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Abstract

An analysis is conducted on a catalogue containing more than 2000 seismic events

occurred in the southern Tyrrhenian Sea between January 1988 and October 2002, of

minimum observed local magnitude 1.5, as an attempt to characterise the main seismoge-

netic processes active in the area in space, time and magnitude domain by means of the

parameters of phenomenological laws.

We chose to adopt simple phenomenological models, since the narrow space-time area

did not allow to use more complex laws.

The two main seismogenetic volumes present in the area were considered for the pur-

pose of this work. The first includes a nearly homogeneous distribution of hypocentres in a

NW steeply dipping layer as far as about 400 km depth. This is probably the seismological

expression of the Ionian lithospheric slab subducting beneath the Calabrian Arc.

The second contains hypocentres concentrated about a sub-horizontal plane lying at

an average depth of about 10 km. It is characterised by a background seismicity spread

all over the area and by clusters of events that generally show a direction of maximum

elongation.

The estimated parameters of the statistical models describing seismogenetically ho-

mogeneous subsets of the earthquake catalogue in the three analysis domains, along with

their confidence intervals, are reported and analysed to establish whether they can be

regarded as representative of a particular subset.

Key words Southern-Tyrrhenian Sea - statistical models - aftershock sequences - background seis-

micity.
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1 Introduction

The main task of this paper is the attempt to discriminate the seismicity relative to the

different seismogenetic processes active in the southern-Tyrrhenian area and characterise

such processes by the parameters of mathematical models defined in the space, time and

magnitude domains. This study requires the most important processes regulating the

seismic release in the area to be preliminarily recognised.

The area (fig. 1) in which the epicentres are located includes the hinge zone be-

tween the emerged portion of the Sicilian Maghrebian chain and the part of southern-

Tyrrhenian basin featuring the highest crustal thinning. It lies within a wide W-E

oriented shear zone cut by neotectonic NW-SE and NE-SW fault systems (Giunta et

al., 2000).

The seismicity of the southern Tyrrhenian Basin is marked by high frequency of

events, average local magnitude about 2.2 and energy release rate about 2 · 1012 J/y.

The study was conducted on 2131 earthquakes (fig. 2), each recorded by, on average,

8.9 stations of the Italian national seismic network and of some local networks, from

January 1988 to October 2002. The hypocentres were determined with a procedure

based on the joint optimisation of mean station residuals, hypocentral parameters and

velocity model (Capizzi et al., 2001). The 481 epicentres marked in red in fig. 2 represent

relatively deep events, which are clustered about a N-W dipping regression plane with

an inclination of about 60◦ (Giunta et al., 2004). They are probably connected with

the Ionian lithospheric slab which subducts beneath the Calabrian Arc. The black

dots indicate the epicentres of the 1650 shallow events clustered about a sub-horizontal

regression plane, on average about 10 km deep, plunging both northwards and eastwards

inside the thinned southern-Tyrrhenian crust. Therefore, they are strictly connected

with the strain field acting in the already mentioned hinge zone.
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The detected seismicity of the southern Tyrrhenian hinge zone consists mainly of

aftershock sequences, rarely preceded by foreshocks. Rather intense is also a background

seismicity brought about by isolated events. The tendency of the shallow Tyrrhenian

earthquakes to form clusters was gauged through an analysis of the correlation dimension

of epicentres inter-distance (d2s) and inter-time distributions (d2t). The experimental

information about hypocentral depth was not included in this analysis since the larger

uncertainty in the estimation of this parameter would have produced an increase of

the correlation dimension variance. The values of d2s, determined with the maximum-

likelihood (ML) and the least-squares estimators (LS) defined and analysed in De Luca et

al. (1999; 2002), are 0.50 and 0.55 respectively, whilst d2t, computed by the least-squares

method, is 0.74. These estimates, being both significantly lower than the embedding

dimensions in their respective domains (2 and 1), indicate an evident tendency of the

Tyrrhenian seismogenesis to gradually release strain energy.

