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Abstract— This study introduces a predictability framework 

based on the concept of Granger causality (GC), in order to ana-

lyze the activity and interactions between different intracardiac 

sites during atrial fibrillation (AF). GC-based interactions were 

studied using a three-electrode analysis scheme with multi-variate 

auto-regressive models of the involved intracardiac signals after 

pre-processing. The method was evaluated in different scenarios 

covering simulations of complex atrial activity as well as endo-

cardial signals acquired from patients. Results illustrate the 

ability of the method to determine atrial rhythm complexity and 

to track and map propagation during AF. The proposed frame-

work provides information on the underlying activation and 

regularity, does not require activation detection or 

post-processing algorithms and it is applicable for the analysis of 

any multi-electrode catheter. 

 
Index Terms— Atrial fibrillation, Bipolar electrogram, 

Granger causality, Multi-electrode catheter, Multi-variate 

auto-regressive modelling. 
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I. INTRODUCTION 

HE increasing prevalence of atrial fibrillation (AF) turns it 

into an epidemiological threat [1] affecting around 1% to 

2% of the general population in US and Europe [2]. Therefore, 

AF is considered the most common form of sustained ar-

rhythmia that affects the patient’s quality of life [3], [4]. 

 The early mention of AF was done by Thomas Lewis in the 

beginning of the 20th century [5]. Later, Moe et al. [6] proposed 

the first mechanism sustaining AF via multiple wavelets 

propagating through the atrium, which was corroborated by 

Allessie et al. [7]. More recently proposed mechanisms include 

focal drivers from the pulmonary veins [8], reentry and rotors 

[9], and transmural connections between atrial layers [10]. 

However, the phenomena that initiate and perpetuate AF still 

remain incompletely understood [9]. 

 Pulmonary vein isolation is the recommended ablation 

approach for AF treatment during the first expression of the 

disease and ineffectiveness of antiarrhythmic drug therapy [2]. 

During these ablation interventions, invasive intracardiac 

electrogram (EGM) signals are acquired from different atrial 

sites using multi-electrode catheters. Point-by-point mapping 

using an electroanatomical mapping system can be useful for 

this purpose; however, in the case of complex arrhythmias, like 

AF, simultaneous mapping is desirable [9]. 

 Studying intra- and inter-relationships between these multi-

ple atrial signals can provide insights on the underlying fibril-

lation process. Usually, pulmonary vein isolation is comple-

mented with targeting complex fractionated atrial sites [11], 

[12], atrial sites with higher dominant frequency [13] or lower 

organization [14]. Therefore, multiple EGM signal processing 

techniques have been proposed to provide tools that may help 

physicians to visualize these data in order to better guide the 

ablation procedure [15]. Efforts are concentrated in assessing 

activation times [16]–[20], signal regularity and/or organiza-

tion in both time or frequency domains [14], [21]–[25], com-

bined rate and regularity measures [26], and phase maps [27]. 

Possible limitations of most of these techniques are that they 

depend on the accuracy in the detection of atrial activations, 

and/or do not explore the spatiotemporal interactions of the 

activity measured by the catheter electrodes. 

 Assessing the information flow and causal relations between 
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different atrial sites has been proposed to quantify signal in-

teractions using parametric models represented either in the 

frequency [28], [29] or time domains [30]–[33]. In this work, 

we propose a multi-variate predictability framework, based on 

the concept of Granger causality (GC) [34], which extends the 

possibilities of previous approaches. Causal interactions (in the 

sense of GC) between different atrial sites are analyzed during 

different rhythms by considering the EGM signals as stochastic 

processes which interact with the neighbouring atrial sites by 

means of an information exchange driven by the atrial activity. 

A set of predictability measures are defined from the residual 

variances of linear predictions performed in the frame of 

multi-variate auto-regressive (MVAR) modelling of the in-

volved pre-processed EGM signals. Evaluation was done using 

simulations and clinical mapping data in order to cover the 

most common situations found during electrophysiological 

studies or ablation interventions.  

 The framework provides measures of the regularity of indi-

vidual EGMs as well as the connectivity between a target and 

its two neighbouring atrial sites. These measures are applicable 

to any multi-electrode catheter, and can be computed without 

activation detection or post-processing steps. Therefore, the 

proposed framework provides a tool for the analysis of the 

atrial activity, performed from single- to multi-electrode points 

of view, which is based solely on GC definitions 

 This paper is organized as follows: Section II introduces the 

different datasets used to evaluate the proposed methodology. 

Section III introduces the complete framework and definitions. 

Section IV shows the results obtained on the different datasets 

and Sections V and VI present the discussion and conclusions 

of this work, respectively. 

II. MATERIALS 

A. Computer simulations 

Simulation data was generated using the Courteman-

che–Ramírez–Nattel ionic model [35]. This ionic model runs 

over a simplified human atria geometry represented as a 

monolayer sphere with 6 cm diameter with a discretized tri-

angular mesh of approximately 125.000 nodes, yielding in a 

spatial resolution of about 300 µm.  

Bipolar EGMs were obtained using the current source ap-

proximation [36] on virtual spherical electrodes of 0.25 mm 

diameter located at 0.5 mm distance of the simulated anatomy. 

