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Abstract
Based on the Timoshenko beam theory and on the assumption that the electric and magnetic
fields can be treated as steady, since elastic waves propagate very slowly with respect to
electromagnetic ones, a general analytical solution for the transient analysis of a
magneto-electro-elastic bimorph beam is obtained. General magneto-electric boundary
conditions can be applied on the top and bottom surfaces of the beam, allowing us to study the
response of the bilayer structure to electromagnetic stimuli. The model reveals that the
magneto-electric loads enter the solution as an equivalent external bending moment per unit
length and as time-dependent mechanical boundary conditions through the definition of the
bending moment. Moreover, the influences of the electro-mechanic, magneto-mechanic and
electromagnetic coupling on the stiffness of the bimorph stem from the computation of the
beam equivalent stiffness constants. Free and forced vibration analyses of both multiphase and
laminated magneto-electro-elastic composite beams are carried out to check the effectiveness
and reliability of the proposed analytic solution.

1. Introduction

Magneto-electro-elastic composites have recently been gaining
attention for their unique capability of converting energy
among the elastic, electric and magnetic forms. They
generate electric and magnetic fields if stretched and undergo
deformation when electric or magnetic external loads are
applied. Moreover, they are able to convert an applied
magnetic field into an electric one and vice versa [1, 2].
This last feature is referred to as a magneto-electric effect,
which is a peculiar characteristic of the whole composite.
In fact, magneto-electro-elastic materials are built up by
combining together piezoelectric and piezomagnetic phases
which provide the composite with both electro-mechanical
and magneto-mechanical coupling. Moreover, the coexistence
of the piezoelectric and piezomagnetic effects, coupled
through the elastic field, gives rise to magneto-electric
coupling [3]. For these reasons, magneto-electro-elastic
materials are exploited for the construction of magnetic
field probes, wireless powering systems of micro-electro-
mechanical devices, control of structural vibration, electric

packaging, hydrophones, medical ultrasonic imaging, sensors
and actuators [4–7].

Particulate, fiber reinforced and laminated magneto-
electro-elastic composites have been studied, to look
for the highest magneto-electric effect [3, 8]. The
effects on the magneto-electric coupling strength of the
sintering temperature, volume fraction of piezoelectric and
piezomagnetic phases, layers arrangement and thickness ratio,
as well as of the magnetostriction direction and the bias
magnetic field have been investigated both experimentally and
theoretically [7, 9–16]. The aforementioned investigations
revealed the better magneto-electric coupling of the laminated
configuration that began to be widely studied and developed
as an effective smart device [8]. Both analytical and
numerical techniques have been developed to characterize
the static and dynamic response of magneto-electro-elastic
media. Wang and Shen [17] derived the general solution
for three-dimensional transversely isotropic magneto-electro-
elastic media by using five potential functions and determined
Green’s functions for a half-space and the fundamental solution
for a generalized dislocation. Green’s functions for the two-
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dimensional problem have been obtained by Guan and He [18]
by means of Almansi’s theorem, while Green’s functions for
infinite, two-phase and semi-infinite magneto-electro-elastic
composites have been derived and presented in [19]. The
exact solution for the statically loaded three-dimensional
multilayered rectangular simply supported plate of magneto-
electro-elastic composites has been computed by Pan [20] by
means of the propagator matrix method. The propagator matrix
method has also been employed to solve cylindrical bending
and free vibrations problems as reported in [21–23]. Solutions
for magneto-electro-elastic functionally graded structures have
also been obtained. Pan and Han [24] derived the exact
solution for a multilayered functionally graded rectangular
plate in a simply supported configuration undergoing general
mechanical, electric and magnetic static loads by using a
pseudo-Stroh formalism and the propagator matrix method.
The problem of functionally graded plane beams has been
addressed by Huang and co-workers [25] by writing the
stress, electric displacement and magnetic induction functions
as quadratic functions of the longitudinal direction and by
computing their distribution along the thickness direction
through an integral approach. An approximate solution for the
laminated magneto-electro-elastic two-dimensional plates has
been obtained by Ramirez and co-workers [26] by combining
the discrete layer approach with the Ritz method in such a
way that the developed model does not depend on boundary
conditions. A state-space approach has been employed
to derive analytical solutions for multilayered magneto-
electro-elastic media [4, 27], to study the free vibration
behavior of a simply supported non-homogeneous rectangular
plate [28] and to obtain the solution for the magneto-
electric thermoelasticity problem of a non-homogeneous
transversely isotropic rectangular plate undergoing bending
deformations [29]. In order to model general boundary
condition configurations, the use of numerical methods is
required. Bhangale and Ganesan [30] derived a hybrid
formulation for analyzing the free vibrations problem of
magneto-electro-elastic functionally graded cylindrical shells,
by using series expansions in the circumferential and axial
directions and finite elements in the radial one. A FE model
has been used by Buchanan [14, 31] to study the multilayer
and multiphase magneto-electro-elastic materials response.
Lage and co-workers [32] derived a mixed finite element
approach, on the basis of the mixed Reissner variational
principle, to model magneto-electro-elastic plates. An in-plane
plate finite element was developed and employed by Annigeri
and co-workers [33] to study the free vibration behavior of
multiphase and layered magneto-electro-elastic beams with
different configurations. A boundary element model for the
magneto-electro-elastic two-dimensional problem has been
developed by Ding and Jiang [34], who found the related
fundamental solutions starting from the general harmonic
potential solution. Three-dimensional Green’s functions for
transversely isotropic magneto-electro-elasticity and 3D BEM
analysis of an annular plate were presented by Ding and co-
workers [35]. A boundary integral formulation expressed
in terms of generalized variables, in such a way that the
magneto-electro-elastic governing equations can be written in

a form that resembles the governing equations of classical
elasticity and its multidomain BEM implementation for two-
dimensional laminate configurations, has been developed and
presented by Milazzo and co-workers in [36], where the
related fundamental solutions have been derived by means of
a modified Lekhnitskii’s approach and presented in a compact
matrix form. BE analyses of bimorph magneto-electro-elastic
device have also been carried out and presented in [37] by Davı́
et al.

To the authors’ knowledge, the problem of forced vibra-
tion of magneto-electro-elastic media, despite its importance in
engineering applications, has been presented only in the work
of Hou and Leung [38], where an analytical solution for or-
thotropic and radially polarized hollow cylinders has been de-
rived and used to study the structure responses to mechanical
and magneto-electric loads.