The distribution of faults, stress field, geometry of seismogenetic volumes and their

depth, this latter affecting pressure and temperature, control the way in which strain

energy is released, through clusters and isolated events. For this reason one might ex-

pect to observe significant differences in the parameter estimates of a phenomenological

model applied to sets of earthquakes relative to different release modes. Obviously, the

significance of these differences should be assessed by statistical tests.

Such an analysis requires that the seismic catalogue is firstly subdivided into subsets

of clustered or isolated, shallow or deep events. The clusters and the background events,

both present in the same seismogenetic volume, can be separated either by defining a

priori a complete set of differentiation criteria or choosing a multi-domain objective

function (e.g. a likelihood function), which can be optimised by iteratively changing the

partitioning of the events (Adelfio et al., 2006).
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Therefore, in the next section the used windows-based clustering technique is de-

scribed along with some descriptive results relative to the obtained partition; in the

third section the analysis in the space domain is carried out, mainly focussing on a

non-parametric method to estimate the spatial density of events. The fourth section

is about the analysis in the magnitude domain, with some empirical analysis for the

determination of the magnitude completeness threshold and an attempt of comparison

between some of the homogenous sets of earthquakes found out by the used clustering

method; the time domain analysis is performed in the fifth section both for the main

aftershocks sequences (through the estimation of the Omori’s laws parameters) and for

the set of isolated events (with the study of stationarity in time); finally in the sixth

section we report final remarks and some issues for future researches.

2 Clusters and independent events

To detect each single cluster of strongly correlated events and the isolated ones in a

seismic catalogue, an algorithm was set up, based on the assumption that a dependent

event can be generated if the stress-field perturbation produced by a previous event goes

over a given intensity threshold. Making the simplistic assumption that the perturbation

intensity monotonically decreases with its space-time distance from the generating event,

it appears reasonable to hypothesise that the probability of a subsequent event to be

dependent on the previous one decreases as well.

Choosing a threshold beyond which two events are to be considered belonging to

different clusters is equivalent to defining two thresholds values δS and δt for the space

and time distances from the former event, respectively. These parameters ought to be

defined according to the event magnitude and to the seismogenetic volume rheology.

Even if such choice could depend on the magnitudes, because of the limited observed
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range in the space, time and magnitude domains, two single threshold values for all

magnitudes are chosen and a simple windows-based clustering method (see for example

Reasenberg, 1985) is used.

In the analysis of a catalogue, therefore, an event i is attributed to a cluster if at

least another event j is found such that the double condition

∆S(i, j) ≤ δS and ∆t(i, j) ≤ δt

holds, where ∆S(i, j) and ∆t(i, j) are the inter-distance and inter-time between the two

events, respectively.

The two threshold values were chosen looking at the distribution of the inter-points

distances, taking also into account the main geological structures in the area, and were

fixed to δS = 35 km and δt = 2 days. The extraction procedure leads to the determination

of 185 clusters, among which 8, represented in the map in fig. 3, contain more than 10

events each; their space distribution suggests a possible correlation with the main fault

systems reconstructed on the basis of the geological information and the constraints set

by the kinematic model assumed for the area.

In particular, the blue cluster in fig. 3 contains 541 earthquakes and is related to the

seismic sequence that followed Palermo’s event occurred on 6 September, 2002; the green

one contains 69 earthquakes occurred in the offshore of San Vito Lo Capo (Trapani) in

June 1998. These two clusters alone have a numerosity that allows a significant statistical

analysis.

Moreover, an intense background seismicity, constituted by the isolated events and

by the main shock of each sequence, is present in this zone.

A description of the partition obtained is provided by the estimate of the space

and time correlation dimension of the set of independent events and of the complete

set. The values of d2s, determined by the ML and LS estimators for the independent
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events (De Luca et al., 1999; 2002), are on average 1.59 and that of d2t is 0.97, whilst

the corresponding ones for the complementary set (i.e. the set of the clustered events)

are 0.42 and 0.75, respectively. To discriminate the two seismicity components in the

space-time domain, defined here as the Cartesian product of the two spatial dimensions

and the temporal one, a parameter indicating the total clustering degree d2st can be

defined as the sum d2s + d2t, which turns out to be 2.56 and 1.17 for the two sets.

