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Mechanism Design for Optimal Consensus Problems

D. Bauso,L. Giarré, R. Pesenti

Abstract— We consider stationary consensus protocols for
networks of dynamic agents with fixed and switching topologies.
At each time instant, each agent knows only its and its
neighbors’ state, but must reach consensus on a group decision
value that is function of all the agents’ initial state.We show that
our protocol design is the solution of individual optimizations
performed by the agents. This notion suggests a game theoretic
interpretation of consensus problems as mechanism design
problems. Under this perspective a supervisor entails the agents
to reach a consensus by imposing individual objectives. We
prove that such objectives can be chosen so that rational
agents have a unique optimal protocol, and asymptotically reach
consensus on a desired group decision value.

I. INTRODUCTION

Coordination of agents/vehicles is an important task in sev-
eral applications including autonomous formation flight [3], [4],
cooperative search of unmanned air-vehicles (UAVs) [5], swarms
of autonomous vehicles or robots [6], [7], [8], multi-retailer in-
ventory control [9], [10], [11] and congestion/flow control in
communication networks [12]. Distributed consensus protocols are
distributed control policies based on local information that allow the
coordination of multi-agent systems. Agents implement a consensus
protocol to reach consensus, that is to (make their states) converge
to a same value, called consensus-value, or group decision value
[1], [2].
Particularly interesting is the progress in the design and analysis of
consensus protocols obtained merging notions and tools from the
Graph Theory and Control Theory [13]. Actually, a central point in
consensus problems is the connection between the graph topology,
possibly switching, and delays or distortions in communication
links [14]. Switching topology and directional communications are
studied in [1], [15], [16], [17], [18], [19], while cooperation based
on the notion of coordination variable and coordination function
in [20], [21]. There, coordination variable is referred to as the min-
imal amount of information needed to effect a specific coordination
objective, whereas a coordination function parameterizes the effect
of the coordination variable on the myopic objectives of each agent.
In this paper, n dynamic agents reach consensus on a group decision
value by implementing optimal, distributed and stationary control
policies based on neighbors’ state feedback. In [22], neighborhood
relations are defined by the existence of communication links
between nearby agents. we assume that the set of communica-
tion links are bidirectional and define a time-invariant connected
communication network. In this context, we argue that agents
asymptotically reach consensus on the desired group decision value
by studying equilibrium properties and stability of the group deci-
sion value via Lyapunov theory. Then, we consider networks with
switching topology and directional communications. To generalize
our previous results here we assume dwell time [15], [23] between
switchings and exploit an analysis tool for switched systems known
as common Lyapunov function [1], [24], [25], [26]. Similarly to [1],
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[3], [13], our agents follow a first-order dynamics.
Our contribution to the study on consensus problems is two-fold.
In [22], we show that consensus can be reached if the agents’ state
trajectories satisfy a certain time invariancy property. In doing this
we consider both linear and non-linear protocols. On the basis of
such a result, we prove that the group decision values considered are
sufficiently general to include any mean of order p of the agents’
initial states, and not only the arithmetic/min/max means usually
dealt with in the literature (see, e.g., [13], [27]). The referred result
are extended here to systems with switching topology.
Moreover, we show that the distributed/individual optimality of the
considered protocols allows interpreting our consensus problem as
a non cooperative differential game [28], [29] where a supervisor
entails the agents to reach a consensus by imposing individual
objectives. This perspective reminds the mechanism design, or
inverse game theory [30]. Indeed, the main topic of the mechanism
design is the definition of game rules or incentive schemes that
induce self-interested players to cooperate and reach Pareto optimal
solutions [28]. To justify the use of mechanism design consider the
general case when it is not employed. The distributed protocols
are generally planned at high level by a supervisor. The supervisor
communicates the planned control policies to the agents that are
in charge to implement them at a low level. The agents are
only said “what to do” by the supervisor and do not exhibit any
decision capability. This aspect is actually a drawback in systems
with large dimensions and complex structures. Indeed, if agents
are not motivated to behave in the desired way, then a costly
monitoring system may be necessary. In addition, computing the
optimal protocol can be too onerous for the supervisor. The situation
is even worse if the system operates in a hostile environment. In this
case, loosing the supervisor dramatically deprives the entire system
of its central intelligence, with foreseeable negative consequences.
The advantage of the mechanism design is that intelligence as well
as implementation capabilities are distributed. Reviewing the as-
ymptotically consensus reaching as a team objective, the supervisor
decomposes this team objective in n individual objectives. By doing
this, the agents are said “what to aim at” instead of “what to do”,
and are free to find the best solution to their subtasks. Obviously,
the advantage of distributing intelligence has on one hand a non
indifferent cost due to the necessity of equipping each agent with
computational and processing units, but, on the other hand, reduces
the monitoring costs. We show that, if the supervisor imposes
convex penalty functions, rational agents have a unique optimal
protocol. We prove this result through the Pontryagin Minimum
Principle (see, e.g., [31]). From a slightly different point of view,
the solution of a mechanism design problem allows to determine
whether a set of agents with given individual objective functions
will implement the considered protocol.
The present paper states consensus protocol definition and mecha-
nism design as two separate problems for the sake of clarity. How-
ever, it must be noted that these two problems may be seen as two
faces of the same coin. The consensus protocol definition problem
answers to the question of determining the policies that the agents
must implement to reach a given consensus. The mechanism design
problem answers to the question of which policy is implemented,
and hence which consensus value is reached, by selfish agents with
given individual objectives.
In solving the mechanism design problem, we need to make