In the present paper the problem of forced vibration of
a magneto-electro-elastic bimorph beam is addressed. The
model is based on Timoshenko’s beam theory [39], extended
to the present problem by considering the magneto-electro-
mechanical constitutive relationships and by assuming that
no density charge and no density current act on the beam.
Moreover, the electric and magnetic fields are treated as
quasi-static and no damping effects have been taken into
account. The fundamental assumptions and the derivation
of the governing equations are presented in sections 2
and 3, respectively. The free vibration problem is solved in
section 4 while the forced vibration solution, based on the
Mindlin and Goodman procedure [40] to take into account
time-varying boundary conditions, is obtained in section 5.
Some representative results are presented for different beam
configurations in section 6. Natural frequencies for a single
layer particulate magneto-electro-elastic composite beam and
for a piezoelectric/piezomagnetic laminated structure are
obtained and compared with finite element data for a plane
beam. The transient responses of bimorph beams under
mechanical and magnetic loads are also presented in terms
of the mean-line transverse displacements and electric and
magnetic potential distributions along the beam top surface.
The forced vibration solution is verified by comparing the
present analytical model with numerical results obtained
through the boundary element approach developed by Milazzo
et al [36] to study magneto-electro-elastic laminates.

2. Fundamental assumptions

Let us consider a magneto-electro-elastic composite bimorph
beam of length L and thickness h, having electric and magnetic
poling directions parallel to the y-axis, see figure 1. The
bimorph laminae are considered perfectly bonded from the
mechanical, electric and magnetic point of view.

The elastic variables used to model the problem are the
displacement components u and v, along the x and y axes
respectively, the cross sectional rotation θ , and the stress and
strain components σxx , σxy , γxx and γxy . Both the transverse
displacement and cross sectional rotation are supposed to be
a function of the x variable only. Moreover, according to the
Timoshenko beam model [39], the effect of shear deformation
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Figure 1. Bimorph geometry

is taken into account. It follows that, assuming the following
kinematical model

u = −y ϑ(x, t) v = v(x, t) (1)

the considered strain components are given by

γxx = −y
∂ϑ

∂x
γxy = −ϑ + ∂v

∂x
. (2)

The electric state of the body is described by the electric
potential ϕ and by the electric field components Ex and Ey ,
that relate to electric potential as follows

Ex = −∂ϕ
∂x

Ey = −∂ϕ
∂y
. (3)

On the other hand, in order to describe the magnetic state
of the body, it is assumed that there is no external current
density in the domain; thus, the magnetic field components,
Hx and Hy, can be expressed in terms of a magnetic scalar
potential ψ through the gradient relationships

Hx = −∂ψ
∂x

Hy = −∂ψ
∂y
. (4)

The electric displacement vector components Dx and Dy and
the magnetic induction vector components Bx and By , also
used to describe the electric and magnetic state of the body,
are obtained from the constitutive relationships. In accordance
with the assumption made for piezoelectric devices in [41],
the effect of the electric field component transverse to the
poling direction, Ex , is considered negligible with respect to
the electric field component along the poling direction Ey .
This hypothesis is here extended to the magnetic problem by
assuming that only the magnetic field component along the
magnetic poling direction is relevant.

Under the aforementioned assumptions, the constitutive
relationships for each lamina can be written as follows

σxx = cγxx − eEy − d Hy σxy = c44γxy

Dx = e14γxy Dy = eγxx + εEy + ηHy

Bx = d14γxy By = dγxx + ηEy + μHy

(5)

where c and c44 are elastic stiffness constants, ε and μ are
the dielectric constant and magnetic permeability, respectively,
e and e14 represent the piezoelectric constants while the
piezomagnetic coupling is expressed by the constitutive
constants d and d14; the last material constant η is
representative of the magneto-electric coupling characteristic

of the magneto-electro-elastic composite material. The
complete constitutive relationships for a transversely isotropic
magneto-electro-elastic material having electric and magnetic
poling directions along the y-axis are listed in appendix A,
where the expressions used to compute the constitutive
constants for a monodimensional structure are also reported.

3. Model

The electromagnetic problem is firstly solved in terms of the
displacement variables v(x, t) and θ(x, t); then the magneto-
electro-elastic problem is closed by using the equations of
motion for the bimorph. It is assumed, by observing that
the electromagnetic waves propagation velocity is several
order of magnitude higher than that of elastic waves, that the
electromagnetic state of the beam can be modeled as quasi-
static. In what follows, variables denoted with a minus or plus
superscript are intended to be related to the lower (−h/2 �
y � 0) or upper (0 � y � h/2) lamina, respectively.

3.1. Magneto-electric problem

Gauss’s laws for the electrostatic and magnetostatic, assuming
that the electric charge is absent, state

∂Dx

∂x
+ ∂Dy

∂y
= 0

∂Bx

∂x
+ ∂By

∂y
= 0. (6)

Taking into account the constitutive relationships, equa-
tions (5), the strain–displacement equations, equations (2) and
the gradient relationships, equations (3) and (4), equations (6)
lead to

ϕ±(x, y, t) =
[

A±
ϕ

∂ϑ

∂x
+ B±

ϕ

∂2v

∂x2

]
y2

2
+ a±

1 y + a±
2

ψ±(x, y, t) =
[

A±
ψ

∂ϑ

∂x
+ B±

ψ

∂2v

∂x2

]
y2

2
+ a±

3 y + a±
4

(7)

where a±
i (i = 1, 2, 3, 4) are integration constants while A±

j

and B±
j ( j = ϕ,ψ) are defined in appendix B equations (B.1).

Since the interface has been considered electrically and
magnetically perfect, the continuity conditions for both the
electric and magnetic potentials and for the components of the
electric displacement and of the magnetic induction normal to
the interface are imposed, namely

ϕ+(y = 0) = ϕ−(y = 0), ψ+(y = 0) = ψ−(y = 0)

D+
n (y = 0) = D−

n (y = 0), B+
n (y = 0) = B−

n (y = 0).
(8)

It follows that the potentials integration constants
belonging to lower lamina, a−

i can be expressed in terms of
the integration constants belonging to the upper lamina a+

i as

a−
1 = Ca+

1 + Da+
3 , a−

2 = a+
2 ,

a−
3 = Aa+

1 + Ba+
3 , a−

4 = a+
4

(9)

where A, B,C and D are combinations of the electromagnetic
constitutive constants as reported in appendix B.
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In order to determine the remaining integration constants
a+

i the magneto-electric boundary conditions at the top and
bottom surfaces of the bimorph beam are imposed. It is worth
noting that general magneto-electric boundary conditions can
be imposed, but hereafter, without lack of generality because
only the through the thickness difference of the potential is
usually relevant, the cases with electric and magnetic scalar
potentials set to constant values at the beam bottom surface
will be presented

ϕ−
(

y = −h

2

)
= �−, ψ−

(
y = −h

2

)
= �−. (10)

It follows that four magneto-electric boundary conditions
cases exist as a combinations of equations (10) and the
following relationships

(I) ϕ+
(

y = h

2

)
= �(x, t), ψ+

(
y = h

2

)
= �(x, t)

(II) D+
y

(
y = h

2

)
= Dn(x, t),

B+
y

(
y = h

2

)
= Bn(x, t)

(III) ϕ+
(

y = h

2

)
= �(x, t),

B+
y

(
y = h

2

)
= Bn(x, t)

(IV) D+
y

(
y = h

2

)
= Dn(x, t),

ψ+
(

y = h

2

)
= �(x, t).

