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Palermo, Italy

E-mail: lucia.rizzuto@fisica.unipa.it

E-mail: spagnolo@fisica.unipa.it

Abstract.
We discuss the radiative level shifts of an atom moving with uniform acceleration near

an infinite reflecting plate. We first consider the case of a two-level system interacting with a
massless scalar field in the vacuum state. The acceleration of the two-level atom is supposed in a
direction parallel to the conducting plate. We evaluate the contribution of vacuum fluctuations
and of the radiation reaction field to the energy shift of the atomic levels, and discuss their
behaviour as a function of the atomic acceleration and of the atom-plate distance. Then, we
investigate the more general case of an hydrogen atom accelerating near a perfectly reflecting
plate and interacting with the electromagnetic field in the vacuum state.

1. Introduction
A remarkable consequence of Quantum Field Theory (QFT) is that the vacuum state, which is
the state of lowest energy of the field, possesses an infinite energy and exhibits fluctuations of the
fields, even at zero temperature. These fluctuations are at the origin of many observable effects,
such as atomic energy-level shifts, Casimir effect and Casimir-Polder forces. Casimir effect and
Casimir-Polder forces are long-range interactions between neutral polarizable bodies (see [1, 2]
for a review). These effects have been extensively investigated under very general conditions, for
example in the presence of boundary conditions and/or at temperature different from zero [3].
Fluctuations of the atom-wall Casimir-Polder force have been also investigated [4,5]. Also, both
the Casimir effect and the atom-wall Casimir-Polder forces have been recently measured with
remarkable accuracy [6–8].

Recently, the properties of quantum vacuum in accelerated frames have been investigated
also. In particular, the problem of the interaction of an accelerated neutral atom (or of a
charge) with a quantum field has received much attention in recent years. This problem has
been investigated in connection with the Unruh effect, according to which accelerated atoms
perceive vacuum fluctuations as a thermal bath at temperature TU = h̄a/(2πckB), a being
the atomic acceleration [9, 10]. Actually, the problem of the appearance of the vacuum in an
accelerated frame is a widely controversial problem [11,12]. A closely related phenomenon is the
dynamical Casimir effect, which concerns with the emission of electromagnetic radiation from
a single accelerated mirror in the vacuum. These phenomena clearly show that the quantum
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vacuum possesses dynamic properties that are at variance with those of vacuum in classical
physics: quantum vacuum can be perturbed and these perturbations leads to observable effects.

Radiative properties of accelerated atoms in vacuum have been extensively investigated from a
theoretical point of view until very recently [13–20]. Unfortunately, both the Unruh effect and the
dynamical Casimir effect are extremely weak and their detection is very difficult. For example,
in order to obtain Unruh radiation corresponding to a temperature of 1 K, an acceleration of
the order of 1022 cm/s2 would be necessary. Experimental schemes have been recently proposed
for detecting phenomena related to the Unruh effect, aimed at enhancing the Unruh radiation
under very specific circumstances [21].

This paper is devoted to discuss the Casimir-Polder interaction between a uniformly
accelerated atom and an infinite conducting plate. We are interested in investigating if thermal
effects due to the acceleration of the atom can modify the Casimir-Polder interaction between the
atom and the infinite plate. This is indeed expected because, as it is well-known, Casimir-Polder
interactions are directly related to vacuum field fluctuations [22]. The interest on this subject is
also related to the fact that the static Casimir-Polder interaction between an atom at rest and
a wall has been recently measured with good precision [7,8,23,24]. This suggests the possibility
of an indirect detection of the Unruh effect by a measurement of the Casimir-Polder interaction
between the accelerated atom and the reflecting plate. Also dynamical Casimir-Polder forces
have recently attracted much interest in literature [25–29].

In this paper we first consider a neutral two-level atom interacting with a massless scalar
field and uniformly accelerated in a direction parallel to an infinite plate. We calculate the
energy level shift of the accelerated atom in the presence of the mirror [30]. As it is well-known,
the presence of the reflecting plate changes vacuum field fluctuations. The correction to the
Lamb-shift of the atom contains terms depending from the atom-mirror distance, yielding the
atom-wall Casimir-Polder potential. We identify the contributions of vacuum fluctuations and
of radiation reaction to the Casimir-Polder interaction, and discuss their dependence on the
acceleration of the atom in the limits of small and large accelerations. The relation with the
Unruh effect is then considered, as well as observability of the results obtained.

