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Abstract. Objective: A defining feature of physiological systems under the
neuroautonomic regulation is their dynamical complexity. The most common
approach to assess physiological complexity from short-term recordings, i.e. to
compute the rate of entropy generation of an individual system by means of
measures of conditional entropy (CE), does not consider that complexity may
change when the investigated system is part of a network of physiological
interactions. This study aims at extending the concept of short-term complexity
towards the perspective of network physiology, defining multivariate CE measures
whereby multiple physiological processes are accounted for in the computation
of entropy rates. Approach: Univariate and multivariate CE measures are
computed using state-of-the-art methods for entropy estimation and applied
to the time series of heart period (H), systolic (S) and diastolic (D) arterial
pressure, and respiration (R) variability measured in healthy subjects monitored
in a resting state and during conditions of postural and mental stress. Main
results: Compared with the traditional univariate metric of short-term complexity,
multivariate measures provide additional information with plausible physiological
interpretation, such as: (i) the dampening of respiratory sinus arrhythmia and
activation of the baroreflex control during postural stress; (ii) the increased
complexity of heart period and blood pressure variability during mental stress,
reflecting the effect of respiratory influences and upper cortical centers; (iii) the
strong influence of D on S, mediated by left ventricular ejection fraction and
vascular properties; (iv) the role of H in reducing the complexity of D, related
to cardiac run-off effects; and (v) the unidirectional role of R in influencing
cardiovascular variability. Significance: Our results document the importance of
employing a network perspective in the evaluation of the short-term complexity
of cardiovascular and respiratory dynamics across different physiological states.
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1. Introduction

Physiological systems exhibit complex dynamical behaviors, resulting from the
combined effect of multiple regulatory mechanisms, coupling effects and feedback
interactions among structural units (Glass 2001, Burggren & Monticino 2005).
In addition, physiological dynamics are subject to modifications under different
physiological states or pathological conditions, that are reflected in the output signals
of the different physiological systems. As a consequence, the study of the temporal
dynamical structure of physiological signals has raised great interest in both research
and clinical communities.

In this context, different and sometimes elusive meanings have been proposed
for the concept of “physiological complexity”. On the one hand, there exists a
body of research that relates physiological complexity to the presence of long-
range fractal correlations and nonlinear interactions in physiological signals (Ivanov
et al. 1999, Hausdorff et al. 1995). This definition of complexity stems from the
observation that healthy physiological systems (e.g. heartbeat fluctuations, interstride
interval fluctuations) show self-similarity properties over multiple time scales, and
that when these multiscale properties are disrupted the capability of systems to
respond to external challenges is reduced (Lipsitz & Goldberger 1992, Schumann
et al. 2010, Goldberger et al. 2002). Measures quantifying this type of complexity are
applied to long recordings, that allow the observer to study physiological dynamics
happening at a wide range of different time scales. On the other hand, a different
approach is adopted by techniques that aim to quantify the short-term complexity of
physiological signals, spanning time scales in the order of a few minutes. In this case,
complexity is associated to the concept of regularity of the temporal patterns found
in the observed signals, and typically quantifies the unpredictability of the present
sample of a physiological time series given a small number of its past samples (Porta,
Guzzetti, Furlan, Gnecchi-Ruscone, Montano & Malliani 2007). Paradoxically, long-
range correlations may represent a confounding factor for this type of analysis, being
represented by slow trends that are commonly treated as non-stationarities to be
filtered out through appropriate preprocessing (Xiong et al. 2017). The mostly used
approaches for the quantification of short-term complexity belong to the information-
theoretic domain and stem from the work of Pincus, who devised a family of metrics
to be applied to short, noisy and stochastic signals, measuring the rate of generation of
new information, named Approximate Entropy (Pincus 1991). Subsequent refinements
of this pioneering work led to the development of a range of measures, among which
Sample Entropy (Richman & Moorman 2000), Corrected Conditional Entropy (Porta
et al. 1998), Fuzzy Entropy (Chen et al. 2007) and Permutation Entropy (Bandt &
Pompe 2002) are the most popular. All these measures are subsumed by the general
notion of entropy rate, computed as the conditional entropy (CE) of the present value
of a time series given its own past values (Faes & Porta 2014).

A typical application of entropy-based short-term complexity analysis is the
study of spontaneous fluctuations of the heart period, for the characterization of
autonomic function and its changes associated with cardiovascular diseases, stress
conditions, ageing, etc. (Porta et al. 2009). Besides heart rate variability, conditional
entropy measures have been applied to assess the short-term complexity of other
physiological signals such as arterial blood pressure (Angelini et al. 2007, Turianikova
et al. 2011), respiration (Dragomir et al. 2008, Papaioannou et al. 2011), and others
(Burioka et al. 2005, Mansur et al. 2010, Karmakar et al. 2013). Even though the
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short-term complexity analysis of individual systems has provided helpful markers of
health and disease, recent evidence highlights the fundamental importance of studying
physiological phenomena within a network perspective (Ivanov et al. 2016). This
perspective arises from the knowledge that physiological systems do not evolve in
isolation, but rather are highly interconnected and mutually interdependent on each
other, showing patterns of interaction that are subject to changes depending on
physiological states or pathological conditions (Bashan et al. 2012, Bartsch et al. 2015).
It is therefore likely that the complexity of the dynamical behavior of a target
physiological system is reduced when the joint dynamics observed from mutually
connected systems are taken into account. On this basis, the present work aims to
extend the concept of short-term complexity, traditionally defined for the dynamics
of a single physiological system, to a more general concept of multivariate complexity,
to be defined when the observed system is the target of a network of physiological
interactions. To this aim, a multivariate extension of the univariate definition of CE
is proposed, which allows to quantify how systems in the network contribute to predict
the dynamics of the target system.

In this work, univariate and multivariate definitions of CE are exploited
to study the complexity of the time series of the heart period, systolic blood
pressure, diastolic blood pressure and respiratory volume measured from healthy
subjects in resting condition and during commonly studied physiological stressors,
i.e. orthostatic stress and mental stress. This is in line with recent approaches
developed in the time, frequency or information domain (non-linear prediction,
phase synchronization, Granger causality) that employ multivariate descriptions to
characterize cardiovascular and cardiorespiratory interactions under the principles
of network analysis and have proven their effectiveness in extracting physiologically
relevant indices of system functioning and dysfunctioning (Schulz et al. 2013, Porta
& Faes 2016). A comparison between univariate and multivariate approaches for
the assessment of complexity of short-term cardiovascular control has been carried
out in (Porta et al. 2012) using linear prediction models, but here nonlinear features
are accounted for by the proposed model-free information-theoretic approach. The
objective is to characterize the physiological function in well-known conditions of
postural stress or under less-established mentally challenging paradigms, emerging
from modifications in the complexity of cardiac, blood pressure and respiratory
dynamics. Cardiovascular and respiratory systems are known to reflect autonomic
changes that are involved in the physiological response to stress and show behaviors
that are highly dependent on each other (Haken & Koepchen 1991, Eckberg 2000). In
this context, the proposed multivariate approach may help in typifying the autonomic
response to postural or mental challenge, unravelling the physiological interaction
mechanisms underlying the changes in the complexity of individual control systems.

2. Materials and Methods

2.1. Complexity measures

Short-term physiological complexity is quantified in this work in the information-
theoretic domain using measures of conditional entropy applied to the study of
temporal dynamics, as defined in the following.

Let us consider a dynamical system Y represented by the dynamical process
Y , whose present outcomes at time n are described by the scalar random variable
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Y ′ = Yn, while the past outcomes are modelled by the vector random variable
Y− = [Yn−1, Yn−2, ...]. Stationary and ergodic assumptions hold for process Y , so
that the dependence on the time index n is dropped in Y ′ and Y−.

The traditional approach to evaluate short-term complexity considers the process
Y in isolation, so that the (univariate) conditional entropy of its present on the past
is computed as (Faes & Porta 2014):

H(Y ′|Y−) = −E[log p(y′|y−)] , (1)

where H stands for the Shannon entropy, y′ is an observation of the random variable
Y ′, y− is an observation of Y− and the expectation E[·] is taken over all possible
values of y′ and y−. H(Y ′|Y−) quantifies how much uncertainty remains in Y ′ after
Y− is known, or equivalently the information contained in the present of process Y
that cannot be explained by the knowledge of its past.

Here, we extend the definition of complexity to a multivariate setting. Let
us suppose that a network Z of M interacting systems is considered, composed of
system Y, called target, and M − 1 other systems, here denoted as X1,X2, ...,XM−1,
represented by the dynamical processes X1, X2, ..., XM−1 and called drivers. The
multivariate process representing the time evolution of the whole network is indicated
as Z = {Y,X1, X2, ..., XM−1} and stationary and ergodic assumptions are assumed
to be verified. Within this setting, multivariate complexity can be defined as the
conditional entropy of the present of Y on the past of all processes in the network as:

H(Y ′|Z−) = −E[log p(y′|z−)] , (2)

where Z− = [Y−,X−

1 ,X
−

2 , ...,X
−

M−1] is the collection of the vector variables describing

the past of Z and z− is an observation of it. H(Y ′|Z−) quantifies how much
uncertainty remains in Y ′ after Z− is known, or equivalently the information contained
in the present of process Y that cannot be explained by the knowledge of the past of
all processes in the network. In other words, H(Y ′|Z−) represents the complexity of
process Y when the past of the whole network is supposed to be known.

It is important to notice that H(Y ′|Y−) represents an upper bound to the
complexity computed as in (2), that holds when the driver processes do not concur to
resolve the uncertainty about the target process, i.e. when p(y′|z−) = p(y′|y−) for all
possible values of y− and z−.

Generalizing (1) and (2), let us define W as the process composed of a subset
of processes in the network Z. The conditional entropy of Y ′ given the past vector
variable W− is defined as:

H(Y ′|W−) = −E[log p(y′|w−)] , (3)

where w− is an observation of W−. H(Y ′|W−) quantifies how much uncertainty
remains in Y ′ after the past of the subset W of processes in the network Z is known.
Note that (3) particularizes to the Shannon entropy of Y , H(Y ), when W = {·}, to
(1) when W = Y and to (2) when W = Z. This generalization is used in the following
paragraph for the outline of an iterative algorithm used to explore the contributions of
systems in the network in yielding the multivariate conditional entropy of the target.

The algorithm starts with an M-dimensional set C− = {Y−,X−

1 ,X
−

2 , ...,X
−

M−1}
of candidate vectors, collecting the past vector variables of all processes in the network,
and an empty set S− = {·} of selected vectors. At each iteration i, the conditional
entropy H(Y ′|[C−,S−]) is computed for each candidate vector C− ∈ C− and the
candidate C−

i bringing the minimum value of conditional entropy is selected as
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C−

i = argminH(Y ′|[C−,S−]). Then, the reduction in entropy associated to the
selection of C−

i is computed as ∆Hi = H(Y ′|S−)−H(Y ′|[C−

i ,S
−]) and C−

i is removed
from C− and added to S−. The algorithm terminates when C− is empty. The order
in which systems are added to S− is indicative of the relative contribution to the
entropy reduction of the target, while the reduction in entropy that is obtained at
each step represents the mutual information shared between Y ′ and C−

i , conditioned
to the knowledge of S−.