some assumptions on the information available to each agent and
its computational capabilities. In particular, we assume that, at
each time instant, the generic agent can observe the state of its
neighbor agents but cannot predict their future behavior and hence
uses a naive expectation of the state of the neighbor agents in
evaluating its individual objective function. In accordance with
[32], naive expectation means that the agents choose their optimal
control policy assuming the neighbors’ state variables as constants.
Needless to say that the naive expectation hypothesis is a major
one, but it is reasonable when agents: cannot keep record of the
past behavior of their neighbors, are so numerous that they can
infer little or none on the group decision value from the punctual
observation of their neighbors’ state and, possibly, are organized
in a network with a switching topology whose switching times and
pattern are unpredictable. Obviously, under different assumptions on
the information available and the computational capabilities of each
agent, the agents may choose different policies and then converge to
a different group decision values. However, note that at least when
the considered group decision value is the arithmetic mean of the
agents’ initial states, the optimal protocol that we obtain imposing
the naive expectation hypothesis is the same that we would obtain if
we have assumed that the agents could also know the first derivative
of the state of its neighbors. In this case, the optimal policy can
be determined by observing that the problem is an affine quadratic
game. Then, it belongs to one of the few classes of differential
games that can be solved exactly [28].
The paper is organized as follows. In Section II, we formulate
the consensus problem (Problem 1) and the mechanism design
problem (Problem 2). In Section III, we generalize our results
to systems with switching topology. Section IV addresses the
mechanism design problem, whose solution is derived starting
from the results on the consensus problem. More specifically, we
exploit the Pontryagin Minimum Principle to derive necessary and
sufficient optimality conditions. Then, we merge the results on time
invariancy, stability, and optimality to design a mechanism for the
distributed optimal consensus. Finally, in Section V, we draw some
conclusions.

II. CONSENSUS AND MECHANISM DESIGN PROBLEMS

We consider a system of n dynamic agents Γ = {1, . . . , n}
and model the interaction topology among agents through a time-
invariant connected network (graph) G = (Γ, E), where each edge
(i, j) in the edgeset E represents a bidirectional communication
link. The network is undirected since we assume that if agent
i can receive information from agent j then also agent j can
receive information from agent i. The network is connected since
we assume that for any agent i ∈ Γ there exists a path, i.e., a
sequence of edges in E, (i, k1)(k1, k2) . . . (kr, j), that connects it
with any other agent j ∈ Γ. Finally, the network G is not complete
since each agent i exchanges information only with a subset of
other agents Ni = {j : (i, j) ∈ E} called neighborhood of i.
Each agent i has a (simplified) first-order dynamics controlled by
a distributed and stationary control policy

