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Abstract

This paper describes an automated method for extracting the apparent positions
of fiducial points from 2D or 3D images of a phantom. We consider a 3D-
lattice phantom for two main reasons: first, ease of manufacture and isotropy
of its structure with respect to coordinate projections; second, a connected
structure allowing to uniquely assess the adjacency relationship between fiducial
points even if geometric distortions arising from main magnet inhomogeneity
and gradient fields non-linearity is severe as observed in open-bore systems.

In order to validate our proposed method and compare different choices for
the parameters of our phantom (i.e. number and distance between grids and
thickness of its branches) we developed in-house a software for simulating 2D or
3D volume images of the phantom, using customizable MRI sequence parameters
and Spherical Harmonic Coefficients for the fields.

We deem worthy of note that using simulated images is the only way to eval-
uate the estimated position error, since it allows to compare the estimates to
their theoretical counterparts. Furthermore, the use of simulated images allows
to evaluate the robustness of the method with respect to image quality in terms
of Signal-to-Noise Ratios and geometric distortion, and allows to evaluate dif-
ferent phantom geometries without having to manufacture them. The proposed
method can be easily extended to phantoms having an arbitrary overall shape,
as long as it is a fully connected structure. Specifically, it is easy to design a
phantom with fiducial points laying outside of the homogeneity sphere, so that
indirect measurement of the fields becomes possible, for example by using the
recent method proposed by Acquaviva et al.

To the best of our knowledge, the proposed method outperforms other state-
of-the-art methods, with an average positioning offset of 0.052 mm (with a 0.99
quantile of 0.12mm) when working on images featuring a differential Signal-to-
Noise Ratio within Region-of-Interest (ROI) equal to 105 (20.2dB) and a ROI-
to-background SNR of 20dB. Estimating the positions of 6859 fiducial points
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in a volume, our highest density case, was carried out in less than 30 minutes
on a desktop personal computer.

Keywords: Magnetic resonance imaging (MRI), Image
enhancement /restoration (noise and artifact reduction), Registration,
Phantom design, Fiducial point localization

1. Introduction

Magnetic Resonance Imaging is affected by geometrical distortion due to
magnetic field inhomogeneity and gradient non linearity. Magnetic field inho-
mogeneity in modern MRI systems is usually observable in permanent magnet
and/or open bore systems, while gradient non linearity is usually due to en-
gineering trade-offs in gradient coil design. Both distortion types are usually
corrected via software, by using vendor-provided Spherical Harmonics Coeffi-
cients (SHC) sets that describe the fields within a so-called homogeneity sphere.
The reason for using a sphere is that the SHC expansion is relatively easy to
obtain by measuring precession frequencies of a number of probes placed at
a given radius from the magnet isocentre. The diameter of the measurement
sphere is limited by the magnet bore width, and it is well known that a spher-
ical harmonic expansion cannot be extrapolated outside of its reference radius.
Images acquired from planes laying partially outside of the homogeneity sphere
usually show increased distortion that cannot be corrected by vendor-provided
sets, and eventually exhibit signal loss due to precession frequencies outside of
the receiver bandwidth.

On the basis of the fact that the fields vary continuously in space, and that
the signal loss usually happens at much larger radii than the reference radius,
a recent paper by Aquaviva et al [1] describes how to obtain a set of SHC’s
valid outside of the homogeneity sphere, as long as the distortion is observable
and no aliasing effects occur. The method is based on reliable estimates of the
positions of a large number (e.g. in the order of thousands) of fiducial points
within the imaging volume.

Several papers deal with MRI phantoms specifically designed for fiducial
point localization [2-4]. Accurate fiducial point localization in space is also
essential for surgery and radio-therapy planning. The phantom proposed by
Wang [2] is a Z-directed array of X-Y fin grids immersed in an MR-visible
solution. They compute the Z-direction derivative and extract fiducial point
positions by correlating to a 2D cross-prototype.

Huang et al [3] underlines that Wang’s et al method is impaired in the
low-SNR regime, since noise effects are worsened by the derivative, and when
geometric-distortion induces intensity variations high enough to make a fixed
threshold for fiducial point detection unreliable. They propose a phantom built
as a 3D array of spheres full of contrast solution. The spherical shape has been
chosen for being relatively insensitive to geometrical distortion, and fiducial
point locations are found by searching maxima of normalized cross-covariance



between vendor-provided geometrically corrected images and a sphere proto-
type. More recently, Weavers et al [4] devised a similar method based on a
phantom made of MR-visible spheres (water-based paintballs) arranged in a
3D grid of foam sheets. They acquire a CT scan of the phantom to set the
ground truth, then iteratively match the entire distorted volume deriving SHC
expansions of the fields as a result.

Both of these more recent methods employ spheres in order to simplify locat-
ing fiducial points, but this choice makes it cumbersome to derive their adjacency
relationship? when geometrical distortion is significant. Weavers’ approach over-
comes this problem by matching the entire volume, but this results in a very
heavy computational burden. Huang works with geometrically corrected images
so the adjacency relationship issue is trivially solved.