Recording electrodes were distributed over the simulated 

anatomy mimicking a basket catheter with eighteen regularly 

spaced splines (π/9 rad angular distance) composed each by 

eight regularly spaced bipoles with 2 mm inter-electrode dis-

tance, as illustrated in Fig. 1(a). The derived EGM signal length 

is 10 s with a sampling frequency of 1 kHz. 

Different activity pattern scenarios were simulated in this 

configuration in order to cover the most common propagation 

patterns: 

1) Single activation source (Fig. 1(b)): activation comes 

from a single source located at the sphere pole, firing at a 

period of 350 ms with random jitters of 6 ms. 

2) Double activation source (Fig. 1(c)): activation comes 

from two sources located at the two poles of the sphere. 

 
 

Fig. 1. Simulation set-up: a) Bipolar electrode distribution over the simulated 
anatomy mimicking a basket catheter. Green and blue dots indicate the meas-

urement electrodes of each dipole, and red dots stand for the geometrical center 

of the dipole. Letters “r” and “c” stand for row and column (spline), respec-
tively. b-h) Snapshots of the different simulated patterns (coloured using the 

membrane voltage; black dots indicate the location of the bipoles): b) Single 

activation source, c) double activation source, d) anatomical reentry, e) stable 
functional reentry, f) Unstable functional reentry, g) atrial fibrillation and h) 

atrial fibrillation with focal source. 
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The two sources fire with a different initial phase and 

present different firing periods. The source at the top fires 

for the first time at 135 ms, and it subsequently activates 

with a period of 350 ms with random jitters of 6 ms, while 

the source at the bottom initially fires at 0 ms, with a pe-

riod of 360 ms with random jitters of 6 ms. 

3) Anatomical reentry (Fig. 1(d)): reentry anchored to an 

anatomical obstacle with revolution period of ∼ 360 ms 

located at the top of the sphere combined with a func-

tional reentry pattern (spiral) located at the bottom of the 

sphere. 

4) Stable functional reentry (Fig. 1(e)): two stable functional 

reentries (spirals) with revolution period of ∼ 200 ms 

located at each pole of the sphere. 

5) Unstable functional reentry (Fig. 1(f)): unstable mean-

dering spirals with irregular behaviour. 

6) Atrial fibrillation (Fig. 1(g)): complex fibrillation pattern 

with spiral breakups and multiple wavelets. 

7) Atrial fibrillation with focal source (Fig. 1(h)): combina-

tion of a complex fibrillation pattern with a localized 

source firing at 275 ms located at a pole of the sphere, 

which entrains the surrounding tissue. 

 Ionic and diffusion model parameters were modulated to 

reproduce the different simulation scenarios. Specifically, 

remodelled versions of the Courtemanche model were used in 

scenarios 4–5 [37] and 6–7 [36]. Conduction was assumed 

uniform and isotropic, with the diffusion coefficient D ranging 

between 0.2 and 0.5 cm
2
/s. ODE-PDE system integration was 

performed by a fully-adaptive multi-resolution algorithm [38]. 

Reaction and diffusion were integrated with time step Δt = 0.1 

ms, using the Rush-Larsen non-standard finite difference for-

ward Euler method and explicit node-centered finite difference 

stencils [39]. 

B. Clinical mapping data 

Mapping data were obtained from a database of selected pa-

tients with paroxysmal AF displaying different spatiotemporal 

patterns of atrial organization [40]. Recordings were acquired 

using a Constellation “basket” catheter (Boston Scientific Inc., 

Natick, MA, USA) placed in the right atrium (RA). The basket 

catheter consisted of eight splines, each carrying eight equally 

spaced electrodes with 4 mm inter-electrode distance. There-

fore, thirty-two bipolar EGMs, formed by coupling adjacent 

pairs of electrodes, were acquired at 1 kHz sampling frequency 

and filtered between 30–500 Hz (CardioLab System Prucka 

Engineering Inc., Houston, TX, USA).  

Recordings had different signal lengths depending on the 

electrophysiological study. Therefore, for analysis purposes, a 

10 s length signal excerpt was selected as the one maximizing 

the global root mean square (RMS) value of the EGM after 

band-pass filtering between 40–250 Hz. This criterion aims to 

select a time window with (overall) good electrode contact with 

the atrium and to objectivize further analysis. 

III. METHODS 

A. MVAR signal modelling 

In this work, we considered L-dimensional multi-variate 

stochastic processes  LSSS ,...,1  describing the activity of 

different electrodes on the atria. Each set of L simultaneous 

observations T

1 )](),...,([)( nsnsn Ls  is assumed to be repre-

sented by an MVAR model of order m: 

 

)()()()(
1
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,      (1) 

 

where each )(kA  is an LL  matrix whose elements are the 

auto-regressive coefficients )(kaij
, Lji ...1,  , and 

T

1 )](),...,([)( nvnvn Lv  is multi-variate white noise process 

defined by its covariance matrix 
vΣ .  

 For a given observation )(ns , the MVAR coefficient matri-

ces )(kA  were estimated using the least-squares method [41] 

and the model order m was chosen in the range 1-15 as the 

value minimizing the Bayesian information criterion (BIC) 

[42]. In case the BIC did not reach a minimum, the model order 

m was chosen as the first one whose successive difference in 

BIC is smaller than the 5 % of the largest successive difference. 

