “target” 2GBS |2, p, π − ϕ′〉, we use the fidelity
F(p) = |〈2, p, π−ϕ′|ψ2,p,π−ϕ′〉|2. This tends to one when
p→ 0, i.e. when the 2GBS is reduced to the vacuum state
|0〉. However, for p 6= 0 the fidelity is near to one and for
p = 1/2 we have F(1/2) ≈ 1−1.6×10−9. So, |ψ2,p,π−ϕ′〉
can be effectively identified with the 2GBS |2, p, π − ϕ′〉
of Eq. (3). The probability P2 to generate the cavity field
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FIG. 2: Experimental setup for detecting the 2GBS inside the
cavity. Rd is the “decoding” Ramsey zone.

state of Eq. (8) is equal to the probability of finding the
second atom in the ground state | ↓〉 after coming out of
the cavity and it results to be, at the time T2 = 41π/4g,
P2 = |〈↓ |〈ψ2,p,π−ϕ′ |Ψ2(T2)〉|2 = N 2

2 . Substituting the
numerical value of N2 given above, the probability to
generate the 2GBS is

P2 ≈ 1− 2× 10−4p2, (9)

that is much higher than the analogous generation prob-
ability of previous conditional schemes (∼ 1/4) [18, 19].
Moreover, because of the high generation probability of
the 2GBS of Eq. (9) and being the typical atomic de-
tection efficiency less than one (∼ 70% ÷ 80%), the
use of atomic detectors to collapse the total state to
the target cavity state cannot further reduce the uncer-
tainty on the generated cavity state itself. So, within
the experimental limits, in our generation scheme a fi-
nal atomic measurement is not required and it can be
considered non-conditional: for this reason we name it
“quasi-deterministic”.
At this point, in order to probe that the cavity is ef-

fectively filled with the 2GBS |2, p, φ〉 of Eq. (3), we de-
scribe the following single-shot measurement scheme, il-
lustrated in Fig.2. Let us consider the cavity prepared in
the 2GBS |2, p, φ〉 and a probe two-level atom prepared in
the state | ↓〉 that resonantly interacts with the cavity for
a time TP = 41π/4g. We have seen that, for such a time,
both the equalities of Eq. (7) can be retained satisfied
within the experimental errors. Thus, using the Jaynes–
Cummings evolutions reported in Eq. (1) together with
Eq. (3), we find that, after the time TP , the total state
of the atom-cavity system is transformed as

| ↓〉|2, p, φ〉 TP−→ |p, φ〉(
√

1− p| ↓〉+√
p eiφ| ↑〉), (10)

where |p, φ〉 is the GBS defined by Eq. (2) for N = 1.
After coming out of the cavity the atom crosses a “decod-
ing” Ramsey zone Rd set in such a way that it undergoes
the following transformations

| ↑〉 Rd−→ √
p| ↑〉 − e−iφ

√

1− p| ↓〉
| ↓〉 Rd−→ eiφ

√

1− p| ↑〉+√
p| ↓〉, (11)

with the values of p and φ coinciding with that ones defin-
ing the 2GBS |2, p, φ〉 to be measured. Thus, utilizing

Eqs. (10) and (11), we find that after the Ramsey zone
Rd the atom-cavity system undergoes the evolution

| ↓〉|2, p, φ〉 TP ,Rd−→ eiφ|p, φ〉| ↑〉. (12)

In this way, the measurement of the excited atomic state
| ↑〉 at the end of the sequence of Fig.2 corresponds to
the detection of the 2GBS |2, p, φ〉 inside the cavity.
We stress that, considering the orthogonality property

of binomial states [2], the 2GBS |2, 1− p, π+ φ〉, orthog-
onal to the previously generated 2GBS |2, p, φ〉, can also
be obtained by our generation scheme above with the
changes p → 1 − p, ϕk → π + ϕk (k = 1, 2) in Eq. (4),
which are achievable by appropriate adjustments of the
Ramsey zone settings. On the other hand, if a probe two-
level atom initially prepared in the ground state | ↓〉 finds
the 2GBS |2, 1 − p, π + φ〉 inside the cavity and follows
the same measurement scheme as above, the atom-cavity
evolution is

| ↓〉|2, 1− p, π + φ〉 TP ,Rd−→ |1− p, π + φ〉| ↓〉 (13)

and the measurement of the ground atomic state | ↓〉 at
the end of the sequence of Fig.2 corresponds now to the
detection of the 2GBS |2, 1 − p, π + φ〉 inside the cavity.
We also note that the results of Eqs. (12) and (13) permit
to distinguish, in a single-shot measurement, each of the
two orthogonal 2GBSs |2, p, φ〉 and |2, 1−p, π+φ〉 inside
the cavity.
The orthogonal 2GBSs |2, p, φ〉, |2, 1 − p, π + φ〉 rep-

resent two vectors of an orthonormal basis in a 3-
dimensional Fock–Hilbert space. The third vector of the
basis can be readily obtained by setting the orthogonality
and normalization conditions and it results to be

|Γ(2, p, φ)〉 =
√

2p(1− p)|0〉+ (2p− 1)eiφ|1〉
−

√

2p(1− p)ei2φ|2〉. (14)

