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A recap on Linear Mixed Models and their
hat-matrices

Gianfranco Lovison · Mariangela Sciandra

Abstract This working paper has a twofold goal. On one hand, it provides a recap of Linear
Mixed Models (LMMs): far from trying to be exhaustive, this first part of the working paper
focusses on the derivation of theoretical results on estimation of LMMs that are scattered in
the literature or whose mathematical derivation is sometimes missing or too quickly sketched.
On the other hand, it discusses various definitions that are available in the literature for the
hat-matrix of Linear Mixed Models, showing their limitations and proving their equivalence.

Keywords Linear Mixed Models · Inference · Hat matrices · Orthogonal Projectors

Riassunto uesto working paper ha un doppio obiettivo. Da un lato, fornisce un riepilogo sui
Modelli Lineari Misti (MLM): lungi dal tentare di essere esaustiva, questa prima parte del work-
ing paper si focalizza sulla derivazione di risultati teorici sulla stima dei MLM che sono sparsi
in letteratura o la cui giustificazione matematica è a volte mancante o abbozzata troppo fret-
tolosamente. Questa prima parte si articola come segue: dopo aver specificato il Modello Lineare
Misto, anche nella sua utile forma “compatta” (stacked), ed aver introdotto i necessari risultati
distributivi, vengono derivati formalmente gli stimatori degli effetti fissi e i predittori degli effetti
casuali, sia utilizzando l’approccio marginale che quello congiunto. Dapprima, queste derivazioni
vengono ottenute sotto l’assunto (poco realistico) che le matrici di varianze/covarianze sia degli
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errori sia degli effetti casuali siano note; successivamente tale assunto non viene specificato, e
si presentano i risultati riguardanti la stima di tali matrici di variane/covarianze, sia con il
metodo ML che con quello REML. Infine, viene discussa la rappresentazione dei MLM mediante
“dati aumentati”, dovuta a Hodges (1998), utile per gli sviluppi successivi.

Nella seconda parte, il working paper discute varie definizioni della matrice di proiezione
(hat-matrix) che sono disponibili nella letteratura sui Modelli Lineari Misti, evidenziando le
loro limitazioni e dimostrandone formalmente, per la prima volta, l’equivalenza. Viene inoltre
evidenziato come l’unica matrice di proiezione ortogonale, e dunque simmetrica ed idempotente,
sia quella ottenibile dalla rappresentazione di Hodges, un risultato utile per ulteriori sviluppi di
ricerca.

Parole chiave Modelli Lineari Misti - Inferenza - Matrice di proiezione - Proiettori ortogonali.

1 The Linear Mixed Models: specification

Let the data have the following structure:

yij,xij, zij i = 1, . . . ,m; j = 1, . . . , ni;n =
m∑
i=1

ni (1)

where: i is the cluster index
j is the individual (within cluster) unit index
yij is the response variable
xij is a vector of p explanatory variables (with fixed parameters)
zij is a vector of q explanatory variables (with random parameters)

For the ease of presentation, we assume in this paper ni = k ∀i, so that n = km.
We can arrange the data according to the clustered structure as:

yi =


yi1
...
yij
...
yi,k

 ,X i =


xTi1
...
xTij
...
xTi,k

 ,Zi =


zTi1
...
zTij
...
zTi,k

 i = 1, . . . ,m (2)

Suppose the data are generated by a Gaussian Linear Mixed Model (Breslow and Clayton,
1993), specified at cluster level as follows:

yi = X iβ +Zibi + εi i = 1, . . . ,m (3)

where: X i is a k× p matrix, β is a p-vector of unknown fixed parameters, Zi is a k× q matrix
and bi is a q-vector of random parameters.
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As far as the random components of the model are concerned, we assume that both the
random parameters bi and the within-cluster errors εi are Normally distributed, with vari-
ance/covariance matrices which are full-rank unconstrained positive-definite matrices; besides,
we assume that the the within-cluster errors (conditional) variance/covariance matrices are
homogeneous across clusters:

bi ∼MVN q(0q,ΣBc), εi ∼MVN k (0k,Σεc) , bi ⊥⊥ εi i = 1, . . . ,m

where:
Σεc = D[εi]) ∀i; ΣBc = D[bi])

are positive-definite matrices (the index ”c” stands here for ”at cluster level)”. Notice that
these assumptions imply that the conditional distribution of the response yi, given the random
parameters bi, is:

yi|bi =∼MVN k (X iβ +Zibi,Σεc) i = 1, . . . ,m

with:
D[yi|bi]) = Σεc ∀i

For the subsequent developments, it is convenient to write model (3) in vectorised form:

y = Xβ +Zb+ ε (4)

where:

y =


y1
...
yi
...
ym

 X =


X1

...
X i
...
Xm

 Z =
m⊕
i=1

Zi =


Z1 . . . O . . . O
...

...
...

O . . . Zi . . . O
...

...
...

O . . . O . . . Zm



b =


b1
...
bi
...
bm

 , ε =


ε1
...
εi
...
εm

 ,

This representation is called the stacked form of the data and the model; here y and ε are
n-dimensional vector, b is r-dimensional, where r = m × q is the total number of realisations
of the random vector bi, X is n× p, Z is n× r.

The dispersion matrices for b and ε (which have dimension r × r and n × n respectively),
can be written in compact form as:

D[ε] = Σε = Im ⊗Σεc ; D[b] = ΣB = Im ⊗ΣBc
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whence, the distributional assumptions on ε, b and y|b become:

ε ∼MVN n (0n,Σε) , b ⊥⊥ ε (5)

b ∼MVN r (0r,ΣB) (6)

y|b ∼MVN n (Xβ +Zb,Σε) (7)

2 Relevant distributions

In what follows, we shall need the following distributions:

– the joint distribution f(y, b;X,Z,β,Σε,ΣB)

The best way to derive the joint distribution of y and b is directly from the specification
of the model, which gives us the conditional distribution f(y|b) in (7) and the marginal
distribution f(b) in (6):

f(y, b;X,Z,β,Σε,ΣB) = f(y|b;β,Σε)f(b;ΣB)

= |2πΣε|−1/2 exp{−1

2
(y −Xβ −Zb)TΣ−1ε (y −Xβ −Zb)}

×|2πΣB |−1/2 exp{−1

2
(b)TΣ−1B (b)} (8)

