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ABSTRACT
We study the evolution of a low-mass X-ray binary by coupling a binary stellar evolution code
with a general relativistic code that describes the behaviour of the neutron star. We assume
the neutron star to be low-magnetized (B ∼ 108 G). In the systems investigated in this paper,
our computations show that during the binary evolution, the companion transfers as much as 1
M� to the neutron star, with an accretion rate of ∼10−9 M� yr−1. This is sufficient to keep the
inner rim of the accretion disc in contact with the neutron star surface, thus preventing the onset
of a propeller phase capable of ejecting a significant fraction of the matter transferred by the
companion. In this scenario we find that, for neutron stars governed by equations of state from
soft up to moderately stiff, an accretion induced collapse to a black hole is almost unavoidable.
The collapse to a black hole can occur either during the accretion phase or after the end of the
mass transfer when the neutron star is left in a supramassive sequence. In this last case, the
collapse is driven by energy losses of the fast spinning magneto-dipole rotator (pulsar). For
extremely supramassive neutron stars, these energy losses cause a spin-up. Consequently, the
pulsar will have a much shorter lifetime than that of a canonical, spinning down radio pulsar.
This complex behaviour strongly depends on the equation of state for ultradense matter and
therefore could be used to constrain the internal structure of the neutron star. In the hypothesis
that the r-modes of the neutron star are excited during the accretion process, the gravitational
waves emission limits the maximum spin attainable by a neutron star to roughly 2 ms. In this
case, if the mass transfer is conservative, the collapse to a black hole during the accretion phase
is even more common since the maximum mass achievable before the collapse to a black hole
during accretion is smaller due to the limited spin frequency.
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1 I N T RO D U C T I O N

The widely accepted scenario for the formation of millisecond ra-
dio pulsars (MSP) is the recycling of an old neutron star (hereafter
NS) by a spin-up process. The spin-up is due to the accretion of
matter and angular momentum from a Keplerian disc that is fuelled
via Roche lobe overflow of a binary late-type companion (see Bhat-
tacharya & van den Heuvel 1991 for a review). If enough mass and
angular momentum are transferred, the NS spin attains an equilib-
rium value that is roughly equal to the keplerian angular frequency at
the inner rim of the accretion disc (Ghosh & Lamb 1979). Since the
NS has a weak surface magnetic field (∼108 G), the magnetospheric
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radius (at which the disc pressure is balanced by the magnetic pres-
sure) truncates the accretion disc close by or at the NS surface, and
the equilibrium period is expected to be, in most cases, below one
millisecond. Typically ∼0.35 M� are sufficient to reach a spin pe-
riod of 1 ms (e.g. Burderi et al. 1999). Most donor stars in systems
hosting recycled MSPs have certainly lost, during their interacting
binary evolution, a mass greater than 0.35 M�, since they now ap-
pear as white dwarfs of mass 0.15–0.30 M� (e.g. Taam, King &
Ritter 2000), the progenitors of which are likely to have been stars
of 1.0–2.0 M� (Webbink, Rappaport & Savonije 1983; Burderi,
King & Wynn 1996; Tauris & Savonije 1999). Therefore, if the
mass transfer is conservative the amount of matter accreted is easily
sufficient to spin the star up to periods below 1 ms (Cook, Shapiro
& Teukolsky 1994a), or even to produce an accretion induced col-
lapse into a black hole. Once the accretion and spin-up process ends,
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the magnetospheric radius expands beyond the light cylinder radius
(where an object corotating with the NS attains the speed of light).
This initiates a phase in which the rotational energy of the NS is
emitted via electromagnetic radiation and the star can be observable
as a rapidly rotating radio pulsar. According to this model, low mass
X-ray binaries (hereafter LMXBs) are the progenitors of MSPs. In-
deed, the discovery of coherent X-ray pulsations in four transient
LMXBs, namely SAX J1808.4–3658 with a spin period P = 2.5
ms and an orbital period of Porb = 2 h (Wijnands & van der Klis
1998), XTE J1751–305 (P = 2.3 ms, Porb = 42 min, Markwardt et
al. 2002), XTE J0929–314 (P = 5.4 ms, Porb = 43 min, Galloway et
al. 2002) and XTE J1807–294 with a spin period P = 5.2 ms and an
orbital period of Porb = 40 min (Markwardt, Juda & Swank 2003)
confirmed that NSs in LMXBs can be accelerated to millisecond
periods.

Several numerical methods have been developed to solve the Ein-
stein equations for a rotating NS (see Stergioulas 1998 for a review).
Stability criteria show that a rapidly rotating NS can support a max-
imum mass (against gravitational collapse) much higher than the
non-rotating mass limit, since the centrifugal force attenuates the ef-
fects of the gravitational pull (e.g. Friedman, Ipser & Sorkin 1988).
Conversely, if a rotating NS has a mass that exceeds the non-rotating
limit (i.e. a supramassive NS), it will be subject to gravitational col-
lapse if it loses enough rotational energy. Numerical simulations of
rotating NSs show that, in contrast to the standard behaviour, supra-
massive NSs spin-up just before collapse, even if they lose energy.
This effect is known to be stronger for higher-mass objects (Cook,
Shapiro & Teukolsky 1992).

The value of the maximum rotating and non-rotating mass de-
pends on the equation of state (EOS) governing the NS matter. On
the other hand, the minimum allowed period for a given mass oc-
curs when gravity is balanced by centrifugal forces at the NS equator
(mass shedding limit). Thus the spin period can be used to constrain
the mass–radius relation for the NS, i.e. its EOS. In the context of
the standard (gravitationally bound) NS models (e.g. Glendenning
2000), several EOSs have been proposed. We usually distinguish
different EOSs depending on their stiffness (i.e. the value of dp/dε,
were p is the fluid pressure and ε is the energy density). If the EOS
is stiff, the matter is less compressible at high densities, resulting in
larger NS radii as compared with a soft EOS, and hence in longer
minimum rotational periods. Except for few, very stiff cases, most
EOS predict minimum rotational periods well below 1 ms. However,
no submillisecond pulsars have been detected up to date: the shortest
observed spin period is ∼1.5 ms (Backer et al. 1982), uncomfortably
higher than the theoretical predictions.

