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Abstract

We perform the group analysis of the thermal boundary layer in laminar flow. We
obtain the classification of the solutions in terms of the asymptotic velocity. Some
solutions of the boundary layer equations, for some distributions of outer flow
velocity, are obtained also.

1 Introduction

It is very important to have the similarity solutions for the partial differential equa-
tions for the flow field near a body in a fluid flow. Generally the solutions of these
equations are obtained by means of dimensional analysis which is a particular case
of the group analysis. This is based on the theory of S. Lie developed more than
one hundred years ago in order to have solutions of ordinary and partial, linear and
non linear differential equations [1–6].

Considering systems of partial differential equations containing an arbitrary
number of dependent and independent variables, the group analysis provides simi-
larity solutions reducing the original system to a system with a reduced number of
independent variables [7–9].

Now we turn our attention to the group analysis of the equations of the thermal
boundary layer for some particular cases.

2 Group analysis

We show in brief the theory of one-parameter Lie groups of transformations for a
partial differential equation in which the number of independent variables is equal
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to two. We can generalize the results to systems of partial differential equations
containing an arbitrary number of dependent and independent variables.

Consider the partial differential equation (dependent variable c, independent
variables x and t) of second order

F (c, x, t, cx, ct, cxx, cxt, ctt) = 0 (1)

In what follows cx denotes ∂c
∂x , ct denotes ∂c

∂t , ...
Consider an one-parameter (ε) group of transformations:


c∗ = c∗(x, t, c; ε)
x∗ = x∗(x, t, c; ε)
t∗ = t∗(x, t, c; ε)

(2)

When ε = 0 the (2) correspond to identical transformation


c∗ = c

t∗ = t

x∗ = x

Expanding the (2) about the identity ε = 0 we obtain


c∗ = c + εγ(x, t, c) + O(ε2)
x∗ = x + εξ(x, t, c) + O(ε2)
t∗ = t + ετ(x, t, c) + O(ε2)

where γ, ξ and τ are the infinitesimal generators of the transformations (2).
The c∗x∗ , c∗t∗ , ... are the transformed derivatives determined from (2)



c∗x∗ = c∗x∗(x, t, c, cx, ct; ε)
c∗t∗ = c∗t∗(x, t, c, cx, ct; ε)
c∗x∗x∗ = c∗x∗x∗(x, t, c, cx, ct, cxx, cxt, ctt; ε)
c∗x∗t∗ = c∗x∗x∗(x, t, c, cx, ct, cxx, cxt, ctt; ε)
c∗t∗t∗ = c∗x∗x∗(x, t, c, cx, ct, cxx, cxt, ctt; ε)

(3)

In similar way for the (3) we have


c∗x∗ = cx + ε[cx] + O(ε2)
c∗t∗ = ct + ε[ct] + O(ε2)
c∗x∗x∗ = cxx + ε[cxx] + O(ε2)
c∗x∗t∗ = cxt + ε[cxt] + O(ε2)
c∗t∗t∗ = ctt + ε[ctt] + O(ε2)

(4)

where [cx], [ct], [cxx] are the infinitesimal generators of the transformed derivatives
determined from the (2).
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Because the (2) determine the (4), the transformed derivatives [cx], [ct], [cxx],
[cxt] and [ctt] can be expressed in terms of γ, ξ, τ .

We have for example

[cx] =
Dγ

Dx
− ∂c

∂x

Dξ

Dx
− ∂c

∂t

Dτ

Dx

where D
Dx is the total derivative. In a similar way we proceed for [ct].

Higher order transformed derivatives can be derived from recurrence formulas.
The differential equation (1) is invariant under the group of transformations (2) if

F (c, x, t, cx, ct, cxx, cxt, ctt) =

F (c + εγ + · · · , x + εξ + · · · , t + ετ + · · · , cx + ε[cx] + · · · , ct + ε[ct] + · · · ,
cxx + ε[cxx] + · · · , cxt + ε[cxt] + · · · , ctt + ε[ctt] + · · ·) (5)

Expanding the right member of the (5), we have
F (c, x, t, cx, ct, cxx, cxt, ctt) = F (c, x, t, cx, ct, cxx, cxt, ctt)+

ε(Fcγ + Fxξ + Ftτ + Fcx [cx] + Fct [ct] + Fcxx [cxx] + Fcxt [cxt] + Fctt [ctt]) + · · ·
and so the invariance condition of the equation is