ẋi = ui(xi, x
(i)) ∀i ∈ Γ, (1)

where xi is the state of agent i and x(i) is the state vector of
the agents in Ni with generic component j defined as follows,

x
(i)
j =

{
xj if j ∈ Ni,
0 otherwise,

and such that (1) has unique solutions. The policy is distributed
since, for each agent i, it depends only on the local information
available to it, which is xi and x(i). No other information on the
current or past system state is available to agent i. (We discuss
the limitation of this assumption at the beginning of Section
3). The policy is stationary since it does not depend explicitly
on time t. In other words, the policy is a time-invariant and
memoryless function of the state. Define the system state vector

x(t) = {xi(t), i ∈ Γ}, then the system initial state x(0) is
the collection of the the agents’ initial states. Define u(x) =
{ui(xi, x

(i)) : i ∈ Γ} as a distributed stationary protocol or
simply a protocol. Let χ̂ : IRn → IR be a generic continuous
function of n variables x1, . . . , xn which is permutation invariant,
i.e., χ̂(x1, x2, . . . , xn) = χ̂(xσ(1), xσ(2), . . . , xσ(n)) for any one
to one (permutation) mapping σ(.) from the set Γ to the set Γ.
Henceforth χ̂ is also called agreement function. Putting together
slightly different definitions in [1], [2], [27], we say that a protocol
u(.) makes the agents asymptotically reach consensus on a group
decision value χ̂(x(0)) function of their initial states if ‖xi −
χ̂(x(0))‖ −→ 0 as t −→ ∞. When this happens we also say
that the system converges to χ̂(x(0))1. Here and in the following,
1 stands for the vector (1, 1, . . . , 1)T .
Notwithstanding each agent i has only a local information (xi, x

(i))
about the system state x, we are interested in making the agents
reach consensus on group decision values that are functions of the
whole system initial state x(0). In particular, we are interested in
agreement functions verifying

min
i∈Γ

{yi} ≤ χ̂(y) ≤ max
i∈Γ

{yi}, for all y ∈ IRn. (2)

The above condition means that the group decision value must be
confined between the minimum and the maximum values of the
agents’ initial states.
Finally, we define an individual objective for an agent i, i.e.,

Ji(xi, x
(i), ui) = lim

T−→∞

∫ T

0

(
F (xi, x

(i)) + ρu2
i

)
dt (3)

where ρ > 0 and F : IR × IRn → IR is a nonnegative
penalty function that measures the deviation of xi from neighbors’
states. We say that a protocol is optimal if each ui optimizes the
corresponding individual objective.
In the above context, we face the following problem.

Problem 1: (Consensus Problem) Consider a network G =
(Γ, E) of dynamic agents with first-order dynamics. For any agree-
ment function χ̂ satisfying condition (2, determine a (distributed
stationary) protocol, whose components have the feedback form (1),
that makes the agents asymptotically reach consensus on χ̂(x(0))
for any initial state x(0).

A protocol that solves the consensus problem is also referred
to as a consensus protocol. In [22] we generalized our consensus
problem to any agreement function χ̂(x).

Assumption 1: (Structure of χ̂(.)) Assume that the generic
agreement function χ̂(.) satisfies condition (2) and is such that
χ̂(x) = f(

∑
i∈Γ

g(xi)), for some f, g : IR → IR with dg(xi)
dxi

6= 0
for all xi.

A point of interest is that the above family of agreement function
is more general than the arithmetic/min/max means already reported
in the literature (see, e.g., Tab. I). In this sense, observe that the
structure of the agreement function is general to the extent that
any value in the range between the minimum and the maximum
values of the agents’ initial states can be chosen as a group decision
value. To see this, it is sufficient to consider mean of order p with
p varying between −∞ and ∞. In [22] it is proved that the agents
asymptotically reach consensus on χ̂(x(0))1 when function g(.) is
strictly increasing, i.e., dg(y)

dy
> 0 for all y ∈ IR.