This parameter suggests a sharp difference between the phenomena originating the two

extracted components.

The fractal characterisation in space and time domain of single aftershock clusters

does not differ significantly from that of independent events. As an example, the d2s

obtained for the cluster with 541 events and the one with 69 events are on average 1.61

and 1.87, respectively, while the d2t are on average 0.89 and 0.73, corresponding to

d2st equal to 2.50 and 2.60, respectively, not significantly different from the d2st of the

independent component. This result is probably justified by the fact that the location

errors and the low numerosity of observed clusters do not allow to observe structures at

a scale lower than that of the whole cluster.

3 Analysis in space domain

In order to define a number of geometric parameters useful to distinguish seismically

homogeneous areas through the rate of seismic release relative to a given seismicity

component (independent or cluster), it is useful to determine a continuous function

expressing the intensity of the non-homogeneous point process. In particular, a non-

parametric estimation technique is used in this work in order to estimate a density

function on the basis of a sample P1, P2, . . . , PN of N epicentres (Xi, Yi), being unable

to hypothesise a functional form f(x, y; θ) for the observations density.
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The simplest and most widespread method for a density estimation consists in the

construction of the frequency histogram of observations within equally sized rectangular

bins. Even though this method is very useful for a preliminary description of the data,

the estimate of a continuous density function is often preferable. This latter can be

obtained through interpolation and smoothing procedures, amongst which, frequently

adopted are those based on kernel estimators.

The kernel estimator is defined as:

f̂(x, y) =
1

Nhxhy

N∑
i=1

K

[
(x−Xi)(y − Yi)

hxhy

]
where K(x, y; Xi, Yi, hx, hy) is the generic kernel function centred at the point (Xi, Yi)

and (hx, hy), called smoothing parameters, are constants expressing the degree of peaked-

ness of kernel functions.

The function f has to be constrained by the positivity and normalisation conditions

in its domain, which allow to regard it as a density function; also, the continuity and

differentiability properties of the function K must hold. The kernel estimator can be

obtained as the sum of N surfaces, each corresponding to the single pair of epicentral

coordinates: the kernel function defines the shape of these surfaces.

The application of this technique requires the parameters hx and hy to be optimised

in order to achieve the best compromise according to some subjective criteria between

the surface smoothness and the level of detail in the phenomenon representation.

To tackle the optimisation problem, one has to be aware that, as hx and hy grow,

the estimator variance decreases but its bias increases and the density estimate within

the investigated area reaches a slightly decreasing value (the estimator is progressively

more affected by further observations). The optimum value of (hx, hy) is chosen such as

to minimise the random mean square error of the estimator f̂(·) around the true density
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f(·), i.e.

MSEx,y(f̂) = E{f̂(x, y)− f(x, y)}2 = (E{f̂(x, y)} − f(x, y))2 + varf̂(x, y)

The choice of the kernel should lead to a mean square error as low as possible, under

the assumption that the smoothing parameters (hx, hy) have been chosen correctly.

Since it is known that the efficiency of the density estimator (in terms of its MSE)

poorly depends on the adopted kernel function K(·) (Silverman, 1986, page 43), the

kernel selection is made on the basis of different criteria, such as the requested degree

of differentiability or the computational burden. The estimator that we adopted on the

basis of such criteria has the bivariate Gaussian kernel as K-function. The smoothing

constant is evaluated with Silverman’s (1986) formula, which optimises the estimator

asymptotic behaviour in terms of mean square error and provides valid results on a wide

range of distributions. It is obtained from

hopt = 0.9AN−1/5

with A = min{standard deviation, range-interquartile/1.34}.