Fcγ + Fxξ + Ftτ + Fcx [cx] + Fct [ct] + Fcxx [cxx] + Fcxt [cxt] + Fctt [ctt] = 0

If the solution is invariant under the group of transformations, the solution must
map into itself, i.e.

c∗ = c(x∗, t∗) = c(x + εξ, t + ετ) (6)

In terms of the transformation functions, eq. (6) can be written as.

c(x + εξ, t + ετ) = c(z, t) + εγ(z, t, c) + O(ε2) (7)

Expanding the left-hand side of eq. (7) and equating the coefficients of ε, we get

γ = cxξ + ctτ (8)

The eq. (8) is the invariant surface condition. We can call the eq. (7) also as invari-
ance condition of the solution. The general solution of eq. (7) is obtained by solv-
ing the characteristic equation

dx

ξ
=

dt

τ
=

dc

γ
(9)

In principle, the general solution of eq. (8) can be found. It involves two constants,
one becomes the independent variable ξ(c, x, t), called the similarity variable and
the other is the dependent variable f(ξ). We obtain the similarity solution

c = F(t, x, ξ, f(ξ)) (10)

with the dependence of F on x, t and the arbitrary function f(ξ) known explic-
itly. Substitution of (10) into (1) results an ordinary differential equation for the
function f(ξ).
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The application of the group analysis, also for modest systems of differential
equations, involves long and tedious computations. Symbolic packages are very
useful for such computations.

3 Thermal boundary layer equations

If the properties cp, µ and k can be assumed independent of temperature and the
pressure gradient in the x-direction is different from zero, the thermal bound-
ary layer equations for two-dimensional incompressible steady fluid flow are (see
Schlichting [10], Schlichting and Gersten [11] and Rosenhead [12]):


∂Ψ
∂y

∂2Ψ
∂x∂y − ∂Ψ

∂x
∂2Ψ
∂y2 = ν ∂3Ψ

∂y3 + U(x) dU(x)
dx

∂Ψ
∂y

∂T
∂x − ∂Ψ

∂x
∂T
∂y = k

ρcp

∂2T
∂y2 + ν

cp

(
∂2Ψ
∂y2

)2

− 1
cp

∂Ψ
∂y U(x) dU(x)

dx

(11)

where:
• Ψ(x, y) ⇒ Stream function (u = ∂Ψ

∂y , v = −∂Ψ
∂x );

• U(x) ⇒ Outer flow velocity;
• T (x, t) ⇒ Fluid temperature;
• ν ⇒ Kinematic viscosity;
• k ⇒ Thermal conductivity;
• cp ⇒ Specific heat at constant pressure;
• ρ ⇒ Density.

The boundary conditions for eqs. (11) are:


u = v = 0 at y = 0
u = U(x) as y → ∞
T = Tw at y = 0
T = T∞ as y → ∞

where :
• Tw ⇒ Wall temperature
• T∞ ⇒ Free stream temperature

Consider the following one-parameter Lie group of transformations in order to
leave invariant the eqs. (11):



x′ = x + εξ1(x, y, Ψ, T ) + · · ·
y′ = y + εξ2(x, y, Ψ, T ) + · · ·
Ψ′ = Ψ + εη(x, y, Ψ, T ) + · · ·
T ′ = T + ετ(x, y, Ψ, T ) + · · ·

(12)

The invariance conditions for eqs. (11) give us the following equations for the
infinitesimal generators of the transformations (12) and for the free-stream flow
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velocity U(x):


ξ1
y = ξ1

Ψ = ξ1
T = ξ2

Ψ = ξ2
T = ηx = ηy = ηT = τy = ηΨ = 0

ξ2
yy = ξ2

xy = ηΨΨ = τTT = 0
ξ2
y + ηΨ − ξ1

x = 0
2(ξ2

y − ηΨ) + τT = 0
−UUxxξ1 − 3UUxξ2

y + UUxηΨ − U2
xξ2 = 0

−UUxxξ1 − UUxξ2
y − UUxηΨ + τtUUx − ξ1U2

x + τx

ν = 0

(13)

The system (13) admits the following solution:


ξ1 = (A + C)x + D

ξ2 = Ay + M(x)
η=CΨ + B

τ = 2(C − A)T + R

where A, B, C, D, R are arbitrary constants and M(x) is an arbitrary but regular
function of x. For the free stream flow velocity we obtain the following differential
equation [13]:

(3A − C)
dU2

dx
+ ((A + C)x + D)

d2U2

dx2
= 0 (14)

We performed the calculations of the generators of transformations group on a PC
using the REDUCE and MATHEMATICA packages.