(11)
Equations (9) and (10) substituted into equation (7) yield

a+
2 = �− −

[
A−
ϕ

∂ϑ

∂x
+ B−

ϕ

∂2v

∂x2

]
h2

8
+ (

Ca+
1 + Da+

3

) h

2

a+
4 = �− −

[
A−
ψ

∂ϑ

∂x
+ B−

ψ

∂2v

∂x2

]
h2

8
+ (

Aa+
1 + Ba+

3

) h

2
(12)

while equations (11) are used to compute the last two
integration constants a+

1 and a+
3 . To express them in a compact

form let Ẽ represent 2
h� or Dn and H̃ stands for 2

h� or
Bn, depending on the magneto-electric boundary conditions
applied on the bimorph top surface; by so doing one has

a+
1 = Ei Ẽ + Fi H̃ + Li

ϑ

h

2

∂ϑ

∂x
+ Li

v

h

2

∂2v

∂x2

a+
3 = Gi Ẽ + H i H̃ + Mi

ϑ

h

2

∂ϑ

∂x
+ Mi

v

h

2

∂2v

∂x2

(13)

where Ei , Fi ,Gi , H i, Li
ϑ , Li

v,Mi
ϑ and Mi

v , with i =
{I, II, III, IV} according to equation (11), are combinations
of material constants related to the electromagnetic behavior
and to the piezoelectric and piezomagnetic characteristics as
summarized in appendix B, table B.1.

Eventually, equations (7), incorporating equations (9), (12)
and (13), become

ϕ± = b±
1 (y)

∂ϑ

∂x
+ b±

2 (y)
∂2v

∂x2
+ b±

3 (y)Ẽ + b±
4 (y)H̃ +�−

ψ± = b±
5 (y)

∂ϑ

∂x
+ b±

6 (y)
∂2v

∂x2
+ b±

7 (y)Ẽ + b±
8 (y)H̃ +�−

(14)
where b±

n (n = 1, 2, . . . , 8) are known functions of
the transverse coordinate and are listed for the sake of
completeness in appendix B from equations (B.4) to (B.7).
It appears from equations (14) that both the electric and
magnetic potential distributions through the bimorph thickness
direction are expressed in terms of the bn(y) functions, while
the variation along the beam length direction of ϕ and ψ

directly depends on the kinematic variables. Thus, to obtain
the complete analytic expressions for the magneto-electric
variables involved in the analysis, the equations of motion
solution is needed.

3.2. Mechanical problem

The magneto-electro-elastic bimorph beam equilibrium equa-
tions in terms of the bending moment M and the shear force T ,
taking into account both the translational and rotational inertia,
are

∂T

∂x
+ q0 = ρh

∂2v

∂ t2

∂M

∂x
+ T + m0 = ρ

h3

12

∂2ϑ

∂ t2
(15)

where q0 and m0 are the external transverse force and bending
moment per unit length applied on the beam, respectively,
while ρ is the beam mass per unit volume. Taking
into account the constitutive relationships equations (5), the
gradient relationships equations (3) and (4) and the electric and
magnetic potential functions equation (14) one has

T =
∫ h

2

− h
2

σxy dy = S

(
∂v

∂x
− ϑ

)
(16)

M =
∫ h

2

− h
2

σxx y dy = Kϑ

∂ϑ

∂x
+ Kv

∂2v

∂x2
+ PE Ẽ + PH H̃ (17)

where S is the bimorph shear stiffness, Kϑ is the magneto-
electro-elastic equivalent bending stiffness of the bimorph
beam while Kv is an additional bending stiffness related to
the second derivative of the transverse displacement that is
present when piezoelectric or piezomagnetic coupling exists.
The equivalent beam stiffness constants, with κ being the shear
factor, read as follows

S = κ(c+
44 + c−

44)
h

2
(18)

Kϑ = h3

24

[
(c+ + c−)− (e− A−

ϕ + e+ A+
ϕ )− (d− A−

ψ + d+ A+
ψ)

+ 3
2 Li

ϑ(e
−C − e+ + d− A)+ 3

2 Mi
ϑ (e

−D − d+ + d− B)
]

(19)

Kv = h3

24

[−(e−B−
ϕ + e+B+

ϕ )− (d− B−
ψ + d+B+

ψ )

+ 3
2 Li

v(e
−C − e+ + d− A)+ 3

2 Mi
v(e

−D − d+ + d−B)
]
.

(20)
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PE and PH in equation (17) are representative of the
bimorph beam piezoelectric and piezomagnetic constants and
are defined as

PE = h2

8
[Ei(e−C − e+ + d− A)+ Gi(e−D − d+ + d− B)]

(21)

PH = h2

8
[Fi(e−C − e+ + d− A)+ H i(e−D − d+ + d−B)].

(22)
By using equations (16) and (17) in equation (15), the

magneto-electro-elastic bimorph equations of motion can be
rewritten in terms of kinematical variables only as

S
∂2v

∂x2
− S

∂ϑ

∂x
+ q0 = ρh

∂2v

∂ t2

Kϑ

∂2ϑ

∂x2
+ Kv

∂3v

∂x3
+ S

∂v

∂x
− Sϑ + m0 + PE

∂ Ẽ

∂x

+ PH
∂ H̃

∂x
= ρ

h3

12

∂2ϑ

∂ t2
.

(23)

Equations (23) together with the boundary and initial
conditions constitute the magneto-electro-elastic bimorph
beam governing equations.