It turns out from the analysis that the values in km obtained for hx and hy are

0.80 and 1.10 for Palermo cluster, 2.7 and 2.6 for San Vito Lo Capo cluster and 21.7

and 7.1 for the independent events. The strong difference between hx and hy observed

for the independent events can be attributed to a lower variability of the epicentral

distribution along E-W than N-S. The small differences shown by the estimates of hx

and hy for Palermo and San Vito Lo Capo clusters reflect the nearly NE-SW and NW-SE

orientations of the fault systems that generated them.

The density distribution for the set of independent data (fig. 4) evinces a maximum

intensity of seismicity in the zone surrounding Patti (which could however be biased

by the higher network sensitivity in the area) as well as in a band sub-parallel to the

Ustica-Aeolian Islands line.
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The intensity functions for the events of Palermo sequence are calculated both includ-

ing all events and subdividing them into three subsets corresponding to three different

depth intervals containing each approximately the same number of events: hypocentres

lying within 7 km depth, in the interval
[
7,10

]
km and deeper than 10 km (fig. 5).

Comparing the distributions relative to the three depth intervals, it looks reasonable

to conclude that all hypocentres are concentrated inside a narrow sub-vertical seismo-

genetic volume having a crustal thickness and a length about 40 km. More precisely,

the hypocentres concentrate, with an mean square distance equal to 2 km, about a

regression plane with strike 234◦ dipping 83◦ northwest.

The significance of the density distribution estimated for San Vito Lo Capo cluster

of 1998 is limited by data insufficiency; despite that, it is possible to get a description of

the intensity of the spatial phenomenon, characterised by a NW-SE stretching direction

in agreement with Castellammare del Golfo system fault (fig. 6).

To attempt a description of the main space attributes of sets of earthquakes through

synthetic parameters, the magnitude of the mean horizontal gradient of the estimated

density functions is evaluated. It turns out that the ratios between the values of this

parameter estimated for the two main clusters and that relative to background seismicity

are 1372 (Palermo) and 182 (San Vito Lo Capo), respectively. This result shows that,

beyond the fact that typical mean horizontal gradients for clusters are over 100 times as

large as those related to background seismicity, strong differences can be found between

the gradients of single clusters, mostly connected with the geometry of release volumes

in addition to the total seismic energy released.
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4 Analysis in magnitude domain

The set of independent events, that of the Ionian slab and the two clusters are also

analysed in the magnitude domain through the estimate of b of Gutenberg-Richter’s law,

in order to evaluate the possibility to discern heterogeneous seismogenetic conditions.

To achieve estimates of b not biased by the catalogue incompleteness, an attempt is

made to determine the magnitude completeness threshold (M0) for each of these sets.

To estimate M0 using uniform criteria two different methods are used. The first consists

in the examination of the differences ∆b of consecutive estimates of b for increasing

magnitude completeness threshold: M0 is the point up to which such differences are

approximately constant.

The result of this test provides narrow intervals for the estimated thresholds. As an

example, fig. 7 shows ∆bML/∆M0 as a function of M0 for the set of independent events,

where ∆bML is the difference between two consecutive maximum likelihood estimates of

the parameter b. A nearly constant ∆bML/∆M0 up to M0 = 2.5 can be observed in fig.

7, followed by an interval in which it becomes strongly variable assuming a nearly zero

average.

The second tool compares the experimental frequencies and the frequencies ex-

pected from the Gutenberg-Richter’s law for magnitudes greater than M0, by using

the Kolmogorov-Smirnov test. Denoting by x(i) the i− th order statistic, the expression

of the Kolmogorov-Smirnov statistic is:

KS = maxi[F (x(i))− Femp(x(i))]

which determines the largest difference between the theoretical cumulative distribution

F (·) and the empirical one Femp(·). From the analysis of the different P -values for

magnitudes greater than 2.3, it is observed that they never reach values lower than 0.5

as the magnitude grows. A global evaluation of the tests carried out suggests to put 2.6
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as threshold value. The same value is fixed for the set of Palermo cluster, whilst one

included between 2.3 and 2.5 is regarded as suitable for the events of the Ionian slab.