It is necessary to point out that this selection method is not exhaustive and,
even though it leads to the minimum entropy when all systems have been selected,
it may incur in local minima along the procedure. This means that the order in
which systems are selected does not necessarily imply that at each step the global
minimum of the conditional entropy is found, e.g. it is possible that there exist
another set of systems (not meeting the requirement of being sequentially updated)
that minimizes conditional entropy globally. Nevertheless, this approach provides a
relevant indication about the systems that are involved in the reduction of the entropy
of the target and may be preferred over exhaustive search methods for computational
reasons, especially when the number of systems in the network is large.

2.2. Estimation strategy

In practical applications, information-theoretic measures need to be estimated from
experimental data, available in terms of time series, i.e. finite-length time-ordered
collections of observations of the processes under study. In this work, conditional
entropy was estimated using a model-free approach based on nearest neighbors
(Kozachenko & Leonenko 1987, Kraskov et al. 2004, Faes et al. 2015). Since conditional
entropy, as defined in (3), can be expressed as a difference of entropy terms as:

H(Y ′|W−) = H(Y ′,W−)−H(W−) , (4)

let us first consider the nearest neighbor approach for the estimation of Shannon
entropy. Given a generic d-dimensional random variable V having a continuous
probability density pV (v) of observation of its outcomes v, Shannon entropy is defined
as H(V) = −

∫

pV (v) log pV (v)dv. When N finite samples vi, i = 1, ..., N drawn from
pV (v) are available, it is possible to approximate H(V) via a Monte-Carlo method as:

Ĥ(V) = − 1
N

∑N

i=1 log p̂V (vi), where p̂V (vi) is estimated from the k nearest neighbors
of vi. The nearest neighbor estimator (Kozachenko & Leonenko 1987) is based on the
following assumptions:

• the distance between each sample and its k-th nearest neighbor is treated as
a random variable, here named ǫ, with probability density p(ǫ) that follows a
trinomial distribution;

• p̂V (vi) is supposed to be constant within a ball having radius ǫ and centered in vi,
whose probability mass is given by: Pi(ǫ) = cdǫ

dp̂V (vi), where cd is the volume
of the d-dimensional unit ball, cd = 1 when maximum norm is used as a distance
measure.

Shannon entropy is then estimated as:

Ĥ(V) = ψ(N)− ψ(k) + log(cd) +
d

N

N
∑

i=1

log ǫ(i) , (5)

where ψ(·) is the digamma function and ǫ(i) is twice the distance from vi to its k-th
nearest neighbor. The entropy terms in (4) could in principle be estimated using (5),
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however there exist two limitations that need to be dealt with. First, the infinite-
dimensional vector variable W− needs to be approximated using a finite number of
past samples L, as W− ≈ WL. A procedure for the selection of the L past samples
is described in the next section. Secondly, the different dimensions of the estimation
spaces of the entropy terms (1+L and L respectively) result in different biases affecting
the estimates that need to be corrected if terms are to be subtracted. These different
biases can be compensated following the strategy proposed in (Kraskov et al. 2004),
that consists in performing the traditional neighbor search in the highest dimensional
space only and compute the distances ǫ(i), then projecting the computed distances
in the lower dimensional spaces and compute the corresponding number of neighbors
for each low dimensional sample (range search). As a result, conditional entropy is
obtained as:

Ĥ(Y ′|WL) =
1

N

N
∑

i=1

[

ψ(kwL

i

+ 1) + log ǫ(i)
]

− ψ(k) + log(c1) , (6)

where wL
i is the i-th realization of WL, kwL

i

is the number of neighbors having

distance < ǫ/2 from wL
i and c1 is the volume of the monodimensional unit ball. In

this study the maximum norm was used as a distance measure, so that log(c1) = 0.

2.2.1. Approximation of the vector of past values The nearest neighbor estimator
is based on the assumption that WL is a finite-dimensional vector variable of
dimension L, where L represents the number of past samples that are considered
in the conditional entropy estimate. This number can be fixed, performing a uniform
embedding. In case W = [W1,W2, ...,Wm] is composed of m processes, the uniform
embedding consists in selecting l past samples for each process, so that L = ml and
WL = [W1,n−1, ...,W1,n−l,W2,n−1, ...,W2,n−l, ...,Wm,n−1, ...,Wm,n−l]. However, this
is not the best choice in terms of estimation accuracy, because of the likely inclusion
of irrelevant and redundant components in WL, that do not effectively contribute to
reduce the uncertainty of the target process, but result in an increase of the dimension
of WL. This issue is particularly critical in the analysis of short time series, where
the dimension of the embedding space (L) should be kept sufficiently low in order not
to incur in the curse of dimensionality, i.e. a decrease of estimation performance that
affects most entropy estimators at increasing dimensions.

In order to solve for this issue, the non-uniform embedding procedure proposed
in (Faes et al. 2011a) is used here. The procedure works as follows. First, a set C of
candidate past terms is built taking lmax past samples for each process belonging toW ,
so that C = {W1,n−1, ...,W1,n−lmax

,W2,n−1, ...,W2,n−lmax
, ...,Wm,n−1, ...,Wm,n−lmax

}
and an empty set S = {·} of selected terms is defined. Then, at each iteration,
the conditional entropy H(Y ′|[c, S]) is computed for each element c ∈ C and the
candidate c∗ bringing the minimum value of conditional entropy is selected as c∗ =
argminH(Y ′|[c, S]) and tested for statistical significance against a set of conditional
entropies obtained from surrogate time series. In case the significance is verified, c∗

is removed from C and added to S. The procedure stops either when significance of
a candidate is not met or when the vector C is empty.

The non-uniform embedding allows to form a vector of past values that only
includes past terms that are useful to explain the dynamics of the target process and
can be related to physiologically relevant phenomena (as will be shown in figure 3
and discussed in section 4), thus keeping the dimension of the embedding space at its
lowest while taking all relevant components into consideration.
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2.3. Experimental protocol and data analysis

2.3.1. Subjects Sixty-one healthy volunteer subjects (37 female, 24 male) aged 17.5
years ± 2.4 years took part to this study. All subjects were normotensive and within
the normal range of body mass index (19 - 25 kg/m2). Subjects were instructed not to
use substances influencing autonomic nervous system activity or cardiovascular system
activity. Female subjects were examined in the proliferative phase (6th - 13th day)
of the menstrual cycle. All procedures were approved by Ethical Committee of the
Jessenius Faculty of Medicine, Comenius University, Bratislava and all participants
signed a written informed consent. When the subject was a minor (less than 18 years
of age), parental or legal guardian permission was obtained for the child to participate
in the study.

2.3.2. Experimental protocol Volunteers were positioned on a motorized tilt table
with foot support and secured to it with a restraining strap at the thigh level. During
the experiment, subjects were asked to avoid disturbing movements or speaking. The
study protocol consisted of four phases. First, subjects underwent 15 minutes of
rest in the supine position (REST), aimed at stabilizing physiological parameters
on a baseline level. After that, head-up tilt (HUT) test was performed tilting the
motorized table to 45 degrees for 8 minutes, in order to evoke mild orthostatic stress.
The transition from 0 to 45 degrees took approximately 5 seconds. The procedure was
followed by 10 minutes of supine rest, to allow physiological parameters to recover a
baseline value. Finally, a mental arithmetic (MA) test (WQuick software with WIN
5 PMT test, Psycho Soft Software, s.r.o., Brno, Czech Republic) lasting 6 minutes
was administered while subjects were lying in the supine position, aimed at evoking
mild cognitive load. The test consisted in a repeated display of random three-digit
numbers on the ceiling of the examination room by a data projector. Subjects were
asked to mentally sum up the three digits and, if the result was a two-digit number,
keep summing up until a one-digit number was reached. After that, they were asked
to decide if the result was odd or even by clicking the corresponding virtual button
projected on the ceiling by means of a computer mouse. Subjects were asked to
perform mental computations as quickly as possible and with the minimum number
of errors, with the purpose of providing a further increase in the stress level.

Physiological signals were recorded non-invasively from the volunteer subjects for
the duration of the whole experiment. The electrocardiographic signal was obtained
through a horizontal bipolar thoracic lead (CardioFax ECG-9620, NihonKohden,
Japan), the continuous finger arterial blood pressure was measured by the
photoplethysmographic volume-clamp method (Finometer Pro, FMS, Netherlands),
while the respiratory volume signal was collected through respiratory inductive
plethysmography (RespiTrace 200, NIMS, USA) employing thoracic and abdominal
belts. All signals were digitalized at 1kHz sampling rate.

2.3.3. Time series extraction Segments of 300 heart beats were extracted from the
recorded signals starting 8 minutes after the beginning of the first phase (REST
window), 3 minutes after the beginning of the second phase (HUT window) and 2
minutes after the beginning of the fourth phase (MA window), being representative of
the physiological state during supine rest, orthostatic posture and mental arithmetic
task respectively. The windows were selected at physiological equilibrium in order to
avoid transition effects from one phase to another and thus favour the stationarity
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Figure 1. (a) Schematic representation of the measurement of beat-to-beat time
series of heart period (H), systolic blood pressure (S), diastolic blood pressure
(D) and respiratory volume (R). Light-grey arrows indicate the presence of
instantaneous effects (i.e. occurring within the same heart beat) from S and R to
H (solid arrows), from R to S (dashed arrow) and from H, S and R to D (dotted
arrows). (b) Example of the four measured time series for a subject undergoing
supine rest (REST), head-up tilt test (HUT) and mental arithmetic task (MA).
Slow trends are removed implementing a high-pass filter.
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of the extracted segments. The time series of the consecutive heart periods (H) was
extracted from the ECG after locating the R peaks and computing the duration of
successive RR intervals. The respiratory volume signal was sampled at the onset
of each RR interval, so that one respiratory volume sample (R) was available for
each H value. The beat-to-beat systolic blood pressure (S) was computed as the
maximum value of blood pressure signal within a given RR interval, while the beat-
to-beat diastolic blood pressure (D) as the minimum value of blood pressure following
the current S value and preceding the next one. Figure 1a shows the employed
conventions for the measurement of H, S, D and R. The correct detection of the
R peaks was visually checked in order to avoid erroneous or missed beats, and the
occurrence of isolated ectopic beats was corrected by linearly interpolating with the
closest unaffected values in all time series and conditions In order to fulfill stationarity
criteria, slow trends were removed from each time series by means of an autoregressive
IIR zero-phase high-pass filter (cutoff frequency: 0.015 Hz) (Nollo et al. 2000).
Moreover, outliers (mainly affecting the R time series) were identified using Tukey’s
test (Tukey 1977) and removed, for a maximum of 42 removed samples per time series.
An example of four measured time series of a subject during the three experimental
protocol phases is shown in figure 1b. The subsequent information-domain analysis
was performed after normalizing time series to zero mean and unit variance.