= (2π)−
n+r
2 |Σε|−1/2|ΣB |−1/2 ×

exp{−1

2
[(y −Xβ)TΣ−1ε (y −Xβ)− bTZTΣ−1ε (y −Xβ)− (y −Xβ)TΣ−1ε Zb

+bTZTΣ−1ε Zb− b
TΣ−1B b]} (9)

Focussing first on the exponential argument in (9), we see that is can be written as a
quadratic form:

[
(y −Xβ)T bT

] [ Σ−1ε −Σ−1ε Z
−ZTΣ−1ε Σ−1B +ZΣ−1ε Z

T

] [
(y −Xβ)

b

]
Using standard results concerning the inverse of partitioned matrices, one gets:[

Σ−1ε −Σ−1ε Z
−ZTΣ−1ε Σ−1B +ZΣ−1ε Z

T

]
=

[
Σε +ZΣBZ

T ZΣB

ΣBZ
T ΣB

]−1
= Σ−1

y,b
(10)

As for the product of determinants in (9), using a known result concerning the determinant
of partitioned matrices:

|Σy,b| =
∣∣∣∣[Σε +ZΣBZ

T ZΣB

ΣBZ
T ΣB

]∣∣∣∣ = |ΣB||Σε+ZΣBZ
T−ZΣBΣ

−1
B ΣBZ

T | = |ΣB||Σε|

(11)
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Substituting (10) and (11) into (9), we find:

f(y, b;X,Z,β,Σε,ΣB) = (2π)−
n+r
2 |Σy,b|

−1/2 exp

{
−1

2

[
(y −Xβ)T bT

]
Σ−1
y,b

[
(y −Xβ)

b

]}
(12)

i.e.: [
y
b

]
∼MVN n+r

([
Xβ
0r

]
,

[
Σε +ZΣBZ

T ZΣB

ΣBZ
T ΣB

])
(13)

– the marginal distribution f(y;β,Σε,ΣB)

Using standard results on the Multivariate Normal distribution, we readily obtain from
(13) that the marginal distribution of y is y ∼ MVN n

(
Xβ, Σy

)
, with Σy = D[y] =

ZΣBZ
T +Σε, i.e.:

f(y;β,Σε,ΣB) = |2πΣy|−1/2 exp{−1

2
(y −Xβ)TΣ−1y (y −Xβ) (14)

– the conditional distribution f(b|y)

Again using standard results on the Multivariate Normal distribution (Stein, 1981), and
in particular on the conditional distribution of a Normal sub-vector given another Normal
sub-vector, we obtain from (13) that the conditional distribution of b|y is

b|y ∼MVN r

(
ΣBZ

T (ZΣBZ
T +Σε)

−1(y −Xβ),ΣB −ΣBZ
T (ZΣBZ

T +Σε)
−1ZΣB

)
(15)

or, applying to the variance/covariance matrix formula (69) in Appendix 1 for the inverse
of a Schur complement (Zhang, 2006):

b|y ∼MVN r

(
ΣBZ

T (ZΣBZ
T +Σε)

−1(y −Xβ), (Σ−1B +ZTΣ−1ε Z)−1
)
. (16)

For the sake of notational brevity, we shall sometimes use the symbol

Σb|y = (Σ−1B +ZTΣ−1ε Z)−1.

3 Marginal ML estimation of β and Empirical Bayesian prediction of b

As shown in (14), the marginal distribution of y is N (Xβ,Σy), withΣy = D[y] = ZΣBZ
T +

Σε. Hence, the marginal likelihood is:

L(β,Σε,ΣB;y,X,Z) = = (2π)
n
2 |Σy|−1/2 exp{−1

2
(y −Xβ)TΣ−1y (y −Xβ)

and the marginal log-likelihood can therefore be written:

`(β,Σε,ΣB;y,X,Z) = −
(n

2

)
log(2π)−

(
1

2

)
log(|Σy|)−

1

2
(y−Xβ)TΣ−1y (y−Xβ) (17)
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3.1 With known Σε,ΣB

When Σε,ΣB are known, Σy is of course also known, and estimation of β reduces to the
solution of a weighted least squares system of equations:

XTΣ−1y Xβ = XTΣ−1y y (18)

or:
XT (ZΣBZ

T +Σε)
−1Xβ = XT (ZΣBZ

T +Σε)
−1y (19)

which yields the (marginal) Maximum Likelihood estimator:

β̂ = [XT (ZΣBZ
T +Σε)

−1X]−1XT (ZΣBZ
T +Σε)

−1y (20)

Clearly, the use of the marginal likelihood rules out the possibility of direct prediction of
the random parameters bi, i = 1, . . . ,m, since such marginal likelihood is obtained exactly
integrating over these random parameters.

The most popular approach for predicting b is therefore an empirical Bayesian one. The
necessary ingredient for such an approach is the posterior distribution f(b|y), i.e. the conditional
distribution of the random effects realisations given the observations y. This was shown in
equation (16) to be Multivariate Normal, with expected value E[b|y] = ΣBZ

T (ZΣBZ
T +

Σε)
−1(y−Xβ). Therefore, (point) prediction of b can be carried out by estimating the posterior

mode (or mean, which coincides with the mode owing to Multivariate Normality):

b̃ = ̂E[b|y] = ΣBZ
T (ZΣBZ

T +Σε)
−1(y −Xβ̂) (21)

Owing to the approach used to derive it, the predictor (21) is often called the Empirical Bayesian
predictor and denoted in the literature with the acronym EBP (Ando, 2007).

4 Joint ML estimation

From (8) the joint likelihood of β, b,Σε,ΣB is:

L(β, b,Σε,ΣB ;y,X,Z) = L(β,Σε|b;y,X,Z)L(b,ΣB) = |2πΣε|−1/2 exp{−1

2
(y −Xβ −Zb)TΣ−1ε (y −Xβ −Zb)

×|2πΣB |−1/2 exp{−1

2
(b)TΣ−1B (b)

and the joint log-likelihood can be written:

`(β, b,Σε,ΣB ;y,X,Z) = `(β,Σε|b;y,X,Z) + `(b,ΣB)

= −
(n

2

)
log(2π)−

(
1

2

)
log(|Σε|)−

1

2
(y −Xβ −Zb)TΣ−1ε (y −Xβ −Zb)

−
(r

2

)
log(2π)−

(
1

2

)
log(|ΣB |)−

1

2
bTΣ−1B b
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4.1 With known Σε,ΣB

If Σε,ΣB are known, it is sufficient to differentiate with respect to β and b to find the score
vectors:

u(β) =
∂`(β, b;y,X,Z,Σε,ΣB)

