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ABSTRACT

We model the hydrodynamic evolution of the plasma confined in a coronal loop, 30,000 km long, subject to the
heating of nanoflares due to intermittent magnetic dissipative events in the MHD turbulence produced by loop
footpoint motions. We use the time-dependent distribution of energy dissipation along the loop obtained from a
hybrid shell model, occurring for a magnetic field of about 10 G in the corona; the relevant heating per unit volume
along the loop is used in the Palermo-Harvard loop plasma hydrodynamicmodel.We describe the results, focusing on
the effects produced by the most intense heat pulses, which lead to loop temperatures between 1 and 1.5 MK.

Subject headinggs: Sun: activity — Sun: corona

1. INTRODUCTION

Nanoflares (Parker 1988) are among the best candidates
to explain the heating of the solar corona and, in particular, of
the coronal loops (e.g., Peres et al. 1993; Cargill 1993; Kopp &
Poletto 1993; Shimizu 1995; Judge et al. 1998; Mitra-Kraev &
Benz 2001; Katsukawa & Tsuneta 2001; Warren et al. 2002,
2003; Spadaro et al. 2003; Cargill & Klimchuk 1997, 2004;
Müller et al. 2004; Testa et al. 2005).

Although the evidence of nanoflares appears to be well es-
tablished, it is still unclear whether, and to what extent, they
really can provide enough energy to heat the whole corona (e.g.,
Aschwanden 1999). More recently, models of nanoflares with a
prescribed random time distribution of the pulses deposited at
the footpoints ofmultistranded loops have been proposed (Warren
et al. 2002, 2003) and have been shown to describe several ob-
served features.

According to some models, nanoflares are the result of dissi-
pation in magnetohydrodynamic (MHD) turbulence, generated
inside closed magnetic structures in the corona, and due to non-
linear interactions among fluctuations generated by photospheric
motions. Possible evidence of turbulentmotions has been detected
from line broadenings in coronal loops (Saba & Strong 1991).
Most of these models include direct numerical solutions of
MHD equations in two or three dimensions (Einaudi et al. 1996;
Hendrix&VanHoven1996;Dmitruk&Gómez 1997, 1998,1999;
Buchlin et al. 2003) using relatively lowReynolds/Lundquist num-
bers. Recently, Nigro et al. (2004, hereafter NMCV04) have related
coronal nanoflares to intermittent dissipative events in the MHD
turbulence produced in a coronal magnetic structure by footpoint
motions. The injected energy is stored in the loop up to signifi-
cant levels in the form of magnetic and velocity fluctuations and
released intermittently through nonlinear interactions that process
these fluctuations and generate cascades toward smaller scales
where energy is dissipated. The derived probability distribution
functions of the peak maximum power, peak duration time, en-
ergy dissipated in a burst, and waiting time between bursts are in
good agreement with those obtained from the analysis of coronal
impulsive events (Datlowe et al. 1974; Lin et al. 1984; Dennis
1985; Crosby et al. 1993; Shimizu & Tsuneta 1997; Krucker &

Benz 1998;Boffetta et al. 1999; Parnell& Jupp 2000;Aschwanden
et al. 2000a, 2000b). This heating model does not require any
ad hoc hypothesis once the loop length and the characteristic
Alfvén speed, i.e., the strength of the ambient magnetic field (if
the density does not change much), are fixed.

Here we model the plasma confined in a coronal loop heated
according to the event dissipation rate and distribution described
in NMCV04. We compute the evolution of the distributions of
the density, temperature, and velocity of the loop plasma bymeans
of the time-dependent thermohydrodynamic Palermo-Harvard
(Peres et al. 1982; Betta et al. 1997) loop model, assuming the
output of the hybrid shell model illustrated in NMCV04 as the
basis of the heating function.

In x 2 we describe the setup of the loop model with the MHD-
turbulence dissipation rate as input heating. In x 3 we show rele-
vant results, and we discuss them in x 4.