The objective of the present work is to determine the apparent positions
and adjacency relationship of a large number of fiducial points in raw images
affected by geometrical distortion. To this purpose, we use a 3D lattice phantom
of cylinders filled with an MR-visible solution. We consider the positions of 3D
crosses as fiducial points. Their localization is carried out by searching maxima
of the cross covariance between images and 3D cross prototypes. To overcome
the geometrical distortion issue pointed out by [3, 4], and in order to be able
to work on raw images, we employ 3D cross prototypes that are adaptive, i.e.
determined on the basis of local features of the images themselves. In fact, we
will show how it is possible to find the apparent directions of phantom features
from geometrically distorted images without necessarily know the accurate po-
sitions of crosses. These directions will enable us to build 3D cross-prototypes
on-the-fly, and determine the adjacency relationship between fiducial points in
images. This aspect of the problem has, to the best of our knowledge, been
neglected in the literature.

Once the apparent positions of fiducial points and their adjacency relation-
ship is known, it becomes possible to apply the algorithm reported in [1] for
estimation of Spherical Harmonic Coefficients. Note that the estimated SHC
sets provide a valid field expansion within the volume enclosed by the envelope
of the fiducial points whose positions have been determined, in particular also
outside of the homogeneity sphere, as long as the corresponding fiducial points
are observable and distinguishable.

In order to assess the validity of the proposed method, after evaluation of a
real phantom having a similar structure, we chose to use simulated images. To
the best of our knowledge, available MRI image simulators are voxel-based and
focused on accurate simulation of the Bloch equation. This kind of simulator
could not be used for our purposes, i.e. sub-voxel feature localization, so we
decided to implement in-house an ad-hoc simulator. Our simulator is inspired
by Monte-Carlo integration [5]. Specifically, instead of using a voxel-based dis-

2In the context of this paper, the adjacency relationship is a table stating the correspon-
dence between a fiducial point in the phantom and its apparent position in the imaging volume.
For a 3D grid phantom, every fiducial point can be easily identified by three integers.



Figure 1: The elementary structure (cross) of which the phantom is made. A fiducial point
(node) is located in the center.

cretization of the imaging volume, our model consists in generation of a set
of random points (drawn within the phantom geometry) whose density deter-
mines the differential Signal-to-Noise Ratio of images, while yielding a very high
ROI-to-background SNR that can be adjusted by adding thermal noise. Other
simulation parameters include phantom geometry, the truncated Spherical Har-
monics Expansions of the fields, and 2D Spin Echo or 3D Gradient Echo MRI
sequence parameters. The simulator is focused on reproducing the geometrical
distortion effects arising from main magnet field inhomogeneity and gradient
fields non-linearities, and will yield accurate images as long as the susceptibility
effects are negligible.

The paper is organized as follows. Section 2 describes the proposed phantom
geometry, detailing its parameters, and shows some real acquired images in
comparison to simulated images. Section 3 and its five subsections deal with the
iterative method we developed in order to obtain the fiducial point positions and
their adjacency relationship. Section 4 reports about the performance evaluation
we conducted and the impact of phantom geometry settings and of Signal-to-
Noise Ratios. A comparison to the fiducial point locating method proposed by
Huang et al [3] is also reported. Section 5 draws conclusions and pointers for
future works.

2. Phantom geometry and image acquisition

Our phantom may be described as the juxtaposition of elementary objects,
called crosses in the following, made from three mutually-orthogonal cylinders
of length h and diameter ¢, whose axes meet in the middle, as shown in Fig. 1.
The centre of each cross constitutes our fiducial point and will be called node
from here onwards. The active volume of the phantom will be a connected set
of crosses filled with MR-visible solution, and may assume an arbitrary overall
shape. For simplicity we adopted a regular lattice inscribed in a parallelepiped,



(a) Raw image at isocentre (b) Simulated image at isocentre

(¢) Raw image at 60 mm from isocentre  (d) Simulated image at 60 mm from isocentre

Figure 2: Geometric distortion in 2D SE real and simulated images of a 3D grid phantom



so that each node can be uniquely identified by a triad of indices (row, column,
slice). Each cross features six branches having length h/2, and will be connected
to up to six other crosses within the phantom. The proposed structure, to
be filled with MR-visible solution, may be manufactured by 3D printing, or
superposition of CNC-milled acrylic sheets.

In order to validate our method, we developed in-house an MRI image sim-
ulator. Our simulator is inspired by Monte-Carlo integration with a user-input
spatial point density, and can compute the Free Induction Decay signal of 2D
Spin Echo or 3D Gradient Echo sequences. The expression we used for comput-
ing the 3D FID is Eq. (10) from [6], and was approximated as

SGE(kxa ky, kz) ~ Ze—JQW(kw(:%-&-%f)-!—kyyn-ﬁ-kzzn) (1)

where the points (z,,, Yn, 2n) are randomly selected from the MR-visible volume.
The simulator requires the SHC expansion of both static and gradient fields,
MRI sequence parameters, and a mathematical description of the MR-visible
volume geometry.