2.3.4. Information-domain analysis The complexity of H, S, D and R was computed
in the REST, HUT and MA conditions using the univariate and the multivariate
formulations of conditional entropy described in section 2.1 and considering the
network Z as being composed of all the measured systems, i.e. H, S, D and R. Because
of how time series were constructed, instantaneous effects (i.e., effects occurring
within the same heart beat) from drivers to target systems were considered in the
multivariate computation, by including zero-lagged samples in the candidate vector C
of past samples to be used in the non-uniform embedding procedure. In particular,
instantaneous effects were set from S and R to H (figure 1a, solid arrows), from R to
S (figure 1a, dashed arrow) and from H, S and R to D (figure 1a, dotted arrows). The
non-uniform embedding procedure was initialized using a candidate vector including
lmax = 10 past samples for each past variable considered in the computation, and the
number of selected samples was counted for each experimental condition and target
signal. A number of k = 10 neighbors was used in the conditional entropy estimates
(Faes et al. 2015). The iterative procedure described in section 2.1 was applied to
the network composed of H, S, D and R in the REST, HUT and MA conditions,
alternatively setting each system as target.

2.4. Statistical analysis

Significant modifications in univariate and multivariate complexity across the three
experimental conditions included in the protocol were assessed via the Kruskal-
Wallis ANOVA test, followed by Wilcoxon signed rank test used as post-hoc test
on pairs of distributions of conditional entropy values across the 61 subjects of the
study. Significance level was set at p < 0.05 and Bonferroni correction for multiple
comparisons was applied in post-hoc testing, that consisted of three comparisons
between pairs of conditions. One-tailed Wilcoxon signed rank test was applied to check
the significance of the difference between the multivariate and the univariate approach
for the computation of complexity, by pooling REST, HUT and MA conditions.
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The same statistical tests were applied to the distributions of the number of lagged
components selected by the non-uniform embedding procedure.

3. Results

Table 1. Time-domain indices of mean (µ) and standard deviation (σ) of
heart period (H), systolic blood pressure (S), diastolic blood pressure (D) and
respiration (R) time series in the REST, head-up tilt (HUT) and mental arithmetic
(MA) protocol phases. The distribution of each index across subjects is described
as the median and IQR (25th - 75th percentile). * p<0.05 REST vs HUT or
REST vs MA. # p<0.05 HUT vs MA.

REST HUT MA
µH 916 (862-965) 724* (664-760) 794*# (751-856)
µS 120.7 (115.4-127-3) 113.4* (106.1-120.8) 130.4*# (125.4-139.8)
µD 70.1 (66.1-75.5) 71.3 (63.4-75.4) 78.1*# (72-82.5)
µR - - - - - -
σH 60.4 (42.8-82.3) 40.9* (33.9-51.7) 45.5*# (36.3-59)
σS 4.3 (3.5-5) 4.8* (3.9-5.6) 3.1*# (2.7-3.9)
σD 3.0 (2.6-3.4) 3.4* (3-4) 2.7*# (2.4-3.1)
σR 0.139 (0.113-0.163) 0.163* (0.141-0.211) 0.137# (0.113-0.155)

Table 1 provides a time-domain characterization of the four measured time series
in terms of traditional time-domain indices of mean and standard deviation, expressed
as the median and IQR (25th - 75th percentiles) of the distributions across subjects.
Significant modifications of the indices across conditions were assessed as detailed in
section 2.4. The mean of the respiratory signal is omitted as it only depends on
the measurement procedure. The expected cardiac response to physiological stress
is reflected in the reduced duration of mean heart period (tachycardia) during both
HUT and MA when compared to resting state. In addition, both conditions result
in a reduction of the standard deviation of the RR intervals, a parameter that was
previously associated to decreased vagal tone and/or increased cardiac sympathetic
activity (Kleiger et al. 1987, Rothschild et al. 1988), common indicators of stress
reaction. The mean systolic blood pressure is found to be lower during HUT than at
baseline, but is kept within a normal physiological range. This decrease is compatible
with the HUT protocol, triggering a drop in blood pressure that is restored to normal
values through the activity of the baroreceptors. The variability (standard deviation)
of both blood pressure variables is increased with HUT, consistent with previous
studies (Faes et al. 2011b, Porta et al. 2012). Contrarily to the HUT stress, the MA
task results in increased mean values and decreased variability of systolic and diastolic
blood pressure. The respiratory volume pattern shows an increased variability with
HUT, reflecting an increased tidal volume.

Figure 2 shows the results of the univariate (three bars on the left of each panel)
and multivariate (three bars on the right of each panel) complexity analysis of the heart
period, systolic blood pressure, diastolic blood pressure and respiration time series in
the three experimental conditions elicited in the protocol. The multivariate complexity
of H, S and D is found to be significantly lower than the univariate, independently of
the condition (∆H = 0.11, p = 8.4× 10−25 for H; ∆H = 0.23, p = 6.2× 10−32 for S;
∆H = 0.13, p = 6.3 × 10−16 for D). On the contrary, univariate and multivariate
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Figure 2. Complexity of the heart period (a), systolic blood pressure (b),
diastolic blood pressure (c) and respiration (d) time series computed using the
traditional univariate approach (on the left) and its multivariate extension (on
the right) in the REST, head-up tilt (HUT) and mental arithmetic (MA) protocol
phases. Bar plots show the median and IQR of the distributions of conditional
entropy across the 61 subjects of the study. * p<0.05 REST vs HUT or REST vs
MA. # p<0.05 HUT vs MA.

complexity of R are not found to differ significantly (∆H = −0.05, p > 0.05).
Considering the traditional univariate approach, the conditional entropy (CE) of H
and of D is found to significantly decrease with HUT when compared to the REST
condition (figure 2a, c). On the other hand, MA results in a significantly increased
complexity of the blood pressure variables (S and D) and of R with respect to REST
(figure 2b, c, d). Similar results are obtained when the multivariate conditional entropy
is computed, showing significantly reduced complexity of the heart period control with
HUT and significantly increased blood pressure and respiratory complexity with MA.
In addition, the multivariate approach identifies an increased complexity of H when
MA is performed (figure 2a). When HUT and MA are compared, significant differences
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Figure 3. Number of lagged components selected by the non-uniform embedding
procedure as best predictors of the dynamics of the target time series of the heart
period (a), systolic blood pressure (b), diastolic blood pressure (c) and respiratory
volume (d) from the past of the target itself (on the left) or from the past of
the whole network (on the right) in the REST, head-up tilt (HUT) and mental
arithmetic (MA) protocol phases. Bar plots show the median and IQR of the
distributions of the number of lagged components (L) across the 61 subjects of
the study. * p<0.05 REST vs HUT or REST vs MA. # p<0.05 HUT vs MA.
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Figure 4. Contribution of driver effects in the physiological network composed
of the systems regulating heart period (H), systolic blood pressure (S), diastolic
blood pressure (D) and respiratory volume (R) in reducing the entropy of the
target systems, represented alternatively by H (a), S (b), D (c) and R (d), in the
rest (REST), head-up tilt (HUT) and mental arithmetic (MA) protocol phases.
For each panel and bar group, the label associated to the i-th bar indicates the
system that is selected at the i-th iteration, while the height of the i-th bar
indicates the reduction in entropy of the target that is obtained by conditioning
on the past of the selected system, given the knowledge of all the previously
selected systems. The median of the distribution across the 61 subjects of the
study is shown.
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in complexity are found for all time series and using either univariate or multivariate
approach.

Figure 3 shows, for each assigned target series, the number of lagged components
selected by the non-uniform embedding procedure from the past of the target series
only (univariate approach, left part of each panel) or from the past of all series
(multivariate approach, right part of each panel). For all target time series, the
multivariate approach selected a significantly higher number of components than the
univariate approach (Wilcoxon signed rank test for pooled data, p = 3.3 × 10−14 for
H, p = 4.9 × 10−29 for S, p = 5.2 × 10−24 for D, p = 1.6 × 10−18 for R). Looking
at the differences across conditions, the number of components selected to predict H
decreased significantly moving from REST to HUT, and increased significantly moving
from HUT to MA using both approaches (figure 3a). HUT was associated also with
the selection of more components using the univariate approach for the prediction
of S (figure 3b), and with the selection of less components using the multivariate
approach for the prediction of D (figure 3c). On the other hand, MA was associated
with the selection of a large number of components for the prediction of R using the
multivariate approach (figure 3d).

Figure 4 shows the results of the application of the iterative procedure for the
evaluation of the contributions to entropy reduction to the heart period, systolic blood
pressure, diastolic blood pressure and respiration time series in the three experimental
conditions included in the protocol. On the x axis, the sequence of systems C−

i that
are selected at each iteration (the ones minimizing conditional entropy) are shown,
while the y axis reports the corresponding reduction in the entropy ∆Hi of the target
that is obtained at each iteration. The results show that in three out of four target
systems (H, D and R) the first iteration selects the past of the target system itself,
independently of the condition (figure 4a, c, d). The entropy of S instead is mostly
reduced by the knowledge of the past of D, regardless of the condition (figure 4b). At
the second iteration, the entropy of the heart period is mostly reduced by R at REST
and during MA, and by S during HUT (figure 4a). The entropy of the systolic blood
pressure is self explained at the second iteration, regardless of the condition (figure 4b).
The entropy of the diastolic blood pressure is mostly reduced at the second iteration
by H, but only at REST and during MA (figure 4c). When the respiration time series
is set as target, no further significant reduction in entropy is obtained at the second
iteration, regardless of the condition (figure 4d); the third and fourth iterations do not
bring additional entropy reductions and reflect estimation errors for most time series
and conditions, as highlighted by the presence of negative values, that would not be
theoretically admitted.

4. Discussion

This study was aimed at exploring univariate and multivariate approaches for the
characterization of short-term physiological complexity quantified by the information-
theoretic measure of conditional entropy. Whereas the univariate approach represents
a standard method that is applied to isolated systems, the multivariate approach
is defined here in the perspective of networks of interacting systems. Even though
points in common can be found between the two methods, the discrepancies emerging
from the analysis are informative about the role that the network has in driving
the dynamics of a target system. Conditional entropy measures have been used in
this study to characterize modifications in the complexity of the cardiac chronotropic
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control, blood pressure control and respiratory activity under conditions of postural
and mental stress.

4.1. Comparison of univariate and multivariate approaches for the evaluation of

complexity

Our results show that the multivariate approach yields significantly lower values
of conditional entropy with respect to the univariate approach in the assessment
of the complexity of H, S and D. This finding is indicative of the fact that the
network significantly contributes to reduce the complexity of the heart period and
blood pressure dynamics (figure 2a, b, c); it is further supported by the significantly
higher number of components that are used in the multivariate entropy estimates
when compared to the univariate (figure 3a, b, c). On the contrary, univariate and
multivariate complexity of R are not found to significantly differ, meaning that the
network does not provide a significant contribution in reducing the complexity of the
respiratory dynamics, despite the higher number of lagged samples that are selected
using the multivariate approach.