4. Natural frequencies and mode shapes

The free vibrations problem, specified by the homogeneous
differential equation of motion and homogeneous boundary
conditions, is first considered. Let us assume that the solution
to the free vibration governing equations, obtained from
equations (23) by forcing q0 and m0 to zero, can be written
in the form

v(x, t) = Vn(x)e
jωn t ϑ(x, t) = �n(x)e

jωn t (24)

where Vn and �n are the mode shapes associated with the
natural circular frequency ωn and j = √−1. By virtue
of equations (24), the homogeneous differential equations of
motion lead to

SV ′′
n − S�′

n + ρhω2
n Vn = 0

Kϑ�
′′
n + KvV ′′′

n + SV ′
n − S�n + ρ

h3

12
ω2

n�n = 0
(25)

where the prime denotes differentiation with respect to
x . In order to determine the natural frequencies and the
eigenfunctions, the generic mode shape is written as[

Vn

�n

]
=

[
Ci

V n

Ci
�n

]
eλni x i = {1, 2, 3, 4} (26)

and from the system of differential equations of equations (25)
it follows that[

Sλ2
ni + ρhω2

n −Sλni

(Kvλ
2
ni + S)λni Kϑλ

2
ni − S + ρh3

12 ω
2
n

] [
Ci

V n

Ci
�n

]
=

[
0
0

]
.

(27)
Thus, a non-trivial solution implies the determinant of the
coefficients matrix of equation (27) becomes zero, i.e.

(Kϑ + Kv)λ
4
n + ρh

(
h2

12
+ Kϑ

S

)
ω2

nλ
2
n + ρh

(
ρh3

12S
ω2

n−1

)
ω2

n

= 0. (28)

It is worth noting that the solution of equation (28) depends on
the frequency ωn ; in particular it is found that

(i) if ω2
n < 12S/ρh3, the roots of the characteristic equation

can be denoted as ±αn(ωn) and ±jβn(ωn) and the general
mode shape is[

Vn

�n

]
= C1n

[
sinhαn x

α2
n+ ρh

S ω
2
n

αn
coshαn x

]

+ C2n

[
coshαn x

α2
n+ ρh

S ω
2
n

−αn
sinhαn x

]

+ C3n

[
sinβn x

−β2
n + ρh

S ω
2
n

−βn
cos βn x

]

+ C4n

[
cos βn x

−β2
n + ρh

S ω
2
n

βn
sin βnx

]
, (29)

(ii) if ω2
n = 12S/ρh3, the characteristic equation admits 0 as a

solution with multiplicity 2 and ±jβ(ωn) as the other two
roots. In this case, the mode shape is[

Vn

�n

]
= C1n

[
0
1

]
+ C2n

[
1

12
h2 x

]

+ C3n

[
sin βnx

12
h2 −β2

n

−βn
cosβn x

]
+ C4n

[
cos βn x

12
h2 −β2

n

βn
sinβn x

]
,

(30)

(iii) if ω2
n > 12S/ρh3, the roots of the characteristic equation

can be denoted as ±jγ (ωn) and ±jβ(ωn) and the general
eigenfunction is[

Vn

�n

]
= C1n

[
sin γnx

−γ 2
n + ρh

S ω
2
n

−γn
cos γnx

]

+ C2n

[
cos γnx

−γ 2
n + ρh

S ω
2
n

γn
sin γn x

]

+ C3n

[
sinβn x

−β2
n + ρh

S ω
2
n

−βn
cos βn x

]

+ C4n

[
cos βn x

−β2
n + ρh

S ω
2
n

βn
sin βnx

]
. (31)

Since the roots of equation (28) are functions of ωn , the
boundary conditions at both ends of the beam are to be taken
into account in order to determine the natural frequencies.
Three distinct boundary conditions are considered in the
present work, namely the simply supported beam, denoted by
S–S, the clamped-free beam denoted as C–F and the clamped–
clamped configuration denoted as C–C. In particular, for each
of the boundary configurations one has

S–S : V (0) = M(0) = V (L) = M(L) = 0

C–F : V (0) = �(0) = T (L) = M(L) = 0

C–C : V (0) = �(0) = V (L) = �(L) = 0.

(32)

It must be highlighted that for the magneto-electro-elastic
bimorph beam, differently from the mechanical Timoshenko
beam, the homogeneous boundary conditions for the bending
moment do not imply that the cross sectional rotation derivative
is set to zero. In fact, recalling equation (17), it is easily seen
that the homogeneous boundary conditions for the kinematical
variables are obtained if, and only if, the magneto-electric
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boundary conditions on both the top and bottom surfaces
of the bimorph are homogeneous too. Thus, by imposing
homogeneous mechanical and magneto-electric boundary
conditions, a homogeneous system of algebraic equations is
obtained, whose coefficient matrix eigenvalues, ωn , represent
the magneto-electro-elastic bimorph beam natural frequencies.
Once the eigenvectors are computed for each natural frequency,
the mode shapes, equations (29), (30) or (31), are determined
in terms of an amplification factor only.

5. Forced vibrations solution

The forced vibrations problem of the magneto-electro-elastic
beam is characterized by the existence of three kinds of
loads. Besides the mechanical loads, such as distributed
or concentrated forces or bending moments, the beam can
experience electric or magnetic loads. Application of the
magneto-electric boundary conditions equations (11) allows
us to model the presence of through the thickness electric
or magnetic fields. The influence of the electric and/or
magnetic loads on the lateral vibration behavior is analytically
introduced in the forced vibration problem by the bending
moment equation (17). Moreover, it is worth noting that the
electric and magnetic loads can enter the transverse vibration
problem as time-dependent boundary conditions. In fact,
differently from the elastic beam where the zero bending
moment boundary condition directly implies a stationary
condition on the kinematical variable, in the case of the
magneto-electro-elastic beam the related kinematical variables
result to be constrained in such a way to undergo a bending
moment which varies with time. Thus, to take into account
the mechanical and the electromagnetic loads, the problem
of forced vibration is solved by extending the procedure
proposed by Mindlin and Goodman [40] to deal with time-
dependent boundary conditions for a Euler–Bernoulli beam.
The procedure has then been applied to the Timoshenko
beam by Hermann [43] and, for the sake of completeness,
is here presented for the magneto-electro-elastic Timoshenko
bimorph beam. The main idea behind the Mindlin and
Goodman procedure is to take full advantage of the property
of orthogonality of the principal mode of free vibration and
to make use of the classical method of separation of variables
by seeking the particular solution of the equation of motion
equations (23) in a form that allows us to reduce the forced
vibration problem to a free vibration problem and integration
of polynomial functions.

The property of orthogonality of the principal modes of
vibration is written, in matrix form, as

∫ L

0

(
VTV + h2

12
ΘTΘ

)
dx = L (33)

being L(i, j) = 0 if i �= j , and

V(x) = [V1(x), V2(x), . . . , Vn(x), . . . , V∞(x)]

Θ(x) = [�1(x),�2(x), . . . ,�n(x), . . . ,�∞(x)] .
(34)

Table 1. Time-dependent boundary conditions notation.

f1(t) v(t) or T (t) at x = 0
f2(t) ϑ(t) or M(t), Ẽ(t), H̃(t) at x = 0
f3(t) v(t) or T (t) at x = L
f4(t) ϑ(t) or M(t), Ẽ(t), H̃(t) at x = L

The particular solution is sought in the form

v(x, t) = w(x, t)+
4∑

i=1

giv(x) fi(t)

ϑ(x, t) = β(x, t)+
4∑

i=1

giϑ(x) fi (t)

(35)

where giv and giϑ are functions chosen in such a way to ensure
homogeneous boundary conditions for the functions w and
β . In equations (35) fi are representative of the time-varying
boundary conditions as shown in table 1.