In an attempt to find an explanation for the apparent clustering
of the spin periods of millisecond pulsars around 2 ms, Bildsten
(1998) and Andersson (1998) independently suggested that LMXBs
emit gravitational waves once they reach a critical spin frequency.
Burderi & D’Amico (1997) showed that for non-axisymmetric m-
modes, assuming a realistic range of temperatures, the values of
the critical spin frequency are remarkably close to the limiting spin
frequency determined by the centrifugal limit at the border of the
NS. On the other hand, Andersson, Kokkotas & Stergioulas (1999)
demonstrated that at a certain spin frequency (much lower than the
maximum attainable spin period) an instability to the Rossby waves
(r-modes) of the star arises, thus causing emission of gravitational
waves. Levin (1999) suggested that the gravitational waves emission
causes the onset of a spin-up–spin-down cycle, and not of a steady-
state spin equilibrium: in this scenario the NS undergoes a very
rapid spin-down (lasting ∼1 yr) due to the rapid heating during the
r-mode excitation, and then starts another cycle of accretion driven

spin-up. Brown & Ushomirsky (2000) showed that if the NS has a
superfluid core the steady-state scenario is not viable because the
predicted quiescence luminosity in this case is much higher than the
observed one in the X-ray transient Aql X-1. Levin & Ushomirsky
(2001) showed that, when keeping into account the presence of
the solid crust, the critical spin frequency for the onset of the r-
mode varies between ∼600 and ∼200 Hz, depending on the core
temperature.

In this paper we consider the full evolution of a LMXB, and try to
determine how the results of our modelling of the recycling scenario
compare to the observations and which effects peculiar to general
relativity are indeed observable. We will also show the differences
in the evolution of the system when the r-mode instability is excited
during accretion and when it is not excited.

2 E VO L U T I O N E QUAT I O N S
F O R T H E C O M PAC T O B J E C T

A rotating NS is unambiguously defined by the boundary condi-
tions for the integration of the Einstein equations or, equivalently,
by suitable pairs of resulting integrated quantities, such as the bary-
onic mass and the angular momentum or the baryonic mass and the
total mass–energy of the star. Therefore, the evolution of the NS is
determined by the evolution of such pairs. We consider the evolution
of the NS both during the accretion phase and after the accretion
has finished: in the former case it is convenient to solve the evolu-
tion equations for baryonic mass and angular momentum, since we
know the general formula for the torque exerted by the accreting
matter on the NS, while in the latter we solve the evolution equa-
tions for baryonic mass and mass–energy, since we can evaluate the
luminosity of a magnetodipole rotator using Larmor’s formula.

2.1 Evolution equations for the accretion phase

According to accretion theories, matter transferred from the com-
panion star to the NS via Roche lobe overflow forms an accretion
disc around the compact object. The disc is truncated because of one
of the following reasons: (i) the interaction with the magnetic field
of the NS, which truncates the disc at the magnetospheric radius rm;
(ii) the presence of the NS surface itself at RNS; and (iii) the lack of
closed Keplerian orbits for radii smaller than the marginally stable
orbit radius, RMSO (at few, depending on the mass and spin of the
compact object, Schwarzschild radii from the NS centre).

The magnetospheric radius is defined as the radius at which the
pressure of the disc equals the pressure of the magnetic field of the
NS. The magnetospheric radius can be written as a fraction φ (see
Burderi et al. 1998) of the Alfvén radius RA (the radius at which the
energy density of the, assumed dipolar, NS magnetic field equals
the kinetic energy density of the spherically accreting matter) as

rm = φRA = 2.45 × α9/35m1/28
G ṁ3/70

B r−3/28
m RA

= 2.244 × (
α36/5mGṁ6/5

B R28
A

)1/31
cm,

(1)

where α � 1 is the Shakura–Sunyaev parametrization of the
accretion disc viscosity (for which we will assume a typical value
of 0.1), mG is the NS gravitational mass in M�, ṁB is the baryonic
accretion rate on to the NS in 10−8 M� yr−1, and RA is

RA = 1.24 × 106µ
4/7
26 m−1/7

G ṁ−2/7
B cm, (2)

where µ26 is the magnetic dipole moment of the NS in units of 1026

G cm3, defined from Bs = µ/R3, where R is the equatorial radius
and Bs the surface magnetic field of the NS at its equator.
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Conservative mass transfer 75

The NS radius, which is always in the order of 106 cm, depends
both on the mass of the NS and on its angular momentum. In general,
smaller radii correspond to larger masses while larger radii corre-
spond to larger angular momenta. Thus a rapidly rotating NS can
have a much larger radius than a non-rotating one (the equatorial
radius can expand up to 40 per cent, see Cook, Shapiro & Teukolsky
1994b).