2. THE LOOP MODEL

Our purpose here is to model the evolution of the plasma con-
fined in a coronal loop under the effect of the energy dissipation
predicted in NMCV04. According to their settings, we model a
magnetic loop with a total length of 30,000 km. The plasma is
described as a compressible fluid moving and transporting en-
ergy only along the magnetic field lines, i.e., along the loop itself.
Thus, the magnetic field has only the role of confining the plasma.
The loop model assumes a constant loop cross section.

We use the Palermo-Harvard code (Peres et al. 1982; Betta
et al. 1997), a one-dimensional hydrodynamic code that con-
sistently solves the time-dependent density, momentum, and en-
ergy equations for the plasma confined by the magnetic field:
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where n is the hydrogen number density, s the spatial coordinate
along the loop, v the plasma velocity, mH the mass of the hy-
drogen atom, � the effective plasma viscosity, P(T ) the radiative
losses function per unit emission measure, � the fractional ion-
ization, i.e., ne/nH, � the thermal conductivity (Spitzer 1962), KB

the Boltzmann constant, and � the hydrogen ionization poten-
tial; H(s, t) is a function of both space and time, which describes
the heat input in the loop. This function is described in detail in
x 2.1. The numerical code uses an adaptive spatial grid to ade-
quately follow the evolving profiles of the physical quantities,
which can vary dramatically in the transition region and under
the effect of the evolution. The loop is not symmetric, the apex is
at half the numerical grid, and there is a chromosphere on each
side. The boundary conditions at the loop footpoints are the same
as in Reale et al. (2000).

2.1. The Heating Function

The original version of the Palermo-Harvard hydrodynamic
code includes a space- and time-dependent heating function,
which describes the input of external energy triggering transient
events (Peres et al. 1987). Several formulations are possible, and
the code can be easily adapted. For this work, the heating func-
tion is given by the output dissipation rate of NMCV04 (in the
form of a numerical table).

The model developed in NMCV04 has been derived within the
framework of reduced magnetohydrodynamics (RMHD; Strauss
1976; Zank & Matthaeus 1992) with the assumptions that (1) the
plasma is permeated by a strong uniform magnetic field B0 in
the longitudinal direction; (2) there is a low thermal-to-magnetic
pressure ratio, �P ¼ 8�p/B2T1; (3) the longitudinal scale ljj of
transverse velocity v? and magnetic field B? fluctuations is much
larger than the transverse scale l?; indeed, the MHD turbulence
is anisotropic (e.g., Carbone & Veltri 1990), the energy cascade
being more efficient perpendicularly to B0; and (4) small ampli-
tude perturbations B?/B0 ¼ v?/cA0 < l?/ljjT1, where cA0 is
the background Alfvén velocity, commonly assumed to be of the
order of cA0 � 108 cm s�1, while the fluctuating velocity can be
estimated using nonthermal broadening of coronal spectral lines,
v? � 3 ; 106 1:5 ; 107 cm s�1. Under the above assumptions
the set of the RMHD equations can be derived; they describe the
evolution of magnetic and velocity fluctuations in terms of two
distinct effects: (a) wave propagation in the longitudinal direction at
the Alfvén velocity and (b) nonlinear couplings, which generate a
turbulent cascade perpendicularly to B0. The model proposed by
NMCV04 (hybrid shell model) includes both of these dynamical
mechanisms, but nonlinear effects are described in a simplifiedway
by using a shell technique (Boffetta et al. 1999): a Fourier expan-
sion is carried out in the perpendicular directions, and the result-
ing spectral space is divided into concentric shells of exponentially
increasing radius. In each shell, velocity and magnetic field fluc-
tuations are represented by complex scalar quantities. Nonlinear
effects are reproduced by quadratic terms representing the inter-
actions between nearest and next nearest neighbor shells; the co-
efficients are chosen so as to conserve two-dimensional quadratic
invariants: total energy, cross helicity, and squared magnetic po-
tential. The equation of the hybrid shell model is written as
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where Z�
n (s; t)¼ vn?(s; t)þ �bn?(s; t) (with n ¼ 0; 1; : : : ; nmax