B. Signal pre-processing 

Bipolar electrogram signals were pre-processed using the 

Botteron and Smith pre-processing chain [21]: 

1) Band-pass filtering between 40 and 250 Hz, using a 

second order Butterworth IIR filter. 

2) Signal rectification. 

3) Low-pass filtering with 25 Hz cut-off frequency, using a 

second order Butterworth IIR filter. 

This pre-processing chain aims to enhance the rhythmic 

properties of atrial EGM signals, simplifying its shape varia-

tions while reducing noise, as illustrated in Fig. 2. Additionally, 

the pre-processed signals were downsampled to 100 Hz in order 

to provide sufficient information for the MVAR modelling 

while avoiding high model orders due to data redundancy. 

C. Granger causality and predictability measures 

This section introduces the analysis framework proposed in 

this study to characterize different aspects of atrial activity. The 

framework is based on the concept of GC [34], [43], and the 

constituent measures are taken from a set of previous works in 

which they were defined to study different aspects of the dy-

namical dependencies of multivariate time series [44]–[46].  

 
 

Fig. 2. EGM signal pre-processing: a) Real EGM signal, b) pre-processed EGM 
signal using the Botteron and Smith pre-processing chain [21]. 
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The GC is a measure of predictability and precedence [47]. 

In a bivariate context where 2L  processes are considered, i.e. 

},{ YXS  , the source process X is said to be cause of the target 

process Y (in the sense of the GC) if the past of X contains 

information that helps to predict the future of Y over and above 

the information already contained in the past of Y [34]. 

Let )(nxx  denote the present value of a realization of the 

process X, let T)]1(),...,([  nxmnxx  denote the vector 

containing the m past values of X, and extend this notation to 

every considered process. Additionally, let )(A  be the vari-

ance of the process A and )|( BA  be the residual variance of 

the regression of the process A over the multi-variate process B. 

The residual variance was obtained from the parameters of the 

MVAR representation (1) exploiting the method described in 

[48], which is based on the auto-covariance sequence of the 

MVAR process inferred from the estimated model parameters. 

Then, the GC from the source process X to the target process 

Y can be written as [43], [46], [47], [49]: 

 

   ),|(ln)|(ln
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)|(
ln

























xyy

xy

y

yy

y

y
G YX






.    (2) 

 

In this study, we consider the extension of the above concept 

to the multi-variate case [43], [47]  assuming 3L , so that the 

observed process is },,{ ZYXS  , where Y is the target process 

and },{ ZX  are considered as source processes. In the extended 

framework, the predictability 
YP  of the target process Y is 

defined as [45], [46]: 

 

   ),,|(ln)(ln  zxyyyPY  ,     (3) 

 

measuring how much the present of the target process Y can be 

predicted from the knowledge of its own past and of the past of 

the other considered processes. 

 The predictability (3) can be decomposed into two terms as 

follows [46]: 

 

YXZYY GSP   ,         (4) 

 

where the first term represents the self-predictability of the 

process Y, quantifying how much of the uncertainty about the 

present of Y can be predicted just from its own past: 

 

   )|(ln)(ln  yyySY  ,      (5) 

 

and the second term represents the joint Granger causality, 

quantifying the remaining amount of uncertainty about the 

present of Y that could not be predicted by its past but is pre-

dicted by the past of X and Z: 

 

   ),,|(ln)|(ln 


 zxyy yyG YXZ  .    (6) 

 

 Moreover, 
YXZG 

 can be further decomposed following 

(4–6) [48] by either regressing first using the process X or Z, 

equivalently: 

 

Y|ZXYZY|XZYXYXZ GGGGG    ,    (7) 

 

where 
YXG 
 and 

YZG 
 stand for the Granger causality from X 

and Z to Y, respectively and obtained following (2). The terms 

Y|XZG 
 and 

Y|ZXG 
 stand for the conditional Granger causality 

[43], [47] from Z to Y conditioned to the past of X, and from X 

to Y conditioned to the past of Z, respectively: 

 

   ),,|(ln),|(ln|




 zxyxy yyG XYZ  ,    (8a) 
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 zxyzy yyG ZYX  .    (8b) 

 

 An alternative decomposition to (4) is [45]: 

 

Y|XZYXZY GCP  
 ,        (9) 

 

where the first term stands for the joint cross predictability of Y 

from both processes X and Z, quantifying the amount of un-

certainty about the present of Y that can be predicted solely 

from the past of X and Z taken together: 

 

   ),|(ln)(ln 


 zxyyC YXZ  ,     (10) 

 

and the second term quantifies the concept of Granger 

autonomy of Y, measuring the improvement in the prediction of 

the target process Y yielded by the inclusion of its own past over 

and above the predictability already achieved from the past of X 

and Z [44]: 

 

   ),,|(ln),|(ln   zxyzx yyGY|XZ  .    (11) 

 

 In the same manner as the decomposition presented in (7), 

YXZC 
 can be decomposed as: 

 

Y|ZXYZY|XZYXYXZ CCCCC    ,    (12) 

 

where 
YXC 

 and 
YZC 
 stand for the cross predictability of Y 

from X or Z, respectively, and terms 
Y|XZC 

 and 
Y|ZXC 

 stand 

for the conditional cross predictability of Y from Z and X 

conditioned to X and Z, respectively.  