Then we extend our investigations to the case of an hydrogen atom interacting with the
electromagnetic field in the vacuum state and in the presence of a conducting wall. We calculate
the energy level shifts of the atom and we compare the results with those obtained in the case
of a scalar field.

2. The energy level shift of a uniformly accelerated two-level system interacting
with a massless scalar field in the presence of an infinite plate
Consider a two-level system interacting with a massless scalar field in the vacuum state and in
the presence of a perfectly reflecting plate located at z = 0. The Hamiltonian describing this
system in the instantaneous inertial frame of the atom is [14,15,30] (h̄ = c = 1)

H(τ) = HA(τ) + HF (τ) + HAF (τ) (1)

where τ is the proper time and

HA(τ) = ω0Sz(τ) (2)

HF (τ) =
∑
k

ωka
†
kak

dt

dτ
(3)

HAF (τ) = µS2(τ)φ(x(τ)) (4)

ak and a†k are the bosonic operators of the scalar field, and µ is the atom-field coupling
constant. We have also introduced the pseudospin operators Sz = 1

2(| e〉〈e | − | g〉〈g |),
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and S2 = i
2(S− − S+), where S− =| g〉〈e | and S+ =| e〉〈g | are the atomic lowering and raising

operators. Finally, φ(x, t) is the scalar field operator,

φ(x, t) =
∑
k

√
1

2V ωk
f(k,x)

[
ak(t) + a†k(t)

]
(5)

where f(k,x) are the appropriate mode functions taking into account Dirichlet boundary
conditions for the field operator. The mode functions satisfy the normalization condition

1
V

∫
d3xf(k,x)f(k′,x) = δk,k′ (6)

The Hamiltonian HF (τ) in (3) governs the evolution of the field in terms of the proper time τ
in the instantaneous inertial frame of the atom. It reduces to the usual free-field Hamiltonian
in the simple case of an atom at rest, where dt/dτ = 1.

We are interested in evaluating the vacuum field fluctuations and radiation reaction field
contributions to the energy level shift of the accelerated atom. As discussed in [14,15,30], these
quantities can be obtained from an effective Hamiltonian Heff consisting of the sum of two terms

Heff
vf =

iµ2

2

∫ τ

τ0
dτ ′CF (x(τ), x(τ ′))[Sf

2(τ
′), Sf

2(τ)], (7)

Heff
rr = − iµ2

2

∫ τ

τ0
dτ ′χF (x(τ), x(τ ′)){Sf

2(τ
′), Sf

2(τ)}, (8)

where

CF (x(τ), x(τ ′)) =
1
2
〈0 | {φf(x(τ)), φf(x(τ ′))} | 0〉 (9)

χF (x(τ), x(τ ′)) =
1
2
〈0 | [φf(x(τ)), φf(x(τ ′))] | 0〉 (10)

are the correlation function and the linear susceptibility of the field, respectively, and [, ] and
{, } denote commutator and anticommutator.

The expectation values of Heff
vf and Heff

rr on a generic atomic state | a〉 give the vacuum
fluctuations and the radiation reaction contributions to the radiative shift of the atomic level a

(δEa)vf = −iµ2
∫ τ

τ0
dτ ′CF (x(τ), x(τ ′))(χA)a(τ, τ ′), (11)

(δEa)rr = −iµ2
∫ τ

τ0
dτ ′χF (x(τ), x(τ ′))(CA)a(τ, τ ′) (12)

where (CA)a(τ, τ ′) and (χA)a(τ, τ ′) are, respectively, the symmetric correlation function and the
linear susceptibility of the atom in the state |a〉

(CA)a(τ, τ ′) =
1
2
〈a | {Sf

2(τ), Sf
2(τ

′)} | a〉

=
1
2

∑
b

| 〈a | S2(0) | b〉 |2 (eiωab(τ−τ ′) + e−iωab(τ−τ ′)) (13)

(χA)a(τ, τ ′) =
1
2
〈a | [Sf

2(τ), Sf
2(τ

′)] | a〉

=
1
2

∑
b

| 〈a | S2(0) | b〉 |2 (eiωab(τ−τ ′) − e−iωab(τ−τ ′)) (14)
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Thus the calculation of the energy level shifts of accelerated atom reduces to the calculation of
the statistical functions for the atom and the field.