and � ¼ �1) are the Elsässer variables; kn ¼ k02
n is the trans-

verse wavenumber, with k0 ¼ 2�(L/L?); � ¼ k /(cA0L), where
the magnetic diffusivity k has been assumed equal to the trans-
verse kinematic viscosity; and the asterisk means complex con-
jugate. Lengths are normalized to the loop length L, and time is
normalized to the Alfvén transit time tA ¼ L/cA0; the velocity
vn? andmagnetic field bn? fluctuations are normalized to cA0 and
B0 , respectively.
The shell technique allows us to describe the turbulence at

high Reynolds /Lundquist numbers with a relatively small num-
ber of degrees of freedom. In particular, we used a number of
shells, nmax ¼ 11, with a very small dissipation coefficient, � ¼
10�7. Since the longitudinal spatial dependence is retained, the
hybrid shell model can describe effects of longitudinal resonance.
Moreover, it is possible to implement boundary conditions to
describe the effects of transverse motions at the loop bases. In
particular, the system is excited through the boundary at s ¼ 0
by imposing a given velocity perturbation at large transverse
scales, simulating photospheric motions. This boundary pertur-
bation amounts to�105 cm s�1, is Gaussian distributed, and has
a correlation time tc ¼ 300 s. At the other boundary s ¼ 1 total
reflection conditions are imposed. Equation (5) is numerically
solved using second-order finite difference schemes both in space
and in time.
During the evolution, fluctuating energy enters or exits the

driven boundary, so the total energy content in the loop fluctuates
erratically in time. At the same time nonlinear effects transfer
energy to smaller transverse scales, thus building a turbulence
spectrum. Dissipation takes place mainly at the smallest scales.
Occasionally, the velocity imposed at the lower boundary drives
the loop close to one longitudinal resonance: then, the velocity
fluctuations increase at the driven large-scale shells, enhancing
the energy cascade process toward small dissipative scales. This
process results in a spike of dissipated energy converted to heat.
The dissipated power at time t and position s along the loop is
calculated as
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and is the heating input in the loop plasma model (eq. [3]). The
hybrid shell model yields the energy distribution along the loop
integrated in the transverse direction and therefore provides the
heat input for the one-dimensional loop model. The power in the
whole loop is

W (t) ¼
Z 1

0

H(s; t)ds: ð7Þ

The profile of W(t) contains a sequence of spikes of differ-
ent amplitudes and durations. The space and time profile of the
heating function results from the interplay between the external
driver (photospheric motions), the loop resonance, and the non-
linear turbulent cascade.
The heat spatial distribution is sampled every 0.1 Alfvén time.

For an Alfvén speed of 2 ; 108 cm s�1, one Alfvén transit time is
15 s (NMCV04). The numerical table yields the heat distribution
per unit time and volume along the loop (sampled every 37.5 km)
and spans a total time of 307.5 ks, i.e., 3.56 days. We assume a
circular cross section and an aspect ratio d/L ¼ 0:2, where d is
the cross section diameter; the cross section area is A ¼ 2:83 ;
1017 cm2. Figure 1 shows a few selected segments of the evolution
of the average loop heating rate W (t)/(AL); they are essentially
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Fig. 1.—Evolution of the average heating rate per unit volume released in the loop. The vertical dashed lines mark the times illustrated in detail in Fig. 2.



zooms of the dissipation power shown in Figure 1 in NMCV04.
The heating per unit volume is negligible in the first 1000 s.
After this (relatively short) transient, the heating is steadily above
10�6 ergs cm�3 s�1. The evolution of the average heating rate is
highly irregular, with sharp pulses whose duration spans all time-
scales from a few s to a few ks. Some pulses resemble flares. Also,
the pulse intensities are highly irregular. Most of them are entirely
below 10�4 ergs cm�3 s�1. A few of them are higher (although
most are below 10�3 ergs cm�3 s�1); in fact, 11 heating pulses
reach values well above 3 ; 10�4 ergs cm�3 s�1 and occur around
10.5, 22, 25, 57.5, 69.5, 78, 90, 99, 121, 182, and 249 ks, as shown
in Figure 1. The most intense pulse is the seventh one (90 ks) and
is higher than 10�3 ergs cm�3 s�1. The high pulses are noticeably
less frequent in the second half of the heating time interval: nine of
them occur in the first 150 ks. Most of these pulses last�0.3–1 ks
and are rather peaked.