This state can be generated in a conditional way [25]
by using the resonant interaction of an opportunely pre-
pared two-level atom with a cavity filled with a GBS
with N = 1. Moreover, utilizing the Holstein–Primakoff
operators [26] for the case N = 2, J+

2 =
√
2− n̂a,

J−
2 = a†

√
2− n̂ and J0

2 = 1 − n̂ with n̂ = a†a, we shall
show that these three basis states, |2, p, φ〉,|Γ(2, p, φ)〉 and
|2, 1−p, π+φ〉 are eigenvectors of the pseudo angular mo-
mentum operator J3 defined as

J3 =
√

p(1− p)
(

e−iφJ+
2 + eiφJ−

2

)

− (2p− 1)J0
2 . (15)

In fact, using Eq. (15) and the explicit forms of the basis
vectors given in Eqs. (3), (14), it is straightforward to
prove the following eigenvalues equations

J3|2, p, φ〉 = |2, p, φ〉; J3|Γ(2, p, φ)〉 = 0

J3|2, 1− p, π + φ〉 = −|2, 1− p, π + φ〉. (16)

So, using the usual notation |l,m〉 for the eigenvectors
of angular momentum l, we can do the identifications
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|2, p, φ〉 ≡ |1, 1〉, |Γ(2, p, φ)〉 ≡ |1, 0〉, |2, 1 − p, π + φ〉 ≡
|1,−1〉, and we can describe the 3-dimensional Fock–
Hilbert subspace as a subspace of angular momentum
l = 1 spanned by the basis B = {|1, 1〉, |1, 0〉, |1,−1〉}.
In this context, we say that our measurement scheme of
orthogonal 2GBSs, illustrated in Fig.2 with the results
given by Eqs. (12), (13), constitutes a method to measure
the eigenvalues ±1 of the field operator J3 of Eq. (15).
We now discuss the possible implementation of our

quasi-deterministic schemes. In our generation scheme
the atom-cavity interaction times are different for each
atom, respectively T1, T2. These can be obtained either
by selecting opportune different velocities for each atom
or by selecting the same velocity for the two atoms and
applying an electric field inside the cavity in order to
Stark shift each atom out of resonance so to obtain the
desired resonant interaction time [27]. The appropriate
atomic velocity may be selected by laser induced atomic
pumping [4]. The experimental uncertainties of the se-
lected velocity ∆v and interaction time ∆T are such that
∆T/T ≈ ∆v/v. In current laboratory experiments it
is possible to select a given atomic velocity such that
∆v/v ∼ 10−2 or less [4, 24]. In our generation and mea-
surement schemes, we have also ignored the atomic or
photon decay during the atom-cavity interactions. This
assumption is valid if τat, τcav > T , where τat, τcav are
the atomic and photon mean lifetimes respectively and
T is the interaction time. For Rydberg atomic levels
and microwave superconducting cavities with quality fac-
tor Q ∼ 108 ÷ 1010 the required condition on the mean
lifetimes can be satisfied, because τat ∼ 10−5 ÷ 10−2s,
τcav ∼ 10−4 ÷ 10−1s and T ∼ 10−5 ÷ 10−4s [3]. More-
over, the typical mean lifetimes of the Rydberg atomic
levels τat must be such that the atoms do not decay dur-
ing the entire sequence of the schemes [3, 4].
In conclusion, we have shown that it is possible to gen-

erate, within the experimental errors in a non-conditional
way, a two-photon generalized binomial state (2GBS)
inside a single-mode cavity by using two consecutive
two-level atoms interacting with the cavity each for a
given time. Moreover, the presence inside the cavity of
the 2GBS can be verified by a single-shot measurement
scheme utilizing a probe two-level atom, prepared in its
ground state, that resonantly interacts with the cavity for
a given time and “reads” the cavity field state. The infor-
mation acquired by the probe atom is then “decoded” by
a suitable Ramsey zone and finally “read” by measuring
the internal atomic state. The results of this work there-
fore open the way to generation and detection schemes of
superpositions of two orthogonal 2GBSs in a cavity (“bi-
nomial Schrödinger cat”) or entangled 2GBSs in separate
cavities [25], which can be useful both for investigations
of the foundations of quantum theory and for applica-
tions in quantum information processing. An extension
of the scheme proposed here is possible for an efficient

generation of GBSs with N > 2 and it will be treated
somewhere else. At this time, the experimental develop-
ments seem to be rather promising on the possibility of
implementing our schemes.
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