In addition, univariate and multivariate approaches were also found to differ in the
ability to detect significant modifications in complexity across conditions. Whereas
this does not happen for S and R, where the same pattern of significant changes
is detected using either approach, univariate and multivariate approaches provide
different outcomes for H and D, that are indicative of the contribution of the network
in determining the complexity of the target system under different conditions. In
particular, the significantly increased complexity of H during MA detected only by
the multivariate approach reflects a strong contribution of the network at REST that
is reduced during MA (figure 2a). Similarly, the significantly decreased complexity
of D during HUT detected only by the univariate approach is the result of a more
important contribution of systems in the network at REST than during HUT (figure
2c). Both these results suggest that the application of a physiological stress seems to
favour the isolation of systems by reducing the influences from the connected network
nodes.

An alternative interpretation of these results in terms of flow of information
between systems can be made observing that the difference between univariate
and multivariate conditional entropy is formally defined as the transfer entropy
(Schreiber 2000) from the driver systems in the network to the target system. From
this perspective, it is possible to infer that: (i) there is a joint transfer of information
from H, D and R to S that is manifested to a comparable extent in all conditions;
(ii) no information seems to be transferred to R from the cardiovascular variables;
(iii) the amount of information that is jointly transferred to H from S, D and R at
REST undergoes a significant reduction with MA; and (iv) the amount of information
that is jointly transferred to D from H, S and R at REST undergoes a significant
reduction with HUT. Similar findings are present in recent studies, that report an
almost unchanged amount of information transferred to the systolic blood pressure
regulation from cardiac and respiratory regulation mechanisms as a consequence of
either mental or postural challenge when compared to resting state (Faes et al. 2017),
a significant decrease of joint information transferred from respiratory and blood
pressure control systems to the cardiac process as a consequence of mental stress
(Faes et al. 2017) and a significant reduction of the information transferred to the
diastolic blood pressure dynamics from the heart period oscillations as a consequence
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of postural challenge (Javorka et al. 2017).

4.2. Contributions of the network to entropy reduction of the target

The results of the iterative procedure presented in section 2.1 provide a further level
of detail about the dominant contributions of systems in the network in yielding the
complexity quantified by the multivariate approach. Figure 4 shows, for each target
system and experimental condition, the subsequent reductions in entropy that are
obtained at each iteration conditioning the present of the target on the past of the
system that is selected at the current iteration, given that the past of all the previously
selected systems in the network is known. In particular, at each iteration the selected
system is the one yielding the lowest conditional entropy, i.e. the one explaining the
most the dynamics of the target system. As a consequence, the order in which systems
are selected is indicative of their relative influence in reducing the complexity of the
target, that is quantified as an entropy reduction. It is not surprising that H, D and
R are best explained by their own past (the target system itself is selected at the
first iteration in figure 4a, c, d): this result supports conditional entropy approaches
that evaluate the univariate complexity as the residual uncertainty that remains when
past self dynamics are known. However, the use of multivariate approaches allows to
explore further information that is related to the reduction in complexity resulting
from the effect of physiological interactions between systems, as it is detailed in the
next section.

Similarly to the difference between univariate and multivariate conditional
entropy, also the subsequent entropy reductions ∆Hi that are here regarded as
decreases in complexity may be interpreted in the perspective of popular measures
of information theory that are used for the study of information flows (Faes &
Porta 2014). In particular, whenever a system is best explained by its own past
at the first iteration (e.g. H is selected first when H itself is set as target, figure 4a),
∆Hi corresponds to the self entropy of the system. On the contrary, when it is best
explained by another system (e.g. D is selected first when S is set as target, figure
4b), ∆Hi is equivalent to a cross entropy. At the second iteration, if the first case
holds, then ∆Hi equals the transfer entropy from the selected system to the target
(e.g. R is selected at the second iteration when H is set as target and REST condition
is considered, figure 4a); on the other hand, if the second case holds, a conditional self
entropy is obtained if the selected system is the target (e.g. S is selected at the second
iteration when S itself is set as target, figure 4b).

4.3. Physiological mechanisms underlying stress

Analyzing the complexity of a physiological system from a network perspective helps
in shedding light on the physiological regulatory mechanisms in the network that
drive the changes related to the response to different physiological conditions. In the
following, the physiological response to postural and mental stress is interpreted in
the light of changes in complexity of heart period, blood pressure and respiratory
dynamics, based on the results of our study.

4.3.1. Heart period dynamics Heart period dynamics are strongly affected by
postural stress, showing a significant reduction in complexity detected by both
univariate and multivariate approaches (figure 2a). This finding is supported by
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previous studies (Porta, Gnecchi-Ruscone, Tobaldini, Guzzetti, Furlan & Montano
2007, Faes et al. 2011b) and can be explained by the shift in the sympathovagal
balance driving the heart rate towards higher involvement of the sympathetic branch
and vagal withdrawal as a consequence of baroreceptors unloading when HUT test
is performed, that results in a net simplification of the heart period dynamics. The
simplification of the temporal dynamics agrees with the selection of a lower number
of lagged components by the non-uniform embedding with HUT (figure 3a). Vagal
withdrawal and concomitant sympathetic activation are responsible for the dampening
of high-frequency respiratory oscillations, a common estimate of the respiratory sinus
arrhythmia (RSA), during HUT (Faes et al. 2011b). RSA is reflected in a strong
respiratory contribution as driver of the H dynamics at REST and during MA (figure
4a, R is selected at the second iteration), that is suppressed when HUT is performed
(figure 4a, R is selected at the fourth iteration). On the other hand, the effect of
baroreceptors unloading is reflected by the selection of S as driver of the H dynamics
during HUT (figure 4a, S is selected at the second iteration). These results agree
with previous studies employing spectral (Montano et al. 1994, Cooke et al. 1999) or
information-theoretic (Faes et al. 2011b, Faes et al. 2012) indices.

As for the effect of mental stress, the significant increase in complexity that is
detected using the multivariate approach (figure 2a) may be ascribed to a reduced
contribution of the systems in the network in explaining the dynamics of H. More in
detail, R appears to be the only significant driver of the H dynamics in REST and
MA, showing a reduced amount of entropy reduction during MA when compared to
REST (figure 4a), that results in the increased multivariate conditional entropy (figure
2a). It may be thus inferred that the increase in complexity is possibly reflecting vagal
withdrawal as a consequence of the mental task (Berntson et al. 1994).

4.3.2. Blood pressure dynamics According to the analysis of univariate and
multivariate complexity, it seems that postural stress alters the diastolic blood pressure
regulation only, while both systolic and diastolic dynamics undergo an increase in
complexity following mental stress.

Postural stress results in a reduced complexity of D detected by the univariate
approach only (figure 2c), that is ascribed to the augmented contribution of self effects
as drivers of the diastolic dynamics (figure 4c, the entropy reduction associated to the
selection of D is higher in HUT than in REST). This effect is somehow concealed
when the multivariate approach is applied, by the presence of a considerable amount
of information transferred from H to D at REST, that is suppressed when HUT is
performed (figure 4c), yielding a net multivariate complexity that does not change
significantly in the transition from REST to HUT. The increase of self-effects with
HUT may be a possible consequence of the increased sympathetic activity. On the
other hand, the transfer of information from H to D in REST and MA may be ascribed
to the fast run-off effects of the cardiac cycle on the diastolic pressure, according
to which a longer heart period results in a lower diastolic BP value (Westerhof
et al. 2009). This effect appears to be damped during HUT, as reported previously
(Javorka et al. 2017), documenting the possible involvement of other mechanisms
driving blood pressure dynamics.

As far as mental stress is concerned, it is possible to infer that the combined effect
of changes in the pattens of autonomic activation following a cognitive load, that have
been found to result in vasoconstriction in splanchnic region and vasodilation in limbs
(Kuipers et al. 2008), and of the involvement of higher brain areas in controlling
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the vascular dynamics (Lackner et al. 2011), is responsible for the increased systolic
and diastolic blood pressure dynamical complexity. However, it is worth noticing
that interindividual differences arising in the response to mental stress may limit the
generality of these results.

A further inference can be done with regards to the observation that the dynamics
of S are strongly driven by the network independently of the experimental condition.
This finding might be explained by the fact that the most important contribution
to the entropy reduction of S is given by the past dynamics of D, given that D is
selected in the first iteration when S is set as target (figure 4b). The diastolic drive of
the systolic blood pressure dynamics is indicative of the strong connection that exists
between the two variables and seems to act from D to S. The reason for such a strong
connection may be physiologically explained by an interplay of left ventricular ejection
and vascular properties (Stergiopulos et al. 1996). This hypothesis, however, would
require further investigations using appropriate measures of stroke volume or vascular
resistance/compliance.

4.3.3. Respiratory dynamics Our results show that the complexity of the respiratory
system is not significantly affected by HUT, however it shows an increase with MA,
that might be explained by the appearance of long pauses or sighs in the respiration
pattern when mental calculations are performed (Grassmann et al. 2016), making it
more erratic and thus complex. An increased randomness of the respiratory pattern
during mental load has been previously reported (Vlemincx et al. 2011). Another
possible explanation may be given by the increased breathing rate during MA (results
not shown), leading to a coarser sampling of the respiratory volume signal that results
in a worse representation of the original dynamics and thus to an increased complexity.

Moreover, the comparison of univariate and multivariate conditional entropy, as
well as the analysis of the contributions to entropy reduction, reveal that the network
composed of H, S and D does not seem to transfer information to the respiratory
system, as documented by the presence of self effects only as predictors of the system
dynamics (figure 4d, R is selected first and it is the only system yielding a substantial
amount of entropy reduction). This result is in agreement with previous studies
(Schulz et al. 2013), suggesting that the respiratory system interacts exclusively in an
open loop with the cardiovascular variables, acting as a driver but not being affected
by their dynamics on the beat-to-beat time scale.

