A facile synthesis of 1-ethyl-3-methyl-11-phenyl-1,4-dihydro-5H-pyrazolo[3,4-c][1,5]benzodiazocin-5-ones. A new ring system

Onofrio Migliara, ${ }^{\text {a* }}$ Patrizia Diana, ${ }^{\text {b }}$ Vita Di Stefano, ${ }^{\text {a }}$ Fabiana Plescia, ${ }^{\text {a }}$ and Anna Carbone ${ }^{\text {b }}$
${ }^{a}$ Dipartimento di Chimica e Tecnologie Farmaceutiche, Università di Palermo, Via Archirafi 32, 90123 Palermo, Italy
${ }^{b}$ Dipartimento Farmacochimico Tossicologico e Biologico, Università di Palermo, Via Archirafi 32, 90123 Palermo, Italy
E-mail: diana@unipa.it

Dedicated to Professor Alain Krief on the occasion of his $65^{\text {th }}$ anniversary

Abstract

The new ring system pyrazolo[3,4-c][1,5]benzodiazocine was obtained through cyclization of the key intermediate of type 6a-d and $\mathbf{9}$, in refluxing toluene in presence of a catalytic amount of p toluensulfonic acid, from moderate to high yields (45-85\%).

Keywords: Pyrazole, 1,5-benzodiazocine, pyrazolo-1,5-benzodiazocine, antitumor activity

Introduction

1,5-Diazocine system have received great attention because of their broad spectrum of biological properties. Also annelated 1,5-benzodiazocine have shown interesting activity. In particular Troger's base and analogues, containing a dibenzo-1,5-diazocine skeleton 1, posses intercalating capability between DNA base pairs. ${ }^{1-4}$ Due to the interesting biological activities, different analogues bearing heterocyclic rings have been prepared. ${ }^{5-7}$

In our effort to search for novel antitumor compounds, we became interested in the synthesis of the new ring system pyrazolo[3,4-c][1,5]benzodiazocine of type 2 with the aim of evaluating their antiproliferative activity.

Figure1

In this paper we report the synthesis of pyrazolo[3,4-c][1,5]benzodiazocine derivatives of type 2 , in which the benzene moiety was replaced by a pyrazole ring.

Results and Discussion

2-Amino-N-(5-benzoyl-1-ethyl-3-methyl-1H-pyrazol-4-yl)benzamide derivatives 6a-d appeared valuable and versatile intermediates for the synthesis of the new ring system pyrazolo[3,4c][1,5]benzodiazocine. We started our synthesis reacting 4-aminopyrazole 3^{8} with the substituted 2nitrobenzoyl chlorides 4a-d to give nitro derivatives 5a-d in good yields (62-65\%). Reduction of these latter with stannous chloride in hydrochloric acid led to the corresponding amines $\mathbf{6 a - d}$ in satisfactory yields (55-62\%).

Refluxing of amines 6a-d in presence of a catalytic amount of p-toluenesulfonic acid in toluene, using a Dean Stark apparatus, provided the expected new tricyclic system pyrazolo[3,4c][1,5]benzodiazocines 7a-d in reasonable yields (45-65\%). The treatment of the derivative 5a with potassium hydroxide and methyl iodide in acetone yielded the corresponding N -methyl derivative $\mathbf{8}$ (70% yield). Reduction of this latter afforded the amine 9 (65%) which upon refluxing with a catalytic amount of p-toluenesulfonic acid in toluene led to the N-methylpyrazolo[3,4$c][1,5]$ benzodiazocine 10 in high yield (85%). The structure of all compounds synthesized was confirmed by their analytical and spectral data (IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR). Pyrazolo[1,5]benzodiazocines 7a-c and 10 undergo partial ring opening to give 6a-c and 9 respectively at room temperature upon standing silica gel for 5 days acid catalysis or by refluxing in aqueous ethanol and acid catalysis.

In conclusion, we have provided a very simple way for the synthesis of the novel heterocycle ring system, pyrazolo[3,4-c][1,5]benzodiazocine, in good yields.