D. Measurement framework 

This section describes the implementation of the measures 

introduced in section III.C in the context of atrial activity 

analysis, and provides newly defined measures that were de-

signed to highlight peculiar features of interacting signal within 

this specific context. In order to apply the definitions formu-

lated in section III.C, we assume that the neighbour electrodes 

convey the largest amount of the information relevant to the 

activity sensed by the target electrode under analysis. Accord-

ingly, we propose a three-electrode analysis scheme that is 
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applicable to any multi-electrode catheter, and is based on 

defining the following three processes: 

1) Process Y: Target electrode EGM signal. 

2) Process X: Leftwards neighbour electrode EGM signal. 

3) Process Z: Rightwards neighbour electrode EGM signal. 

This three-electrode analysis scheme was shifted across the 

catheter electrode distribution under analysis until its complete 

coverage was achieved, as illustrated in Fig. 3.  

All the measures introduced in section III.C are related with 

the predictability of the signal under study (process Y) mediated 

by the influence of the past of the neighbour electrodes (proc-

esses X and Z) and/or its own past. The aim of this work is to 

use these interactions to assess cardiac activity; therefore, we 

provide the following interpretations for some of the derived 

measures: 

 The predictability 
YP  can be interpreted as a general 

measure of the regularity of the target EGM signal Y 

which takes into account the possible influences from the 

neighbour EGM signals X and Z. 

 The self-predictability 
YS  and the Granger autonomy 

Y|XZG  

can be interpreted as measures of the local regularity of 

the target EGM signal Y, which arises from the knowledge 

of its own dynamics, including or not the possible effect 

of the neighbour EGM signals X and Z. 

 The conditional Granger causality 
Y|ZXG 

 and 
Y|XZG 

 

assess the information transfer from the adjacent EGM 

signals X or Z to the target electrode EGM signal Y, after 

removing the effect of the other adjacent site. 

 Moreover, we define the neighbour connectivity ratio 
YN  as 

the relative amount of information carried by the target signal 

that can be predicted solely from the past of the neighbour 

processes. This concept is quantified combining autonomy and 

predictability as follows: 

 

Y

Y|XZ

Y
P

G
N 1 .       (13) 

 

so that the (13) spans from 0 to 1, where lower values combine 

low predictability and high autonomy, and vice versa. Note that 

the neighbour connectivity ratio can be formulated equivalently 

as 
YYXZY PCN  , which reveals that 

YN  reflects how much 

site Y is connected with sites X and Z, with values indicating 

isolation of the target electrode since its activity is predicted 

mainly by its own dynamics (i.e., autonomy) but not from the 

dynamics of the adjacent electrodes. 

 Moreover, after computing the complete set of GC measures 

across the catheter electrode distribution we define the propa-

gation direction as: 

 

Y|ZXX|WY

Y|ZXX|WY

YX
GG

GG
D









 ,       (14) 

 

where the process W stands for the adjacent electrode to X in the 

opposite (leftwards) direction, if it is available (see Fig. 3). The 

propagation direction 
YXD 

 quantifies the dominant direction 

of the information transfer, i.e. the relative strength of the 

information transferred in one direction with respect to the 

information transferred in the opposite direction. This measure 

spans from -1 to 1, where negative values indicate a dominant 

information transfer from X to Y and vice versa. Thus, 
YXD 

can be used to track the propagation of the electrical activity 

throughout the catheter electrode distribution. 

E. Application of the framework on basket catheter data 

 The measurement framework introduced in section III.D was 

applied on the available data by analysing the basket catheter in 

two different configurations: along the catheter splines 

(spline-wise analysis), or along the electrodes located at each 

row of the basket catheter in circular distribution (row-wise 

analysis). As the introduced measures are dependent on the 

considered neighbour electrodes, the analysis generally yields 

different measures when performed on the two configurations. 

 Then, activity maps that illustrate the electrical activity 

measured by the basket catheter were constructed combining 

the neighbour connectivity ratio 
YN  and the propagation di-

rection 
YXD 

. In these maps, each electrode of the basket 

catheter was represented as a node coloured according to the 

value of 
YN , and pairs of adjacent electrodes were connected 

according to the values of
YXD 

. While 
YXD 

could be 

computed and visualized for both spline- and row-wise analy-

ses, the visualization of 
YN  computed through spline- and 

row-wise analysis is not straightforward. In this study we 

selected the values of 
YN  to be displayed in the activity maps 

based on the empiric rule of choosing the direction of analysis 

that maximizes the average predictability (denoted as s

YP  and 
r

YP  for spline- and row-wise analysis, respectively). 

F. Statistical analysis 

 The distribution of the studied GC-based measures is shown 

as median with the respective quartiles. The statistical signifi-

cance of the differences between GC-based measures obtained 

from pairs of simulated scenarios is assessed, when indicated, 

using the Wilcoxon’s test. Moreover, the statistical significance 

of any GC-based measure is tested against the null hypothesis 

of zero GC using the test described in [47]. In all statistical 

tests, a p-value ≤ 0.05 was set as threshold for rejecting the null 

hypothesis. 