Once the functions giv and giϑ are determined for a
given set of time-varying boundary conditions, the remaining
problem is to solve the equation of motion in terms of the
functions w(x, t) and β(x, t). By substituting equations (35)
into (23), the governing equations for w(x, t) and β(x, t) are
obtained

S

(
∂β

∂x
− ∂2w

∂x2

)
+ ρh

∂2w

∂ t2

= q0 +
4∑

i=1

S
(
g′′

iv − g′
iϑ

)
fi (t)−

4∑
i=1

ρhgiv f̈i (t) (36)

−Kϑ

∂2β

∂x2
− Kv

∂3w

∂x3
+ S

(
β − ∂w

∂x

)
+ ρ

h3

12

∂2β

∂ t2

= m0 + PE
∂ Ẽ

∂x
+ PH

∂ H̃

∂x

+
4∑

i=1

[
Kϑg′′

iϑ + Kvg′′′
iv + S

(
g′

iv − giϑ
)]

fi (t)

−
4∑

i=1

ρ
h3

12
giϑ f̈i (t) (37)

while the initial conditions, by using equation (35), are written
as

w(x, 0) = v(x, 0)−
4∑

i=1

giv(x) fi (0)

β(x, 0) = ϑ(x, 0)−
4∑

i=1

giϑ(x) fi(0)

ẇ(x, 0) = v̇(x, 0)−
4∑

i=1

giv(x) ḟi (0)

β̇(x, 0) = ϑ̇(x, 0)−
4∑

i=1

giϑ(x) ḟi(0)

(38)

where dots indicate differentiation with respect to time.
In order to solve equations (36) and (37), the functions

w(x, t) and β(x, t) are written as a superposition of the
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Table 2. Frequencies (Hz) for the piezoelectric beam. (Note: ( ) computed by using Ansys® multiphysics [33], [ ] computed by using the
magneto-electro-elastic FE [33].)

Mode C–C C–F S–S

1 1056.3 (1058.4) 170.81 (170.83) 477.3 (476.4)
Plane 2 2801.0 (2807.0) 1047.3 (1047.5) 1864.3 (1859.9)
Stress 3 5239.4 (5252.3) 2837.9 (2839.2) 3980.3 (3490.6)
State 4 7960.6 (7975.1) 3980.3 (3980.9) 4043.7 (4031.0)

5 8214.8 (8238.4) 5324.0 (5328.7) 6864.7 (6836.4)

1 1021.3 [1042.34] 164.8 [167.17] 460.9 [467.38]
Monoaxial 2 2715.6 [2783.21] 1011.9 [1029.73] 1805.5 [1835.7]
Stress 3 5095.6 [5267.51] 2748.2 [2809.58] 3839.6 [3573.48]
State 4 7679.2 [7689.42] 3839.6 [3841.22] 3932.9 [4014.79]

5 8015.9 [8333.28] 5170.9 [5317.97] 6710.2 [6883.36]

previously determined natural mode shapes as follows

w(x, t) = V(x)t(t) β(x, t) = Θ(x)t(t) (39)

and the right-hand side of both equations is expanded in a
series of functions V(x) and Θ(x) in order to determine
the mode shapes amplification factors t(t). In particular,
following Hermann [43], the last terms of the right-hand side
of equations (36) and (37) can be expanded as

giv = VGi giϑ = ΘGi (40)

where

GT
i = [Gi1,Gi2, . . . ,Gin, . . . ,Gi∞]. (41)

The terms of equations (36) and (37) multiplying fi (t) are
expanded as

S

ρh

(
g′′

iv − g′
iϑ

) = VG∗
i

12

ρh3

[
Kϑg′′

iϑ + Kvg′′′
iv + S

(
g′

iv − giϑ
)] = ΘG∗

i

(42)

while the applied time-dependent loads are written as

q0

ρh
= VQ

12

ρh3

[
m0 + PE

∂ Ẽ

∂x
+ PH

∂ H̃

∂x

]
= ΘQ

(43)

having G∗
i and Q in the same form as equation (41). By

virtue of the orthogonality condition equation (33), the series
coefficients Gi , G∗

i and Q read as

Gi = L−1
∫ L

0

(
VTgiv + h2

12
ΘTgiϑ

)
dx

G∗
i = S

ρh
L−1

∫ L

0

[
VT

(
g′′

iv − g′
iϑ

)

+ ΘT

(
Kϑ

S
g′′

iϑ + Kv

S
g′′′

iv + g′
iv − giϑ

)]
dx

Q = 1

ρh
L−1

∫ L

0

[
VTq0 + ΘT

(
m0 + PE

∂ Ẽ

∂x
+ PH

∂ H̃

∂x

)]
dx .

(44)

Thus, by using equations (39)–(43) in equations (36) and (37)
and by taking into account equations (25), the following
relationships are obtained

V
[

ẗ + Ωt − Q −
4∑

i=1

G∗
i fi +

4∑
i=1

Gi f̈i

]
= 0

Θ
[

ẗ + Ωt − Q −
4∑

i=1

G∗
i fi +

4∑
i=1

Gi f̈i

]
= 0

(45)

where Ω is a diagonal matrix such as Ω(n, n) = ω2
n .

By integrating over the beam length the sum of the
first of equations (45) multiplied by VT and the second
of equations (45) multiplied by h2

12Θ
T, in view of the

orthogonality condition equation (33), the following set of
ordinary uncoupled differential equations on t, solvable by a
standard procedure, is obtained

ẗ + Ωt = Q +
4∑

i=1

G∗
i fi −

4∑
i=1

Gi f̈i . (46)

The solution of equation (46) represents the mode shapes
amplification factors that allow us to write the problem solution
in terms of the beam mean-line transverse displacement and of
the cross sectional rotation by virtue of equations (39) and (35).

6. Verifications and applications

6.1. Free vibration

Some results are presented to assess the reliability and
effectiveness of the proposed model. In the first application,
the eigenfrequencies of a single layer piezoelectric beam
are computed for different boundary conditions, see table 2,
and compared to those calculated by Annigeri et al [33] by
using Ansys® multiphysics and the finite element formulation
developed for a magneto-electro-elastic in-plane plate element.
BaTiO3 piezoelectric material constants are listed in table 3,
the material density is ρ = 5800 kg m−3 while the beam
dimensions are L = 0.3 m and h = 0.02 m.