Experimental Section

General Procedures. All melting points were taken on a Buchi-Tottoli capillary apparatus and are uncorrected; IR spectra were determined in bromoform with a Perkin-Elmer Infracord 137 spectrophotometer as nujol mulls.; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured at 200 and 50.3 MHz respectively, using a Bruker AC series 200 MHz spectrometer (TMS as internal reference). Column chromatography was performed with Merck silica gel 230-400 Mesh ASTM. Mass spectra were recorded on a JEOL JMS-OI-SG-2 spectrometer at $75 \mathrm{eV}(100 \mu \mathrm{~A})$. Elemental analyses were within $\pm 0.4 \%$ of the theoretical values.

Table 1. ${ }^{1} \mathrm{H}$ NMR chemical shifts of compounds 5-9: $\delta_{\mathrm{H}}[\mathrm{ppm}]$

Comp.	Et	Me	X	Z	R	Aryl-H
$\mathbf{5}$						
$\mathrm{X}=\mathrm{H}, \mathrm{Z}=\mathrm{NO}_{2}$						$7.51-8.03(9 \mathrm{H})$
$\mathbf{a ~ R}=\mathrm{R}_{1}=\mathrm{H}$	$1.35,4.26$	2.18	10.09		2.37	$7.36-7.83(8 \mathrm{H})$
$\mathbf{b ~ R}=\mathrm{Me}, \mathrm{R}_{1}=\mathrm{H}$	$1.35,4.26$	2.18	10.01			$7.51-8.15(8 \mathrm{H})$
$\mathbf{c ~ R}=\mathrm{Cl}, \mathrm{R}_{1}=\mathrm{H}$	$1.36,4.27$	2.19	10.02			$7.55-8.09(8 \mathrm{H})$
$\mathbf{d ~ R}=\mathrm{H} \mathrm{R}_{1}=\mathrm{Cl}$	$1.37,4.28$	2.19	10.18			

$\mathbf{6}$					
$\mathrm{X}=\mathrm{H}, \mathrm{Z}=\mathrm{NH}_{2}$					$6.33-7.77(9 \mathrm{H})$
$\mathbf{a ~ R}=\mathrm{R}_{1}=\mathrm{H}$	$1.35,4.27$	2.17	9.44	6.08	$6.19-7.73(8 \mathrm{H})$
$\mathbf{b ~ R}=\mathrm{Me}, \mathrm{R}_{1}=\mathrm{H}$	$1.32,4.29$	2.10	9.30	6.07	2.14
$\mathbf{c ~ R}=\mathrm{Cl}, \mathrm{R}_{1}=\mathrm{H}$	$1.34,4.25$	2.18	9.49	6.35	
$\mathbf{d ~ R}=\mathrm{H} \mathrm{R}_{1}=\mathrm{Cl}$	$1.35,4.26$	2.15	9.53	6.18	$6.39-7.73(8 \mathrm{H})$
$\mathbf{8}$					$6.60-7.73(8 \mathrm{H})$
$\mathrm{X}=\mathrm{Me}, \mathrm{Z}=\mathrm{NO}_{2}$					
$\mathrm{R}=\mathrm{R}_{1}=\mathrm{H}$	$1.32,4.20$	2.24	3.22		$7.49-8.00(9 \mathrm{H})$
$\mathbf{9}$					
$\mathrm{X}=\mathrm{Me}, \mathrm{Z}=\mathrm{NH}_{2}$					
$\mathrm{R}=\mathrm{R}_{1}=\mathrm{H}$	$1.30,4.19$	2.22	3.20	6.10	