∂βT
=XTΣ−1ε y −XTΣ−1ε Xβ −XTΣ−1ε Zb

u(b) =
∂`(β, b;y,X,Z,Σε,ΣB)

∂bT
= ZTΣ−1ε y −ZTΣ−1ε Xβ −ZTΣ−1ε Zb−Σ−1B b

Setting u(β) and u(b) equal to zero yields the system of Maximum (joint) Likelihood equations:[
XTΣ−1ε X XTΣ−1ε Z
ZTΣ−1ε X ZTΣ−1ε Z +Σ−1B

] [
β
b

]
=

[
XTΣ−1ε y
ZTΣ−1ε y

]
(22)

which are often referred to as the Henderson’s mixed model equations in the LMM literature
(Henderson et al., 1959). Solving (22) yields the ML estimators of β and b (with known Σε
and ΣB):

β̂J = {XT [Σ−1
ε −Σ

−1
ε Z(ZTΣ−1

ε Z +Σ−1
B )−1ZTΣ−1

ε ]X}−1XT [Σ−1
ε −Σ

−1
ε Z(ZTΣ−1

ε Z +Σ−1
B )−1ZTΣ−1

ε ]y (23)

b̃J = (ZTΣ−1
ε Z +Σ−1

B )−1ZTΣ−1
ε (y −Xβ̂) (24)

Searle (1992) and Robinson (1991) showed that the predictor (24) obtained from the joint
MLE method is the Best Linear Unbiased Predictor of b; for this reason, (24) is often denoted
by the acronym ”BLUP” in the Linear Mixed Models literature.

4.2 Marginal MLE and EBP coincide with joint MLE and BLUP in Linear Mixed Models

A very important result, due to Searle et al. (1971), states that the MLE of β and the EBP
predictor of b obtained in the marginal approach coincide in Linear Mixed Models with the
MLE and the BLUP obtained in the joint approach.

The identity between the marginal ML estimator β̂M and the joint ML estimator β̂J can
be easily proved by applying formula (69) in Appendix 1:

Σ−1ε −Σ−1ε Z(ZTΣ−1ε Z +Σ−1B )−1ZTΣ−1ε = (ZΣBZ
T +Σε)

−1 = Σy (25)

whence

β̂J = {XT [Σ−1ε −Σ
−1
ε Z(ZTΣ−1ε Z +Σ−1B )−1ZTΣ−1ε ]X}−1XT [Σ−1ε −Σ

−1
ε Z(ZTΣ−1ε Z +Σ−1B )−1ZTΣ−1ε ]y

= [XT (ZΣBZ
T +Σε)

−1X]−1XT (ZΣBZ
T +Σε)

−1

= β̂M
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In order to prove the identity between the EBP of b, b̃M = ΣBZ
T (ZΣBZ

T+Σε)
−1(y−Xβ̂) =

ΣBZ
TΣ−1y (y − Xβ̂) and the BLUP of b, b̃J = (ZTΣ−1ε Z + Σ−1B )−1ZTΣ−1ε (y − Xβ̂) =

Σb|yZ
TΣ−1ε we must show that

Σb|yZ
TΣ−1ε = ΣBZ

TΣ−1y (26)

Post-multiplying Σb|yZ
TΣ−1ε by ΣyΣ

−1
y , we get:

(ZTΣ−1ε Z +Σ−1B )−1ZTΣ−1ε = (ZTΣ−1ε Z +Σ−1B )−1ZTΣ−1ε (ZΣBZ
T +Σε)(ZΣBZ

T +Σε)
−1

= (ZTΣ−1ε Z +Σ−1B )−1(ZTΣ−1ε ZΣBZ
T +ZT )(ZΣBZ

T +Σε)
−1

(inserting Σ−1B ΣB) = (ZTΣ−1ε Z +Σ−1B )−1(ZTΣ−1ε ZΣBZ
T +Σ−1B ΣBZ

T )(ZΣBZ
T +Σε)

−1

= (ZTΣ−1ε Z +Σ−1B )−1(ZTΣ−1ε Z +Σ−1B )ΣBZ
T (ZΣBZ

T +Σε)
−1

=ΣBZ
T (ZΣBZ

T +Σε)
−1 (27)

Thanks to these identities, in Linear Mixed Models it is irrelevant which approach (marginal
+ EBP vs. joint) is used, and we can drop the subscripts M and J and write simply: β̂ and
b̃. The result is also crucial for what it does not imply : this convenient identity does not hold
for nonlinear - non-Gaussian mixed models, for example for Generalised Linear Mixed Models
(GLMMs). The lack of exchangeability between the joint and the marginal approach is one of
the main difficulties in the effort to extend the methods here described for Linear Mixed Models
to Generalised Linear Mixed Models.

5 With unknown Σε,ΣB

In practice, Σε and ΣB are very rarely known, and therefore they must be estimated from
the data. As well known, there are two approaches in the literature for estimation of Σε and
ΣB: Maximum Likelihood (ML) and Restricted (or Residual) Maximum Likelihood (REML).
Actually, in general the so-called variance components, i.e. the variances and covariances in
Σε and ΣB, depend on a limited number, say s, of parameters, which in this section will be
collected in an s- vector and denoted by φ; when needed, we stress this dependence by writing
Σε(φ) and ΣB(φ). Notice that φ lies in general in a restricted parametric space, which ensures
admissible estimators for Σε(φ) and ΣB(φ), i.e.:

φ ∈ Φ such that Σε(φ),ΣB(φ) are positive definite

5.1 ML estimation of Σε and ΣB

Assuming now β known, the marginal log-likelihood (17) can be written as a function of φ,
given β,y,X and Z:

`(φ;β,y,X,Z) = −
(n

2

)
log(2π)−

(
1

2

)
log(|Σy(φ)|)− 1

2
(y−Xβ)TΣy(φ)−1(y−Xβ) (28)
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Since `(φ;β,y,X,Z) is a non-linear function of φ, its maximization with respect to φ requires
iterative methods. In particular, following Lindstrom and Bates (1988), we adopt either a
Newton-Raphson or a Fisher scoring algorithm, which require explicit expressions for the score
vector:

u(φ) =
∂`(φ;β,y,X,Z)

∂φ
=



∂`(φ;β,y,X ,Z)

∂φ1
...

∂`(φ;β,y,X ,Z)

∂φj
...