We evaluated both the ROI-to-background and the differential [7] Signal-to-
Noise Ratio of simulated images. Both directly depend on the user-input spatial
point density. Obviously, a minimum density is required in order to form images,
and we found that, in this case, the ROI-to-background® Signal-to-Noise Ratio
always results higher than 40 dB (i.e. 10000). Lower ROI-to-background SNR’s
can be obtained by adding a suitable noise model to the simulated Free Induction
Decays. The differential SNR, defined as the ratio between the mean square of
intensity and the variance of random fluctuations within a ROI, is substantially
equal to the random point density times the volume of a voxel (i.e. it can be
explained as a counting-error). Figure 3a shows the same ROI (an axial section
of a cylinder filled with MR-visible solution) with several point densities along
with their estimated differential SNR. Figure 3b provides a similar comparison
from the point-of-view of ROI-to-background SNR. Note that the ROI is barely
discernible at a ROI-to-background SNR of 3 dB.

In order to obtain realistic images, we used vendor-provided SHC sets for an
open-bore 0.3 T C-shaped permanent magnet MRI system featuring an homo-
geneity sphere diameter equal to 250 mm. The geometric distortion outside of
the homogeneity sphere, i.e. in slices far from the magnet isocentre, is clearly
observable. Figure 2 shows some real uncorrected 2D Spin Echo images of a grid
phantom prototype that was available in the early stage of our work, similar
in design to the one described above. The same figure also includes simu-
lated images obtained using the same sequence parameters, with a spatial point
density of 500 points/mm?® and an additive thermal noise resulting in a ROI-to-
background SNR of 43 dB. The phantom prototype has h~=10 mm and ¢=2 mm.

3we evaluate the ROI-to-background Signal-to-Noise Ratio as the ratio between the mean

voxel intensity in the Region-of-Interest and the standard deviation of the background voxel
intensity.
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The FOV is equal to 260 mm, and the resolution of images is N2 = 256 x 256
pixels. Geometric and through-plane distortions are clearly observable in slices
distant 60 mm from the isocentre, while, as expected, are negligible for slices in
the neighbourhood of the magnet isocentre.

In what follows, we consider simulated 3D Gradient Echo volumes with a
FOV of 260 mm in each direction and a resolution of N? = 256 x 256 x 256
with isotropic voxels. Figure 4 shows some representative simulated images of
a regular lattice phantom of 19 x 19 x 19 nodes with h=10 mm, ¢p=3 mm. The
simulation was run with a random point density of 100 points/mm?, resulting in
a differential Signal-to-Noise Ratio of about 100 i.e. 20dB, and with a ROI-to-
background Signal-to-Noise Ratio of 43 dB. Observation of figure 4(d) highlights
the need for establishing an adjacency relationship map between nodes.

3. Method

8.1. Node localization and neighbour relationship

Developing an automated solution for locating the apparent position of nodes
in images cannot disregard determining the adjacency graph between them.
Note that, if two nodes had to be erroneously established as neighbours, that is
without a branch connecting them, this labelling error would propagate, flawing
any subsequent attempt to use the positions of the nodes. This is true, even if
their positions had been accurately determined. Previous works [2, 3] do not
argument on this issue, in our opinion because they consider MRI systems with
a limited geometric and through-plane distortion.

The flow diagram for our method is shown in Figure 5. It starts from the
approximate positioning and operator-aided labelling of a node pg in the set of
acquired images. The labelling (row, column, slice) can be obtained by counting
the number of grids encountered in each coordinate direction. The approximate
position of the first point is used as a seed to determine an accurate estimate,
along with unit vectors (v, vy, Vv;) for the branches departing from it. Estima-
tion of the unit vectors for a cross (subsection 3.2) can be carried out before
estimating the position of its node (subsections 3.3, 3.4).

The refined position and its related unit vectors are stored into a list L of
nodes to be visited, while the refined position is output to a 3D structure C,
filled with fiducial point apparent position estimates. This structure contains
at address (row, column, slice) the estimate of the apparent position of the
corresponding node in images and will enable fiducial point position estimation
and processing methods like the one we described in [1]. Note that the ad-
dress (row, column, slice) of a refined node position estimate in C' defines the
adjacency relationship between nodes.

The proposed method consists in extracting from L the position and unit
vectors of the node p having the smallest norm and exploiting its unit vectors to
determine the (up to six) approximate positions of its adjacent nodes (subsection
3.5) temporarily stored in a neighbour list NL. Each candidate neighbour is
refined and its unit vectors are determined.



(a) Simulated image (XY) at isocentre (b) Simulated image (XY) at 60mm from
isocentre

(c) Simulated image (ZX) at isocentre (d) Simulated image (ZX) at 60mm from
isocentre

Figure 4: Geometric distortion in 3D Gradient Echo simulated images of our 3D grid phantom.
The static field B is nominally oriented along the Z axis, between the C-shaped permanent
magnet poles.



For each refined neighbour, we test if C already includes a node that is close
to it (less than one voxel). In this case the candidate neighbour is discarded
because it has already been visited. Otherwise, we check it for satisfaction of
a geometric distortion smoothness test. The criterion we devised is based on
the assumption that the deformation undergone by the phantom is continuous.
Specifically, we require that the angles described by a sequence of contiguous
branches in the same direction do not vary more than 15°. We chose this value
considering that the angle we expect to see for a not directly-connected node in
absence of distortion is at least 45°. If this test is not passed, the refined node
position is discarded. Otherwise, the refined neighbour node position is added
to C' and the node is added to L together with its unit vectors. The algorithm
stops when the list L is empty.