General procedure for the synthesis of 4 or 5 substituted N-(5-benzoyl-1-ethyl-3-methyl-1H-pyrazol-4-yl)-2-nitrobenzamides (5a-d)
A solution of 4-aminopyrazole $\mathbf{3}$ (4 mmol), appropriate 2-nitrobenzoyl chloride derivative $\mathbf{4 a - d}$ (4 mmol), and triethylamime (4 mmol) in acetonitrile (50 mL) was refluxed for 6 h . The solvent was then evaporated under reduced pressure and the residue was taken up with water, filtered and recrystallized from ethanol.
Compound 5a. ($\mathrm{R}=\mathrm{R}_{1}=\mathrm{H}$) Yield 65%; mp 185- $186^{\circ} \mathrm{C}$ (white crystals); IR: $3258(\mathrm{NH}), 1660(\mathrm{CO})$ cm^{-1}. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, $63.49 ; \mathrm{H}, 4.79$; N, 14.81. Found: C, $63.35 ; \mathrm{H}, 4.63 ; \mathrm{N}, 14.68$ $\%$.
Compound 5b. ($\mathrm{R}=\mathrm{Me}, \mathrm{R}_{1}=\mathrm{H}$) Yield 63%; mp 212-213 ${ }^{\circ} \mathrm{C}$ (white needles); IR: 3255 (NH), 1649 (CO) cm^{-1}. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 64.28 ; H, 5,$14 ; \mathrm{N}, 14.28$. Found: C, $64.35 ; \mathrm{H}, 5.32$; N, 14.30 \%.

Compound 5c. $\left(\mathrm{R}=\mathrm{Cl}, \mathrm{R}_{1}=\mathrm{H}\right)$ Yield 62%; mp 194-195 ${ }^{\circ} \mathrm{C}$ (white needles); IR: $3253(\mathrm{NH}), 1651$ (CO) cm^{-1}. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{4}: \mathrm{C}, 58.19 ; \mathrm{H}, 4.15 ; \mathrm{N}, 13.57$. Found: C, 58.24; H, 4.26; N, 13.60 \%.
Compound 5d. $\left(\mathrm{R}=\mathrm{H} \mathrm{R}_{1}=\mathrm{Cl}\right.$) Yield 65%; mp $215-216^{\circ} \mathrm{C}$ (white needles); IR: $3360(\mathrm{NH}), 1670$ (CO) cm^{-1}. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{4}$: C, 58.19 ; H, 4.15; N, 13.57. Found: C, 58.20; H, 4.28; N, 13.45 \%.

General procedure for the synthesis of 4 or 5 substituted 2-amino-N-(5-benzoyl-1-ethyl-3-methyl-1H-pyrazol-4-yl)benzamides (6a-d)
To a suspension of stannous chloride (3 mmol) in hydrochloric acid $(36 \%, 3 \mathrm{~mL}$) a suitable 2nitrobenzamide derivative $5 \mathbf{a}-\mathbf{d}(3 \mathrm{mmol})$ was added dropwise with stirring at $-5^{\circ} \mathrm{C}$. The reaction mixture was stirred then for 20 h at room temperature.
The reaction mixture was poured into ice water and an aqueous solution of sodium hydroxide (40%) was added until the tin salts was dissolved. The resulting solution was extracted with ethyl
acetate $(3 \times 30 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to give a white solid which was recrystallized from ethanol.
Compound 6a. ($\mathrm{R}=\mathrm{R}_{1}=\mathrm{H}$) Yield 55%; mp $200-201^{\circ} \mathrm{C}$ (crystals); IR: 3487, $3383\left(\mathrm{NH}_{2}\right), 3220(\mathrm{NH})$, 1642 (CO) cm^{-1}. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 68.95 ; H, 5.79; N, 16.08. Found: C, 68.78; H, 5.82; N, 16.18 \%.

Compound 6b. ($\mathrm{R}=\mathrm{Me}, \mathrm{R}_{1}=\mathrm{H}$) Yield 58%; mp $180-181^{\circ} \mathrm{C}$ (needles); IR: 3486, $3385\left(\mathrm{NH}_{2}\right), 3224$ (NH), $1643(\mathrm{CO}) \mathrm{cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 69.59; H, 6.12; N, 15.46. Found: C, 69.48; H, 6.21; N, 15.29 \%.
Compound 6c. $\left(\mathrm{R}=\mathrm{Cl}, \mathrm{R}_{1}=\mathrm{H}\right)$ Yield 60%; mp 195-196 ${ }^{\circ} \mathrm{C}$ (needles); IR: 3484, $3375\left(\mathrm{NH}_{2}\right), 3233$ (NH), 1643 (CO) cm ${ }^{-1}$. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Cl}: \mathrm{C}, 62.75 ; \mathrm{H}, 5.00$; $\mathrm{N}, 14.63$. Found: C, 62.58; H, 5.14; N, 14.75 \%.