Let us suppose that the atom is at a distance z0 from the mirror and that it accelerates along
the x direction. In the laboratory frame, its trajectory is described, as a function of the proper
time τ , by the equations

t(τ) =
1
a

sinh(aτ), x(τ) =
1
a

cosh(aτ),

y(τ) = 0 z(τ) = z0 (15)

where a is the proper acceleration. The statistical functions CF (x(τ), x(τ ′)) and χF (x(τ), x(τ ′)),
in the presence of the reflecting plane boundary, can be calculated from the Wightman function,
G(x(τ), x(τ ′)) satisfying the Dirichlet boundary conditions on the mirror, φ(x) |z=0= 0,

G(x(τ), x(τ ′)) = 〈0 | φ(x(τ))φ(x(τ ′)) | 0〉 (16)

This function describes the field correlations at two different points of space-time, x(τ) and
x(τ ′). In the presence of a boundary, it consists of the sum of two terms: the empty-space
contribution (G(0)(x(τ), x(τ ′))) and a part which depends on the presence of the boundary
(G(b)(x(τ), x(τ ′))) [31]

G(x(τ), x(τ ′)) = G(0)(x(τ), x(τ ′)) + G(b)(x(τ), x(τ ′))

=
1

2π2

[
1

(∆(x))2 − (∆t− iη)2
− 1

(∆(x))2 − (∆t− iη)2

]
, (17)

(η → 0+) where we have introduced the variables ∆(x) =| x(τ)−x(τ ′) | (the difference between
atomic coordinates x(τ) taken at two different proper times) and ∆(x) =| x(τ)−σx(τ ′) | where
σx(τ ′) is the point corresponding to the reflection of point x(τ ′) on the mirror, with

σ =

 1 0 0
0 1 0
0 0 −1

 (18)

Finally ∆t = t(τ)− t(τ ′). Substituting (15) into (17), we obtain

G(x(τ), x(τ ′)) = − 1
16π2

a2

sinh2 a(τ−τ ′−iη)
2

+
1

16π2

a2

sinh2 a(τ−τ ′−iη)
2 − z2

0a
2
, (19)

The symmetrical correlation function and the linear susceptibility of the field can be obtained
from (19). After some algebra (detailed calculations are given in [30]) we get

CF (x(τ), x(τ ′)) = − 1
8π2

{∫ ∞

0
dωω coth(

πω

a
)
(
eiω(τ−τ ′) + e−iω(τ−τ ′)

)
− 1

2z0N1/2

∫ ∞

0
dω

(
coth(

πω

a
)

× sin
(

2ω

a
sinh−1(az2

0)
)(

eiω(τ−τ ′) + e−iω(τ−τ ′)
))}

(20)
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and

χF (x(τ), x(τ ′)) = − 1
8π2

{∫ ∞

0
dωω

(
eiω(τ−τ ′) − e−iω(τ−τ ′)

)
− 1

2z0N1/2

∫ ∞

0
dω sin

(
2ω

a
sinh−1(az0)

)
(
eiω(τ−τ ′) − e−iω(τ−τ ′)

)}
(21)

where N = 1 + z2
0a

2. Substituting Eqs. (13), (14), (20) and (21) into (11) and (12) and taking
the limits τ0 → −∞, τ →∞, we obtain

(δEa)vf =
µ2

8π2

∑
b

| 〈a | S2(0) | b〉 |2

×
∫ ∞

0
dωω

(
1− 1

2z0ωN1/2
sin

(
2ω sinh−1(z0a)

a

))