∂`(φ;β,y,X ,Z)

∂φs


the observed Fisher information matrix, i.e. the Hessian matrix with negative sign:

J (φ) = −∂
2`(φ;β,y,X,Z)

∂φ∂φT
=

{
−∂

2`(φ;β,y,X,Z)

∂φj∂φk

}
and the Fisher information matrix, i.e. the expected value of the observed information matrix:

I(φ) = E [J (φ)] = E

[
−∂

∈`(φ;β,y,X,Z)

∂φ∂φT

]
=

{
E

[
−∂

∈`(φ;β,y,X,Z)

∂φ|∂φ‖

]}
The expressions for the score vector, the Hessian and the Fisher information matrix, which

were first derived by Harville (1977), written in matrix form are quite cumbersome. It is more
convenient to present them element-wise:

∂`(φ;β,y,X,Z)

∂φj
= −

(
1

2

)
tr

[
Σy(φ)−1

(
∂Σy(φ)

∂φj

)]
+

(
1

2

)
(y −Xβ)TΣy(φ)−1

(
∂Σy(φ)

∂φj

)
Σy(φ)−1(y −Xβ) (29)

∂2`(φ;β,y,X,Z)

∂φj∂φk
= −

(
1

2

)
tr

[
Σy(φ)−1

(
∂2Σy(φ)

∂φj∂φk

)
−Σy(φ)−1

(
∂Σy(φ)

∂φj

)
Σy(φ)−1

(
∂Σy(φ)

∂φk

)]
+

(
1

2

)
(y −Xβ)TΣy(φ)−1

[(
∂2Σy(φ)

∂φj∂φk

)
− 2

(
∂Σy(φ)

∂φj

)
Σy(φ)−1

(
∂Σy(φ)

∂φk

)]
×

Σy(φ)−1(y −Xβ) (30)

E

[
−∂

2`(φ;β,y,X,Z)

∂φj∂φk

]
=

(
1

2

)
tr

[
Σy(φ)−1

(
∂Σy(φ)

∂φj

)
Σy(φ)−1

(
∂Σy(φ)

∂φk

)]
(31)

Once the derivatives in (29), (30) and (31) have been determined, estimation of φ, and hence
estimation of Σε(φ) and ΣB(φ), can be carried out either by the Newton-Raphson iterative
procedure:

φ̂(s+1) = φ̂(s) − J (φ̂(s))
−1u(φ̂(s)) (32)

or by the Fisher scoring iterative procedure:

φ̂(s+1) = φ̂(s) + I(φ̂(s))
−1u(φ̂(s)) (33)
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5.2 REML estimation of Σε and ΣB

Although consistent, the MLE of variance/covariance parameters are well known to be down-

ward biased in finite samples. This drawback is already known for the MLE σ̂2 =

∑n
i=1(yi − ȳ)2

n
of the variance of a N (µ, σ2) distribution, with µ unknown, estimated on an i.i.d. sample of
size n. The bias comes from the denominator: dividing the sample deviance by n does not take
into account the loss of one degree of freedom caused by the estimation of µ. The obvious
remedy, usually taught in basic curses in Statistical Inference, is to correct for this bias, using

the corrected estimator s2 =

∑n
i=1(yi − ȳ)2

n− 1
, obtained dividing the sample deviance by (n− 1),

instead of n, which incorporates the right number of degrees of freedom available for estimation
of σ2 after estimating µ, and is therefore unbiased.

It turns out that this simple correction is actually the first, simplest example of application
of a more generally strategy: estimation of σ2 by REstricted Maximum Likelihood (often denoted
with the acronym REML), instead of the standard Maximum Likelihood.

Since the bias for the ML estimators comes from the need to estimate first the unknown pa-
rameters in µ, the basic idea in REML estimation is to get rid of the unknown µ parameter when
estimating variance/covariance parameters in a Multivariate Normal distribution. This can be
achieved by choosing any matrixK such thatE[KTy] = 0 and henceKTy ∼ N (0,KTΣyK).
This choice effectively removes the need of estimating µ, or any parameters modelling µ, before
estimating Σy.

The idea of using the REML approach first appeared in the statistical literature in the
’50s; Patterson and Thompson (1971) presented a comprehensive treatment of REML theory
applied to LMMs. It is important to notice that the estimators obtained for φ, and hence for
Σε(φ) and ΣB(φ), are invariant to the choice of K. The most typical choice for K is the OLS
orthogonal projection matrix of the (marginal) residuals:

K = I −X(XTX)−1XT

which clearly satisfies the property E[Ky] = E[(I−X(XTX)−1XT )y] = E[y−Xβ̂OLS] = 0.
For this reason, some authors prefer to interpret the acronym REML as REsidual Maximum
Likelihood, although this seems a rather restrictive interpretation, since this choice of K matrix
is just one of the (actually infinite) equivalent alternatives.
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Again, the expressions for the score vector, the Hessian and the Fisher information matrix,
which were first derived by Harville (1977), are more conveniently presented element-wise:

∂`(φ;β,y,X,Z)

∂φj
= −

(
1

2

)
tr

[
M

(
∂Σy(φ)

∂φj

)]
+

(
1

2

)
(y −Xβ)TΣy(φ)−1

(
∂Σy(φ)

∂φj

)
Σy(φ)−1(y −Xβ) (34)

∂2`(φ;β,y,X,Z)

∂φj∂φk
= −

(
1

2

)
tr

[
M

(
∂2Σy(φ)

∂φj∂φk

)
−M

(
∂Σy(φ)

∂φj

)
M

(
∂Σy(φ)

∂φk

)]
+

(
1

2

)
(y −Xβ)TΣy(φ)−1

[(
∂2Σy(φ)

∂φj∂φk

)
− 2

(
∂Σy(φ)

∂φj

)
M

(
∂Σy(φ)

∂φk

)]
Σy(φ)−1(y −Xβ) (35)

E

[
−∂

2`(φ;β,y,X,Z)

∂φj∂φk

]
=

(
1

2

)
tr

[
M

(
∂Σy(φ)

∂φj

)
M

(
∂Σy(φ)

∂φk

)]
(36)

where:
M = Σy(φ)−1 −Σy(φ)−1X(xTΣy(φ)−1X)−1XTΣy(φ)−1

Once the derivatives in (34), (35) and (36) have been determined, estimation of φ, and hence
estimation of Σε(φ) and ΣB(φ), can be carried out either by the Newton-Raphson iterative
procedure:

φ̂(s+1) = φ̂(s) − J (φ̂(s))
−1u(φ̂(s)) (37)

or by the Fisher scoring iterative procedure:

φ̂(s+1) = φ̂(s) + I(φ̂(s))
−1u(φ̂(s)) (38)

5.3 Iterative algorithm for estimating β,Σε,ΣB and predicting b

Summing up, estimation of β,Σε,ΣB and prediction of b proceeds through an iterative process
that can be schematised as follows:

– initialise φ, and with the initial value φ(0) compute Σε(φ(0)) and ΣB(φ(0))

– consideringΣε(φ(0)) andΣB(φ(0)) as known, estimate β and b with (23) and (24), to obtain

β̂(1) and b̃(1)

– considering β̂(1) and b̃(1) as known, estimate φ̂(1) using one of (32), (33), (37) or (38) (de-
pending on whether ML or REML and Newton Raphson or Fisher Scoring is chosen), and
compute Σ̂ε(φ̂(1)) and Σ̂B(φ̂(1))

– ............