Compound 6d. ($\mathrm{R}=\mathrm{H} \mathrm{R}_{1}=\mathrm{Cl}$) Yield 62\%; mp 244-245 ${ }^{\circ} \mathrm{C}$ (needles); IR: 3481, $3378\left(\mathrm{NH}_{2}\right), 3216$ (NH), $1643(\mathrm{CO}) \mathrm{cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Cl}$: C, $62.75 ; \mathrm{H}, 5.00$; N, 14.63. Found: C, 62.68; H, 5.10; N, 14.69 \%.

Table 2. ${ }^{1} \mathrm{H}$ NMR Chemical shifts of compounds 7,10: $\delta_{\mathrm{H}}[\mathrm{ppm}]$

Comp.	Et	Me	NH	NMe	Aryl-H
$\mathbf{7}$					
$\mathrm{X}=\mathrm{H}$					
$\mathbf{a ~ R}=\mathrm{R}_{1}=\mathrm{H}$	$0.91,3.79$	2.09	9.60		$6.89-7.69(9 \mathrm{H})$
$\mathbf{b} \mathrm{R}=\mathrm{Me}, \mathrm{R}_{1}=\mathrm{H}$	$0.93,3.77$	$2.08,2.27$	9.51		$6.72-7.67(8 \mathrm{H})$
$\mathbf{c ~ R}=\mathrm{Cl}, \mathrm{R}_{1}=\mathrm{H}$	$0.94,3.79$	2.11	9.71		$7.07-7.69(8 \mathrm{H})$
$\mathbf{d ~ R}=\mathrm{H} \mathrm{R}_{1}=\mathrm{Cl}$	$0.92,3.78$	2.10	9.69		$7.05-7.68(8 \mathrm{H})$
$\mathbf{1 0}$					
$\mathrm{X}=\mathrm{Me}$					
$\mathrm{R}=\mathrm{R}_{1}=\mathrm{H}$	$0.89,3.77$	2.15		3.19	$6.89-7.57(9 \mathrm{H})$

Table 3. ${ }^{13} \mathrm{C}$ NMR chemical shifts of compounds 7,10: $\delta_{\mathrm{C}}[\mathrm{ppm}]$

Comp.	Et	Me	Aryl-CH	$\mathrm{C}=\mathrm{O}$ $\mathrm{N}-$ Me	
$\mathbf{7}$					
$\mathrm{X}=\mathrm{H}$					
$\mathbf{a ~ R}=\mathrm{R}_{1}=\mathrm{H}$	15.17,	10.60	$120.65,124.65,128.14,128.27$,	170.63	
	45.57		$129.21,129.95,132.36$		
$\mathbf{b ~ R}=\mathrm{Me}, \mathrm{R}_{1}=\mathrm{H}$	15.09,	10.60,	$120.81,125.41,128.09,128.33$,	170.77	
	45.54	20.67	$129,18,132.29$		
$\mathbf{c ~ R}={\mathrm{Cl}, \mathrm{R}_{1}=\mathrm{H}}^{15.09,} 10.62$	$120.39,124.71,128.20,129.22$,	169.67			
	45.60		$130.13,132.65$		
$\mathbf{d ~ R}=\mathrm{H} \mathrm{R}_{1}=\mathrm{Cl}$	15.11,	10.60	$120.32,124.68,128.21,129.19$,	170.01	$130.10,132.62$
	45.59				
$\mathbf{1 0}$					
$\mathrm{X}=\mathrm{Me}$			$120.64,124.79,127.74,128.14$,	169.04	35.26
$\mathrm{R}=\mathrm{R}_{1}=\mathrm{H}$	15.06,	11.10	$129.25,129.60,132.46$		