5. Conclusion

In the paradigm of network physiology (Bashan et al. 2012), different organ systems
continuously interact with each other to produce distinct physiological states and
to drive the transitions from one physiological state to another. The present study
documents that such interactions among physiological systems are crucial also to
establish the level of complexity of the output dynamics of various systems, as well as
to determine the changes in complexity related to specific types of physiological stress.
Indeed, using a generalized measure of multivariate complexity applied to the network
of cardiovascular and respiratory interactions, we find examples of physiological
systems that – when considered as systems embedded in a network – do not change
their short-term complexity (i.e., the respiratory system), reduce substantially their
complexity (i.e., the systolic blood pressure control system), or reduce their complexity
to an extent that varies with the physiological state (i.e., the heart rate control system
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during mental stress and the diastolic blood pressure control system during postural
stress). These findings highlight the importance of looking at physiological complexity
from a network perspective, and pose the basis for future investigations where this
integrated perspective can be expanded further to investigate the transitions across
physiological states or towards diseased conditions, to improve disease stratification,
or to support clinical decisions.
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Abstract. Objective: A defining feature of physiological systems under the
neuroautonomic regulation is their dynamical complexity. The most common
approach to assess physiological complexity from short-term recordings, i.e. to
compute the rate of entropy generation of an individual system by means of
measures of conditional entropy (CE), does not consider that complexity may
change when the investigated system is part of a network of physiological
interactions. This study aims at extending the concept of short-term complexity
towards the perspective of network physiology, defining multivariate CE measures
whereby multiple physiological processes are accounted for in the computation
of entropy rates. Approach: Univariate and multivariate CE measures are
computed using state-of-the-art methods for entropy estimation and applied
to the time series of heart period (H), systolic (S) and diastolic (D) arterial
pressure, and respiration (R) variability measured in healthy subjects monitored
in a resting state and during conditions of postural and mental stress. Main
results: Compared with the traditional univariate metric of short-term complexity,
multivariate measures provide additional information with plausible physiological
interpretation, such as: (i) the dampening of respiratory sinus arrhythmia and
activation of the baroreflex control during postural stress; (ii) the increased
complexity of heart period and blood pressure variability during mental stress,
reflecting the effect of respiratory influences and upper cortical centers; (iii) the
strong influence of D on S, mediated by left ventricular ejection fraction and
vascular properties; (iv) the role of H in reducing the complexity of D, related
to cardiac run-off effects; and (v) the unidirectional role of R in influencing
cardiovascular variability. Significance: Our results document the importance of
employing a network perspective in the evaluation of the short-term complexity
of cardiovascular and respiratory dynamics across different physiological states.

Keywords: entropy, complexity, network physiology, head-up tilt, mental stress,
cardiovascular variability
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2

1. Introduction

Physiological systems exhibit complex dynamical behaviors, resulting from the
combined effect of multiple regulatory mechanisms, coupling effects and feedback
interactions among structural units (Glass 2001, Burggren & Monticino 2005).
In addition, physiological dynamics are subject to modifications under different
physiological states or pathological conditions, that are reflected in the output signals
of the different physiological systems. As a consequence, the study of the temporal
dynamical structure of physiological signals has raised great interest in both research
and clinical communities.

In this context, different and sometimes elusive meanings have been proposed
for the concept of “physiological complexity”. On the one hand, there exists a
body of research that relates physiological complexity to the presence of long-
range fractal correlations and nonlinear interactions in physiological signals (Ivanov
et al. 1999, Hausdorff et al. 1995). This definition of complexity stems from the
observation that healthy physiological systems (e.g. heartbeat fluctuations, interstride
interval fluctuations) show self-similarity properties over multiple time scales, and
that when these multiscale properties are disrupted the capability of systems to
respond to external challenges is reduced (Lipsitz & Goldberger 1992, Schumann
et al. 2010, Goldberger et al. 2002). Measures quantifying this type of complexity are
applied to long recordings, that allow the observer to study physiological dynamics
happening at a wide range of different time scales. On the other hand, a different
approach is adopted by techniques that aim to quantify the short-term complexity of
physiological signals, spanning time scales in the order of a few minutes. In this case,
complexity is associated to the concept of regularity of the temporal patterns found
in the observed signals, and typically quantifies the unpredictability of the present
sample of a physiological time series given a small number of its past samples (Porta,
Guzzetti, Furlan, Gnecchi-Ruscone, Montano & Malliani 2007). Paradoxically, long-
range correlations may represent a confounding factor for this type of analysis, being
represented by slow trends that are commonly treated as non-stationarities to be
filtered out through appropriate preprocessing (Xiong et al. 2017). The mostly used
approaches for the quantification of short-term complexity belong to the information-
theoretic domain and stem from the work of Pincus, who devised a family of metrics
to be applied to short, noisy and stochastic signals, measuring the rate of generation of
new information, named Approximate Entropy (Pincus 1991). Subsequent refinements
of this pioneering work led to the development of a range of measures, among which
Sample Entropy (Richman & Moorman 2000), Corrected Conditional Entropy (Porta
et al. 1998), Fuzzy Entropy (Chen et al. 2007) and Permutation Entropy (Bandt &
Pompe 2002) are the most popular. All these measures are subsumed by the general
notion of entropy rate, computed as the conditional entropy (CE) of the present value
of a time series given its own past values (Faes & Porta 2014).

A typical application of entropy-based short-term complexity analysis is the
study of spontaneous fluctuations of the heart period, for the characterization of
autonomic function and its changes associated with cardiovascular diseases, stress
conditions, ageing, etc. (Porta et al. 2009). Besides heart rate variability, conditional
entropy measures have been applied to assess the short-term complexity of other
physiological signals such as arterial blood pressure (Angelini et al. 2007, Turianikova
et al. 2011), respiration (Dragomir et al. 2008, Papaioannou et al. 2011), and others
(Burioka et al. 2005, Mansur et al. 2010, Karmakar et al. 2013). Even though the
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3

short-term complexity analysis of individual systems has provided helpful markers of
health and disease, recent evidence highlights the fundamental importance of studying
physiological phenomena within a network perspective (Ivanov et al. 2016). This
perspective arises from the knowledge that physiological systems do not evolve in
isolation, but rather are highly interconnected and mutually interdependent on each
other, showing patterns of interaction that are subject to changes depending on
physiological states or pathological conditions (Bashan et al. 2012, Bartsch et al. 2015).
It is therefore likely that the complexity of the dynamical behavior of a target
physiological system is reduced when the joint dynamics observed from mutually
connected systems are taken into account. On this basis, the present work aims to
extend the concept of short-term complexity, traditionally defined for the dynamics
of a single physiological system, to a more general concept of multivariate complexity,
to be defined when the observed system is the target of a network of physiological
interactions. To this aim, a multivariate extension of the univariate definition of CE
is proposed, which allows to quantify how systems in the network contribute to predict
the dynamics of the target system.

In this work, univariate and multivariate definitions of CE are exploited
to study the complexity of the time series of the heart period, systolic blood
pressure, diastolic blood pressure and respiratory volume measured from healthy
subjects in resting condition and during commonly studied physiological stressors,
i.e. orthostatic stress and mental stress. This is in line with recent approaches
developed in the time, frequency or information domain (non-linear prediction,
phase synchronization, Granger causality) that employ multivariate descriptions to
characterize cardiovascular and cardiorespiratory interactions under the principles
of network analysis and have proven their effectiveness in extracting physiologically
relevant indices of system functioning and dysfunctioning (Schulz et al. 2013, Porta
& Faes 2016). A comparison between univariate and multivariate approaches for
the assessment of complexity of short-term cardiovascular control has been carried
out in (Porta et al. 2012) using linear prediction models, but here nonlinear features
are accounted for by the proposed model-free information-theoretic approach. The
objective is to characterize the physiological function in well-known conditions of
postural stress or under less-established mentally challenging paradigms, emerging
from modifications in the complexity of cardiac, blood pressure and respiratory
dynamics. Cardiovascular and respiratory systems are known to reflect autonomic
changes that are involved in the physiological response to stress and show behaviors
that are highly dependent on each other (Haken & Koepchen 1991, Eckberg 2000). In
this context, the proposed multivariate approach may help in typifying the autonomic
response to postural or mental challenge, unravelling the physiological interaction
mechanisms underlying the changes in the complexity of individual control systems.

2. Materials and Methods

2.1. Complexity measures

Short-term physiological complexity is quantified in this work in the information-
theoretic domain using measures of conditional entropy applied to the study of
temporal dynamics, as defined in the following.

Let us consider a dynamical system Y represented by the dynamical process
Y , whose present outcomes at time n are described by the scalar random variable
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4

Y ′ = Yn, while the past outcomes are modelled by the vector random variable
Y− = [Yn−1, Yn−2, ...]. Stationary and ergodic assumptions hold for process Y , so
that the dependence on the time index n is dropped in Y ′ and Y−.

The traditional approach to evaluate short-term complexity considers the process
Y in isolation, so that the (univariate) conditional entropy of its present on the past
is computed as (Faes & Porta 2014):

H(Y ′|Y−) = −E[log p(y′|y−)] , (1)

where H stands for the Shannon entropy, y′ is an observation of the random variable
Y ′, y− is an observation of Y− and the expectation E[·] is taken over all possible
values of y′ and y−. H(Y ′|Y−) quantifies how much uncertainty remains in Y ′ after
Y− is known, or equivalently the information contained in the present of process Y
that cannot be explained by the knowledge of its past.

Here, we extend the definition of complexity to a multivariate setting. Let
us suppose that a network Z of M interacting systems is considered, composed of
system Y, called target, and M − 1 other systems, here denoted as X1,X2, ...,XM−1,
represented by the dynamical processes X1, X2, ..., XM−1 and called drivers. The
multivariate process representing the time evolution of the whole network is indicated
as Z = {Y,X1, X2, ..., XM−1} and stationary and ergodic assumptions are assumed
to be verified. Within this setting, multivariate complexity can be defined as the
conditional entropy of the present of Y on the past of all processes in the network as:

H(Y ′|Z−) = −E[log p(y′|z−)] , (2)

where Z− = [Y−,X−

1 ,X
−

2 , ...,X
−

M−1] is the collection of the vector variables describing

the past of Z and z− is an observation of it. H(Y ′|Z−) quantifies how much
uncertainty remains in Y ′ after Z− is known, or equivalently the information contained
in the present of process Y that cannot be explained by the knowledge of the past of
all processes in the network. In other words, H(Y ′|Z−) represents the complexity of
process Y when the past of the whole network is supposed to be known.

It is important to notice that H(Y ′|Y−) represents an upper bound to the
complexity computed as in (2), that holds when the driver processes do not concur to
resolve the uncertainty about the target process, i.e. when p(y′|z−) = p(y′|y−) for all
possible values of y− and z−.

Generalizing (1) and (2), let us define W as the process composed of a subset
of processes in the network Z. The conditional entropy of Y ′ given the past vector
variable W− is defined as:

H(Y ′|W−) = −E[log p(y′|w−)] , (3)

where w− is an observation of W−. H(Y ′|W−) quantifies how much uncertainty
remains in Y ′ after the past of the subset W of processes in the network Z is known.
Note that (3) particularizes to the Shannon entropy of Y , H(Y ), when W = {·}, to
(1) when W = Y and to (2) when W = Z. This generalization is used in the following
paragraph for the outline of an iterative algorithm used to explore the contributions of
systems in the network in yielding the multivariate conditional entropy of the target.

The algorithm starts with an M-dimensional set C− = {Y−,X−

1 ,X
−

2 , ...,X
−

M−1}
of candidate vectors, collecting the past vector variables of all processes in the network,
and an empty set S− = {·} of selected vectors. At each iteration i, the conditional
entropy H(Y ′|[C−,S−]) is computed for each candidate vector C− ∈ C− and the
candidate C−

i bringing the minimum value of conditional entropy is selected as
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5

C−

i = argminH(Y ′|[C−,S−]). Then, the reduction in entropy associated to the
selection of C−

i is computed as ∆Hi = H(Y ′|S−)−H(Y ′|[C−

i ,S
−]) and C−

i is removed
from C− and added to S−. The algorithm terminates when C− is empty. The order
in which systems are added to S− is indicative of the relative contribution to the
entropy reduction of the target, while the reduction in entropy that is obtained at
each step represents the mutual information shared between Y ′ and C−

i , conditioned
to the knowledge of S−.