The second example considered is a homogeneous beam
made of the particulate magneto-electro-elastic composite,
namely BF60, with a 60% volume fraction of BaTiO3

and a 40% volume fraction of CoFe2O4, whose material

7
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Table 3. BaTiO3 material constants.

Cij (109 Pa) εi j (10−9 F m−1) μi j (10−6 N s2 C−2) ei j (C m−2) di j (N A m−1) ηi j (10−12 N s V−1 C−1)

C11 = 166 ε11 = 11.2 μ11 = 5 e21 = −4.4 d21 = 0 η11 = 0
C22 = 162 ε22 = 12.6 μ11 = 10 e22 = 18.6 d22 = 0 η22 = 0
C12 = 78 e14 = 11.6 d14 = 0
C13 = 77
C44 = 43

Table 4. BF60 material constants.

Cij (109 Pa) εi j (10−9 F m−1) μi j (10−6 N s2 C−2) ei j (C m−2) di j ( N A m−1) ηi j (10−12 N s V−1 C−1)

C11 = 200 ε11 = 0.9 μ11 = −150 e21 = −3.5 d21 = 200 η11 = 6
C22 = 190 ε22 = 7.5 μ11 = 75 e22 = 11 d22 = 260 η22 = 2500
C12 = 110 e14 = 0 d14 = 180
C13 = 110
C44 = 45

Table 5. Frequencies (Hz) for the BF60 beam. (Note: ( ) FEM results [33].)

Mode C–C C–F S–S

1 1053.70 (1054.93) 169.96 (169.97) 475.41 (474.67)
2 2800.24 (2805.75) 1043.3 (1043.76) 1861.03 (1858.33)
3 5250.08 (5266.99) 2831.8 (2835.36) 3961.14 (3632.54)
4 7922.28 (7812.88) 3959.4 (3902.01) 4049.69 (4045.01)
5 8250.11 (8291.21) 5323.2 (5337.23) 6900.88 (6896.23)
6 11 675.43 (11 758.60) 8385.6 (8423.05) 10 272.44 (10 274.55)
7 15 423.76 (15 572.90) 11 878.0 (11 704.94) 11 883.43 (10 918.21)
8 15 844.57 (15 623.80) 11 887.3 (11 967.14) 14 039.43 (14 056.89)
9 19 416.33 (19 659.70) 15 720.6 (15 867.42) 18 100.68 (18 150.64)

10 23 593.71 (23 430.00) 19 796.7 (19 504.23) 19 805.71 (18 256.71)

Table 6. CoFe2O4 material constants.

Cij (109 Pa) εi j (10−9 F m−1) μi j (10−6 N s2 C−2) ei j (C m−2) di j (N A m−1) ηi j (10−12 N s V−1 C−1)

C11 = 286 ε11 = 0.08 μ11 = −590 e21 = 0 d21 = 580.3 η11 = 0
C22 = 269.5 ε22 = 0.093 μ22 = 157 e22 = 0 d22 = 699.7 η22 = 0
C12 = 170.5 e14 = 0 d14 = 550
C13 = 173
C44 = 45.3

constants [33, 16] are shown in table 4, while the volume
density has been computed to be 5550 kg m−3. The natural
frequencies computed for the three boundary conditions
equations (32) are listed in table 5 in comparison with the FEM
analysis results [33].

The free vibration behavior of a magneto-electro-elastic
laminated beam is also investigated. The beam is realized
by stacking a piezoelectric BaTiO3 and a piezomagnetic
CoFe2O4 layer. The material constants are listed in tables 3
and 6, the overall dimensions are the same as in the previous
applications while the thickness of both laminae is h/2. The
stacking sequence appears to have no influence on the natural
frequencies, that are listed in table 7, in comparison with the
finite element calculation [33].

It is worth noting that in tables 2, 5 and 7, the values in
italic have been found to be axial mode and that the relative
natural frequencies have been computed by virtue of the free
longitudinal vibrations theory, see [39] for more details, and
by defining an equivalent Young’s modulus for the magneto-

electro-elastic beam as

Ê = 12(Kϑ + Kv)

ρh3
. (47)

6.2. Forced vibration

A simply supported CoFe2O4/BaTiO3 laminated beam is firstly
studied. The beam length is L = 0.3 m and the overall
thickness is h = 0.02 m. The beam undergoes a uniformly
quasi-static distributed load q = 1 − exp(−t/0.15) N m−1,
while the electric and magnetic potentials at the beam top
surface are set to zero. The material constants are listed in
tables 3 and 6 for the piezoelectric and piezomagnetic layers,
respectively. In order to check the proposed analytical solution,
a boundary element analysis of the bimorph beam has been
carried out by using the multidomain BEM presented in [36].
To compare the analytical and numerical results, the response
of the beam has been studied in terms of vertical displacement,
and electric and magnetic potentials at the interface point

8
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Table 7. Frequencies (Hz) for the BaTiO3/CoFe2O4 layered beam. (Note: ( ) FEM results [33].)

Mode C–C C–F S–S

1 1167.56 (1165.07) 189.63 (188.70) 529.80 (526.29)
2 3080.24 (3078.60) 1159.42 (1154.65) 2065.44 (2052.71)
3 5730.43 (5738.67) 3129.14 (3120.80) 4420.84 (4008.32)
4 8841.68 (8683.41) 4420.84 (4335.11) 4467.87 (4444.36)
5 8935.91 (8971.57) 5841.67 (5838.36) 7561.09 (7529.14)
6 12 555.58 (12 640.40) 9136.27 (9154.66) 11 174.64 (11 146.30)
7 16 479.50 (16 643.20) 12 861.96 (12 924.90) 13 262.52 (12 053.30)
8 17 683.36 (17 358.00) 13 262.52 (13 001.50) 15 165.55 (15 150.10)
9 20 626.50 (20 900.40) 16 897.13 (17 036.50) 19 423.23 (19 449.40)

10 24 937.25 (25 360.00) 21 155.73 (21 405.10) 22 104.20 (20 163.40)

Figure 2. Applied load and magneto-electro-elastic response time
history.

Table 8. Numerical convergence and analytical results at the point
(L/2, 0).

BEM

No elements 100 140 180 220 260 Present

v (nm) 0.806 0.972 1.051 1.093 1.114 1.158
ϕ (mV) 2.61 3.19 3.46 3.60 3.68 3.53
ψ (μA m−1) −2.00 −2.55 −2.66 −2.75 −2.83 −2.93

(L/2, 0), and good agreement has been obtained. From table 8
it appears that as the number of boundary elements increases,
the numerical response tends to the analytical one. It is seen
that by using 260 linear elements, the numerical solution fits
quite well the analytical results with a maximum percentage
discrepancy of 4% for the electric potential.