We recall hereafter the main results proved in [22]:
Lemma 1: Consider a network G = (Γ, E) of dynamic agents

with first-order dynamics and implement a distributed and stationary
protocol u(.) whose components have the feedback form

ui(xi, x
(i)) = α

1
dg
dxi

∑
j∈Ni

φ̂(ϑ(xj)− ϑ(xi)), for all i ∈ Γ. (4)

Then, for any initial state x(0), the system may not converge
(asymptotically) to any equilibrium point different from χ̂(x(0))1.



mean χ̂(x) f(y) g(z)

arithmetic
∑

i∈Γ
1
n

xi
1
n

y z

geometric n
√∏

i∈Γ
xi e

1
n

y log z

harmonic 1∑
i∈Γ

n
xi

n
y

1
z

mean of order p p

√∑
i∈Γ

1
n

xp
i

q
√

1
n

y zp

TABLE I
MEANS UNDER CONSIDERATION AND THEIR REPRESENTATIONS IN

TERMS OF f AND g

Theorem 1: Consider a network G = (Γ, E) of dynamic agents
with first-order dynamics and implement a distributed and stationary
protocol whose components have the feedback form (4). If function
g(.) is strictly increasing, the agents asymptotically reach consensus
on χ̂(x(0))1 for any initial state x(0).

In addition a consensus protocol is said optimal, if its com-
ponents are the optimal controls ui(.) corresponding to minimiz-
ing (3).

Problem 2: (Mechanism design problem) Consider a network
G = (Γ, E) of dynamic agents with first-order dynamics. For any
agreement function χ̂(.) determine a penalty function F (.) such
that there exists an optimal consensus protocol u(.) with respect to
χ̂(x(0)) for any initial state x(0).
Notice that a pair (F (.), u(.)) solving Problem 2 must be such that
all individual objectives (3) converge to a finite value. Then, it is
necessary that the integrand in (3) be null if computed in χ1. We
will check later on that this necessary condition is verified by our
candidate penalty function F (.).

III. SYSTEMS WITH SWITCHING TOPOLOGY

In [22] we prove that protocols (4) make the agents asymptoti-
cally reach consensus on the group decision value where the system
topology is fixed. Here we discuss whether we can generalize our
results to systems with a switching topology [1], [15], [24], [25],
[26], i.e., systems where existing communication links between
agents may fail and new communication links may be created over
the time. In this situation, the network G has a time variant edgeset
E. More formally, let E be the finite set of all the possible edgesets
connecting the agents in Γ. The elements E ∈ E define a family
of dynamical systems (1)

ẋi = uiE(xi, x
(i)) ∀i ∈ Γ, (5)

where the control policy is still stationary but depends on the
edgsets of the system network as described by index E.
To define a switched system from the above family of dynamical
system we must define a switching function. Let I be the index set
associated with the elements of E . Then E = Ek, with Ek ∈ E and
k = s(t), where s : IR+ → I is the switching function. Also, let us
call tr a switching time if s(t−r ) 6= s(t+r ). In the rest of this section,
to avoid pathological behaviors arising when the switching times
have a finite accumulation point (see, e.g., the zeno behavior in [24])
and in accordance with [15], [25], we assume that the switching
function s has a finite number of switching times on every bounded
time interval, and takes constant value on every interval between
two consecutive switching times (see, e.g., the notion of dwell time
in [15], [23]).

Following the same line of reasoning as in [1], we observe that
the proofs of all the theorems in the previous sections assume only
that network G is connected, that the communication links are
bidirectional, and that χ̂(.) is time-invariant. All these properties
still hold even if the network G has a switching topology but is
always connected. Unfortunately, once one allows switching, the
right hand side of (5) becomes discontinuous. It is not (locally)
Lipschitz any more, and one cannot guarantee uniqueness of

solutions. One way for the existence and uniqueness of solution
to hold is to demand that f be piecewise continuous in t [24]. In
this case one needs to work with a weaker concept of solution,
namely, a function x(.) that is piecewise differentiable and satisfies
the differential equation almost everywhere. Such functions are
known as absolutely continuous and provide solutions in the sense
of Carathéodory. With this in mind, one is induced to think that
Lyapunov second method cannot be applied in his standard form.
This is true only in part. Indeed, let us start from the observation
that the Lyapounov direct (second) method leads to the same
conclusions even if V is merely continuous and not necessarily
continuously differentiable (see, e.g., comments on the Lyapunov
direct method, Appendix A, [24]). Then, for the asymptotical
stability it suffices that V is strictly decreasing along nonzero
solutions. Even the latter condition, i.e., V being strictly decreasing
along nonzero solutions is not necessary to the global stability of a
switched system [23]. Convergence to zero is, indeed, guaranteed
even under the weaker condition that at every switching time the
sequence v(x(tk)) for k = 0, . . . ,∞ converges to zero.