The marginally stable orbit is the smallest stable orbit possible for
a test particle around an axisymmetric, rotating body of gravitational
mass MG and angular momentum J. Its radius, following Bardeen
(1970), is:

RMSO = Rg

[
3 + Z2 − √

(3 − Z1)(3 + Z1 + 2Z2)
]

;

Z2 =
√

3

(
a

Rg

)2

+ Z 2
1

Z1 = 1 +
[

1 +
(

a
Rg

)2
]1/3

+
(

1 − a
Rg

)1/3

a = J

MGc

Rg = G MG

c2
,

where c is the speed of light and G is the gravitational constant.
Therefore, the inner radius of the disc, RD, will be:

RD = max {rm, RNS, RMSO} . (3)

The position of the inner rim of the disc is crucial for the accre-
tion of matter on to the NS. In particular, it is very important in the
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Figure 1. Baryonic mass accretion rates (in M� yr−1) as a function of time (in yr) for systems consisting of an NS with initial gravitational mass of 1.4 M�
and: (a) a population II (low metallicity) star of 0.85 M� transferring approximately 0.65 M�; (b) a 1.15-M� population I star transferring approximately
0.91 M�; (c) a 1.199-M� population I star transferring approximately 0.99 M�.

case RD = rm: since at rm the matter is forced by the magnetic field
to corotate with the NS, accretion on to a spinning magnetized NS
is centrifugally inhibited once rm lies outside the corotation radius
rco, the radius at which the Keplerian angular frequency of the or-
biting matter is equal to the NS angular frequency: rco = 1.50 ×
106m1/3

G P2/3
−3 cm, where P−3 is the spin period in milliseconds. Con-

versely, if the magnetospheric radius is smaller than the corotation
radius accretion of matter can proceed undisturbed. However, as rm

scales as a negative power of ṁB, a decrease in the mass transfer
rate, which can occur for instance at the end of the accretion phase,
will results in an expansion of the magnetosphere. In this paper we
considered NSs with µ26 � 1, which is typical of observed MSPs
(see, e.g., Lorimer 1994), corresponding to surface magnetic fields
of ∼108 G. Moreover, in the cases considered here, the accretion rate
is always above ∼10−10 M� yr−1 during the mass transfer phase
(see Fig. 1). In this case, equation (1) implies a magnetospheric
radius of ∼106 cm, which is comparable with the NS radius. Al-
though we considered in our simulations (see below) the possibility
of a propeller phase, in these conditions the details of the interac-
tion of the accretion disc matter with the NS magnetosphere during
the accretion phase will not greatly affect our results. In fact, the
magnetospheric radius only lies outside the corotation radius for a
small time (�0.1 per cent of the evolution time) just before of the
end of accretion (see Fig. 2 for details). In other words, the spin evo-
lution of a low-magnetized NS is not very different from the spin
evolution of a non-magnetized NS, in which no propeller effect is
possible since the disc is always truncated near the surface of the
NS. We can therefore write the mass evolution equation for rm <

rco, which is simply given by the condition that the baryonic mass
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Figure 2. Time evolution of the relevant radii for the accretion process on
to the neutron star in the binary system of Fig. 1(b). The EOS governing
the ultradense matter is EOS FPS. The solid line is the corotation radius,
the thick dashed line is NS radius, the dot dashed line is the magnetospheric
radius, the dotted line is the radius of the marginally stable orbit. Note that
the magnetospheric radius exceeds the corotation radius only at the end
of accretion, when the mass transfer rate decreases, and that for the first
part of the accretion process the last stable orbit is outside the NS. The
magnetospheric radius data are smoothed in order to avoid the disturbing
visual effects due to the numerical instabilities of ṀB.

per unit time accreted on to the NS is equal to the mass lost by the
companion per unit time due to Roche lobe overflow, ṀRL, i.e.

ṀB = ṀRL. (4)

Lamb, Pethick & Pines (1973) wrote a general equation describ-
ing the flow of angular momentum into the stellar magnetosphere
including the material stress at the inner edge of the disc as well
as magnetic and viscous stresses in a disc partially threaded by the
NS magnetic field. In particular, they assumed that the threading
occurs in a transition region near the inner rim of the disc where
the magnetic field of the NS couples to the accretion disc. However,
they noted that, for slow rotators, magnetic and viscous stresses can
be neglected with respect to the contribution of the material stress.
Ghosh, Lamb & Pethick (1977) showed that, in the case of a disc
rotating in the same sense of the star, if the transition region where
the magnetic field couples to the disc is small, these additional con-
tributions are still negligible even for rapidly rotating NS. In the
present discussion we assume therefore that the torque exerted on
the NS is only due to the contribution of the material stress at the
inner edge of the disc (Pringle & Rees 1972). We will study the
evolution of high-magnetized NSs with heavily threaded accretion
discs in a future paper. Note, however that Wang (1996) showed
that threading effects can modify the maximum achievable period
(i.e. the equilibrium period) of the NS only by a few per cent with
respect to the unthreaded case.

The angular momentum per unit baryonic mass of a particle or-
biting around a rotating, axisymmetric object at a distance R is (see
Bardeen 1970)

j(R) = (G MG)1/2
[

R2 − 2(J/MGc)(RG MG/c2)1/2 + (J/MGc)2
]

×{
R3/4

[
R3/2 − 3(G MG/c2)R1/2

+ 2(J/MGc)(G MG/c2)1/2
]1/2}−1

. (5)

Thus we can write the equation for angular momentum evolution of
the NS simply as

J̇ = j(RD)ṀB, J < Jmax(MB)

J̇ = dJmax

dMB
ṀB, J = Jmax(MB).

(6)

The first equation does not apply when the NS is at the mass shed-
ding, i.e. the regime in which the matter at the border of the star
has the Keplerian velocity at that radius; for each value of baryonic
mass, the mass shedding regime is made individual by the corre-
sponding maximum angular momentum of the star, Jmax(MB). At
mass shedding, the matter of the disc should dissipate angular mo-
mentum to accrete on to the star. If the disc matter has an angular
momentum that will make the star exceed the mass shedding limit,
it will just not be able to accrete since it will not be gravitationally
bound to the star, until viscous forces drive the excess of angular
momentum to the outer zones of the disc (where it will be given back
to the companion through tidal forces) allowing matter to accrete on
to the star. In this situation, the second equation holds. Integrating
it we obtain Jf − Ji = Jmax,f − Jmax,i, but since Ji = Jmax,i we have
Jf = Jmax,f : the accreted matter will give the NS only the angular
momentum that keeps it at mass shedding, and the star will continue
to move along the maximum rotation line.