The response of the bimorph beam to the applied load
is shown in figure 2. It can be observed that the vertical
displacement approaches the beam’s static deflection value at
0.8 s. Moreover, the behavior of both the electric and magnetic
potential can be considered steady after 0.8 s even though small
oscillations hold.

Figure 3. Steady state through the thickness electric potential
distribution at x = L/2.

The through the thickness electric potential distribution
at x = L/2 and t = 1 s is shown in figure 3 in
comparison with the BEM results. It appears that the electric
potential behaves linearly in the piezomagnetic layer and
quadratically in the piezoelectric domain. A similar behavior
is highlighted for the magnetic potential through the thickness
distribution. The magnetic potential is a quadratic function of
y in the piezomagnetic lamina while it varies linearly in the
piezoelectric layer as shown in figure 4.

The second application presented deals with a clamped–
clamped bimorph beam, used as an electromagnetic strain
sensor, of length L = 0.3 m and thickness h = 0.01 m. The
lower lamina is made by the piezomagnetic CoFe2O4 material
while the upper layer medium is piezoelectric BaTiO3. The
material constants are listed in tables 3 and 6. The beam, at the
instant t = 0, suddenly undergoes a sinusoidally distributed
mechanical load of amplitude q = sin(πx/L) N m−1 that
remains constant in time; all of the initial conditions are set
to zero. The maximum transverse displacement experienced
by the beam is about 3.16 nm while the electric and magnetic
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Figure 4. Steady state through the thickness magnetic potential
distribution at x = L/2.

beam responses are shown in figures 5 and 6 in terms of the
electric and magnetic potentials at three particular points of the
bimorph top surface. From figure 6 it appears that the magnetic
potential tends to oscillate at the beam’s first natural frequency
of 564.92 Hz; on the other hand, the electric potential is
more sensitive to high frequency modes, as highlighted in
figure 5. Six mode shapes were used to approximate the
structure dynamic response since higher modes have been
found to have a negligible influence; moreover, the functions
giθ and giv are trivially zero as the boundary conditions do not
depend on time.

In the third application, the proposed model is employed
to simulate the behavior of a cantilever bilayer used as a
magnetic field probe. The length of the beam is L =
0.05 m, the thickness is h = 0.5 mm and the lamination
sequence is CoFe2O4/BaTiO3. The magneto-electric boundary
condition II, see equations (11), is used to take into account the
influence of an applied magnetic induction. In particular, the
applied magnetic induction is constant along the x direction,
its amplitude is 10−5 T and varies at 2 kHz. The electric
displacement on the bimorph top surface is set to zero for
reading the device response corresponding to the applied
magnetic load in terms of the difference of the electric potential
in the beam through the thickness direction. The presence
of the external magnetic induction, through the condition of
zero bending moment at the free end, implies, according
to table (1), the existence of the function f4(t) and, as a
consequence, that the functions g4θ and g4v must be non-zero
to assure homogeneous boundary conditions for w(x, t) and
β(x, t). In particular, one has f4(t) = 10−5 sin(4π103t),
g4v = −(Ph/Kϑ)Lx and g4ϑ = −(Ph/Kϑ)x . The transverse
displacement and the electric potential at the top surface of the
beam at two distinct instants of time are plotted in figures (7)
and (8) respectively. It appears that the beam deformation

Figure 5. Electric potential on the top surface of the bimorph beam.

Figure 6. Magnetic potential on the top surface of the bimorph
beam.

mainly affects the electric potential response mean value,
whereas its distribution along the longitudinal direction tends
to remain unchanged.

In figure 9, the driving magnetic load Bn, the bimorph
device electric response and the beam free end displacement
are compared. The graph of ϕ+ shown in figure 9 is
representative of the difference of the electric potential mean
value along the x direction, since the electric potential at the
beam bottom surface �− has been set to zero. It is evident
from figure 9 that the electric response of the beam varies at
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Figure 7. Snapshots of the magnetic field probe transverse
displacement.

Figure 8. Snapshots of the magnetic field probe top surface electric
potential distribution.

the same frequency of the applied magnetic induction, i.e. at
2 kHz; on the other hand, the beam free end oscillates at about
148.64 Hz, that is the first natural frequency of the analyzed
structure.

7. Conclusions

A general analytical method for the free and forced vibration
analysis of a magneto-electro-elastic bimorph beam with time-

Figure 9. Applied magnetic load and electro-mechanical response of
the bimorph beam.

dependent boundary conditions has been presented. From
the mechanical point of view, the model has been based
on Timoshenko’s beam theory to take into account the
shear force effect. The electric and magnetic fields have
been treated as quasi-static, due to the observation that the
electromagnetic waves propagation velocity is several orders
of magnitude higher than that of elastic waves. Moreover,
the assumptions made on the electric and magnetic fields
have allowed us to include the piezoelectric, piezomagnetic
and electromagnetic coupling in the beam equivalent bending
stiffness coefficients. The presence of an additional
bending stiffness, only dependent from the piezoelectric
and piezomagnetic characteristics, has been put in evidence.
Moreover, it is worth pointing out that no restrictions on the
magneto-electric boundary conditions have been made and
that they can enter the mechanical response as an equivalent
external bending moment per unit length and via the bending
moment definition. Solutions for free and forced vibration
problems have been obtained by means of modal expansion.
Shifting functions have been used to take into account the
effects of the electric and magnetic loads on the dynamic
behavior of the beam, brought into the forced vibration
analysis in the form of time-varying boundary conditions. As
a consequence, a great variety of boundary conditions can
be modeled, revealing a wide applicability of the proposed
method. Free vibration analyses carried out on multiphase and
laminated beams have proven the effectiveness of the proposed
solution. The transient responses of magneto-electro-elastic
bimorph beams employed as electromagnetic strain sensors
and magnetic field probes have been obtained via the proposed
method.

Appendix A. Constitutive relationships and
parameters

The constitutive relationships for a transversely isotropic
magneto-electro-elastic composite having electric and mag-
netic poling directions parallel to the y-axis are obtained, by
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Table B.1. Constants related to the electromagnetic top surface boundary conditions.