It is necessary to point out that this selection method is not exhaustive and,
even though it leads to the minimum entropy when all systems have been selected, it
may incur in local minima along the procedure. This means that the order in which
systems are selected does not necessarily imply that at each step the global minimum
of the conditional entropy is found, e.g. it is possible that there exist another set of
systems (not meeting the requirement of being sequentially updated) that minimizes
conditional entropy globally. Nevertheless, this approach provides a relevant indication
about the systems that are involved in the reduction of the entropy of the target and
may be preferred over exhaustive search methods for computational reasons, especially
when the number of systems in the network is large.

2.2. Estimation strategy

In practical applications, information-theoretic measures need to be estimated from
experimental data, available in terms of time series, i.e. finite-length time-ordered
collections of observations of the processes under study. In this work, conditional
entropy was estimated using a model-free approach based on nearest neighbors
(Kozachenko & Leonenko 1987, Kraskov et al. 2004, Faes et al. 2015). Since conditional
entropy, as defined in (3), can be expressed as a difference of entropy terms as:

H(Y ′|W−) = H(Y ′,W−)−H(W−) , (4)

let us first consider the nearest neighbor approach for the estimation of Shannon
entropy. Given a generic d-dimensional random variable V having a continuous
probability density pV (v) of observation of its outcomes v, Shannon entropy is defined
as H(V) = −

∫

pV (v) log pV (v)dv. When N finite samples vi, i = 1, ..., N drawn from
pV (v) are available, it is possible to approximate H(V) via a Monte-Carlo method as:

Ĥ(V) = − 1
N

∑N

i=1 log p̂V (vi), where p̂V (vi) is estimated from the k nearest neighbors
of vi. The nearest neighbor estimator (Kozachenko & Leonenko 1987) is based on the
following assumptions:

• the distance between each sample and its k-th nearest neighbor is treated as
a random variable, here named ǫ, with probability density p(ǫ) that follows a
trinomial distribution;

• p̂V (vi) is supposed to be constant within a ball having radius ǫ and centered in vi,
whose probability mass is given by: Pi(ǫ) = cdǫ

dp̂V (vi), where cd is the volume
of the d-dimensional unit ball, cd = 1 when maximum norm is used as a distance
measure.

Shannon entropy is then estimated as:

Ĥ(V) = ψ(N)− ψ(k) + log(cd) +
d

N

N
∑

i=1

log ǫ(i) , (5)

where ψ(·) is the digamma function and ǫ(i) is twice the distance from vi to its k-th
nearest neighbor. The entropy terms in (4) could in principle be estimated using (5),
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6

however there exist two limitations that need to be dealt with. First, the infinite-
dimensional vector variable W− needs to be approximated using a finite number of
past samples L, as W− ≈ WL. A procedure for the selection of the L past samples
is described in the next section. Secondly, the different dimensions of the estimation
spaces of the entropy terms (1+L and L respectively) result in different biases affecting
the estimates that need to be corrected if terms are to be subtracted. These different
biases can be compensated following the strategy proposed in (Kraskov et al. 2004),
that consists in performing the traditional neighbor search in the highest dimensional
space only and compute the distances ǫ(i), then projecting the computed distances
in the lower dimensional spaces and compute the corresponding number of neighbors
for each low dimensional sample (range search). As a result, conditional entropy is
obtained as:

Ĥ(Y ′|WL) =
1

N

N
∑

i=1

[

ψ(kwL

i

+ 1) + log ǫ(i)
]

− ψ(k) + log(c1) , (6)

where wL
i is the i-th realization of WL, kwL

i

is the number of neighbors having

distance < ǫ/2 from wL
i and c1 is the volume of the monodimensional unit ball. In

this study the maximum norm was used as a distance measure, so that log(c1) = 0.

2.2.1. Approximation of the vector of past values The nearest neighbor estimator
is based on the assumption that WL is a finite-dimensional vector variable of
dimension L, where L represents the number of past samples that are considered
in the conditional entropy estimate. This number can be fixed, performing a uniform
embedding. In case W = [W1,W2, ...,Wm] is composed of m processes, the uniform
embedding consists in selecting l past samples for each process, so that L = ml and
WL = [W1,n−1, ...,W1,n−l,W2,n−1, ...,W2,n−l, ...,Wm,n−1, ...,Wm,n−l]. However, this
is not the best choice in terms of estimation accuracy, because of the likely inclusion
of irrelevant and redundant components in WL, that do not effectively contribute to
reduce the uncertainty of the target process, but result in an increase of the dimension
of WL. This issue is particularly critical in the analysis of short time series, where
the dimension of the embedding space (L) should be kept sufficiently low in order not
to incur in the curse of dimensionality, i.e. a decrease of estimation performance that
affects most entropy estimators at increasing dimensions.

In order to solve for this issue, the non-uniform embedding procedure proposed
in (Faes et al. 2011a) is used here. The procedure works as follows. First, a set C of
candidate past terms is built taking lmax past samples for each process belonging toW ,
so that C = {W1,n−1, ...,W1,n−lmax

,W2,n−1, ...,W2,n−lmax
, ...,Wm,n−1, ...,Wm,n−lmax

}
and an empty set S = {·} of selected terms is defined. Then, at each iteration,
the conditional entropy H(Y ′|[c, S]) is computed for each element c ∈ C and the
candidate c∗ bringing the minimum value of conditional entropy is selected as c∗ =
argminH(Y ′|[c, S]) and tested for statistical significance against a set of conditional
entropies obtained from surrogate time series. In case the significance is verified, c∗

is removed from C and added to S. The procedure stops either when significance of
a candidate is not met or when the vector C is empty.

The non-uniform embedding allows to form a vector of past values that only
includes past terms that are useful to explain the dynamics of the target process and
can be related to physiologically relevant phenomena (as will be shown in figure 3
and discussed in section 4), thus keeping the dimension of the embedding space at its
lowest while taking all relevant components into consideration.
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7

2.3. Experimental protocol and data analysis

2.3.1. Subjects Sixty-one healthy volunteer subjects (37 female, 24 male) aged 17.5
years ± 2.4 years took part to this study. All subjects were normotensive and within
the normal range of body mass index (19 - 25 kg/m2). Subjects were instructed not to
use substances influencing autonomic nervous system activity or cardiovascular system
activity. Female subjects were examined in the proliferative phase (6th - 13th day)
of the menstrual cycle. All procedures were approved by Ethical Committee of the
Jessenius Faculty of Medicine, Comenius University, Bratislava and all participants
signed a written informed consent. When the subject was a minor (less than 18 years
of age), parental or legal guardian permission was obtained for the child to participate
in the study.

2.3.2. Experimental protocol Volunteers were positioned on a motorized tilt table
with foot support and secured to it with a restraining strap at the thigh level. During
the experiment, subjects were asked to avoid disturbing movements or speaking. The
study protocol consisted of four phases. First, subjects underwent 15 minutes of
rest in the supine position (REST), aimed at stabilizing physiological parameters
on a baseline level. After that, head-up tilt (HUT) test was performed tilting the
motorized table to 45 degrees for 8 minutes, in order to evoke mild orthostatic stress.
The transition from 0 to 45 degrees took approximately 5 seconds. The procedure was
followed by 10 minutes of supine rest, to allow physiological parameters to recover a
baseline value. Finally, a mental arithmetic (MA) test (WQuick software with WIN
5 PMT test, Psycho Soft Software, s.r.o., Brno, Czech Republic) lasting 6 minutes
was administered while subjects were lying in the supine position, aimed at evoking
mild cognitive load. The test consisted in a repeated display of random three-digit
numbers on the ceiling of the examination room by a data projector. Subjects were
asked to mentally sum up the three digits and, if the result was a two-digit number,
keep summing up until a one-digit number was reached. After that, they were asked
to decide if the result was odd or even by clicking the corresponding virtual button
projected on the ceiling by means of a computer mouse. Subjects were asked to
perform mental computations as quickly as possible and with the minimum number
of errors, with the purpose of providing a further increase in the stress level.

Physiological signals were recorded non-invasively from the volunteer subjects for
the duration of the whole experiment. The electrocardiographic signal was obtained
through a horizontal bipolar thoracic lead (CardioFax ECG-9620, NihonKohden,
Japan), the continuous finger arterial blood pressure was measured by the
photoplethysmographic volume-clamp method (Finometer Pro, FMS, Netherlands),
while the respiratory volume signal was collected through respiratory inductive
plethysmography (RespiTrace 200, NIMS, USA) employing thoracic and abdominal
belts. All signals were digitalized at 1kHz sampling rate.

2.3.3. Time series extraction Segments of 300 heart beats were extracted from the
recorded signals starting 8 minutes after the beginning of the first phase (REST
window), 3 minutes after the beginning of the second phase (HUT window) and 2
minutes after the beginning of the fourth phase (MA window), being representative of
the physiological state during supine rest, orthostatic posture and mental arithmetic
task respectively. The windows were selected at physiological equilibrium in order to
avoid transition effects from one phase to another and thus favour the stationarity
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Figure 1. (a) Schematic representation of the measurement of beat-to-beat time
series of heart period (H), systolic blood pressure (S), diastolic blood pressure
(D) and respiratory volume (R). Light-grey arrows indicate the presence of
instantaneous effects (i.e. occurring within the same heart beat) from S and R to
H (solid arrows), from R to S (dashed arrow) and from H, S and R to D (dotted
arrows). (b) Example of the four measured time series for a subject undergoing
supine rest (REST), head-up tilt test (HUT) and mental arithmetic task (MA).
Slow trends are removed implementing a high-pass filter.
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9

of the extracted segments. The time series of the consecutive heart periods (H) was
extracted from the ECG after locating the R peaks and computing the duration of
successive RR intervals. The respiratory volume signal was sampled at the onset
of each RR interval, so that one respiratory volume sample (R) was available for
each H value. The beat-to-beat systolic blood pressure (S) was computed as the
maximum value of blood pressure signal within a given RR interval, while the beat-
to-beat diastolic blood pressure (D) as the minimum value of blood pressure following
the current S value and preceding the next one. Figure 1a shows the employed
conventions for the measurement of H, S, D and R. The correct detection of the
R peaks was visually checked in order to avoid erroneous or missed beats, and the
occurrence of isolated ectopic beats was corrected by linearly interpolating with the
closest unaffected values in all time series and conditions In order to fulfill stationarity
criteria, slow trends were removed from each time series by means of an autoregressive
IIR zero-phase high-pass filter (cutoff frequency: 0.015 Hz) (Nollo et al. 2000).
Moreover, outliers (mainly affecting the R time series) were identified using Tukey’s
test (Tukey 1977) and removed, for a maximum of 42 removed samples per time series.
An example of four measured time series of a subject during the three experimental
protocol phases is shown in figure 1b. The subsequent information-domain analysis
was performed after normalizing time series to zero mean and unit variance.