2.2 Evolution equations at the end of the accretion phase

The NS is thought to switch on as a radio pulsar when the inner
edge of the disc lies outside the light cylinder radius (i.e. the ra-
dius at which a particle corotating with the star will have velocity
c), rlc = c/ωNS – where ωNS is the angular velocity of the NS: this
certainly happens when the accretion stops and thus the disc disap-
pears. The emission mechanisms for a radio pulsar are believed to
be rotating magnetic dipole radiation and magnetospheric currents
associated with the emission of relativistic particles, both depending
on the angle i between the NS magnetic moment µ and the spin axis
(Goldreich & Julian 1969). These two emission mechanisms com-
pensate in such a way that the total energy emitted is nearly indepen-
dent of i (Bhattacharya & van den Heuvel 1991). The energy loss
per unit time will be Ė = −(2/3c3)µ2ω4

NS. It is then convenient to
describe NS evolution in terms of baryonic mass and total energy
rather than in terms of baryonic mass and angular momentum as we
did for the accretion phase. We can write the evolution equations as

ṀB = 0

ṀG = − 2

3c5
µ2ω4

NS.
(7)

Depending on the different conditions, we use either equations (4)
and (6) or equations (7) to compute the spin evolution of the NS.

2.3 Excitation of r-modes

Since our main goal is to qualitatively compare the evolution of
systems in which the gravitational waves damping is not present
and systems in which it is present, we will not go into the details
of the theory of r-modes excitation. We will simply assume that,
if the r-mode mechanism is present, any star attaining a period of
2 ms (corresponding to a frequency of 500 Hz) undergoes a rapid
spin-down to a period of 5 ms due to gravitational waves emission
following the scenario proposed by Levin (1999). After this rapid
spin-down, the NS starts its accretion driven spin-up process again.

2.4 Numerical methods of integration

During accretion phases we coupled through equations (4) and (6) a
detailed description of the binary evolution of the system obtained
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Conservative mass transfer 77

with the stellar evolution code with a fully relativistic calculation
of NS physical properties given its EOS, its baryonic mass and its
angular momentum.

The evolution of the binary system is followed self-consistently
including the full computation of the structure of the secondary
star, by means of the ATON1.2 stellar evolution code (D’Antona,
Mazzitelli & Ritter 1989). The equations of stellar structure are
numerically solved by a full Newton–Raphson integration from the
centre up to the basis of the stellar atmosphere. The numerical inputs
are described in Mazzitelli (1989). The secondary star is considered
to be the mass losing component of the binary system, and its mass-
loss rate is computed following the formulation by Ritter (1988), as
an explicit exponential function of the distance of the stellar radius to
the Roche lobe, in units of the pressure scaleheight. The evolution
of the binary parameters can be followed by considering several
possible cases for the transfer of mass, and for the loss of mass
and associated angular momentum from the system. The orbital
evolution also includes losses of orbital angular momentum through
magnetic braking, in the Verbunt & Zwaan (1981) formulation, in
which the braking parameter is set to f = 1 and through gravitational
radiation.

The relativistic computations for the compact object are imple-
mented using a slightly modified version of RNS (rotating neutron
stars) public domain code by Stergioulas & Morsink (1999). The
RNS routines provide a numerical solution of Einstein equations
for a rotating axisymmetric body, integrating the equations via the
Komatsu–Eriguchi–Hachisu method (Komatsu et al. 1989; see Ster-
gioulas & Friedman 1995 for a comparison with other integration
methods). The main problem of this approach is that we have evo-
lution equations for the baryonic mass and the angular momentum
of the compact object, while the boundary conditions for the so-
lution of Einstein equations are the central energy density and the
equatorial expansion of the star. To solve this problem, we used a
grid of relativistic equilibrium NS models integrating the Einstein
equations for a wide range of initial conditions, spanning all allowed
values for stable configurations. This was obtained modifying the
code to build a complete grid of relativistic equilibrium configura-
tions with the necessary numerical precision. To this we added a
stability control routine to exclude unstable configurations.

We obtain the accretion rate ṀB and a corresponding time in-
terval (in which ṀB remains unchanged) from the stellar evolution
code. Then we integrate the differential equations (4) and (6) using
a finite-differences method. For each integration time-step the ac-
creted baryonic mass is �MB = ṀB(t)�t and the accreted angular
momentum is �J = j[RD(t)]ṀB(t)�t . For the nth time-step of the
evolution, we search on the grid the single equilibrium configuration
with the updated values of MB(tn) = MB(tn−1) + �MB and J(tn)
= J(tn−1) + �J; in this way we obtain the corresponding values of
gravitational mass, radius, spin frequency and momentum of inertia
of the NS. We fine-tuned the time-step so that �MB, �J are always
comparable with the distance of two neighbour points in the grid.

Obviously the integration over a grid may introduce numerical
uncertainties in our results: in particular, we are implicitly assuming
that the spin frequency, the gravitational mass and the radius of the
NS remain unchanged between two points on the grid. Therefore,
we introduce an error in the evaluation of these quantities that is
equal to half the distance between two points on the grid, which is
always well below 0.5 per cent in our simulations. This also yields
an uncertainty in evaluating, step by step, the value of the accretion
radius given by equation (3) and the angular momentum of the matter
at the inner rim of the disc, which is always in the order of a few
per cent.