 
 

Fig. 3. Schematic of application of the three-electrode analysis scheme 
proposed in this work: a) over a circular catheter and b) over a linear catheter. 

Arrows indicate the movement of the electrode triplet for analysis. 
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IV. RESULTS 

A. Atrial simulation analysis 

1) Predictability analysis: Figure 4 shows the distributions 

of the measures of predictability, self-predictability, Granger 

autonomy and neighbour connectivity ratio, computed for the 

seven simulated scenarios. 

 Figure 4(a) illustrates that the predictability presents the 

highest values for the single source scenario, and its values 

decrease as the simulated patterns become more complex. On 

the other hand, the opposite behaviour is illustrated in Fig. 4(b) 

for the Granger autonomy. This suggests that the more regular 

atrial rhythms exhibit high predictability mostly related to the 

influence of adjacent sites on the target EGM signal. However, 

such influence vanishes in more complex atrial activity where a 

significant amount of regularity is present mainly due to local 

activity. 

 The neighbour connectivity ratio, being related to the ratio of 

the other two, emphasizes their relation in normalized units, 

reflecting the regularity of the patterns resulting from 

non-isolated atrial activity (Fig. 4(c)). 

 The self-predictability does not seem to characterize well the 

complexity of the simulated patterns, as it shows similar ranges 

for the different simulation scenarios with no clear trend with 

the complexity of the simulated activity (see Fig 4(d)). 

 As illustrated in Fig. 4, all the studied measures are able to 

distinguish between organized and unorganized simulated 

activity spline-wise and row-wise analysis. 

2) Causality analysis: Figure 5 exemplifies the capability 

of the proposed framework to track the propagation of atrial 

activity through the propagation direction YXD  . 

 Figure 5(a)–(b) illustrates the activity sensed by one of the 

linear splines of the simulated basket catheter in presence of a 

single activation source pattern and a double activation source 

pattern, respectively. In Fig. 5(a) activation comes from the top 

of the spline and propagates downwards, whereas in Fig. 5(b) 

activation comes from both the top and bottom part of the spline 

and fuses between electrodes 4 and 5 as illustrated in the colli-

sion EGM indicated with an asterisk. 

 Figure 5(c)–(d) illustrates the activity sensed by electrode 

row #1 in presence of an anatomical reentry and a stable func-

tional reentry, respectively. In Fig. 5(c), the propagation fol-

lows a sequence that indicates a wavefront circulating in the 

direction of the circular electrode configuration. Figure 5(d) 

shows that electrode 18 is the most precocious (marked with an 

asterisk) which indicates the presence of a source of activation 

at that site. Moreover, the activation linearly propagates across 

the studied circular configuration, ending at electrode 9. 

3) Activity mapping: Figure 6 illustrates the activity maps 

of the full simulated basket catheter. 

 The activity map for the single source scenario is shown in 

Fig. 6(a). This map was obtained by spline-wise computation of 

YN  ( s

YP = 6.22, r

YP  = 4.28). It shows that the wave travels from 

top to bottom in a very regular fashion indicated by consistently 

high 
YXD 

 and 
YN values. The activity map for the double 

source scenario is shown in Fig. 6(b). This map was obtained 

by spline-wise computation of 
YN  ( s

YP = 4.25, r

YP  = 3.68). 

Both the sign of the propagation direction 
YXD 

and the high 

values of 
YN  indicate that the activation comes from each of 

the poles of the sphere. Moreover, 
YN  values decrease towards 

the collision area (“equator” of the sphere). 

 Figure 6(c) shows the activity map of the anatomical reentry 

scenario. This map was obtained by spline-wise computation of 

YN  ( s

YP = 3.63, r

YP  = 3.60). The different values of 
YN  and 

YXD 
 observed between the top and bottom parts of the sphere 

 
 

Fig. 4. Predictability measures obtained by spline-wise (blue boxes) and row-wise (red boxes) analysis of each simulated scenario: a) predictability 
YP , b) Granger 

autonomy 
Y|XZG , c) neighbour connectivity ratio 

YN  and d) self-predictability 
YS . * indicates statistical significant difference of the measure against the unstable 

functional reentry, AF and AF with focal source scenarios (p ≤ 0.05), § indicates statistical significant difference of the measure against AF and AF with focal source 

scenarios (p ≤ 0.05) and † indicates statistical significant difference of the measure against AF with focal source scenario (p ≤ 0.05). 
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suggest the presence of a stable and regular pattern located at 

the top, with revolution direction going from spline 18 to 1 and 

the presence of an unstable pattern at the bottom. 

 Figure 6(d) shows the activity map of the functional reentry 

simulation scenario. This map was obtained by row-wise 

computation of 
YN  ( s

YP = 3.98, r

YP  = 4.29). The low 
YN  values 

suggest two sources of instability, the first located around the 

top part of splines 1–18 and the second around the bottom part 

of splines 2–3. These two sources of instability are surrounded 

by a stable propagation observed throughout the rest of the 

catheter. 