×P

[
1

ω + ωab
− 1

ω − ωab

](
1 +

2
e2πω/a − 1

)
(22)

and

(δEa)rr = − µ2

8π2

∑
b

| 〈a | S2(0) | b〉 |2

×
∫ ∞

0
dωω

(
1− 1

2z0ωN1/2
sin

(
2ω sinh−1(z0a)

a

))

×P

[
1

ω − ω0
+

1
ω − ωab

]
, (23)

where P denotes the principal part. These expressions give the contributions of vacuum
fluctuations and of the radiation reaction field to the energy-level shift of the accelerated atom
near the mirror. In contrast to the case of the unbounded space (where the radiation reaction
term is not affected by the acceleration of the atom), in the present case, both contributions
explicitly depend on the acceleration of the atom, due to the presence of the plate,. In the
limit z0 → ∞, the function f(z0) = 1 − 1

2z0ωN1/2 sin
(

2ω sinh−1(z0a)
a

)
tends to 1 and the results

obtained for an accelerated atom in unbounded space are recovered [15]. As discussed in [30]
Eq.(22) shows that the effect of the uniform acceleration is a thermal-like correction with the
Unruh temperature TU = h̄a/2πckB, due to the term containing the coth(πω/a) function in the
symmetric correlation function.

We now focus our attention on the Casimir-Polder interaction between the two-level atom
and the wall. In analogy with the case of an atom at rest near a plate, this quantity can be
obtained considering only the z0-dependent terms in Eqs. (22) and (23). For a ground-state
atom we get

ECP = E
(vf)
CP + E

(rr)
CP (24)

where

E
(vf)
CP = − µ2

8π2

1
8z0N1/2∫ ∞

0
dω sin

(
2ω sinh−1(z0a)

a

)

×P

[
1

ω − ω0
− 1

ω + ω0

](
1 +

2
e2πω/a − 1

)
(25)
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and

E
(rr)
CP =

µ2

8π2

1
8z0N1/2

×
∫ ∞

0
dω sin

(
2ω sinh−1(z0a)

a

)

×P

[
1

ω − ω0
+

1
ω + ω0

]
(26)

Using the relation

f(
2ω0

a
sinh−1(z0a)) =

∫ ∞

0
dω

sin
(

2ω sinh−1(z0a)
a

)
ω + ω0

(27)

the expressions above can be written in the following form

E
(vf)
CP = − µ2

8π2

1
8z0N1/2

×
(
−2f(

2ω0

a
sinh−1(z0a)) + π cos(

2ω0

a
sinh−1(z0a))

− a

ω0

(
cos

(
2ω0 sinh−1(z0a)

a

)
− 1

))
(28)

and

E
(rr)
CP =

µ2

8π2

1
8z0N1/2

cos
(

2ω0

a
sinh−1(z0a)

)
(29)

As expected, the Casimir-Polder interaction depends explicitly on the acceleration of the
atom. It is now interesting to investigate the behaviour of the Casimir-Polder interaction as
a function of a and z0, in the limits (2ω0/a) sinh−1(z0a) � 1 and (2ω0/a) sinh−1(z0a) � 1.
These two limits define two different regions of the space, z0 � a−1 sinh(a/2ω0) and z0 �
a−1 sinh(a/2ω0), respectively, in analogy with the near- and the far-zone limits of the inertial
atom-wall Casimir-Polder interaction. In other words, in the case of accelerated atoms, we
can define a new near-zone and a new far-zone limit for the Casimir-Polder interaction, which
depend on the acceleration of the atom too. We now investigate the behavior of the Casimir-
Polder interaction in these two regions and in the limits a < ω0 and a > ω0. This is equivalent
to considering the two cases, kBT < ω0 and kBT > ω0.