– iterate the previous steps until convergence
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Once the algorithm has reached convergence, we can write the ML (or REML) estimators of
φ,Σε(φ),ΣB(φ) as φ̂, Σ̂ε(φ̂), Σ̂B(φ̂) and the ML (or REML) estimator of β and predictor
of b as:

β̂ = [XT (ZT Σ̂BZ + Σ̂ε)
−1X]−1XT (ZΣ̂BZ

T + Σ̂ε)
−1y (39)

b̂ = Σ̂BZ
T (ZΣ̂BZ

T + Σ̂ε)
−1(y −Xβ̂) (40)

6 Hodges’ ”augmented data” representation

Hodges (1998) (see also Hodges and Sargent (2001); Vaida and Blanchard (2005)) showed that
the joint MLE of β and the BLUP of b can be obtained as the WLS solution of a unique
(general) linear model, through the construction of an ”augmented data” response vector. This
approach starts from adding to the usual LMM specification (4) the obvious identity: 0 = b−b
and constructing the ”augmented response vector:

y+ =

[
y
0

]
Then, model (4) can be compactly written as:[

y
0

]
=

[
X Z
O −I

] [
β
b

]
+

[
ε
b

]
(41)

or:

y+ = Tγ + δ

with:

δ ∼MVN n+r(0n+r, Σδ), , Σδ =

[
Σε O
O ΣB

]
Since Σδ is a full variance/covariance matrix, the estimator of γ is the solution of the Weighted
Least Squares system of equations:

T TΣ−1
δ
Tγ = TΣ−1

δ
y+ (42)

or, using the extended expressions for T ,y+,Σδ:[
XT O
ZT −I

] [
Σ−1ε O
O Σ−1B

] [
X Z
O −I

] [
β
b

]
=

[
XT O
ZT −I

] [
Σ−1ε O
O Σ−1B

] [
y
0

]
whence: [

XTΣ−1ε X XTΣ−1ε Z
ZTΣ−1ε X ZTΣ−1ε Z +Σ−1B

] [
β
b

]
=

[
XTΣ−1ε y
ZTΣ−1ε y

]
(43)
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From (43) we see that Hodges’ augmented data weighted least squares system corresponds
exactly to Henderson’s mixed model equations (22). As a consequence, it yields the same
estimators for β and b. To prove it, let us denote:

T TΣ−1
δ
T =

[
XTΣ−1ε X XTΣ−1ε Z
ZTΣ−1ε X ZTΣ−1ε Z +Σ−1B

]
= U =

[
U 11 U 12

U 21 U 11

]
(44)

and

U−1 =

[
U 11 U 12

U 21 U 11

]
(45)

Since the analytic expression for U−1 is rather cumbersome, it is given in Appendix 2. From
(42) we obtain:

γ̂ = (T TΣ−1δ T )−1T TΣ−1δ y+ (46)

= U−1T TΣ−1δ y+ =

[
U11 U12

U21 U11

] [
XTΣ−1ε y

ZTΣ−1ε y

]
=

[
U11XTΣ−1ε y +U12ZTΣ−1ε y

U21XTΣ−1ε y +U22ZTΣ−1ε y

]
=

[
U11XTΣ−1ε y +U11U12U

−1
22 Z

TΣ−1ε y

−U−122 U21U
11XTΣ−1ε y + (U−122 +U−122 U21U

11U12TU−122 )ZTΣ−1ε y

]

=

[
U11XT [Σ−1ε −Σ

−1
ε Z(ZTΣ−1ε Z +Σ−1B )−1ZTΣ−1ε ]y

U−122 Z
TΣ−1ε y −U

−1
22 Z

TΣ−1ε XU
11XTΣ−1ε y +U−122 Z

TΣ−1ε U
12TU−122 )ZTΣ−1ε y

]

=

[
(XTΣ−1y X)−1XTΣ−1y y

U−122 Z
TΣ−1ε [y −X(U11XTΣ−1ε y +U11U12U

−1
22 Z

TΣ−1ε )y]

]
=

[
(XTΣ−1y X)−1XTΣ−1y y

(ZTΣ−1ε Z +Σ−1B )−1ZTΣ−1ε [y −Xβ̂]

]

=

[
β̂

b̃

]

7 The Hat-matrix of Linear Mixed Models

Unlike what happens for Linear Models, and partly for Generalised Linear Models, the literature
on the hat-matrix for Linear Mixed models is rather scarce and scattered. We begin by quoting
briefly a few relevant references, and then move to discuss the form of hat-matrix which appears
to be the closest generalisation of the Linear Models hat-matrix in terms of mathematical and
statistical properties.