 The activity map of the unstable functional reentry simula-

tion scenario is shown in Fig. 6(e). This map was obtained by 

row-wise measurement of 
YN  ( s

YP = 2.14, r

YP  = 2.21). The 

homogeneously low values of 
YN  suggest a high complexity of 

the activation throughout the catheter, related to low predict-

ability and/or high autonomy of the atrial activity. However, a 

reentrant path is illustrated around splines 7–13. A video of this 

simulation scenario showing this reentrant path is included in 

the on-line supplementary material (video 1).  

 The activity map of the AF with focal source scenario is 

shown in Fig. 6(f). This map was obtained by row-wise com-

putation of 
YN  ( s

YP = 2.24, r

YP  = 2.39). A predominant 

up-to-bottom propagation is identified with low 
YN  values for 

almost all electrode location except for those upper rows where 

a source of regularity is present. Moreover, high values of 
YN  

are shown for splines 13–17 suggesting a displacement of the 

regularity source slightly towards their direction, as can be seen 

in the on-line supplementary material (video 2). 

B. Mapping data analysis 

 EGM signals acquired using a basket catheter were studied 

from two patients with paroxysmal AF, showing different 

spatiotemporal organization patterns. In particular, two com-

 
 

Fig. 5. Examples of causality analysis maps obtained using the proposed framework during simulation of: a) single source (electrode spline #1), b) double source 
(electrode spline #1), c) anatomical reentry (electrode row #1) and d) stable functional reentry (electrode row #1). Each panel shows: at the top, a snapshot of the 

simulated pattern (red dots: electrodes selected for catheter analysis); at the bottom left, a schematic of the catheter used for the causality analysis with electrode 

connections (numbered circles: corresponding catheter electrodes; lateral coloured arrows: conditional Granger causality, dashed if p-value ≤ 0.05; central tick 

arrows: propagation direction
YXD 

); at the bottom right, the corresponding EGM signals with propagation indicated by black arrows. The meaning of the 

asterisks in b) and d) are explained in section IV.A 2) 
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plete circular locations of the basket catheter from each patient 

were analysed. 

 In Fig. 7(a) the proposed framework tracks the complete 

activity, suggesting a precocious propagation from the poste-

rior RA wall (electrode CD1 indicated by an asterisk) at the 

cranial loop that changes towards the RA septum (electrodes 

EF3-6 indicated by an asterisk) at the medial loop. In Fig. 7(b), 

the framework identifies some electrode connections (CD5 to 

GH1 for the cranial loop and AB7 to GH2 in the caudal loop) 

even in the presence of a more complex propagation pattern, 

characterized by multiple wavefront blocks.  

 The values of the neighbour connectivity ratio obtained for 

the two circular electrode configurations of Fig. 7(a) (presented 

as mean ± standard deviation (SD) over all electrodes) indicate 

a degree of regularity higher than that observed for the circular 

configurations of Fig. 7(b). These higher values are in agree-

ment with the clear propagation observed in Fig. 7(a) looking at 

the causality analysis maps. 

 
 

Fig. 6. Activity maps of the simulated basket catheter for simulations of: a) single source, b) double source, c) anatomical re-entry, d) stable functional re-entry, e) 
unstable functional re-entry and f) AF with focal source. Each panel shows: at the left, a snapshot of the simulated scenario (red dots indicate the electrode spline #1 

with counterclockwise spline numbering) and at the right, the corresponding schematic of the simulated basket catheter whose electrodes are represented by nodes 

coloured corresponding to the values of 
YN  (non-coloured nodes: 

YN  could not be obtained) and connected following the values of the propagation direction 

YXD 
(dashed connections: no dominant direction, i.e., 05.0YXD ). 

YN  is computed through spline-wise analysis in panels (a-c) and through row-wise 

analysis in panels (d-f). Note that due to spline analysis constrains, connections between rows 1–2 and rows 7–8 were not possible to obtain. 
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V. DISCUSSION  

 This paper introduces a framework, based on the concept of 

GC, to quantify the predictability of intracardiac signals as-

sessing both the regularity of the activity of individual cardiac 

sites and the interactions among spatially separated sites. The 

GC is a measure of prediction and precedence, which is as-

sessed in this study within the context of a linear analysis 

framework. Accordingly, MVAR models of the pre-processed 

bipolar EGMs were used for computing the GC-related meas-

ures based on the residuals variance of different process re-

gressions [47], [49].  

 In this work, GC analysis is formalized for atrial signals in a 

unified framework by providing a set of prediction measures, 

which are used and interpreted within the physiology of AF. 