3.2. Branch directions estimation

We decided to factor the problem of estimating the apparent position of
a node in images in two steps: direction estimation with unknown positions,
followed by direction-aided position estimation. The main reason for not using
a 3D Hough transform [10, 11] is that the parameter space has four dimensions
and our features are not point clouds in space, but continuously varying image
intensities, so that direct application of the 3D Hough transform would require
definition of thresholds and/or resampling.

Starting from the approximate location of a node, the first step to obtain its
accurate position consists in identifying the unit vectors for the branches in its
neighbourhood. These unit vectors allow us to build an ad-hoc, adaptive, cross
prototype that makes node positioning more reliable and robust to geometric
distortion.

We denote with f(i, 5, k) the intensity of the voxel at address (i, j, k) in the
acquired volume, with 0 <i < N,0<j < N, 0<k < N. We will assume, for
the sake of simplicity, that voxels are cubic with size s = FOV/N. Let

Ip, ={(i,5,k) cio—r<i<ig+rjo—r<j<jo+mrko—r<k<ki+r}
a cubic r-neighbourhood of the voxel (ig, jo, ko), and

f _ f(i_i07j_j07k_k0) (ivja k) EIO,T (2)
To.r 0 otherwise

the restriction of f(,7, k) to Iy, referred to its centre.

It is well-known that the self-covariance function has local maxima for argu-
ments equal to the offsets at which the signal is self-similar. For this reason, we
use it to highlight the directions of the branches present in the neighbourhood
of a cross, fr,,. The diameter D = 2r 41 of I, must be chosen according to
phantom geometry and voxel size, ensuring the presence of at least one branch
for each coordinate direction, i.e. we choose r = [(h/2+ ¢)/s] = 8 voxel for the
phantom geometry of Fig. 4.

10
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Figure 5: Flow-Chart for the node position and adjacency relationship assessment algorithm.
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Figure 6: Scatterplot of the unit vectors used to search branch directions, scaled proportion-
ally to the inner product between C(n,m,l) and the bar prototypes. Dashed lines are the
coordinate axes. Thick lines denote the estimated directions

Denoting with f, . the average intensity of ff, ., its self-covariance will be
given by

C(n7m7l) = Z(ffo,r(i’j7 k) —fl-(l,;)(f]o,r(i + naj +m, k + l) - fTM) (3)

.5,k

In order to extract the directions of the branches from C(n,m,!), we con-
structed a set of segment-prototypes with thickness ¢ starting from the centre
of the neighbourhood and uniformly oriented in space [11]. The prototypes have
been shaped in order to limit the effect of the large maximum shown by the self-
covariance around the origin. The number V of prototypes to consider must be
high enough to approximate continuity, but not too high, to avoid undistinguish-
able prototypes and waste of computing resources. We found a good number of
directions is V' = 10242 (obtained by refining the mesh of an icosahedron). The
search for the branch unit-vectors found in the neighbourhood of a cross is car-
ried out by computation of all inner products between these segment prototypes
and the self-covariance of the neighbourhood of the cross. Figure 6 shows an
example scatterplot of the directions used for the unit-vectors search, scaled to
amplitudes proportional to the inner products between the bar prototypes and
the self-covariance of a representative cross-neighbourhood. The dashed lines
show the coordinate axes, while the thick lines show the estimated directions of
the unit-vectors useful to build the cross prototype.

3.8. Cross-prototype

Under the hypothesis of availability of a cross-prototype, its node can be
located by searching for cross-covariance maxima. Previous works [3, 4] choose

12



spheres as recognizable structures in images, and obtain the fiducial point loca-
tions by means of cross-correlation with a sphere prototype whose geometry is
argued to not be significantly affected by geometric distortion.

In our case, the local features of the phantom are strongly influenced by geo-
metric distortion and it is therefore not possible to use the same cross-prototype
for all nodes, but it is instead necessary to build an ad-hoc cross-prototype for
each node, based on the directions of the branches that depart from it. In par-
ticular, given three unit-vectors (v, vy, v,) and the branch thickness, we model
the 3D image intensity in the neighbourhood of a node centred in the origin as
follows:

Pvevyv. (.13,3/,2) =1- H [1 - RC(a,¢,6(a:,y,z,v))] (4)

V=Vgz,Vy,Vz

where 6(z,y, z,v) = ||(z,y, 2) — {(x,y, z), v)v|| is the distance of the point from
the line passing through the origin, and RC(«;,¢,d) denotes a raised-cosine
function:

1 5§¢)—sz
RClo.0.)-{ (5 (1= ) 2 os 2
0 § > ¢te

The parameter o denotes the width of the transition interval from maximum
intensity to no signal and we set it equal to the size s of a voxel. We chose the
raised cosine as a good finite-support profile with good spectral properties. The
rasterization of the neighbourhood of a node is obtained by sampling py_v,v.
in (is,js, ks).