Each of the constants A, B, C, D, R and the function U(x) can be taken in turn
to generate a similarity form for the solution.

4 Similarity solutions

Let us look at particular similarity solutions.

4.1 C �= A = 1, D = B = R = M = 0, A + C �= 0

The characteristic equations are:

dx

(1 + C)x
=

dy

y
=

dΨ
CΨ

=
dT

2(C − 1)T
(15)

It is possible to have the following invariants


I1 = yx− 1
1+C

I2 = Ψx− C
1+C

I3 = Tx2 1−C
1+C

(16)
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The invariant I1 = yx− 1
1+C is the similarity variable ξ and the similarity solutions

are: {
Ψ = x

C
1+C f(yx− 1

1+C )

T = x−2 1−C
1+C θ(yx− 1

1+C )
(17)

The functions f(ξ) and θ(ξ) satisfy the following equations obtained from eqs. (11)

{
1−C
1+C f ′2 + C

1+C ff ′′ + νf ′′′ + α = 0
2C−1

1+C f ′θ − C
1+C fθ′ − k

ρcp
θ′′ − ν

cp
f ′′2 + α

cp
f ′ = 0

(18)

where α is a constant.
The free stream flow velocity, considering eq. (14), is solution of the equation:

UUx = αx
C−3
C+1

We have

U2 = U2
l

(x

l

)2n

+ U2
0 (19)

if:

C =
1 + n

1 − n
and U2

l = nαl2n (n �= 1)

The eq. (19) correspond to the flow past a wedge, in the neighborhood of the
leading edge [11].

In particular, if C = 0 (n = −1) we obtain:

U2 = U2
l

(
l

x

)2

+ U2
0

(flow in converging or diverging channel [11]).

4.1.1 Flow past a wedge, in the neighborhood of the leading edge
If U0 = 0, we have:

U = Ul

(x

l

)n

In this case the component u of the velocity is:

u = xnf(yx
n−1

2 )

and the boundary conditions become


f(0) = f ′(0) = 0
f ′(∞) = Ul

ln

θ(0) = θ0

θ(∞) = 0
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If we assume C = 1
2 , then n = − 1

3 [11]. The first of eqs. (18) become:

1
3
f ′2 +

1
3
ff ′′ + νf ′′′ − 3U2

l l
2
3 = 0 (20)

The eq. (20) is analytically integrable. Integrating the equation twice and using the
boundary conditions, we obtain:

Kξ +
1
6
f2 + νf ′ − 3

2
U2

l ξ2l
2
3 = 0 (21)

The eq. (21) is a Riccati equation [14] and its solution is:

f(ξ) =


3
√

2lU3
l

ν
(

K
2 − 18lU

3
l ν
)

C1H
A2

36lU3
l

ν
− 3

2


 3l

2
3 U2

l ξ − K

3
√

2lU3
l

ν


 +

(
K − 3l

2
3 U

2
l ξ

)
×


18lU

3
l ν


C1H

K2
36lU3

l
ν

− 1
2


 3l

2
3 U2

l ξ − K

3
√

2lU3
l

ν


 + 1F1




(
K − 3l

2
3 Ul

2ξ

)2

18lUl
3ν

;
1

4
− K2

72lUl
3ν

,
1

2





+

(
K

2 − 18lUl
3
ν
)

1F1




(
K − 3l

2
3 Ul

2ξ

)2

18lUl
3ν

;
5

4
− K2

72lUl
3ν

,
3

2










×




18l
4
3 U

4
l ν


C1H

K2
36lU3

l
ν

− 1
2


 3l

2
3 U2

l ξ − K

3
√

2lU3
l

ν


 + 1F1




(
K − 3l

2
3 Ul

2ξ

)2

18lUl
3ν

;
1

4
− K2

72lUl
3ν

,
1

2










−1

where 1F1(−;−,−) is the Kummer confluent hypergeometric function and
H−(−) the Hermite function; the constant K and C1 are determined by bound-
ary conditions.