With the above considerations in mind, one way of studying
stability of switched systems is based on the notion of common
Lyapunov function [24], [25], [26].

Then, to prove that Theorem 1 holds even if the network G has
a switching topology we must prove that V (η) = 1

2

∑
i∈Γ

η2
i is a

common Lyapunov function for the family of systems (5). To do
this we will make use of the notion of minimum spanning tree,
defined on graph G with time varying edge costs

cij = α(g(xj)− g(xi))φ̂(ϑ(xj)− ϑ(xi)), ∀(i, j) ∈ E.

In particular, let us define the subset Q ⊆ E of the edgsets defining
graphs (Γ, Q) that are (connected) trees. For each Q ∈ Q we
introduce the function

WQ(η) = α{
∑

(i,j)∈Q

(ηj − ηi)φ̂(ϑ(g−1(ηj + g(χ̂(x(0)))(6a)

−ϑ(g−1(ηi + g(χ̂(x(0)))) = (6b)

= α{
∑

(i,j)∈Q

(g(xj)− g(xi))φ̂(ϑ(xj)− ϑ(xi))}(6c)

=
∑

(i,j)∈Q

cij . (6d)

Note that g−1(.) is a well defined continuous function as g(.) is
a continuous strictly increasing function. It is immediate to observe
that, for each Q ∈ Q, function WQ(η) is continuous, as it is
composition of continuous functions, and positive definite, that is,
WQ(η) ≥ 0 and WQ(η) = 0 if and only if η = 0. Now, the
minimum spanning tree solves W (η) = minQ∈Q{WQ(η)}, where
function W (η) is still continuous, and positive definite.

Finally, we observe that the Lyapunov function V (η) =
1
2

∑
i∈Γ

η2
i defined in the proof of Theorem 1 is a positive definite

continuously differentiable function such that

V̇ (η) =
∑
i∈Γ

ηi
dg(xi)

dxi
uiE (7a)

= −α
∑

(i,j)∈E

(g(xj)− g(xi))φ̂(ϑ(xj)− ϑ(xi)) (7b)

≤ −W (η), ∀η ∈ IRn, E ∈ E (7c)

In fact, each edgeset E ∈ E defines a connected graph, thus there
surely exist Q ∈ Q such that Q ⊆ E. Since for each (i, j) ∈ E
we have (g(xj) − g(xi))φ̂(ϑ(xj) − ϑ(xi)) ≥ 0, we obtain that



the inequality between V̇ (η) and W (η) must hold in (7) for each
E ∈ E .

Since, W (η) is continuous and positive definite, in accordance
with [25], the switched system is globally uniformly asymptotically
stable in the quotient space IRn/span{1}.

IV. PENALTY FUNCTIONS AND OPTIMAL PROTOCOLS

Hereafter we discuss whether we can make the agents asymp-
totically reach consensus on the group decision value by assigning
to each agent an individual objective function to optimize.

In solving our mechanism design problem, we need to make
some assumptions on the information available to each agent and
its computational capabilities. In particular, we assume that,

Assumption 2: (Naive Expectation) At each time t ≥ 0, each
agent i ∈ Γ can observe only the state x(i) of its neighbor agents
j ∈ Ni, but cannot predict their future behavior nor, in case of
switching topology, it can predict the possible evolution of the
topology. For these reasons agents optimize its individual objective
function (3) using a receding horizon approach where, at each time
t ≥ 0, the states of the neighbors and the topology of the network
are considered constant from time t on.