The outlined procedure yields a cross prototype centred in the origin. The
cross prototype Py, v, v, (4,7,k,€) of a node centred in € = (e, €y, ¢€.) will be
obtained by sampling:

Pvm,vy,vz (Zaja k7 6) = pvmvyvz (’LS — €, ]S T €y, ks — 6z)~

8.4. Accurate node-position estimation

Once the ad-hoc cross-prototype Py, v, v, is available, the node can be lo-
cated by computing its cross-correlation with f7, = as follows:

T(n,m,l¢e) = Z Py, v, .0,k €) fr,, (i +n,5+m,k+1). (5)
0,4,k
This function has a maximum at the offset (mg, ng, lo) needed to move from
the centre (49, jo, ko) of the neighbourhood to the estimate position (i, 75, k) =
(io + mo,jo + no, ko + lp) of the node. Computation of I'(n,m,l,e) can be
performed efficiently through FFT. In any case, this method has a voxel-size
resolution and therefore results in a coarse estimate.

13
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Figure 7: Flow-Chart for the iterative node-location estimation algorithm.
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In order to obtain sub-voxel positioning of nodes, we compute the following
fine adjustments:

F(mo — 1,77,0, l(), 6) — F(mo —+ ].,TL(),ZQ, 6)

/ S

€ =€t QF(mo—l,’l’Lo,lo,G)—QF(mo,nO,lo,€)—|—F(m0+1,n0,lo,€) ( )
, N s T'(mo,no — 1,loy€) — T'(mo, ng + 1,1, €) 7)
€, — € -

v Y ZF(mo,no—l,lo,e) 72F(m0,n0,lo,€)+F(mO7ﬂ0+1,lo7€)

6; :Gz‘i‘f F(?’TL(),’I’L()JO—1,6)—F(m0,no,lo+1,€) (8)

2T (mg, no, lo — 1,€) — 2I'(mo, no, lo, €) + I'(mo, no, lo + 1, €)

These refinements are based on a parabolic interpolation of I'(m,n,l,€)
around its maximum at (mg,ng,lp). The fine estimate for the position of a
node will be (igs + €., jos + €, kos + €,).

We argue that, if the estimated position were to coincide with the true one,
repeating the procedure starting from a neighbourhood centred in (i, jj, k()

/

and cross correlating with a cross-prototype centred in (e;,e/y,ez) we would

obtain a maximum in (m{,ng, ;) = (0,0,0) and the same set of adjustments
/

(€, €yy€2). On the basis of this considerations, we implemented an iterative
algorithm, whose flow chart is shown in Figure 7, to obtain accurate sub-voxel
estimates for the apparent positions of a node, together with its associated unit-
vectors (v, vy, V). The iteration stopping threshold can be set to an arbitrarily
small positive value, and we used 1um. Rarely, in our experiments below 1% of
cases, the algorithm will not converge under this threshold, oscillating between
a number of points in space. In this case our algorithm outputs as estimate the

average location from a period of oscillation.

8.5. Iterative construction of the adjacency relationship between nodes

Adoption of the methods described in sections 3.2-3.4 allows to accurately
locate a node and determine the apparent directions of the branches originating

15



from it, starting from a non-necessarily centred neighbourhood of the node.
In order to complete a recursion as described in section 3.1, it is necessary to
determine the approximate positions of the adjacent nodes, that have to be
correctly labelled (row, column, slice) and inserted into the list N L of points to
be visited.

To this end, we define the normalized cross-correlation function between the
restrictions of f(i,7, k) to two neighbourhoods I, and Iy, with ¢ > r, as

> f10, (5, k) fr, (0 41,5+ msk +1)
i,5,k=—r

NC(n,m,l)
\/ E fIO (4,5, k) E fIO (i+n,j+mk+1)

(9)

i,j,k=—r i,j,k=—r

where the offsets (n,m,l) must have module not greater than ¢ — r in order
to avoid edge effects, and the denominator is a normalization factor obtained
interpreting the numerator as an inner product between sequences having sup-
port D3. The normalized cross correlation function has significant maxima in
correspondence of nodes (adjacent or not) present in the neighbourhood Iy 4.

Since we are interested in the adjacent nodes only, the selection of the cor-
responding maxima can be performed by looking for them along the directions
identified by the node’s unit vectors. E.g. in order to search for the max-
ima along the direction identified by the unit vector v, = (vz1,Vz2,Vz3), We
define Jva (Z) = \_Um2i/vwlja djvI (Z) = vz2i/vm1 — Jva (Z)a kvz (7/) = |_7)z3i/va:1J;
dky, (i) = vz31/vz1 — kv, (¢) and use bilinear interpolation to sample NC(n, m, )
as follows:

NCy, (i) = (1 =djv, (i))(1 — dkv, (i))NC(i, jv, (i), kv, (i
+djv, (1)(1 — dky, (1))NC(3, jy, (3) + 1, kv, (¢

+(1 = djv, (i))dky, ()NC(i, jv, (i), kv, (i) +

+djv, (i)dky, (i))NC(i, jv, (i) + 1, kv, (7) +

(10)

Figure 8 shows an example of a sampled NC profile. For each local maxi-
mum, we further refine the search in a 27-voxel cubic volume around it, and the
resulting maxima are shown as red marks. Only the highest local maximum is
added to the list NL of neighbours to visit.