In the limit of acceleration small compared with ω0, the two regions defined above coincide
with the usual near-zone and far-zone of the stationary Casimir-Polder interaction for an inertial
atom. ¿From Eqs. (28) and (29) we obtain

E
(vf)
CP = − µ2

8π2

1
8z0

× (−2f(2ω0z0) + π cos(2ω0z0)) (30)

and

E
(rr)
CP =

µ2

8π2

1
8z0

π cos(2ω0z0) (31)
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where we have approximated 2ω0/a sinh−1(z0a) ∼ 2ω0z0. Thus, in the limit of small acceleration
we recover, as expected, the well-known stationary atom-wall Casimir-Polder potential,

ECP =
µ2

8π2

π

8z0
near-zone (32)

ECP =
µ2

8π2

1
8ω0z2

0

far-zone. (33)

This shows that, in the case of a scalar field, the Casimir-Polder force between an atom at
rest and a plate is repulsive.

We now consider the case a ≥ ω0. For typical values of the atomic transition frequency
(ω0 ∼ 1015 s−1), this corresponds to an acceleration larger than a ∼ 1025 cm/s2. In this limit,
2ω0/a sinh−1(z0a) � 1 and from Eqs. (27) and (28) we obtain

ECP = E
(vf)
CP + E

(rr)
CP ∼ µ2

8π2

1
8z0

√
1 + (z0a)2

×
(

π +
a

ω0

(
cos

(
2ω0

a
sinh−1(z0a)

)
− 1

))
(34)

which explicitly depends on the acceleration a. For distances such that z0a � 1, we have

ECP = E
(vf)
CP + E

(rr)
CP ∼ µ2

8π2

1
8z0

×
(

π +
a

ω0

(
cos

(
2ω0

a
sinh−1(z0a)

)
− 1

))
(35)

In the limit z0a � 1, we obtain

ECP ∼ µ2

8π2

1
8z2

0a

×
(

π +
a

ω0

(
cos

(
2ω0

a
sinh−1(z0a)

)
− 1

))
(36)

which gives the Casimir-Polder interaction between the accelerated atom and the wall for high
accelerations. The most striking effect of the acceleration of the atom is the presence of an
oscillatory term in the interaction energy, which modulates the interaction as a function of z0

and a. This oscillatory behaviour is reminiscent of the stationary Casimir-Polder interaction
between an excited atom and a mirror, where a spatially oscillating term is also present [32].
This can be explained observing that the limit a ≥ ω0 corresponds to a temperature T ≥ ω0/kB.
In such limit the excitation probability of the atom is nonvanishing and this is reflected in
the oscillatory behaviour of the Casimir-Polder interaction. We emphasize that in the far-zone
limit the Casimir-Polder interaction is essentially due to the vacuum-fluctuation contribution,
where a ”thermal” term is present, due to the acceleration of the atom. Thus our results show
that thermal effects of acceleration may induce observable effects in the far-zone Casimir-Polder
interaction between an accelerated atom and a wall, at least in the case of a scalar field. In fig.1,
the energy shift ECP is plotted as a function of the atom-plate distance z0, for different values
of atomic acceleration. A comparison between the different curves shows that the oscillatory
behaviour of potential ECP drastically decreases for acceleration smaller than 1024 cm/s2. Also,
depending on the distance z0, the Casimir-Polder interaction can be attractive or repulsive, in
contrast with the stationary case of a ground-state atom, where the force is always repulsive.
Similar features have been recently discussed in the case of dynamical Casimir-Polder interaction
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between an atom and a plate [29]. In Fig. 2, we have plotted the quantity Ea6=0
CP /Ea=0

CP , as a
function of z0. We observe that for given values of z0 the correction to the potential due to
the atomic acceleration is of the same order of the static Casimir-Polder interaction between an
atom at rest and a plate.

0.0002 0.0004 0.0006 0.0008 Z0

a=1025 cm/s2   
a=1024 cm/s2   
a=0 cm/s2

ECP

Figure 1. Casimir-Polder interaction as a function of the atom-plate distance z0 and for different
values of the atomic acceleration. Red, cyan and black (long-dashed-dot, dashed and continuous
lines, respectively) represent the interaction for a = 1025cm/s2, a = 1024cm/s2, a = 0 cm/s2,
respectively.

0.0002 0.0004 0.0006 0.0008 0.001

-5

-1

1

5

z0

ECP(a)/ECP(0)

Figure 2. Ratio between the atom-plate Casimir-Polder interaction with accelerated atom
(a = 1025cm/s2) and the atom-plate Casimir-Polder interaction with the atom at rest.