Synthesis of 7 or 8 substituted 1-ethyl-3-methyl-11-phenyl-1,4-dihydro-5H-pyrazolo[3,4-c][1,5] benzodiazocin-5-ones (7a-d)

Benzamides 6a-d (3 mmol) were dissolved in toluene (40 mL) in presence of a catalytic amount of p-toluenesulfonic acid and refluxed for 21 h (5 hours in the case of $\mathbf{6 a}$). Then the mixture was maintained for further 14 h at room temperature. The resulting precipitate 7 a was collected by filtration and recrystallized from ethanol. Pyrazolo[1,5]benzodiazocin-5-ones 7b-d were obtained after removing the solvent under reduced pressure and subsequent purification by flash chromatography using a mixture of petroleum ether $\left(40-70^{\circ} \mathrm{C}\right)$ /ethyl acetate $6: 4$ as eluent.
Compound 7a. $\left(\mathrm{R}=\mathrm{R}_{1}=\mathrm{H}\right.$) Yield 60%; mp $204-205^{\circ} \mathrm{C}$ (pale yellow crystals from 1,4-dioxane); IR: $3140(\mathrm{NH}), 1658(\mathrm{CO}) \mathrm{cm}^{-1}$; ms: m/z $330\left(\mathrm{M}^{+}\right)$. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 72.71 ; \mathrm{H}, 5.49 ; \mathrm{N}$, 16.96. Found: C, 72.65 ; H, 5.36; N, 16.81 \%.

Compound 7b. ($\mathrm{R}=\mathrm{Me}, \mathrm{R}_{1}=\mathrm{H}$): yield 65%; mp $190-191^{\circ} \mathrm{C}$ (white crystals from toluene); IR: 3136 $(\mathrm{NH}), 1655(\mathrm{CO}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 344\left(\mathrm{M}^{+}\right)$. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 73.23 ; \mathrm{H}, 5.85 ; \mathrm{N}, 16.27$: Found: C, 73.38; H, 5.66; N, 16.33 \%.
Compound 7c. $\left(\mathrm{R}=\mathrm{Cl}, \mathrm{R}_{1}=\mathrm{H}\right)$ Yield 52%; mp $240-241^{\circ} \mathrm{C}$ (white crystals from toluene); IR: 3136 (NH), $1660(\mathrm{CO}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 364\left(\mathrm{M}^{+}\right)$. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{OCl}: \mathrm{C}, 65.84 ; \mathrm{H}, 4.70 ; \mathrm{N}$, 15.36. Found: C, 65.77; H, 4.66; N, 15.42 \%.

Compound 7d. ($\mathrm{R}=\mathrm{H} \mathrm{R}=\mathrm{Cl}$) Yield 45%; mp $255-256^{\circ} \mathrm{C}$ (white crystals from toluene); IR: 3138 (NH), $1659(\mathrm{CO}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 364\left(\mathrm{M}^{+}\right)$. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{OCl}: \mathrm{C}, 65.84 ; \mathrm{H}, 4.70 ; \mathrm{N}$, 15.36. Found: C, $65.70 ; H, 4.73$; N, 15.34%.

Synthesis of \boldsymbol{N}-(5-benzoyl-1-ethyl-3-methyl -1H-pyrazol-4-yl)- \mathbf{N}-methyl-2-nitrobenzamide (8)

To a solution of $5 \mathbf{a}(2.27 \mathrm{~g}, 6 \mathrm{mmol})$ in warm acetone $(80 \mathrm{~mL})$ powdered potassium hydroxide (1.68 $\mathrm{g}, 30 \mathrm{mmol}$) was added. The mixture was refluxed then methyl iodide (14 mmol) in acetone (15 mmol) was added. After 20 min the reaction mixture was filtered and the resulting solution concentrated and poured onto ice water. The solid formed was collected and recrystallized from ethanol; yield 70% (white crystals), mp $155-156{ }^{\circ} \mathrm{C}$; IR: 1648 (CO) cm^{-1}. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 64.28; H, 5.14; N, 14.28. Found: C, 64.35; H, 5.26; N, 14.35%.