During the pulsar phase, we integrated equations (7) in a similar
way using the same grid of relativistic equilibrium NS models. To
avoid the grid imprecisions we made a cubic spline interpolation
on the values of the function ωNS(MG) for the integration of the
equation set (7).

3 R E S U LT S

We consider three simple examples that show different possible fates
for an LMXB, depending on the characteristics of the companion
star. In all cases we start our evolution with a slowly rotating (P
∼ 1 s) NS with a gravitational mass of 1.4 M�, which is a typ-
ical value for a newborn NS (Thorsett & Chakrabarty 1999). The
EOS adopted to describe the ultradense matter is that proposed by
Friedman, Pandharipande & Smith (FPS, see, e.g., Lorenz, Raven-
hall & Pethick 1993 for a recent discussion), which has been widely
used in the literature and has average values of stiffness and physical
parameters when compared with other EOS (see Arnett & Bowers
1977 for a catalogue). For our simulations we consider the maxi-
mum mass configuration equal to the maximum rotation configura-
tion (although this is not precisely true, see Stergioulas & Friedman
1995, these configurations differ from each other for less than 0.1
per cent in our case), and we have Mmax = 2.123 M�, ωmax/2π =
1882 Hz. Finally, as already mentioned, we assume that the NS has
a magnetic dipole moment of 1026 G cm3.

In particular, we consider three typical examples of binary evolu-
tion in which the accretion rate is low enough to remain conservative,
both above and below the bifurcation period, i.e. the period below
which the orbital evolution, during the accretion phase, proceeds
towards shorter binary periods. The bifurcation period is Porb,bif �
18 h for a binary composed of a 1.4-M� NS plus a 1.0-M� sec-
ondary (Podsiadlowski, Rappaport & Pfahl 2002). In the cases we
considered, the secondary is one of the following.

(i) A population II donor with an initial mass of 0.85 M� and an
orbital period above the orbital bifurcation period; it loses 0.646 M�
during the accretion phase. The initial binary period is 14.3 h and
it steadily increases to ∼124 h at the end of the accretion phase,
which lasts ∼1.7 × 109 yr (see Fig. 1a), leaving a helium white
dwarf remnant. Note that the orbital bifurcation period for a system
composed of a 1.4-M� NS plus a 0.85-M� companion is smaller
than 14.3 h, because the bifurcation period depends strongly on the
companion mass. In this case, Roche lobe overflow is driven by the
nuclear evolution of the companion.

(ii) A population I donor (initially below the bifurcation period)
with an initial mass of 1.15 M�, which loses 0.91 M� during the
accretion phase. The orbital period evolves from 10.6 to 3.5 h. In
this case the companion star overflows its Roche lobe due to angular
momentum losses caused magnetic braking. The accretion phase
ends when the companion becomes fully convective, according to
the classical scenario for the evolution of cataclysmic variables in
the period gap (Verbunt & Zwaan 1981). The accretion phase lasts
∼1.7 × 109 yr, see Fig. 1(b).

(iii) A population I donor (initially above the bifurcation period)
with an initial mass of 1.199 M�; it loses 0.99 M� during the
accretion phase. The period evolves from 19 to 92 h, leaving again
a helium white dwarf remnant. The accretion phase lasts ∼2.2 ×
109 yr (see Fig. 1c). In this case, Roche lobe overflow is driven by
the nuclear evolution of the secondary star.

In these evolutions the mass transfer rate is smaller than the
Eddington limit. Therefore, it is reasonable to assume that the mass
transfer is conservative. Moreover, the matter flow from the
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Figure 3. Evolution of the NS in the binary systems of Fig. 1 in the gravitational mass–radius plane. The mass is in solar masses and the radius is in kilometres.
The numbered dots indicate evolutionary stages with system age since the start of the accretion in units of 108 yr (external numbers) and the spin period
in milliseconds (internal, bold numbers). These numbers refer to simulations in the absence of gravitational waves emission. The thin dot dashed line is the
maximum rotation limit, the dashed thin line indicates the stable non-rotating configuration and the thin solid line indicates the stability limit to gravitational
collapse. The thick solid line marks the evolution during the accretion phase in absence of gravitational waves emission, the thick dot-dot-dashed line marks
the evolution during the accretion phase, with gravitational waves driven by the r-modes instability cycle, while the thick dashed line marks the pulsar phase.
In case (i) the pulsar evolution is shown until the star reaches a spin period comparable to that of the fastest pulsar observed, PSR B1937+21, which is 1.56 ms
and then slowly brakes to 16 ms in ∼8 × 1011 yr. In case (ii) pulsar evolution, after a relatively short radio-pulsar phase lasting 5 × 107 yr, brings the star to
gravitational collapse as it crosses the stability limit. In case (iii) there is no pulsar phase since the accretion of matter brings the star directly to gravitational
collapse. Case (iv) features the same companion star as case (iii), but the NS is governed by the ultrastiff EOS N. The evolution is similar to case (i). Little
jumps along the evolution curve are due to the resolution of the grid of relativistic values we used.

companion is not subject to large fluctuations. The NS mass and
spin evolution in more complicated cases, such as those observed in
X-ray transients (see Campana et al. 1998 for a review) or those dis-
cussed by Burderi et al. (2001), are not considered here and will be
discussed in a following paper. We considered both the case in which
the accretion process does not excite the r-mode instability, and the
case in which the spin evolution is influenced by the gravitational
waves emission.

In Fig. 3 we plot the evolution of these systems in the gravita-
tional mass–radius plane. The area of this plane that a stable NS
equilibrium configuration can span is limited from below by the
sequence of stable non-rotating equilibrium configurations, which
are those with minimum radius for a given gravitational mass, and
from above by the mass-shedding sequence – that is the sequence of
equilibrium configurations for which the NS angular velocity equals
the Keplerian angular velocity at the NS surface radius. These two
stability lines are connected by a third curve, the secular stability
curve, which limits from the right the region in which equilibrium
configurations are stable against gravitational collapse.