2.3.4. Information-domain analysis The complexity of H, S, D and R was computed
in the REST, HUT and MA conditions using the univariate and the multivariate
formulations of conditional entropy described in section 2.1 and considering the
network Z as being composed of all the measured systems, i.e. H, S, D and R. Because
of how time series were constructed, instantaneous effects (i.e., effects occurring
within the same heart beat) from drivers to target systems were considered in the
multivariate computation, by including zero-lagged samples in the candidate vector C
of past samples to be used in the non-uniform embedding procedure. In particular,
instantaneous effects were set from S and R to H (figure 1a, solid arrows), from R to
S (figure 1a, dashed arrow) and from H, S and R to D (figure 1a, dotted arrows). The
non-uniform embedding procedure was initialized using a candidate vector including
lmax = 10 past samples for each past variable considered in the computation, and the
number of selected samples was counted for each experimental condition and target
signal. A number of k = 10 neighbors was used in the conditional entropy estimates
(Faes et al. 2015). The iterative procedure described in section 2.1 was applied to
the network composed of H, S, D and R in the REST, HUT and MA conditions,
alternatively setting each system as target.

2.4. Statistical analysis

Significant modifications in univariate and multivariate complexity across the three
experimental conditions included in the protocol were assessed via the Kruskal-
Wallis ANOVA test, followed by Wilcoxon signed rank test used as post-hoc test
on pairs of distributions of conditional entropy values across the 61 subjects of the
study. Significance level was set at p < 0.05 and Bonferroni correction for multiple
comparisons was applied in post-hoc testing, that consisted of three comparisons
between pairs of conditions. One-tailed Wilcoxon signed rank test was applied to check
the significance of the difference between the multivariate and the univariate approach
for the computation of complexity, by pooling REST, HUT and MA conditions.
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10

The same statistical tests were applied to the distributions of the number of lagged
components selected by the non-uniform embedding procedure.

3. Results

Table 1. Time-domain indices of mean (µ) and standard deviation (σ) of
heart period (H), systolic blood pressure (S), diastolic blood pressure (D) and
respiration (R) time series in the REST, head-up tilt (HUT) and mental arithmetic
(MA) protocol phases. The distribution of each index across subjects is described
as the median and IQR (25th - 75th percentile). * p<0.05 REST vs HUT or
REST vs MA. # p<0.05 HUT vs MA.

REST HUT MA
µH 916 (862-965) 724* (664-760) 794*# (751-856)
µS 120.7 (115.4-127-3) 113.4* (106.1-120.8) 130.4*# (125.4-139.8)
µD 70.1 (66.1-75.5) 71.3 (63.4-75.4) 78.1*# (72-82.5)
µR - - - - - -
σH 60.4 (42.8-82.3) 40.9* (33.9-51.7) 45.5*# (36.3-59)
σS 4.3 (3.5-5) 4.8* (3.9-5.6) 3.1*# (2.7-3.9)
σD 3.0 (2.6-3.4) 3.4* (3-4) 2.7*# (2.4-3.1)
σR 0.139 (0.113-0.163) 0.163* (0.141-0.211) 0.137# (0.113-0.155)

Table 1 provides a time-domain characterization of the four measured time series
in terms of traditional time-domain indices of mean and standard deviation, expressed
as the median and IQR (25th - 75th percentiles) of the distributions across subjects.
Significant modifications of the indices across conditions were assessed as detailed in
section 2.4. The mean of the respiratory signal is omitted as it only depends on
the measurement procedure. The expected cardiac response to physiological stress
is reflected in the reduced duration of mean heart period (tachycardia) during both
HUT and MA when compared to resting state. In addition, both conditions result
in a reduction of the standard deviation of the RR intervals, a parameter that was
previously associated to decreased vagal tone and/or increased cardiac sympathetic
activity (Kleiger et al. 1987, Rothschild et al. 1988), common indicators of stress
reaction. The mean systolic blood pressure is found to be lower during HUT than at
baseline, but is kept within a normal physiological range. This decrease is compatible
with the HUT protocol, triggering a drop in blood pressure that is restored to normal
values through the activity of the baroreceptors. The variability (standard deviation)
of both blood pressure variables is increased with HUT, consistent with previous
studies (Faes et al. 2011b, Porta et al. 2012). Contrarily to the HUT stress, the MA
task results in increased mean values and decreased variability of systolic and diastolic
blood pressure. The respiratory volume pattern shows an increased variability with
HUT, reflecting an increased tidal volume.

Figure 2 shows the results of the univariate (three bars on the left of each panel)
and multivariate (three bars on the right of each panel) complexity analysis of the heart
period, systolic blood pressure, diastolic blood pressure and respiration time series in
the three experimental conditions elicited in the protocol. The multivariate complexity
of H, S and D is found to be significantly lower than the univariate, independently of
the condition (∆H = 0.11, p = 8.4× 10−25 for H; ∆H = 0.23, p = 6.2× 10−32 for S;
∆H = 0.13, p = 6.3 × 10−16 for D). On the contrary, univariate and multivariate
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Figure 2. Complexity of the heart period (a), systolic blood pressure (b),
diastolic blood pressure (c) and respiration (d) time series computed using the
traditional univariate approach (on the left) and its multivariate extension (on
the right) in the REST, head-up tilt (HUT) and mental arithmetic (MA) protocol
phases. Bar plots show the median and IQR of the distributions of conditional
entropy across the 61 subjects of the study. * p<0.05 REST vs HUT or REST vs
MA. # p<0.05 HUT vs MA.

complexity of R are not found to differ significantly (∆H = −0.05, p > 0.05).
Considering the traditional univariate approach, the conditional entropy (CE) of H
and of D is found to significantly decrease with HUT when compared to the REST
condition (figure 2a, c). On the other hand, MA results in a significantly increased
complexity of the blood pressure variables (S and D) and of R with respect to REST
(figure 2b, c, d). Similar results are obtained when the multivariate conditional entropy
is computed, showing significantly reduced complexity of the heart period control with
HUT and significantly increased blood pressure and respiratory complexity with MA.
In addition, the multivariate approach identifies an increased complexity of H when
MA is performed (figure 2a). When HUT and MA are compared, significant differences
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Figure 3. Number of lagged components selected by the non-uniform embedding
procedure as best predictors of the dynamics of the target time series of the heart
period (a), systolic blood pressure (b), diastolic blood pressure (c) and respiratory
volume (d) from the past of the target itself (on the left) or from the past of
the whole network (on the right) in the REST, head-up tilt (HUT) and mental
arithmetic (MA) protocol phases. Bar plots show the median and IQR of the
distributions of the number of lagged components (L) across the 61 subjects of
the study. * p<0.05 REST vs HUT or REST vs MA. # p<0.05 HUT vs MA.
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Figure 4. Contribution of driver effects in the physiological network composed
of the systems regulating heart period (H), systolic blood pressure (S), diastolic
blood pressure (D) and respiratory volume (R) in reducing the entropy of the
target systems, represented alternatively by H (a), S (b), D (c) and R (d), in the
rest (REST), head-up tilt (HUT) and mental arithmetic (MA) protocol phases.
For each panel and bar group, the label associated to the i-th bar indicates the
system that is selected at the i-th iteration, while the height of the i-th bar
indicates the reduction in entropy of the target that is obtained by conditioning
on the past of the selected system, given the knowledge of all the previously
selected systems. The median of the distribution across the 61 subjects of the
study is shown.
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in complexity are found for all time series and using either univariate or multivariate
approach.

Figure 3 shows, for each assigned target series, the number of lagged components
selected by the non-uniform embedding procedure from the past of the target series
only (univariate approach, left part of each panel) or from the past of all series
(multivariate approach, right part of each panel). For all target time series, the
multivariate approach selected a significantly higher number of components than the
univariate approach (Wilcoxon signed rank test for pooled data, p = 3.3 × 10−14 for
H, p = 4.9 × 10−29 for S, p = 5.2 × 10−24 for D, p = 1.6 × 10−18 for R). Looking
at the differences across conditions, the number of components selected to predict H
decreased significantly moving from REST to HUT, and increased significantly moving
from HUT to MA using both approaches (figure 3a). HUT was associated also with
the selection of more components using the univariate approach for the prediction
of S (figure 3b), and with the selection of less components using the multivariate
approach for the prediction of D (figure 3c). On the other hand, MA was associated
with the selection of a large number of components for the prediction of R using the
multivariate approach (figure 3d).

Figure 4 shows the results of the application of the iterative procedure for the
evaluation of the contributions to entropy reduction to the heart period, systolic blood
pressure, diastolic blood pressure and respiration time series in the three experimental
conditions included in the protocol. On the x axis, the sequence of systems C−

i that
are selected at each iteration (the ones minimizing conditional entropy) are shown,
while the y axis reports the corresponding reduction in the entropy ∆Hi of the target
that is obtained at each iteration. The results show that in three out of four target
systems (H, D and R) the first iteration selects the past of the target system itself,
independently of the condition (figure 4a, c, d). The entropy of S instead is mostly
reduced by the knowledge of the past of D, regardless of the condition (figure 4b). At
the second iteration, the entropy of the heart period is mostly reduced by R at REST
and during MA, and by S during HUT (figure 4a). The entropy of the systolic blood
pressure is self explained at the second iteration, regardless of the condition (figure 4b).
The entropy of the diastolic blood pressure is mostly reduced at the second iteration
by H, but only at REST and during MA (figure 4c). When the respiration time series
is set as target, no further significant reduction in entropy is obtained at the second
iteration, regardless of the condition (figure 4d); the third and fourth iterations do not
bring additional entropy reductions and reflect estimation errors for most time series
and conditions, as highlighted by the presence of negative values, that would not be
theoretically admitted.

4. Discussion

This study was aimed at exploring univariate and multivariate approaches for the
characterization of short-term physiological complexity quantified by the information-
theoretic measure of conditional entropy. Whereas the univariate approach represents
a standard method that is applied to isolated systems, the multivariate approach
is defined here in the perspective of networks of interacting systems. Even though
points in common can be found between the two methods, the discrepancies emerging
from the analysis are informative about the role that the network has in driving
the dynamics of a target system. Conditional entropy measures have been used in
this study to characterize modifications in the complexity of the cardiac chronotropic
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control, blood pressure control and respiratory activity under conditions of postural
and mental stress.

4.1. Comparison of univariate and multivariate approaches for the evaluation of

complexity

Our results show that the multivariate approach yields significantly lower values
of conditional entropy with respect to the univariate approach in the assessment
of the complexity of H, S and D. This finding is indicative of the fact that the
network significantly contributes to reduce the complexity of the heart period and
blood pressure dynamics (figure 2a, b, c); it is further supported by the significantly
higher number of components that are used in the multivariate entropy estimates
when compared to the univariate (figure 3a, b, c). On the contrary, univariate and
multivariate complexity of R are not found to significantly differ, meaning that the
network does not provide a significant contribution in reducing the complexity of the
respiratory dynamics, despite the higher number of lagged samples that are selected
using the multivariate approach.