4. Results

4.1. Impact of Signal-to-Noise Ratios and Phantom geometry

The Spherical Harmonics expansions we used have been obtained by a mag-
netometer having a radius of 125 mm. We simulated several possible geometries
for the phantom described in section 2, while keeping the same volume for the
cube enclosing all nodes. Table 1 shows the parameters we adopted in terms of
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Figure 9: Rendering of the cube (with a edge length of 180 mm) containing all fiducial points
with respect to the homogeneity sphere (radius 125 mm).

h: distance edge length of the
nodes per number | overall phantom .
between . ; cube enclosing
dimension | of nodes edge length
nodes nodes
10 mm 19 6859 190 mm 180 mm
18 mm 11 1331 198 mm 180 mm
22.5 mm 9 729 200.5 mm 180 mm
Table 1: Simulated phantom geometries. The volume of the cube enclosing all nodes is
constant.

distance between adjacent nodes h and number of nodes per dimension, while fig-
ure 9 shows the relationship between the phantom and the homogeneity sphere.
We used a order [,,,, = 7 Spherical Harmonics expansion. It is worthwhile
observing that some nodes of the simulated phantom will lay outside of the
homogeneity sphere, so that the adopted Spherical Harmonics expansion will
not represent the reference MRI system fields, but can nonetheless be used to
evaluate the performance of our method.

The first performance figures we report are intended to show the impact of
the differential Signal-to-Noise Ratio on localization accuracy. Table 2 shows
how the mean displacement error E[d] between the localized node and its the-
oretical counterpart decreases from 0.1 to 0.04 mm when increasing the dif-
ferential SNR from 3.2 to 30.2dB. The theoretical distorted positions can be
computed for example as shown in [12, 13], and will be already available in any
MRI system featuring correction of geometric distortion. We added, in the last
column of all tables, the displacement error 0.99 quantile, i.e. the displacement
error only 1% the located points are above. Note that all of the fiducial points
have been successfully located.

In order to evaluate the impact of the ROI-to-background SNR on the ro-
bustness and accuracy of fiducial points localization, we report in Table 3 the
performance of the proposed method with Signal-to-Noise Ratios down to 3 dB
i.e. with a standard deviation of background voxels equal to half of the average
intensity within the ROI. At this noise level, a human observer finds difficult
to discern the features of the phantom from the background. The proposed
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Proj. | SNRaig nrllfzzlsg E[d] o4 0.99 quantile
XY | 3.2dB 0 0.1003mm | 0.0447mm | 0.2308 mm
XY | 7.2dB 0 0.0687mm | 0.0308mm | 0.1561 mm
XY | 10.2dB 0 0.0576mm | 0.0260mm | 0.1384 mm
XY | 13.2dB 0 0.0486mm | 0.0212mm | 0.1145mm
XY | 17.2dB 0 0.0433mm | 0.0196mm | 0.1071 mm
XY | 20.2dB 0 0.0415mm | 0.0185mm | 0.1012mm
XY | 23.2dB 0 0.0401mm | 0.0181mm | 0.1016 mm
XY | 27.2dB 0 0.0400mm | 0.0181mm | 0.09502 mm
XY | 30.2dB 0 0.0394mm | 0.0180mm | 0.09740 mm

Table 2: Localization performance with increasing differential Signal-to-Noise Ratios (simu-
lated point density), for the same phantom geometry (h = 18 mm, ¢ = 3mm).

Proj. | SNR ‘ﬁ;‘:sg E[d] o4 0.99 quantile
XY 0o 0 0.0433mm | 0.0196 mm 0.1071 mm
XY 40dB 0 0.0433mm | 0.0197 mm 0.1050 mm
XY 30dB 0 0.0438 mm | 0.0197 mm 0.1073 mm
XY 20dB 0 0.0471mm | 0.0211 mm 0.1103 mm
XY 10dB 0 0.0736 mm | 0.0331 mm 0.1758 mm
XY 3dB 1 0.1527 mm | 0.1269 mm 0.4141 mm

Table 3: Localization performance with increasing (AWGN) Signal-to-Noise Ratios, for the
same phantom geometry (h = 18 mm, ¢ =3 mm, SNRg;g = 17.2dB).

method is very robust to noise, since the Normalized Cross Covariance with a
large prototype such as the adaptive one we devised acts as a filter with respect
to noise. One of the fiducial points was missing at the lowest SNR case, and we
found that the localization algorithm failed to identify the unit vectors needed
to build the cross prototype.

As a trade-off between simulation speed and localization performance?, we
chose to run the rest of simulations with an SNRg;g¢ of 20.2dB, i.e. a random
point density of 100 points/mm? and a ROI-to-background SNR or 100 (i.e.
20dB). Figures 4 have been obtained with this spatial point density. Note that
a MRI system passing the ACR QA Accreditation test will have higher Signal-
to-Noise Ratios on images of a phantom.