The system evolution without gravitational waves emission are
indicated by the thick solid and dashed lines in Fig. 3, where the
numbered dots give the corresponding age and spin period. We see
that the first phase of accretion (thick solid lines) is similar in all
cases: a rapid spin-up brings the star to the mass-shedding limit.
Thus the star remains on the mass shedding sequence in the M–R
diagram; it will detach from it only when the accretion stops and
the NS switches on as a radio pulsar (thick dashed lines).

When we consider the spin-down due to r-modes excitation, all
evolutionary tracks (dot-dot-dashed lines in Fig. 3) are even more
similar: after a brief spin-up phase, the NS attains the critical spin
period of 2 ms. After that, the spin-up–spin-down cycle begins and
it ends either in a direct collapse to a black hole or in a radio pulsar
phase. In both hypotheses, the amount of mass accreted before the
pulsar lights up will determine the fate of the system.

In Fig. 4 we show the possible behaviours of NS angular velocity
as a function of gravitational mass for given values of baryonic
mass. From equation (7) we see that during the pulsar phase the
spin evolution of the star will only depend on the baryonic mass
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Figure 4. Different evolutionary tracks for a pulsar in the MG − ω plane depending on its baryonic mass. (a) NS with a baryonic mass equal to that at the
end of accretion in the evolutionary case (i). The baryonic mass is low enough so that the rotating star has a stable non-rotating counterpart and the derivative
(∂ω/∂MG)MB is always positive. (b) NS in the supramassive sequence. In this case, (∂ω/∂MG)MB → − ∞ near the onset of the secular instability, as noted
by various authors, but is still positive away from it. The spin-up phase for a pulsar of this mass, assuming a magnetic field of ∼108 G, lasts ∼106 yr. (c) NS
in the extremely supramassive regime, with a baryonic mass equal to that at the end of accretion in evolutionary case (ii). In this case, the mass is so high that
(∂ω/∂MG)MB < 0 for any stable configuration. The spin-up phase, as can be seen from our simulations, lasts ∼5 × 107 yr.

of the star and on the sign of the derivative (∂ω/∂MG)MB . If there
is a non-rotating stable configuration for the given baryonic mass,
then (∂ω/∂MG)MB > 0 always and the pulsar will spin-down until it
stops. If such a configuration does not exists for the given baryonic
mass, two different evolutionary tracks are possible: either the pulsar
spins down until it comes close to the stability limit to gravitational
collapse, where it spins up rapidly (in fact (∂ω/∂MG)MB → − ∞
at the instability), or it spins up until it collapses, with no spin-down
phase (i.e. (∂ω/∂MG)MB < 0 always). We say that in the former case
the pulsar lights up in the supramassive regime, while in the latter it
lights up in the extremely supramassive regime. The spin-up phase,
which occurs in correspondence to a loss of rotational energy, is
caused by the fact that, near the onset of the instability and in the
extremely supramassive regime, a little loss of energy (gravitational
mass) corresponds to a rapid decrease of the NS radius. Since the
momentum of inertia of the NS strongly depends on NS radius R and
on its compactness GMG/Rc2 (I ∼ 0.21 MGR2 / (1 − 2 GMG/Rc2),
see Ravenhall & Pethick 1994), in these regimes the loss of rotational
energy is achieved by means of a reduction of the momentum of
inertia rather than via a spin-down of the NS, which, instead, will
spin-up to partially compensate the reduction of the momentum of
inertia.

In case (i), in the absence of r-mode excitation, the pulsar lights
up, with a period of 0.71 ms, when the star has a gravitational mass

larger than the maximum non-rotating mass i.e. M stat = 1.803 M�
(see Fig. 4i). As the pulsar loses energy due to dipole radiation
according to equation (7), it leaves the mass-shedding sequence and
returns in the normal gravitational mass range, below M stat. Thus
the pulsar will slow down (see Fig. 3a), without collapsing, until it
almost stops on a very long time-scale (it reaches 16 ms in ∼8 ×
1011 yr). If the r-modes are excited during the accretion process, the
star lights up as a pulsar with the same baryonic mass (since the same
amount of mass has been accreted), but with a different gravitational
mass, 1.792 M� instead of 1.805 M�: the larger rotational period
of the newborn pulsar, 3.31 ms, with respect to the period of 0.71 ms
of the evolution in absence of gravitational waves, means that there
is not enough energy to increase the gravitational mass above the
maximum non-rotating mass. In this case, the pulsar slows down on
a similar long time-scale, reaching 16 ms in ∼7 × 1011 yr.

In case (ii), if r-modes are not excited the star becomes a pulsar
when it is in the extreme supramassive regime (see Fig. 3b) and thus
equations (7) imply that the NS is spinning up rather than spinning
down. As it loses energy, however, the star begins to shrink and
heads towards the secular instability limit, which brings the NS to
the gravitational collapse. Its radio pulsar phase, characterized by
periods well below 1 ms (its initial spin period is 0.581 ms, its
period when it crosses the stability line is 0.542 ms) and by the
unusual sign of the period derivative, lasts ∼5 × 107 yr. Such a
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short lifetime, if compared with typical lifetimes for spinning down
pulsars, is due to the positive feedback we obtain in this case for
the second of equations (7): gravitational mass loss causes a spin-
up, which in turn will make the term on the right of this equation
bigger, causing a further mass loss. If the r-modes are excited no
such behaviour arises, since spin of the NS is kept above 2 ms, the
maximum sustainable mass is smaller than that for an NS rotating at
mass shedding (the maximum sustainable gravitational mass for an
NS spinning at a period of 2 ms is 1.817 M�). Thus the star collapses
to a black hole ∼5 × 108 yr before the end of the accretion process.