The heating rate per unit volume averaged over the whole
heating duration is �3 ; 10�5 ergs cm�3 s�1. According to the
loop scaling laws (Rosner et al. 1978), for the prescribed length
this is the heating rate (per unit volume) of a loop at an equi-
librium base pressure of�0.025 dyn cm�2 and a maximum tem-
perature of �5 ; 105 K.

Figure 2 shows distributions of the heating rate per unit
volume along the loop sampled during the fourth segment in

Figure 1 (hereafter Ref1; from 22.5 to 27 ks). For each time, a
couple of distributions are shown, one at 1.5 s from the other.
The heating distribution is quite uniform for low heating. During
the high-intensity phase of the heating, the distribution becomes
less uniform, with large peaks propagating back and forth along
the loop and extending over �1

5
of the loop.

2.2. The Initial Conditions

Since our scope is to investigate the structure, stability, and
observable properties of the simulated loop both in time and
on average, the initial conditions ought to be moderately impor-
tant: we should start with an initially cool and empty loop, there-
after entirely governed by the new time-dependent heating. For
technical reasons, our choice has been to set up this condition
by allowing an initially hotter loop to relax to a much cooler
condition. The initial loop is obtained from the model of Serio
et al. (1981) with a uniform steady heating and a base pressure
0.03 dyn cm�2, corresponding to a loop maximum tempera-
ture of �5 ; 105 K, i.e., the expected average condition of the
nanoflare-heated loop. In order to allow this loop to relax, we
made a preliminary time-dependent simulation assuming zero
coronal heating in the loop (but keeping the chromospheric heat-
ing on, to have stable footpoints). The simulation followed the
loop evolution for 2000 s, i.e., approximately 2.5 loop thermal
decay times (Serio et al. 1991). At the end of the simulation, the
loop maximum temperature decreased to �60,000 K, and the
pressure decreased to�1:5 ;10�4 dyn cm�2. A residual velocity
field was present in the loop, with speeds not larger than 6 km s�1,
an amply subsonic (Mach 0.2) value. We took this final status as
the initial condition for the simulations with the nanoflare heating.

3. RESULTS

Our main purpose here is to explore how the dissipation rate
described in NMCV04 can bring a loop to coronal conditions
and maintain it. In this perspective we describe in detail the so-
lution obtained in a segment containing a heat pulse of me-
dium intensity, specifically Ref1 (between 22.5 and 26.3 ks) in
Figure 1. We also discuss the segment including the highest
heat pulse, i.e., the eighth segment (hereafter RefH). The solu-
tions in the other segments do not differ much from those that
we illustrate.

3.1. Medium Pulse

Figure 3 shows the evolution of the temperature, particle
density, pressure, and velocity distributions along the loop ob-
tained from the loop simulations for segment Ref1. The temper-
ature is steadily below 0.2 MK until the pulse at t � 24:5 ks.
Then it gradually increases due to the enhanced heating. Figure 3
clearly shows that the effects of the spatial heating structure
(Fig. 2) are smoothed by the efficient thermal conduction. The
pulse also drives plasma evaporation from the chromosphere,
visible in the density, pressure, and velocity distributions (the
negative velocity peaks indicate plasma moving upward from
the far footpoint). The density distributions show more signifi-
cant fluctuations traveling along the loop.
For more quantitative information, Figure 4 shows selected

distributions of temperature, particle density, velocity, and pres-
sure along the loop around the times marked in Figure 2. Each
column of the figure shows the distributions along the loop at
the exact time, as well as 100 s before and after this time. In the
low heating state (Fig. 4, left column), the temperature is steadily
between 0.2 and 0.3 MK along most of the loop, with a profile