The lower threshold magnitude found for the slab events can be explained by a better

average coverage of the seismic network than in the case of the other two sets.

The parameter b is estimated both through Utsu’s (1965) formula, b̂ML, and by

means of the estimators by Tinti and Mulargia (1987) b̂TM and by Bender (1983), b̂B,

not biased by the binning of magnitude data into frequency classes of width 0.1, in order

to evaluate the effect of different estimators on each set of events. The estimates are

reported in table I.

The confidence intervals of the ML estimates are found through the asymptotic

distribution of the Likelihood Ratio statistic (LR). In the statistical inference theory

the LR is defined as a test statistic, asymptotically distributed as a χ2 random variable,

obtained by the ratio between the maximum of the likelihood function under a fixed null

hypothesis and the value of the likelihood function corresponding to the ML estimator.

For the three sets of events defined above a comparison among the estimated values of

b is carried out, even if they have been computed with different magnitude completeness

thresholds. To assess the null hypothesis that the b’s of the Gutenberg-Richter’s laws

fitted to the three sets of earthquakes are equal, for the maximum likelihood estimates

a Likelihood Ratio test is used. The value of the test statistic is 4.58 with a P -value

0.10.

The decrease of b, usually observed as hypocentral depth increases (Wyss, 1973), is

not highlighted in the analysis of this dataset.
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5 Analysis in time domain

Event sets generated by different seismogenetic processes could behave differently in time

domain. An analysis is conducted on the events that make up background seismicity

with the purpose of assessing the hypothesis after which such events constitute a Poisson

process without memory in a temporal sense; this latter characterises phenomena in such

a way that the probability of a future event is constant and not dependent on its past.

The homogeneous Poisson process represents the basis upon which the theory of

point processes is grounded, and many are the processes that can be obtained as one of

its generalisations. It represents the simplest stochastic mechanism for the generation

of a map of points, and is used as a standard reference for a case of complete space

randomisation.

If the phenomenon is regarded as a time sequence of events, the point process

{Tn, n ≥ 1} in R+ is called Poisson process of intensity λ > 0 if and only if its re-

lated counting process {N(t), t ≥ 0}, which describes the number of events or successes

in [0, t], satisfies the three conditions

1. for each s, t ≥ 0, N(t + s)−N(t) is a random variable with a Poisson distribution

of mean λs:

P{[N(t + s)−N(t)] = k} =
(λs)k

k!
e−λs, con k ∈ N

2. {N(t), t ≥ 0} has independent increments, i.e. the numbers of events occurred in

two disjoint time intervals are independent of each other;

3. N(0)= 0.

It should be observed that, in the one-dimensional case, the variables t1 = T1, t2 =

T2−T1, . . . , tn = Tn−Tn−1, . . . constitute a continuous process, indexed by n ∈ N, called
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waiting-time process, which is defined by independent and equally distributed variables,

with an exponential distribution with intensity λ. Thus, as an event occurs, the process

restarts as a replication of the initial one, featuring the so-called absence of memory

effect.

In order to assess the assumption of independence for the set of the events previously

recognised as isolated by the clustering procedure, an analysis of the inter-time distri-

bution is conducted. To such purpose, the Kolmogorov-Smirnov statistic is computed

to verify the fit of an exponential distribution with the empirical one of the observed

inter-times. As a comparison, the same test is repeated for the complete set of earth-

quakes. The test statistic values estimated for the two sets of events are 0.04, with

P -value 0.24, and 0.42 with P -value 2.20 ·10−16, respectively, therefore there is evidence

with a 5% error in favor of the exponential distribution for the inter-event times relative

to background seismicity, whereas such an assumption is to be rejected for the com-

plete data set. Figure 8 reports the histogram of the observed relative frequencies and

the theoretical distribution, resulting from the distribution analysis of the inter-times

between independent events. For this set the estimated value of λ is 0.127. Moreover,

as shown in fig. 9, the mean of the inter-times between isolated events (dt’s) does not

change significantly in time. Indeed the estimated coefficient of the least-squares line

fitted to points is -0.001, and carrying out a t-test, to assess if this value is significatively

different from zero, the value of the test statistic is 1.909 with a P -value greater than

0.05.