In addition, univariate and multivariate approaches were also found to differ in the
ability to detect significant modifications in complexity across conditions. Whereas
this does not happen for S and R, where the same pattern of significant changes
is detected using either approach, univariate and multivariate approaches provide
different outcomes for H and D, that are indicative of the contribution of the network
in determining the complexity of the target system under different conditions. In
particular, the significantly increased complexity of H during MA detected only by
the multivariate approach reflects a strong contribution of the network at REST that
is reduced during MA (figure 2a). Similarly, the significantly decreased complexity
of D during HUT detected only by the univariate approach is the result of a more
important contribution of systems in the network at REST than during HUT (figure
2c). Both these results suggest that the application of a physiological stress seems to
favour the isolation of systems by reducing the influences from the connected network
nodes.

An alternative interpretation of these results in terms of flow of information
between systems can be made observing that the difference between univariate
and multivariate conditional entropy is formally defined as the transfer entropy
(Schreiber 2000) from the driver systems in the network to the target system. From
this perspective, it is possible to infer that: (i) there is a joint transfer of information
from H, D and R to S that is manifested to a comparable extent in all conditions;
(ii) no information seems to be transferred to R from the cardiovascular variables;
(iii) the amount of information that is jointly transferred to H from S, D and R at
REST undergoes a significant reduction with MA; and (iv) the amount of information
that is jointly transferred to D from H, S and R at REST undergoes a significant
reduction with HUT. Similar findings are present in recent studies, that report an
almost unchanged amount of information transferred to the systolic blood pressure
regulation from cardiac and respiratory regulation mechanisms as a consequence of
either mental or postural challenge when compared to resting state (Faes et al. 2017),
a significant decrease of joint information transferred from respiratory and blood
pressure control systems to the cardiac process as a consequence of mental stress
(Faes et al. 2017) and a significant reduction of the information transferred to the
diastolic blood pressure dynamics from the heart period oscillations as a consequence
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of postural challenge (Javorka et al. 2017).

4.2. Contributions of the network to entropy reduction of the target

The results of the iterative procedure presented in section 2.1 provide a further level
of detail about the dominant contributions of systems in the network in yielding the
complexity quantified by the multivariate approach. Figure 4 shows, for each target
system and experimental condition, the subsequent reductions in entropy that are
obtained at each iteration conditioning the present of the target on the past of the
system that is selected at the current iteration, given that the past of all the previously
selected systems in the network is known. In particular, at each iteration the selected
system is the one yielding the lowest conditional entropy, i.e. the one explaining the
most the dynamics of the target system. As a consequence, the order in which systems
are selected is indicative of their relative influence in reducing the complexity of the
target, that is quantified as an entropy reduction. It is not surprising that H, D and
R are best explained by their own past (the target system itself is selected at the
first iteration in figure 4a, c, d): this result supports conditional entropy approaches
that evaluate the univariate complexity as the residual uncertainty that remains when
past self dynamics are known. However, the use of multivariate approaches allows to
explore further information that is related to the reduction in complexity resulting
from the effect of physiological interactions between systems, as it is detailed in the
next section.

Similarly to the difference between univariate and multivariate conditional
entropy, also the subsequent entropy reductions ∆Hi that are here regarded as
decreases in complexity may be interpreted in the perspective of popular measures
of information theory that are used for the study of information flows (Faes &
Porta 2014). In particular, whenever a system is best explained by its own past
at the first iteration (e.g. H is selected first when H itself is set as target, figure 4a),
∆Hi corresponds to the self entropy of the system. On the contrary, when it is best
explained by another system (e.g. D is selected first when S is set as target, figure
4b), ∆Hi is equivalent to a cross entropy. At the second iteration, if the first case
holds, then ∆Hi equals the transfer entropy from the selected system to the target
(e.g. R is selected at the second iteration when H is set as target and REST condition
is considered, figure 4a); on the other hand, if the second case holds, a conditional self
entropy is obtained if the selected system is the target (e.g. S is selected at the second
iteration when S itself is set as target, figure 4b).

4.3. Physiological mechanisms underlying stress

Analyzing the complexity of a physiological system from a network perspective helps
in shedding light on the physiological regulatory mechanisms in the network that
drive the changes related to the response to different physiological conditions. In the
following, the physiological response to postural and mental stress is interpreted in
the light of changes in complexity of heart period, blood pressure and respiratory
dynamics, based on the results of our study.

4.3.1. Heart period dynamics Heart period dynamics are strongly affected by
postural stress, showing a significant reduction in complexity detected by both
univariate and multivariate approaches (figure 2a). This finding is supported by
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previous studies (Porta, Gnecchi-Ruscone, Tobaldini, Guzzetti, Furlan & Montano
2007, Faes et al. 2011b) and can be explained by the shift in the sympathovagal
balance driving the heart rate towards higher involvement of the sympathetic branch
and vagal withdrawal as a consequence of baroreceptors unloading when HUT test
is performed, that results in a net simplification of the heart period dynamics. The
simplification of the temporal dynamics agrees with the selection of a lower number
of lagged components by the non-uniform embedding with HUT (figure 3a). Vagal
withdrawal and concomitant sympathetic activation are responsible for the dampening
of high-frequency respiratory oscillations, a common estimate of the respiratory sinus
arrhythmia (RSA), during HUT (Faes et al. 2011b). RSA is reflected in a strong
respiratory contribution as driver of the H dynamics at REST and during MA (figure
4a, R is selected at the second iteration), that is suppressed when HUT is performed
(figure 4a, R is selected at the fourth iteration). On the other hand, the effect of
baroreceptors unloading is reflected by the selection of S as driver of the H dynamics
during HUT (figure 4a, S is selected at the second iteration). These results agree
with previous studies employing spectral (Montano et al. 1994, Cooke et al. 1999) or
information-theoretic (Faes et al. 2011b, Faes et al. 2012) indices.

As for the effect of mental stress, the significant increase in complexity that is
detected using the multivariate approach (figure 2a) may be ascribed to a reduced
contribution of the systems in the network in explaining the dynamics of H. More in
detail, R appears to be the only significant driver of the H dynamics in REST and
MA, showing a reduced amount of entropy reduction during MA when compared to
REST (figure 4a), that results in the increased multivariate conditional entropy (figure
2a). It may be thus inferred that the increase in complexity is possibly reflecting vagal
withdrawal as a consequence of the mental task (Berntson et al. 1994).

4.3.2. Blood pressure dynamics According to the analysis of univariate and
multivariate complexity, it seems that postural stress alters the diastolic blood pressure
regulation only, while both systolic and diastolic dynamics undergo an increase in
complexity following mental stress.

Postural stress results in a reduced complexity of D detected by the univariate
approach only (figure 2c), that is ascribed to the augmented contribution of self effects
as drivers of the diastolic dynamics (figure 4c, the entropy reduction associated to the
selection of D is higher in HUT than in REST). This effect is somehow concealed
when the multivariate approach is applied, by the presence of a considerable amount
of information transferred from H to D at REST, that is suppressed when HUT is
performed (figure 4c), yielding a net multivariate complexity that does not change
significantly in the transition from REST to HUT. The increase of self-effects with
HUT may be a possible consequence of the increased sympathetic activity. On the
other hand, the transfer of information from H to D in REST and MA may be ascribed
to the fast run-off effects of the cardiac cycle on the diastolic pressure, according
to which a longer heart period results in a lower diastolic BP value (Westerhof
et al. 2009). This effect appears to be damped during HUT, as reported previously
(Javorka et al. 2017), documenting the possible involvement of other mechanisms
driving blood pressure dynamics.

As far as mental stress is concerned, it is possible to infer that the combined effect
of changes in the pattens of autonomic activation following a cognitive load, that have
been found to result in vasoconstriction in splanchnic region and vasodilation in limbs
(Kuipers et al. 2008), and of the involvement of higher brain areas in controlling
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the vascular dynamics (Lackner et al. 2011), is responsible for the increased systolic
and diastolic blood pressure dynamical complexity. However, it is worth noticing
that interindividual differences arising in the response to mental stress may limit the
generality of these results.

A further inference can be done with regards to the observation that the dynamics
of S are strongly driven by the network independently of the experimental condition.
This finding might be explained by the fact that the most important contribution
to the entropy reduction of S is given by the past dynamics of D, given that D is
selected in the first iteration when S is set as target (figure 4b). The diastolic drive of
the systolic blood pressure dynamics is indicative of the strong connection that exists
between the two variables and seems to act from D to S. The reason for such a strong
connection may be physiologically explained by an interplay of left ventricular ejection
and vascular properties (Stergiopulos et al. 1996). This hypothesis, however, would
require further investigations using appropriate measures of stroke volume or vascular
resistance/compliance.

4.3.3. Respiratory dynamics Our results show that the complexity of the respiratory
system is not significantly affected by HUT, however it shows an increase with MA,
that might be explained by the appearance of long pauses or sighs in the respiration
pattern when mental calculations are performed (Grassmann et al. 2016), making it
more erratic and thus complex. An increased randomness of the respiratory pattern
during mental load has been previously reported (Vlemincx et al. 2011). Another
possible explanation may be given by the increased breathing rate during MA (results
not shown), leading to a coarser sampling of the respiratory volume signal that results
in a worse representation of the original dynamics and thus to an increased complexity.

Moreover, the comparison of univariate and multivariate conditional entropy, as
well as the analysis of the contributions to entropy reduction, reveal that the network
composed of H, S and D does not seem to transfer information to the respiratory
system, as documented by the presence of self effects only as predictors of the system
dynamics (figure 4d, R is selected first and it is the only system yielding a substantial
amount of entropy reduction). This result is in agreement with previous studies
(Schulz et al. 2013), suggesting that the respiratory system interacts exclusively in an
open loop with the cardiovascular variables, acting as a driver but not being affected
by their dynamics on the beat-to-beat time scale.

5. Conclusion

In the paradigm of network physiology (Bashan et al. 2012), different organ systems
continuously interact with each other to produce distinct physiological states and
to drive the transitions from one physiological state to another. The present study
documents that such interactions among physiological systems are crucial also to
establish the level of complexity of the output dynamics of various systems, as well as
to determine the changes in complexity related to specific types of physiological stress.
Indeed, using a generalized measure of multivariate complexity applied to the network
of cardiovascular and respiratory interactions, we find examples of physiological
systems that – when considered as systems embedded in a network – do not change
their short-term complexity (i.e., the respiratory system), reduce substantially their
complexity (i.e., the systolic blood pressure control system), or reduce their complexity
to an extent that varies with the physiological state (i.e., the heart rate control system
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during mental stress and the diastolic blood pressure control system during postural
stress). These findings highlight the importance of looking at physiological complexity
from a network perspective, and pose the basis for future investigations where this
integrated perspective can be expanded further to investigate the transitions across
physiological states or towards diseased conditions, to improve disease stratification,
or to support clinical decisions.
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