Synthesis of 2-amino- N -(5-benzoyl-1-ethyl-3-methyl-1H-pyrazol-4-yl)-N-methylbenzamide (9)

To a suspension of stannous chloride ($0.569 \mathrm{~g}, 3 \mathrm{mmol}$) in hydrochloric acid ($36 \%, 3 \mathrm{~mL}$) N -(5-benzoyl-1-ethyl-3-methyl-1H-pyrazol-4-yl)-N-methyl-2-nitrobenzamide 8 ($1.18 \mathrm{~g}, 3 \mathrm{mmol}$) was added dropwise with stirring at $-5^{\circ} \mathrm{C}$. The reaction mixture was stirred then for 20 h at room temperature. The solution was poured into ice water and an aqueous solution of sodium hydroxide (40%) was added until the tin salts was dissolved. The resulting solution was extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to give a white solid which was recrystallized from ethanol.
Yield 65% (crystals), mp $146-147{ }^{\circ} \mathrm{C}$; IR: 3413, $3329\left(\mathrm{NH}_{2}\right) ; 1640(\mathrm{CO}) \mathrm{cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 69.59; H, 5.14; N, 14.28. Found: C, 69.47; H, 5.22; N, 15.31 \%.

Synthesis of 1-ethyl-3,4-dimethyl-11-phenyl-1,4-dihydro-5H-pyrazolo[3,4-c][1,5]benzo diazocin-5-one (10)

A solution of 2-amino- N -(5-benzoyl-1-ethyl-3-methyl-1 H -pyrazol-4-yl)- N -methylbenzamide 9 (3 mmol in toluene (40 mL) and catalytic amount of p-toluenesulfonic acid was refluxed for 8 h . The reaction mixture was filtered and the resulting solution concentrated under reduced pressure and the solid obtained was recrystallized from ethanol. Yield 85% (pale yellow crystals), mp $165-166{ }^{\circ} \mathrm{C}$; IR: $1639(\mathrm{CO}) \mathrm{cm}^{-1} . \mathrm{ms}: \mathrm{m} / \mathrm{z} 344\left(\mathrm{M}^{+}\right)$. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 73.23 ; \mathrm{H}, 5.85 ; \mathrm{N}, 16.27$. Found: C, 73.32; H, 5.68; N, 16.34 \%.

Acknowledgements

This work was in part financed by MIUR (Rome).

References

1. Morhle, H.; Dornbrack, S.; Novak, H. I. Monatsh. Chem. 1981, 112, 1417.
2. Ernest, R. R.; Boudenhausen, G.; Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions; Clarendon: Oxford, 1987.
3. Cavanagh, J.; Fairbrother, W. J.; Palmer, A. G.; Skelton, N. Protein NMR Spectoscopy, Principles and Pratice; Academic Press: San Diego, CA, 1996.
4. Baldeyron, B.; Tardy, C.; Bailly, C.; Colson, P.; Houssier, C.; Charmantray, F.; Demeunynck, M. Eur. J. Med. Chem. 2002, 37, 315.
5. Cekavicus, B.; Liepinsh, E.; Vigante, B.; Sobolevs, A.; Ozols, J.; Duburs, G. Tetrahedron Lett. 2001, 42, 4239.
6. Valik, M.; Dolensky, B.; Petrickova, H.; Vasek, P.; Kral, V. Tetrahedron Lett. 2003, 44, 2083.
7. Valik, M.; Malina, J.; Palivec, L.; Foltynova, J.; Tkadlecova, M.; Urbanova, M.; Brabec, V.; Kral, V. Tetrahedron 2006, 62, 8591.
8. DeWald, H. A.; Nordin, I. C.; L'Italien Y. J.; Parcell, R. F. J. Med. Chem. 1973, 16, 1346.