In case (iii), the star never lights up as a pulsar, as too much matter
is accreted on the star and the maximum mass limit is exceeded. Thus
the NS will directly collapse to a black hole (see Fig. 3c).

All these behaviours are strongly dependent on the EOS adopted
to describe the ultradense matter. As a comparison we studied the
evolution of a system consisting of the same companion star as
in case (iii) and a 1.4-M� NS with an ultrastiff EOS (EOS N by
Walecka & Serot, see Arnett & Bowers 1977), which has a maxi-
mum non-rotating mass of 2.634 M�. The result of this evolution
is different, as we show in Fig. 3(d); in this case (hereafter case iv)
no spinning up pulsar shows up, nor any accretion induced collapse
happens. Instead, we end up with a spinning down submillisecond
pulsar with a very long lifetime, comparable with that we obtained
in the first case. If the r-modes are excited (see again Fig. 3d) the
minimum attainable period is limited to 2 ms, and the pulsar lights
up with a period of 2.27 ms. In a following paper, we will discuss
in full detail the effects of the EOS of the ultradense matter on the
evolution of LMXBs.

4 C O N C L U S I O N S

We have shown that, depending on the characteristics of the system,
especially on the amount of mass accreted on to the NS, on the EOS
adopted to describe the NS matter, and on the excitability of the
r-modes, LMXBs can have quite different fates: they can light up as
a spinning down radio pulsars, they can directly collapse to a black
hole during the accretion phase or if, at the end of the accretion
phase, the NS is left in the extreme supramassive regime, it will
light up as an exotic, spinning up submillisecond radio pulsar with
a relatively short lifetime.

It is then evident that, in the hypothesis of a conservative mass
transfer from the companion on to a low-magnetized NS and in the
absence of r-modes excitation, the accretion process, if the amount
of mass accreted is not enough to collapse into a black hole, will
end with a very fast spinning object, as it has been suggested before
(Cook et al. 1994a). If the NS becomes then detectable as a radio
pulsar, it will have a spin period well below one millisecond. In fact,
our simulations show (cases i and iv) that we obtain submillisecond
pulsars with long lifetimes (in the former case the pulsar lifetime
before reaching a period as long as that one of the fastest millisecond
pulsar known to date, PSR B1937+21, is ∼3 × 109 yr, while in the
latter it becomes ∼5 × 109 yr).

If r-modes are excited by accretion, pulsars are constrained to
spin slower than a critical frequency, and this could explain why no
NS spinning at submillisecond periods has been observed to date.
However, in this situation any binary system in which enough mass
is transferred from the companion to the NS will collapse to a black
hole, without lighting up as a pulsar. Thus pulsar formation could
be much less favoured than in other cases.

It is likely that millisecond pulsar systems such as those observed
to date (i.e. systems with P > 1 ms) originate from different bi-
nary evolution scenarios, in which some critical mechanism has

prevented the accretion process to continue until a mass as large
as a significant fraction of a solar mass has been transferred. It is
probable that the magnetic field of the NS has values much higher
than the value we chose (at least at the beginning of the accretion),
so that the inner edge of the disc could be outside the corotation
radius for at least part of the evolution and magnetic torques could
play an important role in the spin evolution of the NS. Moreover,
systems in which the mass transfer rate has large fluctuations will
light up as pulsars before the end of the accretion process, losing a
large amount of mass in a so-called radio ejection phase as proposed
by Burderi et al. (2001). We will investigate the evolution of such
systems in a future paper.

Although there are selection effects that could have prevented the
discovery of submillisecond pulsars (Burderi et al. 2001), if a self-
limiting mechanism such as the r-mode instability does not operate,
submillisecond radio pulsars should exist and should be detectable
in the future. On the other hand we have shown (case iii) that if
the NS matter is governed by a moderately stiff EOS such as FPS
(i.e. with a maximum non-rotating mass of �1.9 M�), the mass
transfer can end in an accretion induced collapse to a black hole if
as much as 1 M� is accreted. Although not much in known on the
range of progenitor masses for the present-day population of LMXB
in the Galaxy, a recent study by Pfahl, Rappaport & Podsialowski
(2003) argues that a great fraction of observed LMXBs may have
descended from intermediate mass X-ray binaries, that is form sys-
tems with initial donor mass �1.5 M�. If this is true, and if we
assume that in such a system, we have an equal probability that the
companion transfers any amount of mass between 0.5 and 2 M�
on to a 1.4-M� NS, for NS governed by EOS N we have a 100 per
cent probability of obtaining a submillisecond pulsar, while for NS
governed by EOS FPS we have only a 20 per cent probability of ob-
taining a spinning down millisecond pulsar, a 9 per cent probability
of the formation of a spinning up submillisecond pulsar (doomed
to gravitational collapse) and a 71 per cent probability of direct
collapse into a black hole during the accretion phase. Therefore, if
the EOS governing NS matter is soft, a conservative mass transfer
is more likely to end with a direct accretion-induced collapse to a
black hole than with the formation of a submillisecond radio pulsar,
and thus submillisecond pulsars could be hard to detect because of
their low formation probability.

On the other hand, if the r-modes are excited, the spin period will
remain well above one millisecond for all of the evolution. However,
making the same assumptions as before, the probability of forming
a pulsar drops to 10 per cent for EOS FPS, while for EOS N we still
have a very high probability, ∼90 per cent. Therefore, this scenario,
in which the mass transfer is conservative but the spin frequency is
limited by the emission of gravitational waves, implies that the EOS
is stiff in order to have a high probability of formation of millisecond
pulsars.