We conclude comparing our results with the Casimir-Polder interaction between an atom
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at rest and a plate immersed in a thermal bath. As it is well-known [33], the atom-wall
Casimir-Polder interaction at temperature T is proportional to the temperature of the bath.
A comparison of the results in [33] with Eqs. (34)-(36), immediately shows that the Casimir-
Polder interaction between the accelerated atom and the plate is qualitatively different from
the static counterpart at the Unruh temperature TU , because of the nontrivial dependence
from the acceleration a in (35) and (36). This consideration indicates that, in general,
uniformly accelerated atoms behave differently from static ones in a thermal bath at the Unruh
temperature. In a different context, this aspect has been discussed in [19,20]

3. Energy shifts of an accelerated hydrogen atom interacting with the
electromagnetic field in the presence of a conducting plate
In this section we extend our investigation to the case of the electromagnetic field. Recently,
the radiative level shifts of an accelerated atom interacting with the electromagnetic field in
the vacuum state have been considered [16] and significant differences compared to the case of
scalar field have been found. This motivates us to consider the case of a uniformly accelerated
hydrogen atom interacting with the electromagnetic field in the presence of a perfectly reflecting
plate.

Let us consider a uniformly accelerated hydrogen atom interacting with the electromagnetic
field in the vacuum state near a perfectly conducting plate. The Hamiltonian that describes
the time evolution of this system with respect to the proper time τ , in the multipolar coupling
scheme, is [16]

H(τ) = HA(τ) + HF (τ) + HAF (τ) (37)

where

HA(τ) =
∑
m

ωmσmm(τ) (38)

HF (τ) =
∑
kj

ωka
†
kjakj

dt

dτ
(39)

HAF = −er(τ) ·E(x(τ)) = −e
∑
`m

r`m ·E(x(τ))σ`m(τ) (40)

where σ`m =| `〉〈m | and er =
∑

`m µ`mσ`m is the atomic electric dipole moment.
We wish to evaluate the energy level shift of the atom accelerating along the x direction

parallel to the plate. Our approach generalizes the method used by Takagi [34] to the case in
which boundary conditions are present. The trajectory of the atom is described by equations
(15) of the previous section.

In order to calculate the statistical functions of the field, we consider the Wightman’s function
for the photon field in the presence of a boundary condition, which can be expressed as a sum
of two terms

〈M0 | Aα(x)Aβ(x′) | 0M 〉 = 〈M0 | Aα(x)Aβ(x′) | 0M 〉0 + 〈M0 | Aα(x)Aβ(x′) | 0M 〉b
= ηαβG(0)(x, x′) + (ηαβ − 2nαnβ)G(b)(x, x′) (41)

where Aα(x) is the electromagnetic 4-vector potential, G(0)(x, x′) and G(b)(x, x′) are the
Wightman’s functions of the scalar field discussed in the previous section. Also, x = (t,x),
| 0M 〉 is the Minkowski vacuum, ηαβ = diag(−1, 1, 1, 1) and nα = (0, 0, 0, 1). We now focus
our attention only on the boundary-dependent term, which is relevant for the calculation of the
Lamb shift of the accelerated atom in the presence of a reflecting plate. The Wightman function
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for the fields (in the laboratory frame) follows from differentiating Eq.(41),

G
(b)
αβγδ(x, x′) = 〈M0 | Fαβ(x)Fγδ(x) | 0M 〉b

= (ηβδ∂α∂′γ − ηβγ∂α∂′δ − ηαδ∂β∂′γ + ηαγ∂β∂′δ)

−2(nβnδ∂α∂′γ − nβnγ∂α∂′δ − nαnδ∂β∂′γ + nαnγ∂β∂′δ)

×G(b)(x, x′) (42)

where Fαβ(x) = ∂αAβ − ∂βAα.
We are now interested in calculating the two-point correlation function of the electric field in

the reference frame co-moving with the atom. The electric field Ê(τ) observed at proper time τ
by the atom accelerating along the x direction (at a fixed distance z0 from the plate) is related
by a Lorentz transformation to the electromagnetic field in the laboratory frame