7.1 A (short) literature review

Zewotir and Galpin (2007) give an expression for the hat-matrix for the residuals, rather than
for the fitted values, of Linear Mixed Models. The model specification they employ is slight
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different from ours, since they restrict the variance/covariance matrix of the (conditional) errors
to be homoscedastic and the variance/covariance matrix of the random parameters to be also

homoscedastic and defined in terms of realative variances τBj
=
σ2
Bj

σε
:

DZG[ε] = Σε;ZG = Σ2
ε In DZG[b] = ΣB;ZG = σ2

εΓB;ZG

where ΓB;ZG
= Im ⊗ diag(τ ) and τ = [τB1 , . . . , τBj

, . . . , τBq ]
T

With these assumptions, the marginal dispersion matrix of y is:

DZG[y] = Σy;ZG = σε(In +ZΓB;ZGZ
T )

Zewotir and Galpin (2007) propose a hat-matrix for the conditional residuals r = y − µ̂ =
y −Xβ̂ −Zb̃:

R = (In+ZΓB;ZGZ
T )−1−(In+ZΓB;ZGZ

T )−1X[XT (In+ZΓB;ZGZ
T )−1X]−1XT (In+ZΓB;ZGZ

T )−1

such that r = Ry.
Clearly, the corresponding hat-matrix for the fitted values µ̂ is:

HZG = I−(In+ZΓB;ZGZ
T )−1+(In+ZΓB;ZGZ

T )−1X[XT (In+ZΓB;ZGZ
T )−1X]−1XT (In+ZΓB;ZGZ

T )−1

(47)

Demidenko and Stukel (2005) (see also Singer et al. (2004), Nobre and Singer (2011)) move
from the idea of generalised leverage matrix (Wei et al., 1998), which, for any model y =
µ(β) + ε, is defined as:

H =
∂µ̂

∂yT
(48)

i.e. as the matrix having as generic element {hij} the rate of change of µi with respect to the
observation yj. Applying (48) to the Linear Mixed Model (4) we obtain:

HDS =
∂(Xβ̂ + Zb̃)

∂yT
=
∂{X(XT (ZΣBZ

T +Σε)−1X)−1XT (ZΣBZ
T +Σε)−1y}

∂yT

+
∂{ZΣBZ

T (ZΣBZ
T +Σε)−1y − ZΣBZ

T (ZΣBZ
T +Σε)−1X(XT (ZΣBZ

T +Σε)−1X)−1XT (ZΣBZ
T +Σε)−1y}

∂yT

= X[XT (ZΣBZ
T +Σε)

−1X]−1XT (ZΣBZ
T +Σε)

−1

+ZΣBZ
T (ZΣBZ

T +Σε)
−1 − ZΣBZ

T (ZΣBZ
T +Σε)

−1X[XT (ZΣBZ
T +Σε)

−1X]−1XT (ZΣBZ
T +Σε)

−1 (49)

Demidenko and Stukel (2005) write (49) as the sum of two generalised leverage matrices:

HDS = HDS1 +HDS2

where:
HDS1 = X[XT (ZΣBZ

T +Σε)
−1X]−1XT (ZΣBZ

T +Σε)
−1 (50)
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is the generalised marginal leverage matrix and

HDS2 = ZΣBZ
T (ZΣBZ

T +Σε)
−1 − ZΣBZ

T (ZΣBZ
T +Σε)

−1X[XT (ZΣBZ
T +Σε)

−1X]−1XT (ZΣBZ
T +Σε)

−1

= ZΣBZ
T (ZΣBZ

T +Σε)
−1[In −HDS1

] (51)

is the generalised random-effects leverage matrix.
In passing, it is worthwhile mentioning that Nobre and Singer (2011), noticing that HDS2

depends on the generalised marginal leverage matrix HDS1 , in order to get a leverage matrix
for the random effects which is not confounded with that for the fixed effects, propose to use,
as an alternative to HDS2 :

HNS2 = ZΣBZ
T (52)

7.2 The Hat-matrix in the Hodges’ ”augmented-data” representation

The main drawback of the Galpin-Zewotir’s and the Demidenko-Stukel’s definitions of hat-
matrix for Linear Mixed Models is that they are not orthogonal projection matrices. This is
readily seen by checking that they are not idempotent:

HZGHZG 6= HZG; HDSHDS 6= HDS

For the context where these hat-matrices were proposed, that of influence diagnostics, this
is not a serious problem, but whenever a hat-matrix is required to operate an orthogonal
decomposition of the response vector into a vector of fitted values and a vector of residuals, the
requirement of idempotency becomes paramount.

The Hodges’s ”augmented-data” representation, unlike the Galpin-Zewotir and the Demidenko-
Stukel approaches, provides an orthogonal projection hat-matrix. To show this result, we start
by defining the Hodges’s hat-matrix. From:

µ̂+ = T γ̂ = T (T TΣ−1
δ
T )−1T TΣ−1

δ
y+

we see that the (unscaled) ”augmented-data” hat-matrix is:

H+ = T (T TΣ−1
δ
T )−1T TΣ−1

δ

H+ is not symmetric, but if we consider the scaled version of y+ and µ̂+, y∗+ = Σ
−1/2
δ

y+ and

µ̂∗+ = Σ
−1/2
δ

µ̂+, we obtain:

µ̂∗+ = Σ
−1/2
δ

T (T TΣ−1
δ
T )−1T TΣ

−1/2
δ

y∗+

whence, the scaled ”augmented-data” hat-matrix is seen to be:

H∗+ = Σ
−1/2
δ

T (T TΣ−1
δ
T )−1T TΣ

−1/2
δ

(53)
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The hat-matrix H∗+ is clearly symmetric and idempotent: as such, it is the matrix which
projects orthogonally the scaled ”augmented” response vector y∗+ onto the space of the scaled
”augmented” fitted vector µ̂∗+. In this respect, it can be considered as the closest generalisation
of the usual hat-matrix of Linear Models to Linear Mixed Models.

It is useful to derive the extended form of H∗+. Using (45), we can write:

H∗+ =Σ
−1/2
δ

TU−1T TΣ
−1/2
δ

(54)

=

[
Σ
−1/2
ε X Σ

−1/2
ε Z

O −Σ−1/2B

] [
U 11 U 12

U 21 U 11

] [
XTΣ

−1/2
ε O

ZTΣ−1ε −Σ−1B

]
(55)

=

[
H∗+11 H

∗
+12

H∗+21 H
∗
+22

]
(56)

where:

H∗+11 =Σ
−1/2
ε XU 11XTΣ

−1/2
ε +Σ

−1/2
ε XU 12ZTΣ

−1/2
ε +Σ

−1/2
ε ZU 21XTΣ

−1/2
ε +Σ

−1/2
ε ZU 22ZTΣ

−1/2
ε

H∗+12 = −Σ−1/2ε XU 12Σ
−1/2
B −Σ−1/2ε ZU 22Σ

−1/2
B

H∗+21 = −Σ−1/2B U 12XTΣ
−1/2
ε −Σ−1/2B U 22ZTΣ

−1/2
ε

H∗+22 =Σ
−1/2
B U 22Σ

−1/2
B

Also, it is easy to check that the scaled ”augmented” fitted vector µ̂∗+ turns out to be:

µ̂∗+ = H∗+y
∗
+ =

[
H∗+11 H

∗
+12

H∗+21 H
∗
+22

] [
Σ
−1/2
ε y
0

]
=

[
H∗+11Σ

−1/2
ε y

H∗+21Σ
−1/2
ε y

]
=

[
Σ
−1/2
ε Xβ̂ +Σ

−1/2
ε Zb̃

−Σ−1/2B b̃

]
(57)

i.e. the scaled ”augmented” fitted vector µ̂∗+ has two components: the conditional (within clus-

ters) scaled fitted values µ̂|b
∗

= Σ
−1/2
ε (Xβ̂+Zb̃) and the scaled predicted random parameters

(with negative sign) −Σ−1/2B b̃.