The naive assumption is nothing but an alternative way of dealing
with uncertainties similar to what done in the min-max approach
(when the uncertainty is unknown but bounded, one assumes that
the uncertain variable takes on the worst value at each time) or
the min-exp approach (when some stochastic property of the un-
certainty is known, one assumes that the uncertain variable takes on
the expected value at each time). In the introduction we have already
pointed out that the above naive expectation assumption [32] “a la
Cournot” [33], although strong, is justified by the information set
up of this work. An opposite assumption, in the authors’ opinion as
much strong as the naive expectation assumption, is that the agents
keep track of the recent evolution of neighbors’ state up to current
time t and use it to refine their expectations on the neighbors’
states [34], [35] (for instance by introducing a derivative term in
the prediction or receiving an assumed control trajectory from each
neighbor). However, such a refinement would affect the stationarity
of the protocol and increase the computation and communication
requirements on the part of the agents.

Now, let us introduce the receding approach formally [34], [35].
Assume update time interval (usually the sample interval) δ ∈

(0, T ). The receding horizon update times are tk = t0 + δk,
where k = 0, 1, . . .. The cost of agent i depends on his state and
others’ state trajectories as well. Let us denote with x̂i(τ, tk) and
x̂(i)(τ, tk), τ ≥ tk respectively the predicted state of agent i and
of his neighbors.

Problem 3: (Receding Horizon) For all agents i ∈ Γ and times
tk, k = 0, 1, . . ., given the initial state xi(tk), and x(i)(tk) and
assuming that no switching occurs between tk and tk+1, find

û?
i (τ, tk) = arg minJi(xi(tk), x(i)(tk), ûi(τ, tk)),

where

Ji(xi(tk), x(i)(tk), ûi(τ, tk)) =

limT−→∞
∫ T

tk

(
F(x̂i(τ, tk), x̂(i)(τ, tk)) + ρû2

i (τ, tk)
)

dτ
(8)

subject to

˙̂xi(τ, tk) = ûi(τ, tk) (9a)
˙̂xj(τ, tk) = ûj(τ, tk) := 0, ∀j ∈ Ni, (9b)

x̂i(tk, tk) = xi(tk) (9c)
x̂j(tk, tk) = xj(tk), ∀j ∈ Ni. (9d)

In the above problem, equations (9a) and (9b) predict respectively
the evolution of the state of agent i and of his neighbors, and

conditions (9c) and (9d) represent the initial state at time tk.
The hypothesis on the invariance of the network topology as well
as equation (9b) are based on the naive expectation assumption.
Indeed, whereas agent i may predict with a certain approximation
the evolution of its state as described by (9a), nothing can he know
about the evolution of the states of his neighbors (9b). In other
words, agent i at time tk, k = 0, 1, . . . assumes that the states of
his neighbors take on the current value at each future time, that
is x̂(i)(τ, tk) = x(i)(tk), ∀τ > tk as described in (15b). If we
review the naive assumption in a receding horizon context, at time
tk, given the initial neighbors’ state x(i)(tk), the naive assumption
represents a way to predict the evolution of the state of his neighbors
x̂(i)(τ, tk), τ > tk until a next initial state update x(i)(tk+1) is
available. Thus, though the naive assumption may appear a strong
assumption, one must note that it can be mitigated by choosing a
smaller update time interval δ.

According to the standard receding horizon scheme, the agents
update the receding horizon control policy when a new initial state
update x(i)(tk+1) is available. As a result, for all i ∈ Γ, we have
the following closed-loop system

ẋi = uiRH (τ), τ ≥ t0,

where the applied receding horizon control law uiRH (τ) satisfies

uiRH (τ) = û?
i (τ, tk), τ ∈ [tk, tk+1).

Once we assume (9b) we have x̂(i) constant in (8) and the
receding horizon problem (Problem 3) reduces to one dimension (in
fact, n one-dimensional problems). This is evident, if we explicit
dependence of F(.) only on the state x̂i(τ, tk), and simplify the
expression of the individual objective function (8) as

Ji = lim
T−→∞

∫ T

tk

(
F(x̂i(τ, tk)) + ρû2

i (τ, tk)
)

dτ. (10)

Hence, the problem reduces to determine the control ûi(τ, tk) that
optimizes (10).