4.1.2 Flow converging or diverging channel
If C = 0 and U0 = 0, then we have n = −1:

U = Ul
l

x

The component u of the velocity is:

u = x−1f ′(yx−1)

the boundary conditions become


f(0) = f ′(0) = 0
f ′(∞) = Ull

θ(0) = θ0

θ(∞) = 0

The first of eqs. (18) becomes:

f ′2 + νf ′′′ − U2
l l2 = 0 (22)

The eq. (22) is analytically integrable.
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The transformation: h(ξ) = f ′(ξ) reduces eq. (22) to the equation:

h2 + νh′′ − U2
l l2 = 0 (23)

The eq. (23) is a Painlevé type equation (see [15]); its solution is expressed in term
of Weierstrass elliptic function ℘. The equation eq. (23) is equivalent to

(h′)2 =
2
ν

(lUl)2h − 2
3ν

h3 − H

The substitution h(ξ) = −6νz(ξ) leads to the equation:

(z′)2 = 4z3 − (lUl)2

3ν2
z − H

The solution of this equation is:

z(ξ) = ℘

(
ξ − C1;

(lUl)2

3ν2
, H

)

where ℘(−; g2, g3) is the Weierestrass elliptic function.
The solution of eq. (22) is therefore:

f(ξ) = 6νζ

(
ξ − C1;

(lUl)2

3ν2
, H

)
+ K

where ζ(−; g2, g3) (ζ′ = −℘) is the Weierestrass ζ-function (see [16]), the con-
stant H , C1 and K are determined by boundary conditions. It is worthy of remark
that for ∆ = g3

2 − 27g2
3 = 0 and for particular values of g2 and g3, the Weiere-

strass ℘-function degenerates to the hyperbolic function [16]; in this case we have
the Pohlhausen solution [10].

4.2 A = D = B = R = 0, M �= 0, C �= 0

From the characteristic equations we have:{
Ψ = xf(y − h(x))
T = x2θ(y − h(x))

(24)

where h(x) is an arbitrary function. The similarity equations are:{
f ′2 − ff ′′ − νf ′′′ − α = 0
2f ′θ − fθ′ − k

ρcp
θ′′ − ν

cp
f ′′2 + α

cp
f ′ = 0

(25)

where α is a constant. If we put

α =
U2

l

l2
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the free stream flow velocity is:

U2 =
U2

l

l2
x2 + U2

0

If
U0 = 0

we have
U = Ul

x

l

This is the flow with forward or rear stagnation point [12]. In this case the compo-
nent u of the velocity is (h(x) = 0):

u = xf ′(y)

and the boundary conditions become


f(0) = f ′(0) = 0
f ′(∞) = Ul

l

θ(0) = θ0

θ(∞) = 0

4.3 A + C = B = R = M = 0, D = 1

In this case: {
Ψ = eCxf(yeCx)
T = e4Cxθ(yeCx)

(26)

The similarity solutions are{
2Cf ′2 − Cff ′′ − νf ′′′ − α = 0
4Cf ′θ − Cfθ′ − k

ρcp
θ′′ − ν

cp
f ′′2 + α

cp
f ′ = 0

(27)

where α is a constant. The free stream flow velocity is:

U2 = U2
l +

α

2C

(
e4Cx − e4Cl

)
If we assume:

Ul =
α

2C
e4Cl

then

U =
√

α

2C
e2Cx

In this case [10] the component u of the velocity is:

u = e2Cxf ′(yeCx)
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and the boundary conditions become


f(0) = f ′(0) = 0
f ′(∞) =

√
α
2C

θ(0) = θ0

θ(∞) = 0

4.4 D = B = R = M = 0, A = C = 1, U = constant

The stream function and the temperature are:{
Ψ = x

1
2 f(yx− 1

2 )
T = θ(yx− 1

2 )
(28)

The functions f and θ satisfy the following equations:{
1
2ff ′′ + νf ′′′ = 0
1
2fθ′ + k

ρcp
θ′′ + ν

cp
f ′′2 = 0

(29)

This solution corresponds to semi-infinity flat plat (Blasius solution).

5 Conclusions

Therefore we can be sure that the group analysis, compared to dimensional anal-
ysis or ad hoc position, enable to have with methodical work similarity solutions:
all the solutions derived in standard text [10], [11] and [12] are therefore group
invariant solutions.
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