7.3 Equivalence between HZG, HDS and H+11

It is natural to wonder whether, although apparently quite different, HZG, HDS and the
Hodges’ hat-matrix are equivalent. It is possible to prove that it is actually the case, as long as
the different assumptions made for the Zewotir-Galpin hat-matrix are accounted for and only
the upper-left block of the ”unscaled” version of the Hogdes’s hat-matrix, denoted by H+11, is
used in the comparison.



 Electronic copy available at: https://ssrn.com/abstract=3206543 

A recap on Linear Mixed Models and their hat-matrices 117

Consider the the (unscaled) ”augmented-data” Hodges’ hat-matrix:

H+ = T (T TΣ−1
δ
T )−1T TΣ−1

δ

By a derivation parallel to the one used in (54), (55), (56) for the ”scaled” version, we get:

H+ = TU−1TTΣ−1

δ
(58)

=

[
XU11XTΣ−1

ε +XU12ZTΣ−1
ε + ZU21XTΣ−1

ε + ZU22ZTΣ−1
ε −XU12Σ−1

B − ZU22Σ−1
B

−U12XTΣ−1
ε −U22ZTΣ−1

ε U22Σ
−1/2
B

]
(59)

=

[
H+11 H+12

H+21 H+22

]
(60)

As observed by Vaida and Blanchard (2005), the upper left block H+11 is the hat-matrix

of the (conditional) within-cluster fitted values µ̂|b = Xβ̂ + Zb̃, but it is not an orthogonal
projection matrix, since it is neither symmetric nor idempotent. We now set out to prove that
it is this block of the ”unscaled” Hodges’ hat-matrix H+ which is equivalent to Zewotir-Galpin
HZG and to Demidenko-Stukel HDS.

Result 1
Under the restrictive assumptions made by Zewotir and Galpin (2007):

HZG = H+11 (61)

Proof Using (73), (75), (77) and (80) in Appendix 2, we can write H+11 as follows:

H+11 = X(XTΣ−1
y X)−1XTΣ−1

y XTΣ−1
ε − ZΣb|yZ

TΣ−1
ε X(XTΣ−1

y X)−1XTΣ−1
ε −X(XTΣ−1

y X)−1XTΣ−1
ε ZΣb|yZ

TΣ−1
ε

+ZΣb|yZ
TΣ−1

ε + ZΣb|yZ
TΣ−1

ε X(XTΣ−1
y X)−1XTΣ−1

ε ZΣb|yZ
TΣ−1

ε (62)

But:

X(XTΣ−1
y X)−1XTΣ−1

y XTΣ−1
ε − ZΣb|yZ

TΣ−1
ε X(XTΣ−1

y X)−1XTΣ−1
ε

−X(XTΣ−1
y X)−1XTΣ−1

ε ZΣb|yZ
TΣ−1

ε + ZΣb|yZ
TΣ−1

ε X(XTΣ−1
y X)−1XTΣ−1

ε ZΣb|yZ
TΣ−1

ε =[
In − ZΣb|yZ

TΣ−1
ε

]
X(XTΣ−1

y X)−1XT
[
In −Σ−1

ε ZΣb|yZ
T
]
Σ−1
ε

and
ZΣb|yZ

TΣ−1ε = In − (In −ZΣb|yZ
TΣ−1ε )

whence (62) can be written:

H+11 = In−(In−ZΣb|yZ
TΣ−1ε )+

[
In −ZΣb|yZ

TΣ−1ε

]
X(XTΣ−1y X)−1XT

[
In −Σ−1ε ZΣb|yZ

T
]
Σ−1ε

(63)

It is immediate to recognise that
[
In −Σ−1ε ZΣb|yZ

T
]

= ΣεΣ
−1
y . This follows from (25):

Σ−1y = Σ−1ε −Σ
−1
ε Z(ZTΣ−1ε Z +Σ−1B )−1ZTΣ−1ε = Σ−1ε −Σ

−1
ε ZΣb|yZ

TΣ−1ε
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whence:

ΣεΣ
−1
y = Σε[Σ

−1
ε −Σ

−1
ε ZΣb|yZ

TΣ−1ε ] = In −ZΣb|yZ
TΣ−1ε (64)

Σ−1y Σε = In −Σ−1ε ZΣb|yZ
T (by symmetry) (65)

and (63) can be written as:

H+11 = In −ΣεΣ−1y +ΣεΣ
−1
y X(XTΣ−1y X)−1XTΣ−1y (66)

Now, recalling that under the restrictive assumptions of Zewotir and Galpin (2007) paper:

Σy;ZG = σε(In +ZΓB;ZGZ
T ); Σε;ZG = σ2

εIn; Σε;ZGΣ
−1
y;ZG = (In +ZΓB;ZGZ

T )−1

formula (66) yields:

H+11 = In − (In +ZΓB;ZGZ
T )−1

+(In +ZΓB;ZGZ
T )−1X[XT 1

σ2
ε

(In +ZΓB;ZGZ
T )−1X]−1XT 1

σ2
ε

(In +ZΓB;ZGZ
T )−1

=HZG

Q.E.D.
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Result 2

HDS = H+11 (67)

Proof We can re-write (63) as:

H+11 =X(XTΣ−1y X)−1XT
[
In −Σ−1ε ZΣb|yZ

T
]
Σ−1ε

+ZΣb|yZ
TΣ−1ε −ZΣb|yZ

TΣ−1ε X(XTΣ−1y X)−1XT
[
In −Σ−1ε ZΣb|yZ

T
]
Σ−1ε

From (65), we can substitute
[
In −Σ−1ε ZΣb|yZ

T
]
Σ−1ε = Σ−1y , whence:

H+11 =X(XTΣ−1y X)−1XTΣ−1y +ZΣb|yZ
TΣ−1ε

[
In −X(XTΣ−1y X)−1XTΣ−1y

]
=HDS1 +ZΣb|yZ

TΣ−1ε (In −HDS1)

Since from (26) we know that ZΣb|yZ
TΣ−1ε = ZΣBZ

TΣ−1y , it follows that:

H+11 = HDS1 +ZΣBZ
TΣ−1y (In −HDS1) = HDS

Q.E.D.

