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Abstract

This work deals with a family of dynamical systems which wereintroduced in [M.L. Bertotti,M. Delitala, From discrete
kinetic and stochastic game theory to modelling complex systems in applied sciences, Math. Models Methods Appl. Sci. 7 (2004)
1061–1084], modelling the evolution of a population of interacting individuals, distinguished bytheir social state. The existence
of certain uniform distribution equilibria is proved and the asymptotic trend is investigated.
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1. Introduction and the mathematical model

Several recent papers show an interest of applied mathematicians in developingmethods of non-equilibrium
statistical mechanics and mathematical kinetic theory for active particles [1] in life sciences: among others [2–9],
with reference to social sciences, politics, psychology and biology.

Along this line of research, a mathematical model describing social dynamics of interacting individuals with
different social positions, e.g. different levels of wealth, was proposed in [10], corresponding to a society where
interactions express competition and/orcooperation. The model refers to the generalized kinetic theory for active
particles whose microscopic state includes the mechanical variables, typically position and velocity, but also an
additional variable, called “activity”, corresponding to anon-mechanical function of theparticles. Mathematical
frameworks for models with a continuous microscopic state are proposed e.g. in [11] with special emphasis on
modelling biological systems. In contrast, the mathematical structures considered in [10] concern the case of discrete
sociobiological states.

Specifically, in [10] thefollowing structure has been used toward modelling of social systems:

d fi
dt

= Ji [ f ] =
n∑

h=1

n∑
k=1

ηhkAi
hk fh fk − fi

n∑
k=1

ηik fk, i = 1, . . . , n, (1.1)
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where fi denotes the fraction (with respect to the overall number of individuals) with social stateui belonging to the
set

Iu = {u1, . . . , uh, . . . , un},
and theinteraction rate is given by

ηhk = η(uh, uk) : Iu × Iu → R+,

while thetransition probability density is given by

Ai
hk = A(uh, uk; ui ) : Iu × Iu × Iu → R+, with

n∑
i=1

Ai
hk = 1, ∀h, k = 1, . . . , n.

The above terms have been modelled, inspired by the following phenomenological observation (and with the
consciousness that this is nothing more than a conceivable example among several):

• when two individuals have close social states, then a competition occurs: the individual placed in the higher social
position improves its situation, while the one in a lower position faces a further decrease (competitive behavior);

• when the social state of the individuals is sufficiently far away, the opposite behavior (altruistic behavior) occurs.

To translate these concepts into formulas, besides the numbern of social classes, a parameterm has been
introduced, possibly attaining any integer value between 0 andn − 1, which represents the distance between
classes themselves and which distinguishes the competitive and the altruistic behavior. This allows one to assign,
in correspondence to any natural numbern and to any integerm between 0 andn − 1, the value ofAi

hk for every
i , h, k = 1, . . . , n, constructing in this way a so-calledtable of games. The non-null elements are

h = k : Ai=h
hk = 1

h �= k :




|h − k| ≤ m :




h = 1 orh = n : Ai=h
hk = 1

h �= 1, h �= n :
{

h < k : Ai=h−1
hk = 1

h > k : Ai=h+1
hk = 1

|h − k| > m :
{

h < k : Ai=h+1
hk = 1

h > k : Ai=h−1
hk = 1

In this note we prove for this family of dynamical systems, for suitable values of the parametersn andm, the
existence of a uniform distribution equilibrium, discussing as well some qualitative properties of the flow.

2. Existence and stability of equilibrium configurations

The model summarized inSection 1is characterized by the two parametersn andm. Its application to the analysis
of real world systems contemplates performing a qualitative analysis as well as computational simulations for the
initial value problem


d fi
dt

= Ji [ f ],
fi0 = fi (t = 0),

(2.1)

whereJi [ f ] is defined in(1.1)and the set{ fi0} is a discrete probability density,

n∑
i=1

fi0 = 1. (2.2)

Recall, with reference to [10], that the global existence of solutions is proved by the following theorem:
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Theorem 2.1. Assumeηhk ≤ M for some positive constant M< +∞, for any h, k = 1, . . . , n. Then, for any given
set{ fi0} such that fi0 ≥ 0 for i = 1, . . . , n and the set{ fi0} is a discrete probability density as indicated in(2.2), the
solution f(t) = ( f1(t), . . . , fn(t)) of system(2.1)exists and isunique for all t∈ [0,+∞). In particular, one has