B.C. I II III IV

Ẽ 2
h� Dn

2
h� Bn

H̃ 2
h� Bn Bn

2
h�

Ei (1+B)
(1+C)(1+B)−AD

−μ+
ε+μ+−η+2

−μ+
η+ D−μ+(1+C)

(1+B)
η+ A−ε+ (1+B)

Fi −D
(1+C)(1+B)−AD

η+
ε+μ+−η+2

−D
η+ D−μ+(1+C)

η+
η+ A−ε+ (1+B)

Gi −A
(1+C)(1+B)−AD

η+
ε+μ+−η+2

η

η+ D−μ+(1+C)
−A

η+ A−ε+ (1+B)

H i (1+C)
(1+C)(1+B)−AD

−ε+
ε+μ+−η+2

(1+C)
η+ D−μ+(1+C)

−ε+
η+ A−ε+ (1+B)

Li
ϑ Ei A−

ϕ −A+
ϕ

2 + Fi A−
ψ−A+

ψ

2 Ei cdv + Fi cbv Ei A−
ϕ −A+

ϕ

2 − Fi cbϑ −Ei cdϑ + Fi A−
ψ−A+

ψ

2

Li
v Ei B−

ϕ −B+
ϕ

2 + Fi B−
ψ

−Bψ+
2 Ei cdϑ + Fi cbϑ Ei B−

ϕ −B+
ϕ

2 − Fi cbv −Ei cdv + Fi B−
ψ

−B+
ψ

2

Mi
ϑ Gi A−

ϕ −A+
ϕ

2 + H i A−
ψ−A+

ψ

2 Gi cdϑ + H i cbϑ Gi A−
ϕ −A+

ϕ

2 − H i cbϑ −Gi cdϑ + H i A−
ψ−A+

ψ

2

Mi
v Gi B−

ϕ −B+
ϕ

2 + H i B−
ψ−Bψ+

2 Gi cdv + H i cbv Gi B−
ϕ −B+

ϕ

2 − H i cbv −Gi cdv + H i B−
ψ−B+

ψ

2

virtue of [33] and [42], and are listed, for the sake of complete-
ness, in equation (A.1), where C55 = C11−C13

2 .

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σxx

σyy

σzz

σzy

σzx

σxy

Dx

Dy

Dz

Bx

By

Bz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0 0 −e21

C12 C22 C12 0 0 0 0 −e22

C13 C12 C11 0 0 0 0 −e21

0 0 0 C44 0 0 0 0
0 0 0 0 C55 0 0 0
0 0 0 0 0 C44 −e14 0
0 0 0 0 0 e14 ε11 0

e21 e22 e21 0 0 0 0 ε22

0 0 0 e14 0 0 0 0
0 0 0 0 0 d14 η11 0

d21 d22 d21 0 0 0 0 η22

0 0 0 d14 0 0 0 0
0 0 −d21 0
0 0 −d22 0
0 0 −d21 0

−e14 0 0 −d14

0 0 0 0
0 −d14 0 0
0 η11 0 0
0 0 η22 0
ε11 0 0 η11

0 μ11 0 0
0 0 μ22 0
η11 0 0 μ11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γxx

γyy

γzz

γzy

γzx

γyx

Ex

Ey

Ez

Hx

Hy

Hz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.1)

Under the hypothesis of plane stress elasticity, some of the

constitutive constants are rearranged as shown below

C̄11 = C11 − C2
13

C11
C̄12 = C12 − C12C13

C11

C̄22 = C22 − C2
12

C11
ε̄22 = ε22 + e2

21

C11

η̄22 = η22 + e21d21

C11
μ̄22 = μ22 − d2

21

C11

ē21 = e21 − C13d21

C11
ē22 = e22 − C12e21

C11

d̄21 = d21 − C13e21

C11
d̄22 = d22 − C12d21

C11

(A.2)

while for a beam-like structure, the material parameters are

c = C̄11 − h̃
C̄2

12

C̄22
e = ē21 − h̃

C̄12ē22

C̄22

d = d̄21 − h̃
C̄12d̄22

C̄22
ε = ε̄22 + h̃

ē2
22

C̄22

η = η̄22 + h̃
ē22d̄22

C̄22
μ = μ̄22 + h̃

d̄2
22

C̄22

(A.3)

where h̃ = 0 for plane stress analysis and h̃ = 1 for monoaxial
stress analysis.

Appendix B. Magneto-electric problem constants

A±
ϕ = −μ

±(e±
14 + e±)− η±(d±

14 + d±)
ε±μ± − η±2

,

B±
ϕ = μ±e±

14 − η±d±
14

ε±μ± − η±2

A±
ψ = −ε

±(d±
14 + d±)− η±(e±

14 + e±)
ε±μ± − η±2 ,

B±
ψ = ε±d±

14 − η±e±
14

ε±μ± − η±2

(B.1)

12
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A = ε−η+ − η−ε+

ε−μ− − η−2 ; B = ε−μ+ − η−η+

ε−μ− − η−2 ;

C = μ−ε+ − η−η+

ε−μ− − η−2
; D = μ−η+ − η−μ+

ε−μ− − η−2

(B.2)

cdϑ = e+ + ε+ A+
ϕ + η+ A+

ψ cdv = ε+B+
ϕ + η+B+

ψ

cbϑ = d+ + η+ A+
ϕ + μ+ A+

ψ cbv = η+B+
ϕ + μ+B+

ψ

(B.3)

b+
1 = A+

ϕ

y2

2
− A−

ϕ

h2

8
+ Li

ϑ

h

2
y + (

Li
ϑC + Mi

ϑ D
) h2

4

b+
2 = B+

ϕ

y2

2
− B−

ϕ

h2

8
+ Li

v

h

2
y + (

Li
vC + Mi

vD
) h2

4

b+
3 = Ei y + (Ei C + Gi D)

h

2

b+
4 = Fi y + (Fi C + H i D)

h

2

(B.4)

b+
5 = A+

ψ

y2

2
− A−

ψ

h2

8
+ Mi

ϑ

h

2
y + (Li

ϑ A + Mi
ϑ B)

h2

4

b+
6 = B+

ψ

y2

2
− B−

ψ

h2

8
+ Mi

v

h

2
y + (Li

v A + Mi
vB)

h2

4

b+
7 = Gi y + (Ei A + Gi B)

h

2

b+
8 = H i y + (Fi A + H i B)

h

2

(B.5)

b−
1 = A−

ϕ

(
y2

2
− h2

8

)
+ (Li
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h

2

(
h

2
+ y

)
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ϕ

(
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h

2

(
h

2
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2
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(B.6)

b−
5 = A−

ψ

(
y2

2
− h2

8

)
+ (Li

ϑ A + Mi
ϑ B)

h

2

(
h

2
+ y

)

b−
6 = B−

ψ

(
y2

2
− h2

8

)
+ (Li

vA + Mi
vB)

h

2

(
h

2
+ y

)

b−
7 = (Ei A + Gi B)

(
h

2
+ y

)

b−
8 = (Fi A + H i B)

(
h

2
+ y

)
.

(B.7)
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