The work extends several methodologies already proposed in 

this context [28]–[33]. For instance, frequency domain causal-

ity analysis of AF is done in [28], [29] via partial directed 

coherence (PDC). Compared to PDC, our approach provides 

causality measures that are easier to interpret, because it does 

not require identifying a frequency band to analyze interac-

tions. Moreover, our approach is more comprehensive as it 

explores a wide range of dynamical properties of the atrial 

signals besides causality, such as overall and self-predictability, 

propagation direction and neighbourhood connectivity. On the 

other hand, the approaches [30]–[33] also proposed 

time-domain GC-based measures, but are limited in that they 

define bi-variate measures which are sensitive to spurious 

connectivity induced by common driver or cascade effects of 

non-modelled signals. Our framework implements a multi-

 
 

Fig. 7. Application of the proposed framework on RA basket mapping data in two patients with spatiotemporal AF patterns exhibiting different levels of com-
plexity. Each panel shows: at the left, a schematic representation of the open RA with the position of the recording electrodes (unavailable electrodes due to 

miss-contact are indicated with X; electrode connected with a dashed line indicate the analyzed circular configuration); at the center, the corresponding EGM 

signals of the analyzed circular configuration; at the right, the causality map (named circles: corresponding catheter electrodes; lateral colored arrows: conditional 

Granger causality, dashed if p-value ≤ 0.05; central tick arrows: propagation direction 
YXD 

, dashed if no dominant direction is present, i.e., 05.0YXD ) 

including at the centre the average ± SD value of 
YN . The meaning of the asterisks in a) are explained in section IV.B. 
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variate formulation of GC measures that allows a more precise 

identification of propagation patterns; it may take any number 

of neighbouring atrial sites into account, just by considering Z 

as a multi-variate process that includes all the 2L  remaining 

neighbour electrodes under analysis.  

 In addition to the multi-variate formulation, the proposed 

framework extends measures of spatial organization such as 

cross-correlation or cross-spectral measures (proposed, e.g., in 

[13], [14], [21]) also by providing the important information 

about the direction of the interactions, which is closely related 

to the direction of atrial wave propagation. Also, compared 

with activation sequence-based approaches (e.g. in [16]–[20]), 

the main advantage of the proposed framework lies in that this 

activation detection step is not necessary and, therefore, the 

analysis outcomes are not limited by the activation detection 

accuracy during complex activity. 

 With the aim of providing a detailed view of the potential 

usefulness of the methodology, the evaluation of the proposed 

framework was conducted using both simulations of different 

AF mechanisms and clinical mapping data. Note that not all 

GC-based measurements presented in section III.C are relevant 

for the aim of this work (e.g. the joint cross-predictability and 

its conditioned decompositions), but they have been defined to 

achieve completeness in the presentation of the predictability 

framework. The simulation study employed seven different 

simulation scenarios, covering a wide range of conditions of 

atrial patterns from regular to irregular activity. Moreover, the 

derived EGM signals were obtained mimicking a basket 

catheter configuration, which provides a more realistic situation 

found in an electrophysiology lab. This basket catheter con-

figuration allowed also to test the framework employing dif-

ferent electrode distributions (i.e., circular and linear) and to 

prove the generality of the proposed three-electrode analysis 

scheme. 

A. Quantification of the regularity of simulated atrial activity 

 The predictability and its conditioned decompositions, the 

self-predictability and the Granger autonomy, allow to measure 

different aspects of the regularity of the signal and the under-

lying activity. We found that predictability and Granger 

autonomy display an opposite behaviour with respect to the 

complexity of the simulated activity. On the other hand, the 

self-predictability does not show a clear trend that differentiate 

regular from irregular rhythms, in contrast with the Granger 

autonomy, as illustrated in Fig. 4. This raises the importance of 

spatiotemporal analysis because the self-predictability was 

mainly affected by the surrounding signals in organized or 

regular rhythms and this effect was removed by definition in 

the computation of the Granger autonomy measure. 

 The neighbour connectivity ratio combines predictability 

and Granger autonomy, providing a normalized descriptive 

measure of the atrial rhythms that accounts for both the global 

regularity and the degree of connectivity. The low values of the 

neighbour connectivity ratio found for the unstable simulated 

scenarios (unstable functional reentry, AF and AF with focal 

source), compared to the organized scenarios (p-value < 0.05 

for all comparisons) reflect the ability of this measure to quan-

tify isolation. Therefore, the more irregular the propagation is, 

the less predictable the signal is from the adjacent electrodes, 

and lower values are attained for the neighbour connectivity 

ratio. 

 All these measures are dependent on the direction of the 

propagation with respect to the orientation of the 

three-electrode analysis scheme used for the rhythm analysis 

and characterization (see Fig. 4). Important differences appear 

in scenarios where the propagation direction follows the direc-

tion of one of the two electrode distributions (i.e., spline-wise 

or row-wise). On the one hand, single/double source scenarios 

present high/low values during row-wise analysis. In these 

cases, the activation wavefront passes simultaneously through 

all electrodes, allowing the adjacent electrodes to explain the 

activity of the target electrode. On the other hand, spline-wise 

analysis of anatomical reentry and functional reentry show 

lower regularity, compared with row-wise analysis, due to the 

differential behaviours of each hemisphere and the average 

process. 

B. Activity tracking capability 

 The analysis of the conditional Granger causality by means 

of the propagation direction 
YXD 

 illustrates the sequence of 

activation sensed by the catheter. Both the sign and the values 

of the propagation direction quantify the predominant direction 

and the relative strength of information transfer between two 

electrodes and track the propagation through the catheter, as is 

illustrated in simulations in Figs. 5–6. Moreover, Fig. 7 shows 

examples of the application of the proposed methodology 

where atrial activity was mapped using the propagation direc-

tion in paroxysmal AF patients showing different organization 

patterns. The good observed tracking capability suggests the 

usefulness of the proposed measure of propagation direction. 