Therefore the temporal properties of the independent events seem to be consistent

with those of a homogeneous Poisson process with a constant intensity λ.

As already known, the time evolution of a seismic sequence behaves like a relaxation
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process generally described by Omori’s law (Utsu, 1961),

N(t) =
k

(c + t)p
.

It is believed that the parameters of this law are affected by certain physical and geomet-

ric features of the seismogenetic volume; e.g., p has been observed to decrease with the

heterogeneity and complexity of this volume. We apply this law to the two main clusters

present in the catalogue, in order to assess the model adaptability to these sets as well

as evaluate the significance of the differences between the estimates of the parameters

involved.

The law parameters are estimated with the maximum-likelihood method (Console,

2001) and the results relative to Palermo cluster reported in table II for different thresh-

old magnitudes M0.

The estimated p takes values between 0.75 and 0.81 for the different M0. Comparing

their 95%-confidence intervals, determined by means of the asymptotic theory, it turns

out that there is no significant dependency of the estimates on the threshold magnitude.

The analysis of the test statistic X2 and even more the P -value estimates, with a

95%-confidence (table II), indicate a bad fitting of the theoretical law to the observed

frequencies.

In fact, the energy release for Palermo sequence occurred in a rather complex way.

Twenty-one days after the beginning of the sequence, an event with local magnitude 4.6,

one unit lower than the main shock, seems to have been followed by its own aftershocks

sequence (fig. 10); the latter, overlapping with the sequence generated by the main

event, produced a sensible increase of seismic activity, as already observed in several

other cases.

Describing the complete time evolution of such sequences would require definitely

more complex mathematical models, which could be safely applied if a longer time inter-
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val was available. As consequence, the parameters of Omori’s law are also estimated on

the sequence truncated immediately before the event with magnitude 4.6. The parame-

ters and confidence intervals estimates (table III and fig. 11) are significantly different

with respect to those obtained for the non-truncated sample and the test statistic X2

and the P -value indicate a neat improvement of the theoretical law fitting to experi-

mental frequencies. Also in this case the estimated parameter p and confidence intervals

do not show a significant dependence on the threshold magnitude.

In the analysis of San Vito Lo Capo sequence, understandably deprived of its fore-

shocks, two magnitude thresholds alone are taken into account because of its low number

of events. In this analysis the p’s (table IV) turn out much smaller than those of Palermo

sequence, and the parameter estimates are scarcely significant, as evinced by the test of

hypothesis rather than from the confidence intervals, extremely unstable because of the

sample insufficiency.

6 Conclusions

This paper deals with a statistical analysis conducted on the seismicity of the southern

Tyrrhenian Sea, aimed at establishing whether the experimental information available

allows to discern, through parameters relative to well-known phenomenological laws,

heterogeneous seismogenetic processes which have been previously identified in a quali-

tative way.

The analysis in space domain indicated that, given the large amount of information

currently available on the studied area, it is possible to set up mathematical models that

describe the intensity of the seismogenetic process in a certain area with a sufficient level

of detail.

As concerns the seismic release modes, a strong tendency was observed of the seis-
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micity in the southern Tyrrhenian Sea to take place through sequences of aftershocks.

Because of the insufficient degree of completeness and accuracy of low-energy experi-

mental information it was not possible to analyse the degree of complexity of the seismo-

genetic process relative to each sequence. For this reason, the sets of aftershocks were

characterised with parameters describing average properties of the estimated density

functions.

The analysis in the time and magnitude domains pointed out the need to formulate

more general, possibly multi-domain, mathematical models, capable of predicting the

process complexity.

Since such a description would require a wider space-time area than that observed,

we resorted to the most commonly adopted phenomenological models.