Êi = F̂i0 = (Λτ )α
i (Λτ )

β
0Fαβ (43)

where Ê indicates the electric field in the instantaneously inertial frame, and

Λ =


cosh(aτ) − sinh(aτ) 0 0
− sinh(aτ) cosh(aτ) 0 0
0 0 1 0
0 0 0 1

 (44)

After some algebra we obtain

g(b)(τ − τ ′) = 〈M0 | Ê`(τ)Êm(τ ′) | 0M 〉b

=
a4

16π2

[
δ`m

(
sinh2(a(τ − τ ′)/2) + a2z2

0

)
− 2n`nm sinh2(a(τ − τ ′)/2)

]
× 1[

sinh2(a(τ − τ ′)/2) + a2z2
0

]3 − a4

16π2

[
2a2z2

0 (δ`m − k`km) + 2az0 (n`km + k`nm)
]

× sinh2(a(τ − τ ′)/2)[
sinh2(a(τ − τ ′)/2) + a2z2

0

]3 (45)

where ki = (1, 0, 0). This expression reduces to the two-point field correlation function obtained
for an atom at rest near a reflecting plate in the limit of a → 0.

¿From relation (45) we can obtain the symmetrical and anti-symmetrical correlation function.
In analogy with the case of the scalar field, we may express the field correlation function and
the field susceptibility as integrals over frequencies. After some algebra, we obtain

CF
`m(x(τ), x(τ ′)) =

1
2
〈M0 |

{
E`(x(τ)), Em(x(τ ′))

}
| 0M 〉

= − 1
8π2

1
(2z0)3N

∫ ∞

0

[
σ`nfnm(ω; z0, a) + 2a2z2

0σ`ngnm(ω; z0, a) + az0h`m(ω; z0, a)
]

× coth(
πω

a
)
(
eiω(τ−τ ′) + e−iω(τ−τ ′)

)
(46)

and

χF
`m(x(τ), x(τ ′)) = i〈M0 |

{
E`(x(τ)), Em(x(τ ′))

}
| 0M 〉

= −i
1

8π2

1
(2z0)3N

∫ ∞

0
dω
{
−2σ`nfnm(ω; z0, a)− 2a2z2

0σ`ngnm(ω; z0, a)− 2az0h`m(ω; z0, a)
}

×
(
eiω(τ−τ ′) − e−iω(τ−τ ′)

)
(47)
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where

fnm(ω; z0, a) =
1√
N

{
(δnm − nnnm) (2ωz0)2 sin(2ω/a sinh−1(z0a))

+ (δnm − 3nnnm)
[
2z0ω√

N
cos(2ω/a sinh−1(z0a))− 1

N
sin(2ω/a sinh−1(z0a))

]}
; (48)

gnm(ω; z0, a) =
1
N

{
(2δnm − 3nnnm) (2ωz0) cos(2ω/a sinh−1(z0a))− 1√

N3

×
[
(δnm − 4nnnm)− 2a2z2

0 (δnm − 2nnnm)
]
sin(2ω/a sinh−1(z0a))

}
; (49)

h`m(ω; z0, a) = az0 (az0 (δ`m − k`km) + n`km + k`nm)

×
[
(2ωz0)2 sin(2ω/a sinh−1(z0a))− 2ωz0

N
(1− 2a2z2

0) cos(2ω/a sinh−1(z0a))

+
1 + 4a2z2

0√
N3

sin(2ω/a sinh−1(z0a))

]
(50)

We are now ready to calculate the energy level shifts of the accelerated atom in the presence
of an infinite reflecting plate. The symmetric and antisymmetric correlation functions for the
accelerated hydrogen atom are

CA
`m(τ, τ ′) = 1

2〈a | {r`(τ), rm(τ ′)} | a〉

= 1
2

∑
b

[
〈a | r`(0) | b〉〈b | rm(0) | a〉eiωab(τ−τ ′) + 〈a | rm(0) | b〉〈b | r`(0) | a〉e−iωab(τ−τ ′)