 Methodologically the propagation direction is defined using 

the conditional Granger causality 
Y|ZXG 

 and 
X|WYG 

 in order 

to isolate the interaction between electrodes X and Y from its 

other neighbours (W and Z, respectively). In the present 

framework with 3L , 
YXD 

 could be also defined in terms of 

the Granger causalities between X and Y (i.e. 
YXG 
 and 

XYG 
). 

However, this definition is limited within an extended frame-

work with 3L , where additional conditioning terms are 

needed to avoid over-estimation of the existing interactions 

between close neighbour electrodes with the target electrode. 

 Moreover, combining the propagation direction 
YXD 

 and 

the neighbour connectivity ratio 
YN , it is possible to obtain 

comprehensive activity maps that include, within the same 

picture, information about the direction of propagation and the 

areas of stability of such propagation (see Fig. 6). These maps 

allow to observe the underlying activity in detail. For instance, 

Fig. 6(a) shows a stable map reflecting the presence of a single 

source of activation, while Fig. 6(b) shows decreasing connec-

tivity values while approaching the central area of the sphere 

where the two source wavefronts collide. This last result re-

flects the instability of the collision, and explains the wide 

range of regularity observed in Fig. 4. Figure 6(c) shows dif-

ferent behaviour between hemispheres, with an organized 

propagation at the top of the sphere due to the anatomical 

reentry and less organized propagation at the bottom due to the 

collision of the “tail” and the “head” of the reentrant wavefront. 

Figure 6(d shows medium-to-high regularity in the whole 
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catheter except for those locations where the tips of the func-

tional reentries (spirals) are localized. Figure 6(e) shows a 

preferential reentry path from top-to-bottom around splines 6–9 

and from bottom-to-top around splines 9–13, whereas unstable 

patterns occur in the rest of the simulated sphere. This is illus-

trated in the slow motion video included in the on-line sup-

plementary materials (video 1), which is coherent with the 

activity map of Fig. 6(e). Finally, Fig. 6(f) shows that the top of 

the sphere, where the focal source of activation entrains the 

tissue during AF, is the most regular part of the simulation 

scenario. This agrees with what is expected and can be ob-

served in the on-line supplementary material video 2. 

 While the activity maps have been obtained in this work 

following the analysis direction that maximizes the average 

predictability value, both spline- and row-wise analysis are 

needed for their construction. Therefore, although this maxi-

mization criterion can be considered as a guideline for frame-

work application in clinical practice, it is flexible enough to 

allow displaying the results of both analyses. Such flexibility 

extends also to the proposed three-electrode analysis scheme, 

which can be expanded to include more than two neighbours to 

match the analysis to a particular multi-electrode catheter. 

C. Limitations of the framework 

 The proposed framework characterizes atrial activity by 

implementing a linear MVAR modelling analysis of the dy-

namics and interactions between nearby cardiac sites. While the 

presence of nonlinear dynamics may limit the descriptive 

capability of the framework, we showed that the linear as-

sumption appears to be sufficient to track most of the activity in 

both simulations and clinical mapping data. Nevertheless, it 

may be interesting to consider extensions of our approach to 

nonlinear models, although not many examples can be found in 

the analysis of AF intracardiac signals [50]. 

 The proposed three-electrode analysis scheme assumes 

one-electrode neighbourhood and one-dimensional interaction. 

This topology is applicable to any multi-electrode catheter, but 

this assumption may not be always accomplished due to elec-

trode sparsity. Other limitations of the proposed scheme are 

related to the number of available electrodes, especially for the 

most extreme electrodes in linear catheter configurations, and 

the need of achieving complete contact for all electrodes in 

order to perform a continuous analysis of the cardiac activity. 

This was especially noticed in real data analysis, which is 

limited by the lack of contact for some electrodes. Neverthe-

less, the proposed three-electrode analysis scheme aims to be 

general and applicable on any multi electrode catheter without 

being tailored to a particular catheter type or electrode distri-

bution. Moreover, linear and circular catheters are still the most 

commonly used in clinical practice. However, some of the 

limitations above described may be alleviated by choosing 

other neighbourhood electrode topologies, as allowed by the 

flexibility of the framework. 

D. Clinical relevance and future work 

 The proposed activity maps provide a global visualization of 

a multi-electrode catheter that may be potentially useful for 

identifying fibrillation sources and guiding catheter ablation 

interventions. For that purpose, further evaluation is needed in 

additional clinical AF scenarios. 

VI. CONCLUSION 

 This paper introduces a linear predictability framework for 

analyzing cardiac activity and interactions during AF based on 

GC definitions. The method provides regularity measures that 

can distinguish the complexity between different atrial 

rhythms. Moreover, it can be applied to track and map the 

underlying cardiac activity in any simultaneous multi-electrode 

catheter, not requiring activation detector or post-processing 

algorithms. The proposed global mapping of regularity and 

connectivity of the activity acquired from multi-electrode 

catheters, simultaneously showing signal propagation and 

stability, can be useful for interpreting such activity and sup-

porting clinicians during ablation interventions. 
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