Now, to verify that a given control ûi(τ, tk) is optimal, we use
the Pontryagin Minimum Principle. To do this, first, we must con-
struct the Hamiltonian function (for sake of simplicity dependence
on τ and tk is dropped)

H(x̂i, ûi, pi) = (F(x̂i) + ρû2
i ) + piûi. (11)

Second, we must impose the Pontryagin necessary conditions.

Optimality condition:
∂H(x̂i, ûi, pi)

∂ûi
= 0 (12)

⇒ pi = −2ρûi. (13)

Multiplier condition: ṗi = −∂H(x̂i, ûi, pi)

∂x̂i
. (14)

State equation: ˙̂xi =
∂H(x̂i, ûi, pi)

∂pi
(15)

⇒ ˙̂xi = ûi. (16)

Minimality condition:
∂2H(x̂i, ûi, pi)

∂û2
i

∣∣∣∣
x̂i=x̂∗

i
,ûi=û∗

i
,pi=p∗

i

(17)

≥ 0 ⇒ ρ ≥ 0. (18)
Boundary condition: H(x̂∗i , û∗i , p∗i ) = 0. (19)

This last condition requires that the Hamiltonian must be null
along any optimal path {x̂∗i (t),∀t ≥ 0} (see, e.g., [31], Section
3.4.3).
We recall that the Pontryagin Minimum Principle provides nec-
essary but not sufficient optimality conditions [31]. The above



conditions become also sufficient to identify a unique optimal
solution if also the following condition holds [31].

Uniqueness condition: F(xi) is convex. (20)

The following theorem state sufficient conditions on the structure
of F(xi) that allow us to determine analytically a unique optimal
control policy ûi(.) .

Theorem 2: Consider an agent i with first-order dynamics, at
times tk = 0, 1, . . ., assign it an objective function as (8) whose
penalty function is

F(x̂i(τ, tk)) = ρ

(
1
dg
dxi

∑
j∈Ni

(ϑ(xj(tk))− ϑ(x̂i(τ, tk)))

)2

(21)

where g(.) is increasing, ϑ(.) is concave, and 1
dg(y)

dy

is convex.

Then the following control policy is the unique optimal solution to
Problem 3

û?
i (τ, tk) = ui(xi(τ)) = α

1
dg

dxi(τ)

∑
j∈Ni

(ϑ(xj(tk))−ϑ(xi(τ))), α = 1.

(22)
The above theorem holds trivially for α = −1 if dg

dxi
< 0 for

all xi(0).
Note that the optimal control policy (22) is a feedback policy

with respect to the only state x̂i whereas is an open-loop one with
respect to the neighbors’ states.

Then, an immediate consequence of Theorem 2 and of the above
assumption is the following corollary.

Corollary 1: Consider a network G = (Γ, E) of dynamic agents
with first-order dynamics, at times tk = 0, 1, . . ., assign it an
objective function as (8) whose penalty function is

F(x̂i(τ, tk)) = ρ

(
1
dg
dxi

∑
j∈Ni

(ϑ(xj(tk))− ϑ(x̂i(τ, tk)))

)2

(23)

where g(.) is increasing, ϑ(.) is concave, and 1
dg(y)

dy

is convex. If

the update time interval δ −→ 0 then the following conditions hold
i) the penalty function

F(xi(τ, tk)) −→ F (xi, x
(i)) = ρ

(
1
dg
dxi

∑
j∈Ni

(ϑ(xj)− ϑ(xi))

)2

(24)
ii) the applied receding horizon control law

u?
iRH

(τ) −→ ui(xi, x
(i)) =

1
dg
dxi

∑
j∈Ni

(ϑ(xj)− ϑ(xi)).

(25)
From the above corollary it is straightforward to derive a solution
to the mechanism design problem (Problem 2). Indeed, a supervisor
can make the agents asymptotically reach consensus on the group
decision value χ̂(x) = f(

∑
i∈Γ

g(xi)) by assigning them an
individual objective function (3) with penalty function (24) to
optimize, provided that g(.) is increasing, 1

dg(y)
dy

is convex and the

update time interval δ is “sufficiently” small in comparison with
the speed of variation of state x(.).