]
(51)

χA
`m(τ, τ ′) = i〈a | [r`(τ), rm(τ ′)] | a〉

= i
∑

b

[
〈a | r`(0) | b〉〈b | rm(0) | a〉eiωab(τ−τ ′) − 〈a | rm(0) | b〉〈b | r`(0) | a〉e−iωab(τ−τ ′)

]
(52)

Using Eqs.(46),(47),(51) and (52) in (11) and (12), we obtain

(δEa)VF
(b) = − 1

4π2

∑
b

(
µab

` µba
m

) 1
2N(2z0)3

∫ ∞

0
dω

×
(
σ`nfnm(ω; z0, a) + 2a2z2

0σ`ngnm(ω; z0, a) + z0ah`m(ω; z0, a)
)

× coth(πω/a)P
(

1
ω + ωab

− 1
ω − ωab

)
(53)

and

(δEa)RR
(b) = 1

4π2

∑
b

(
µab

` µba
m

)
1

2N(2z0)3

∫∞
0 dω

×
(
σ`nfnm(ω; z0, a) + 2a2z2

0σ`ngnm(ω; z0, a) + z0ah`m(ω; z0, a)
)
P ( 1

ω+ωab
+ 1

ω−ωab
) (54)

Equations (53) and (54) give the correction to the energy level shifts of the accelerated atom
due to the presence of boundary.

The total energy level shift is obtained by summing the contributions of vacuum fluctuations
and of the radiation reaction field

δEa = (δEa)VF + (δEa)RR (55)

Equations (53) and (54) have several interesting properties. First, while in the case of the
unbounded space only the contribution of vacuum fluctuations depends on the acceleration,
in the presence of a boundary both vacuum fluctuations and radiation reaction depend on the
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atomic acceleration, in analogy with the case of the scalar field discussed in the previous section.
In particular, in the limit of small acceleration, they reduce to the usual Lamb-shift for an atom
at rest near a reflecting plate. Secondly, when z0 goes to infinity the boundary-dependent terms
vanish and we obtain the results for the Lamb-shift of an accelerated atom in the unbounded
space [16]

(δEa)VF = 1
12π2

∑
b | 〈a | µ | b〉 |2

∫∞
0 dωω3(1 + a2

ω2 ) coth(πω/a)P ( 1
ω+ωab

− 1
ω−ωab

) (56)

and

(δEa)RR = − 1
12π2

∑
b

| 〈a | µ | b〉 |2
∫ ∞

0
dωω3P (

1
ω + ωab

+
1

ω − ωab
) (57)

Finally, the effect of the acceleration is not simply a thermal correction given by a term
coth(πω/a). In fact, the functions f`n(ω; z0, a), g`n(ω; z0, a) and h`m(ω; z0, a) depend explicitly
on the atomic acceleration. Thus, in analogy with the scalar field case, also in the case of
electromagnetic field we find a non-thermal correction to the vacuum fluctuation contribution,
due to the presence of the boundary. This point will be discussed in detail in a future publication.

4. Conclusions
In this paper we have discussed the energy level shifts of a uniformly accelerated two-level
system interacting with a massless scalar field in the presence of an infinite plate with Dirichlet
boundary conditions. In particular, we have considered the contributions of vacuum fluctuations
and of radiation reaction to the Casimir-Polder interaction energy and we have discussed their
dependence on the acceleration of the two-level atom, in the limits of near- and far-zone. We
have shown that the atom-wall Casimir-Polder interaction in the limit of small accelerations
coincides with the stationary atom-wall Casimir-Polder potential. In contrast, for high atomic
accelerations the Casimir-Polder interaction depends explicitly on the acceleration of the atom
and exhibits an oscillatory behaviour in space. Therefore it appears that effects due to the
acceleration of the atom may become evident in the atom-wall Casimir-Polder interaction.
Finally, we have discussed the case of an hydrogen atom moving with constant acceleration
near a perfectly conducting plate and interacting with the electromagnetic field in the vacuum
state. The results obtained have been compared with those of the scalar field case.
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