A Appendix 1: A useful matrix algebra result

In this Appendix we recall, without proof, a useful result concerning the inverse of a Schur complement
(A−CBCT )−1 and of the associated form (A+CBCT )−1. The Schur complement, and its inverse,
are very important in the derivations of theoretical results, in particular in Linear and Linear Mixed
Models. The reader can find a formal proof in Henderson and Searle (1981) (equation 17).

Let A and B be nonsingular symmetric matrices of order n and m respectively, and let C be an
n×m rectangular matrix. Then:

(A−CBCT )−1 = A−1 −A−1C(B−1 −CTA−1C)−1CTA−1 (68)

(A+CBCT )−1 = A−1 −A−1C(B−1 +CTA−1C)−1CTA−1 (69)
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B Appendix 2: The inverse of matrix U in Hodges’ representation

Among various possible representations (see e.g. Seber (2008) ) of the inverse of a partitioned matrix,
we choose the following:

U11 = (U11 −U12U
−1
22 U21)

−1

= [XTΣ−1ε X −XTΣ−1ε Z(ZTΣ−1ε Z +Σ−1B )−1ZTΣ−1ε X]−1 (70)

= {XT [Σ−1ε −Σ−1ε Z(ZTΣ−1ε Z +Σ−1B )−1ZTΣ−1ε ]X}−1 (71)

= [XT (ZΣBZ
T +Σε)

−1X]−1XT (ZΣBZ
T +Σε)

−1 (72)

= (XTΣ−1y X)−1XTΣ−1y (73)

U12 = −U11U12U
−1
22

= −[XTΣ−1ε X −XTΣ−1ε Z(ZTΣ−1ε Z +Σ−1B )−1ZTΣ−1ε X]−1XTΣ−1ε Z(ZTΣ−1ε Z +Σ−1B )−1(74)

= −(XTΣ−1y X)−1XTΣ−1ε ZΣb|y (75)

U21 = U12T = U−122 U21U
11 =

= −(ZTΣ−1ε Z +Σ−1B )−1ZTΣ−1ε X[XTΣ−1ε X −XTΣ−1ε Z(ZTΣ−1ε Z +Σ−1B )−1ZTΣ−1ε X]−1(76)

= −Σb|yZ
TΣ−1ε X(XTΣ−1y X)−1 (77)

U22 = U−122 +U−122 U21U
11U12TU−122

= (ZTΣ−1ε Z +Σ−1B )−1

+(ZTΣ−1ε Z +Σ−1B )−1ZTΣ−1ε X[XTΣ−1ε X −XTΣ−1ε Z(ZTΣ−1ε Z +Σ−1B )−1ZTΣ−1ε X]−1 ×(78)

XTΣ−1ε Z(ZTΣ−1ε Z +Σ−1B )−1 (79)

= Σb|y +Σb|yZ
TΣ−1ε X(XTΣ−1y X)−1XTΣ−1ε ZΣb|y (80)

References

Ando, T. (2007). Bayesian predictive information criterion for the evaluation of hierarchical bayesian
and empirical bayes models. Biometrika, 443–458.

Breslow, N. E. and D. G. Clayton (1993). Approximate inference in generalized linear mixed models.
Journal of the American statistical Association 88 (421), 9–25.

Demidenko, E. and T. A. Stukel (2005). Influence analysis for linear mixed-effects models. Statistics
in medicine 24 (6), 893–909.

Harville, D. A. (1977). Maximum likelihood approaches to variance component estimation and to
related problems. Journal of the American Statistical Association 72 (358), 320–338.

Henderson, C. R., O. Kempthorne, S. R. Searle, and C. Von Krosigk (1959). The estimation of
environmental and genetic trends from records subject to culling. Biometrics 15 (2), 192–218.



 Electronic copy available at: https://ssrn.com/abstract=3206543 

A recap on Linear Mixed Models and their hat-matrices 121

Henderson, H. V. and S. R. Searle (1981). On deriving the inverse of a sum of matrices. Siam
Review 23 (1), 53–60.

Hodges, J. S. (1998). Some algebra and geometry for hierarchical models, applied to diagnostics.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 60 (3), 497–536.

Hodges, J. S. and D. J. Sargent (2001). Counting degrees of freedom in hierarchical and other richly-
parameterised models. Biometrika, 367–379.

Lindstrom, M. J. and D. M. Bates (1988). Newtonraphson and em algorithms for linear mixed-effects
models for repeated-measures data. Journal of the American Statistical Association 83 (404), 1014–
1022.

Nobre, J. S. and J. M. Singer (2011). Leverage analysis for linear mixed models. Journal of Applied
Statistics 38 (5), 1063–1072.

Patterson, H. D. and R. Thompson (1971). Recovery of inter-block information when block sizes are
unequal. Biometrika, 545–554.

Robinson, G. K. (1991). That blup is a good thing: the estimation of random effects. Statistical
science, 15–32.

Searle, J. R. (1992). The rediscovery of the mind. MIT press.

Searle, J. R., J. L. Austin, P. Strawson, H. Grice, N. Chomsky, J. J. Katz, N. Goodman, and H. Putnam
(1971). The philosophy of language, Volume 39. Oxford University Press London.

Seber, G. A. (2008). A matrix handbook for statisticians, Volume 15. John Wiley & Sons.

Singer, J. M., J. S. Nobre, and H. C. Sef (2004). Regression models for pretest/posttest data in blocks.
Statistical Modelling 4 (4), 324–338.

Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution. The annals of
Statistics, 1135–1151.

Vaida, F. and S. Blanchard (2005). Conditional akaike information for mixed-effects models.
Biometrika 92 (2), 351–370.

Wei, B.-C., Y.-Q. Hu, and W.-K. Fung (1998). Generalized leverage and its applications. Scandinavian
Journal of statistics 25 (1), 25–37.

Zewotir, T. and J. S. Galpin (2007). A unified approach on residuals, leverages and outliers in the
linear mixed model. Test 16 (1), 58–75.

Zhang, F. (2006). The Schur complement and its applications, Volume 4. Springer Science & Business
Media.