Therefore we should predict that the EOS of NSs is very stiff in
order to explain the observational evidence (MSP are formed), if
gravitational waves are indeed emitted due to r-modes excitation,
while we should predict that the EOS of NSs is soft if they are not
emitted, so that submillisecond pulsars are very uncommon, as the
observations seem to indicate. If future observations will allow one
to constrain the stiffness of the NS EOS on an observational basis,
this will give an indication on whether r-modes are indeed excited
in LMXBs or not.

We have shown that, if r-modes are not excited in LMXBs, the
accretion process can leave us with an extremely supramassive NS,
which will spin-up during all of its life as a radio pulsar (case ii).
It is evident that, being the critical baryonic mass for getting to the
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Figure 5. Sequences of NSs with the same spin period are plotted as dashed
lines in the gravitational mass–radius plane, while sequences of NSs with the
same baryonic mass–area plotted as solid lines. We consider NSs governed
by EOS FPS. The dashed-dotted line limits stable configurations. We plot
with a thick solid line the sequence of NS with baryonic mass equal to the
critical mass, Mcrit = 2.33 M�. Any star with MB � Mcrit is extremely
supramassive, i.e. it spins up under magnetodipole radiation. It is interesting
to note that while sequences of constant baryonic mass always have the
same shape in the gravitational mass–radius plane, bending from left to right
with increasing radii, sequences of constant spin frequency have completely
different topologies below the critical mass and above it (see, for example,
the sequence with P = 0.7 ms and the one with P = 0.6 ms). During the
radio pulsar phase the star moves along a sequence of constant baryonic
mass, decreasing its gravitational mass. It moves therefore from top right of
the figure to the bottom left. This implies that the pulsar spins down as long
as constant spin frequency sequences bend from top left to bottom right (as
the one with P = 0.7 ms), and that it spins up if the constant spin frequency
sequences it crosses bend from bottom left to top right in the plane (as the
one with P = 0.6 ms does). As shown in the figure, any stable NS attaining
a period P � Pcrit = 0.6 ms (i.e. any star who lies on the right of the thick
dashed line) has MB � Mcrit. Thus any NS governed by EOS FPS attaining
a period �0.6 ms will spin-up once it becomes a pulsar.

extremely supramassive regime Mcrit an EOS-dependent feature, in
principle, the observation an accelerating (or braking) submillisec-
ond pulsar can allow one to exclude several EOS on an observational
basis.

To clarify how such an effect can help to constrain the EOS of
ultradense matter we need to introduce the new concept of a critical
spin period Pcrit that, together with the minimum period (Pmin = 2 π

/ ωmax), is peculiar to each EOS. Pcrit is the period below which the
EOS allows only extremely supramassive stable configurations. In
Fig. 5 we show sequences of equilibrium configurations with con-
stant spin period, together with the critical baryonic mass sequence.
It is evident from the figure that Pcrit is equal to the minimum allowed
period to avoid gravitational collapse if the star has MB = Mcrit. In
fact, any constant period sequence P < Pcrit will only include stars
of baryonic mass greater than the critical one. Thus any NS with
P < Pcrit will accelerate as a consequence of energy loss due to mag-
netic dipole radiation. Being Pcrit EOS-dependent, the detection of a
submillisecond radio pulsar and the determination of the sign of its
period derivative will allow one to effectively constrain the equation
of state governing ultradense matter.

Thus the detection of a submillisecond radio pulsar can impose
two constraints on the EOS of the NS:

(i) the spin period must be larger than the minimum allowed
period, i.e. the spin period of the maximum rotation configuration,
Pmin;

(ii) if the period is shorter than Pcrit, the radio pulsar must spin-up
rather than spin-down.

Both Pmin and Pcrit are EOS dependent and are longer for stiffer
EOSs. In fact, the detection of a submillisecond radio pulsar with
spin period Pobs undergoing a spin-up will rule out all the stiff EOSs
with Pmin > Pobs. On the other hand the detection of a spinning down
submillisecond radio pulsar, with spin period Pobs, will allow us to
rule out all the stiff EOSs with Pcrit > Pobs, because they cannot
explain a spinning down radio pulsar with such a short spin period.
In this case the limit is more stringent because Pcrit > Pmin! As an
example, suppose that a spinning down radio pulsar with a period
of 0.713 ms (such as the one we obtain in case i) will be detected:
this will allow us to rule out EOS N, since although the minimum
period for this EOS is 0.69 ms, any radio pulsar governed by EOS
N with such a low spin period will spin-up, being for EOS N Mcrit

= 3.63 M� and Pcrit = 0.74 ms.
In summary, in this paper we presented the first results obtained

with a new code that allows one to study in details the binary sys-
tem evolution and the spin evolution of the NS, on the basis of fully
relativistic calculations. We used this code to study the evolution
of systems with conservative mass transfers and confirmed that the
large amount of matter that is transferred on to the NS will spin
it up to periods well below one millisecond, unless the emission
of gravitational waves dissipates the excess of angular momentum.
However, in this last case the amount of mass accreted on to the
NS is easily big enough to cause a direct collapse to a black hole.
Therefore, we concluded that presumably the recycled systems that
give origin to the MSP observed to date should have origin from
systems with a highly non-conservative mass transfer. We showed
that if the EOS of ultradense matter is not very stiff the direct col-
lapse to a black hole is very likely to happen even if the r-modes are
not excited. This could explain the lack of any observation of sub-
millisecond radio pulsars even without invoking gravitational waves
emission. As a last remark, since we showed that there is the possi-
bility of obtaining from binary evolution some unusual, accelerating
submillisecond radio pulsars, we introduced the new concept of the
critical spin period Pcrit, peculiar to each EOS, which can allow one
to effectively constrain the EOS of NS matter if a radio pulsar with
a period below one millisecond will be observed in the future.
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