Table 4 reports the localization performance for phantoms having a feature
thickness ¢ = 3 mm, with the three geometries of table 1 and the three canonical
projections (Coronal, Sagittal, Axial). The average displacement error is always
lower than 0.07 mm. Inspection of the table shows that the h = 18 mm geometry
has slightly better performance than h = 10mm and h = 22.5mm. In our
opinion, this is due to the fact that the prototype used for h = 10 mm is smaller
and has a lower resilience to noise, while the h = 22.5 mm prototype resulted
relatively too large in order to fit the curvature of the distorted images.

4Our simulation software employs the Non-Uniform FFT algorithm [8, 9] to accelerate the
computation of (1)
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Proj. h @ Irrllls(s;ensg E[d] o4 0.99 quantile
XY 10 mm 3 mm 0 0.0560 mm | 0.0252 mm 0.1291 mm
XZ 10 mm 3 mm 1 0.0571mm | 0.0257 mm 0.1333 mm
YZ 10 mm 3 mm 1 0.0579 mm | 0.0265 mm 0.1367 mm
XY 18 mm 3 mm 0 0.0515mm | 0.0226 mm 0.1212 mm
XZ 18 mm 3 mm 0 0.0536 mm | 0.0289 mm 0.1561 mm
YZ 18 mm 3 mm 0 0.0540 mm | 0.0301 mm 0.1700 mm
XY 22.5mm | 3mm 0 0.0578 mm | 0.0267 mm 0.1334 mm
XZ 22.5mm | 3mm 0 0.0631 mm | 0.0407 mm 0.2473 mm
YZ 22.5mm | 3mm 0 0.0644mm | 0.0419 mm 0.2537 mm

Table 4: Localization performance for the three ortogonal projections (SNRgijg = 20.2dB,

ROI-to-background SNR=20dB).

Proj. h 1) nrllls(sil:sg E[d] cd 0.99 quantile
XY 18mm | 3mm 0 0.0458 mm | 0.0178 mm 0.0952 mm
XZ 18 mm | 3mm 0 0.0452mm | 0.0175 mm 0.0889 mm
YZ 18 mm | 3mm 0 0.0451mm | 0.0179 mm 0.0900 mm

Table 5: Localization performance with ideal fields (constant Bg, linear gradients) and every
coordinate projection, for a same phantom geometry.

Note that XY-plane (coronal) images exhibit better performance than XZ-
plane or YZ-plane (sagittal, axial) ones. This may be justified by recalling that
our SHC sets are from an open-bore 0.3 T C-shaped permanent magnet system
having a main field oriented along Z, with an inevitable more significant non-
linearity for the X- and Y-axis gradient fields resulting in a higher geometric
distortion (also due to the main field inhomogeneity) in sagittal and axial pro-
jections. In order to verify this conjecture we simulated three sets with ideal
fields (obtained by stopping the Spherical Harmonics Expansion to L. = 1),
whose performance is reported in Table 5. This table provides a effective lower
bound on localization error for SNRgig = 20.2dB and a ROI-to-background
SNR of 20dB, and shows that there is no difference in localization performance
between the projections with ideal fields.

Last, Table 6 shows the localization performance for different values of
branch thickness ¢, for a node distance h = 18 mm. We observe that ¢ = 3 mm

missing

Proj. ¢ nodes E[d] o4 0.99 quantile
XY 2mm 0 0.0684 mm | 0.0281 mm 0.1393 mm
XY 3 mm 0 0.0515mm | 0.0226 mm 0.1212mm
XY 4 mm 0 0.0560 mm | 0.0260 mm 0.1373 mm
XY 5 mm 1 0.0611mm | 0.0319 mm 0.1651 mm
XY 6 mm 11 0.0737mm | 0.0856 mm 0.2330 mm
XY 7mm 44 0.1104 mm | 0.1083 mm 0.5838 mm

Table 6: Localization performance with increasing cross thickness ¢ and every coordinate pro-
jection, for phantoms with A = 18 mm, SNR4;¢ = 20.2 dB, ROI-to-background SNR=20dB.
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(a) Simulated image (XY) at isocentre (b) Simulated image (XY) at 7lmm from
isocentre

Figure 10: Simulated images for a Sphere-based phantom similar to the one reported in [3].

exhibits the best performance. Thinner features, that are expected to provide
better accuracy, seem to suffer from noise. Thick ones, conversely, result rel-
atively more difficult to localize (the mean displacement error for ¢ = 5mm
is still lower than 0.07mm), but could be preferred in order to manufacture a
phantom, since they will suffer less from air bubbles. The number of missing
nodes for phantoms with thick features increases abruptly. We inspected the
set of missing nodes and found that, due to the geometrical distortion, the fit
between our proposed cross prototype and the distorted image is not good. In
fact, our proposed prototype features adaptive unit vectors directions, but does
not adapt its feature thickness to the geometric distortion.

4.2. Comparison to a sphere-based method

In order to validate our proposed method, we report localization results for
the sphere-based method proposed by Huang et al [3]. Their method was created
to assess the accuracy of geometric correction on a 3T MRI system, so the
residual geometric distortion is limited. Their phantom is made of a 3D lattice
of spheres having a 7mm diameter connected by thin tubes (we estimated 2 mm
diameter from the paper). The structure is filled with an MR-visible solution,
and the localization is based on searching maxima of an oversampled normalized
cross correlation to a set of (full or partially full) sphere prototypes.