∀t ≥ 0 : fi (t) ≥ 0 for any i = 1, . . . , n and
n∑

i=0

fi (t) = 1. (2.3)

A corresponding theorem was also proved in [3] for models with continuous distribution over the microscopic state.
In particular, the positive invariance of the standard(n − 1)-simplex is proved for the flow of system(2.1). Moreover,
one easily sees that the solution claimed inTheorem 2.1is of classC∞ and the continuous dependence on the initial
conditions holds. If, moreover, the encounter rate is taken to be constant:

ηhk = c ∀h, k = 1, . . . , n (2.4)

for some positive constantc, then theexistence of at least one equilibrium solutionf of system(1.1), with fi ≥ 0 for
all i = 1, . . . , n, is guaranteed ([10]). We considerthis case and, for simplicity, we assume the constantc in (2.4) to
be equal to one. The system(1.1)becomes then

d fi
dt

=
n∑

h=1

n∑
k=1

Ai
hk fh fk − fi

n∑
k=1

fk, i = 1, . . . , n. (2.5)

An analytical study was carried out in [10] for thecasesn = 3 (with m = 0, 1, 2) andn = 4 (with m = 0, 1, 2, 3).
At the level of computational simulations, a great number of cases were examined, corresponding to several values of
n andm. Analytically, both forn = 3 and forn = 4, degenerate (non-isolated) equilibria were found to exist in the
two extreme cases whenm = 0 andm = n − 1, all sharing the property of having some component equal to zero. On
the otherhand, whenm �= 0 andm �= n − 1, namely forn = 3 andm = 1, for n = 4 andm = 1, 2, only isolated
equilibria were proved to exist. In particular, in each oneof these three cases only one equilibrium exists, having
all components different from zero. This “positive” equilibrium was proved to be “globally asymptotically stable”,
namely stable and attractive with respect to all solutionsf (t) with initial data{ f0} satisfying fi0 ≥ 0 for i = 1, . . . , n
and(2.2), anddifferent from any of the equilibria coinciding with the vertices of the unitary simplex.

Remark 2.1. The study of the model under consideration seems to be more significant when the numbern of social
classes is odd. It is indeed in such a case that a middle class exists.

Focusingattention on the general case of oddn, we prove now the following fact.

Theorem 2.2. If n is odd and the parameter m takes the value m= (n − 1)/2, an equilibrium configuration
corresponding to the constant distribution exists; in other words, the point P= ( f1, . . . , fn) with fi = 1/n for
all i = 1, . . . , n is an equilibrium.

Proof of Theorem 2.2. If n = 3 (andm = 1), this fact is proved in [10]. So, it suffices here to assumen ≥ 5. Our
goal is to show that, in the case under consideration,

n∑
h=1

n∑
k=1

Ai
hk = n

for any i = 1, . . . , n. From this fact, the vanishing of the right hand side of Eq.(2.5) follows whenthe value
fi = 1/n for all i = 1, . . . , n is substituted into the equation itself, proving the claim. We will distinguish three
cases, respectivelyi = 1, i = n and 2≤ i ≤ n − 1:

– if i = 1, the only nonzero elementsAi
hk turnout to be:

A1
11 = 1,

A1
1k = 1 for anyk : 2 ≤ k ≤ (n + 1)/2,

A1
2k = 1 for anyk : 3 ≤ k ≤ min{(3 + n)/2, n}.
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Hence,
n∑

h=1

n∑
k=1

Ai
hk = 1 + (n + 1)/2 − 1 + (3 + n)/2 − 2 = n.

– If i = n, theonly nonzero elementsAi
hk turnout to be:

An
nn = 1,

An
nk = 1 for anyk : (n + 1)/2 ≤ k ≤ n − 1,

An
n−1k = 1 for anyk : max{(n − 1)/2, 1} ≤ k ≤ n − 2.

Hence,
n∑

h=1

n∑
k=1

Ai
hk = 1 + n − 1 + n − 2 − (n − 1)/2 + 1 = n.