The quality of parameter estimates seems to have been limited by the model inad-

equacy, yet also by the small amount of observations. In fact, the comparison between

point and interval estimates of the investigated parameters suggested that the differ-

ences between the estimates of b and those between the parameters of Omori’s law for

distinct sets of earthquakes are not statistically significant. It also turned out that all

such estimates strongly depend on the adopted estimator, and their quality is affected

by the completeness analysis on the data.
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Tables and figures captions

Table I Estimates and confidence intervals (c.i.) of parameter b of Gutenberg-Richter’s

law: maximum-likelihood estimator (b̂ML), estimator of Tinti and Mulargia (1987)

(b̂TM), estimator of Bender (1983) (b̂B).

Table II Parameters of Omori’s law estimated for different threshold magnitudes M0,

confidence intervals for p and c, X2 and P -value of the X2-test (Palermo sequence).

Table III Parameters of Omori’s law estimated for different threshold magnitudes M0,

confidence intervals for p and c, X2 and P -value of the X2-test (truncated Palermo

sequence).

Table IV Parameters of Omori’s law estimated for different threshold magnitudes M0,

X2 and P -value of the X2-test (San Vito Lo Capo sequence).

Fig. 1 Structural map of the central Mediterranean Sea (modified by Giunta et al.,

2000).

Fig. 2 Clusters location on the southern-Tyrrhenian and the Sicilian-Maghrebian Chain

deformation model.

Fig. 3 Epicentral distribution.

Fig. 4 Estimated spatial density of the independent events.

Fig. 5 Estimated spatial density of Palermo cluster relative to all events and to each

depth interval.

Fig. 6 Estimated spatial density of San Vito Lo Capo cluster.

Fig. 7 Variation rate of parameter bML as a function of M0 for the set of independent

events.

Fig. 8 Histogram of the inter-times for the independent events compared with the

exponential density function.

Fig. 9 Inter-times vs. time for the independent events and fitted linear trend.
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Fig. 10 Observed aftershocks frequency compared with Omori’s law for Palermo se-

quence.

Fig. 11 Observed aftershocks frequency compared with Omori’s law for the truncated

Palermo sequence.
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Data set M0 N b̂ML c.i. b̂ML 95% b̂TM c.i. b̂TM 95% b̂B

Independent event 2.6 121 1.33 1.11 1.58 1.08 0.89 1.27 1.16

Cluster blu events 2.6 107 1.01 0.83 1.21 0.82 0.66 0.98 0.90

Slab events 2.3 109 1.23 1.01 1.48 0.93 0.78 1.14 1.08

Table I:
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M0 N c c.i. c 95% p c.i. p 95% k X2 P-value

- 541 0.084 -0.074 0.212 0.746 0.643 0.871 75.370 44.61 0.000

1.5 524 0.102 -0.070 0.274 0.764 0.657 0.871 75.754 49.83 0.000

2 380 0.046 -0.067 0.158 0.811 0.703 0.918 55.797 39.90 0.000

2.5 138 0.000 -0.001 0.001 0.853 0.759 0.947 20.416 34.390 0.000

Table II:
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M0 N c c.i. c 95% p c.i. p 95% k X2 P-value

- 439 0.413 - 0.174 1.001 0.986 0.716 1.256 112.723 4.691 0.321

1.5 423 0.554 -0.202 1.311 1.064 0.741 1.388 129.077 4.473 0.346

2 314 0.179 -0.099 0.457 0.976 0.764 1.188 68.869 6.547 0.162

2.5 115 0.000 -0.001 0.001 0.940 0.8461 1.034 19.334 24.411 0.000

Table III:
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M0 N c p k X2 P-value

1.5 62 0.000 0.674 8.725 22.858 0.001

2 55 0.000 0.692 9.744 16.842 0.008

Table IV:
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Figure 1:
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Figure 2:
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Figure 3:
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Figure 4:
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Figure 5:
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Figure 6:
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Figure 7:
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Figure 9:
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Figure 10:

34



Figure 11:
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