Since our purpose is localization of fiducial points in raw, uncorrected images,
we expect any method based on a not-adaptive prototype to perform poorly.
In order to evaluate the method, we modified our simulator to feature spheres
instead of crosses, and thin branches between spheres. Two simulated images
are shown in Figure 10.
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cluster missing

Proj. | 7Yinr averaging nodes E[d] oq 0.99 quantile
XY 0.7 Y 0 0.1981 mm 0.1336 mm 0.8168 mm
XY 0.7 N 0 0.1725 mm 0.0734 mm 0.3905 mm
XY 0.8 Y 9 0.1950 mm 0.1243 mm 0.7520 mm
XY 0.8 N 9 0.1785 mm 0.1040 mm 0.4564 mm
XY 0.9 Y 398 0.1650 mm | 0.05278 mm 0.2746 mm
XY 0.9 N 398 0.1643mm | 0.05228 mm 0.2744 mm

Table 7: Localization performance for phantoms with h = 18 mm, SNRg;g = 20.2dB, ROI-
to-background SNR=20dB. We adopted an oversampling factor of 3, as reported in [3]

Proj. | OSF cluste.r TISSINg E[d] o4 0.99 quantile
averaging nodes
XY 1 Y 0 0.4841 mm 0.1424 mm 0.7504 mm
XY 1 N 0 0.4835 mm 0.1419 mm 0.7490 mm
XY 2 Y 0 0.2442mm | 0.07390 mm 0.3921 mm
XY 2 N 0 0.2437 mm | 0.07348 mm 0.3908 mm
XY 3 Y 0 0.1649 mm | 0.05206 mm 0.2735 mm
XY 3 N 0 0.1649 mm | 0.05206 mm 0.2735 mm

Table 8: Localization performance for sphere-featuring phantoms with A = 18 mm, SNRg;g =
20.2dB, ROI-to-background SNR=20dB. We used ideal fields (obtained with an Spherical
Harmonics expansion having lmax = 1)

In [3], the position of a fiducial point is estimated as the position of a Normal-
ized Cross Correlation local maximum whose value is above a given threshold
Ytnr- When a set of connected voxels has a NCC value above the threshold, the
authors estimate the fiducial point location as the mean position of the con-
nected set. We refer to this option as cluster averaging rather than taking as
estimate the position of the maximum within the cluster.

Table 7 reports the localization results for different choices of Normalized
Cross Correlation threshold 4, and cluster averaging choice. Inspection of
the table shows that higher thresholds, while yielding more accurate estimates,
lead to massive loss of fiducial points. This is readily explained since the fixed-
diameter sphere prototype does not fit well the image when the distortion is
substantial.  We found that, with our simulated images, choosing the local
maximum within a cluster performs better than cluster averaging. A comparison
of Tables 6 and 7 shows that our method outperforms the one reported in
[3], by a factor of about three, depending on phantom parameters. This has
in our opinion a two-fold justification. First, the method reported in [3] was
not designed to work on distorted images but on geometrically corrected ones.
Second, we believe that the accuracy of that method is limited by the resolution
of images.

In fact, we simulated their phantom with ideal fields, and values of inter-
polating ratio (denoted by OSF) between 1 (no interpolation) and 3 (the value
used in [3]), and repeated the localization. Results of this analysis are reported
in table 8. Inspection of this table shows that, as expected, no nodes are miss-
ing, and the average location displacement results inversely proportional to the
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interpolation factor. Indeed, the main improvement of our localization method
with respect to the one described in [3] can be ascribed to the fine position
estimation adjustment (6-8).

Last, it is worth noting that the fiducial point labelling issue is not addressed
in [3], since they work on geometrical corrected images and the labelling is trivial
in that case.

5. Conclusion

This paper deals with an automated method to determine the apparent
positions of fiducial points in distorted images of an MRI phantom. In order
to estimate the localization errors, we used simulated images obtained via an
ad-hoc developed joint MRI phantom and sequence simulator.

To the best of our knowledge, the proposed method outperforms the state-
of-the-art, obtains estimates having a very low average displacement from the
theoretical distorted positions, and enables fiducial point-based post-processing
methods that can be used for image registration, field map estimation, geometric
distortion correction, or other applications where accurate localization of a voxel
in space is needed, such as radio-therapy planning.

Further works will need to cover phantom manufacturing issues, in order
to tackle the problem of air bubbles that our proposed structure may exhibit.
Another possible extension is generalization of the geometrical distortion model
for our fiducial point prototype, in order to improve the localization accuracy
when the geometrical distortion is severe.
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image at isocentre (b) Simulated image at isocentre

(c) Raw image at 60 mm from isocentre  (d) Simulated image at 60 mm from isocentre
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(a) Simulated image (XY) at isocentre  (b) Simulated image (XY) at 60mm from
isocentre

(c) Simulated image (ZX) at isocentre (d) Simulated image (ZX) at 60mm from
isocentre
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