– If 2 ≤ i ≤ n − 1, the only nonzero elementsAi
hk are:

Ai
ii = 1,

Ai
i−1k = 1 for anyk : i + (n − 1)/2 ≤ k ≤ n,

Ai
i−1k = 1 for anyk : max{i − (n + 1)/2, 1} ≤ k ≤ i − 2,

Ai
i+1k = 1 for anyk : 1 ≤ k ≤ i − (n − 1)/2,

Ai
i+1k = 1 for anyk : i + 2 ≤ k ≤ min{i + (n + 1)/2, n}.

Skipping some steps in the calculations, one gets
n∑

h=1

n∑
k=1

Ai
hk = 1 − max{i − (n + 1)/2, 1} + min{i + (n + 1)/2, n} = n. (2.6)

The last equality in(2.6)requires some care, in view of the fact that the “max” and the “min” involved in it actually
depend on the value ofi . To see where it comes from, just notice that

max{i − (n + 1)/2, 1} =



i − (n + 1)/2 if i > (n + 3)/2
1 if i = (n + 3)/2
1 if i < (n + 3)/2

min{i + (n + 1)/2, n} =



n if i > (n − 1)/2
n if i = (n − 1)/2
i + (n + 1)/2 if i < (n − 1)/2.

The five subcasesi < (n − 1)/2, i = (n − 1)/2, i = (n + 1)/2, i = (n + 3)/2, i > (n + 3)/2 can then be separately
handled to get the conclusion. �

3. Simulations, comments and perspectives

All the computational simulations performed confirm a scenario similar to the one analytically proved for the cases
n = 3 andn = 4. Indeed, they constantly indicate that, ifm �= 0 andm �= n − 1, for any initial condition a unique
asymptotic state appears. In contrast, ifm = 0 (totally cooperative systems) orm = n − 1 (totally competitive
systems), several asymptotic states appear, depending onthe initial conditions. In particular, we want to stress the
following interesting output: whenm is relatively small, i.e. when the system behaves with altruistic behavior, the
asymptotic configurations appear to becharacterized by large concentrationson central values; conversely, whenm
is relatively large, i.e. when the interactions are predominantly competitive, the asymptotic configurations show large
concentrations on the extreme valuesu = 0 andu = 1. This appears clearly inFig. 3.1, which shows the asymptotic
configuration displayed by simulations in the casesn = 7, 9, 11 for different values of the parameterm. The same
“structure” for the solutions can be recognized.

Also, we point out, on the basis of several simulations, that in the cases withn odd andm = (n − 1)/2, the
equilibrium configurationP = ( f1, . . . , fn) with fi = 1/n for all i = 1, . . . , n established inTheorem 2.1seems
to be the asymptotic state for all the initial conditions{ f0} on the standard(n − 1)-simplex but the simplex vertices.
In the casen = 3, this fact is proved in [10]. For general oddn, theasymptotic stability ofP remains a conjecture. In
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Fig. 3.1. Asymptotic configuration in the casesn = 7, 9, 11, for different values ofm.

spite of what one could hope, an analytical proof for general oddn does not seem to be so easy to find, the difficulty
being related to the attempt at generality. Indeed, one should deal simultaneously with a countable family of systems of
increasing dimension and involving coefficientsAi

hk depending onn. Looking instead at a specific system, i.e. fixing
n (odd, withm = (n − 1)/2), at least the asymptotic stability of the uniform distribution equilibrium is expected to
be an accessible result. It is convenient inthis connection to study the system ofn − 1 differential equations, obtained
by substituting fn̂ = 1 − ∑

i �=n̂ fi , wheren̂ = (n + 1)/2, in then − 1 equations of the system(2.5)corresponding
to the indicesi �= n̂. The eigenvalues of the linearized vector field at equilibrium can then be easily evaluated by
means of a symbolic calculation program. As a matter of fact, they turn out to have negative real part for all values of
n which have been tested, say certainly forn = 5, 7, 9, . . .. From the analytic point of view, a deeper understanding
of the common qualitative properties of these flows is a challenging problem. But, maybe, from the point of view of
applications, getting the information for fixed values ofn can be sufficient.

Finally, let us remark that the model analyzed in this work does not preserve the overall wealth given by the first-
order momentum. Indeed, the model corresponds to an open system where the outer environment acts on the wealth of
the lower and higher classes. An interesting perspective is considering a modified model which delivers a description
corresponding to a closed system where the above-mentioned overall wealth is preserved.
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