It is worth to observe that, in general, control (25) cannot be
proved to be optimal for (3) if the naive expectation assumption
is dropped. However, to the best of authors’ knowledge, even in
presence of more information about the evolution of x(i)(t), it
would be difficult to determine the optimal control for the generic
agent i as conditions (12)-(20) are in general difficult to solve. A
notable exception is when dg

dxi
= 1 and ϑ(xi) = xi for all i ∈ Γ. In

this case, agents asymptotically reach consensus on the arithmetic
mean of the values of their initial states and it is immediate to

verify that control (25) is optimal even when the naive expectation
assumption is dropped (see, e.g., linear quadratic differential games
in [28], ch. 6).

V. CONCLUSIONS

In this paper we have considered a set of agents with a simple
first-order dynamics and we have faced the problem of making
the agents’ states reach consensus on a group decision value of
interest. For group decision values with a quite general structure
as established in Assumption 1, we have shown that the agents
can reach consensus using a distributed and stationary linear or
non-linear protocol, provided that the networks defined by the
communication links between agents is connected though possibly
time variant. Also, we have proposed a game theoretic approach
to solve consensus problems. Under this perspective, consensus is
the result of a mechanism design. A supervisor imposes individual
objectives. Then, the agents reach asymptotically consensus as a
side effect of the optimization of their own individual objectives on
a local basis.
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APPENDIX

Proof of Theorem 2 We first show that the problem of
minimizing (10) is well posed by proving that, given a penalty
function as in (21), there exists at least a control policy for which
objective (10) converges. Second we certificate the optimality of
control policy (22) via Pontryagin Minimum Principle and, finally,
we prove the uniqueness of the optimal solution by showing that
F(.) is convex.
To prove that the problem is well posed, let us start by showing that
there exists at least one reachable state x∗i under a stationary control
policy function only of local information (xi, x

(i)) in which both
the penalty (21) and the control itself are null. Now, the penalty (21)
is null in a state x̂∗i such that

∑
j∈Ni

(ϑ(xj(tk)) − ϑ(x∗i )) = 0.

From the latter we also have x∗i = ϑ−1

(∑
j∈Ni

ϑ(xj(tk))

|Ni|

)

which means that x∗i can be determined on the basis of the local
information (x̂i(τ, tk), x(i)(tk)) available to agent i. Therefore
there trivially exists a control policy that is null in x∗i and makes

the objective function (10) converge.
Now, to certificate the optimality of control policy (22) with α =
1, let us show that it satisfies conditions (12)-(20) imposed by
the Pontryagin Minimum Principle. Our hypothesis on the agent
dynamics and on the structure of the agent objective function
trivially satisfy (15) and (17). By computing ṗi from (12) and
substituting the obtained value in (14) we have

2ρ ˙̂ui =
∂H(x̂i, ûi, pi)

∂x̂i
. (26)

In (15), we can write ˙̂ui = ∂ûi
∂x̂i

˙̂xi = ∂ûi
∂x̂i

ûi. Hence condition
(26) becomes 2ρ ∂ûi

∂x̂i
ûi = ∂H(x̂i, ûi, pi)

∂x̂i
. Integrating and imposing

condition (19) we obtain that a possible solution of (26) must satisfy

ρû2
i = F(x̂i). (27)

It is immediate to verify that ûi(τ, tk) = 1
dg

dx̂i

∑
j∈Ni

(ϑ(xj(tk))−
ϑ(x̂i(τ, tk))) satisfies the above condition.
Finally, to prove that control policy (22) is the unique optimal
solution, let us show that F(x̂i) is convex. To do this, let us write
F = F3(F1(x̂i),F2(x̂i)) where function F1(x̂i) =

(
∂g
∂xi

)−1
,

function F2(x̂i) =
∑

j∈Ni
(ϑ(xj(tk))−ϑ(x̂i)) and F3 = (F1(x̂i)·

F2(x̂i))
2. With F3(.) being non decreasing in each argument,

function F3(.) is convex if both functions F1(.) and F2(.) are
also convex [36]. Function F1(.) is convex as

(
dg
dx̂i

)−1
is convex

by hypothesis. Analogously, F2(.) is convex as ϑ(.) is concave.

View publication statsView publication stats

https://www.researchgate.net/publication/224699847