Fig. 2.—Spatial distributions of the heating rate per unit volume along the loop
sampled during the fourth segment of Fig. 1 (second row, right) at the timesmarked.
The dashed lines are the distributions after 1.5 s from the closest solid line.
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very similar to that of a static loop. Also, the density does not
change much along the loop and is always below 108 cm�3

in most of the loop. The distribution of plasma velocity shows
fluctuations with amplitude �10 km s�1 propagating back and
forth along the loop. During the heat pulse, the temperature
increases to about 1 MK (in�100 s). The distribution at the time
of the temperature maximum appears to be more peaked than
in the cool state, and the position of the maximum slightly os-
cillates around the loop apex. At later times (t > 25 ks), the tem-
perature slowly decreases, and its distribution flattens (Fig. 4,
first row, right ). Asymmetric fronts of plasma evaporation de-
velop as the heating increases (Fig. 4, second row, center) and
the density starts to increase. The density continues to increase
even after the temperature maximum (Fig. 4, second row, right),
staying above 2 ; 108 cm�3 for a long time.During the heat pulse,
the plasma evaporation fronts are also clearly visible in the veloc-

ity profiles: two similar strong fronts rise from both footpoints
after t ¼ 24:8 ks, reaching a speed of about 50 km s�1 at inter-
mediate positions along the loop. Then the plasma becomes no-
ticeably less dynamic. During the heating decay, the loop slowly
returns to a cool average state around 0.4 MK. The plasma ve-
locity continues to decrease until the plasma becomes practically
static, around t ¼ 25:5 ks. Then the velocity distribution gets in-
verted: plasma begins to drain along the loop at a very low speed
( lower than 10 km s�1). The pressure distribution along the loop
is quite stable in the cool state. When the heating increases, the
pressure increases as well (together with the temperature and the
density). The pressure distribution then settles to a very flat dis-
tribution during the pulse decay at about 0.04 dyn cm�2.

Figure 5 shows the evolution of the loop maximum temper-
ature, the loopminimum density and pressure, and the maximum
velocity. The first three quantities are typical of the upper region

Fig. 3.—Evolution of the distributions of temperature, particle density, velocity, and pressure along the loop during segment Ref1 (the fourth segment of Fig. 1,
second row, right).

MODELING LOOP WITH MHD NANOFLARES 493No. 1, 2005



Fig. 4.—Distributions of temperature, particle density, velocity, and pressure along the loop sampled during segment Ref1 (the fourth segment in Fig. 1, second
row, right) at the three times marked in Fig. 2 (one for each column). We show the distributions at these times (solid lines), as well as 100 s before (dotted lines) and
after (dashed lines).



of the loop, close to the apex, the last midway between the apex
and the footpoint of the loop. The evolution of the maximum
loop temperature is globally similar to that of the average heating
(Fig. 1), but much less noisy. Consequently, it is also similar to
the evolution of the maximum temperature expected from the
evolution of the average loop heating through the loop scaling
laws (Rosner et al. 1978). The former temperature is slightly
higher (�10%) and decays more slowly than the latter one. The
peak temperature is different because scaling laws assume a con-
stant and uniform heating, while the actual heating function in
the simulation is variable and nonuniform along the loop. The
slower decay is due to the fact that the plasma response to the
heating decrease is not instantaneous, and the cooling processes
have their own characteristic times. The density enhancement
due to the heat pulse of this segment is significantly delayed
(�300 s) with respect to the temperature increase, as is typical of
loop plasma evaporation. For comparison, Figure 5 shows the
equilibrium loop density values as expected from the loop scal-
ing laws. The comparison clearly shows the delay mentioned
above but also emphasizes that during the pulse rise the loop is
significantly underdense yet becomes overdense in the later de-
cay phase. This is expected in dynamically heated loops; while
the heating is on, the loop is filling with plasma and therefore
below the density equilibrium conditions.When the heating stops,
the loop cools down, but the plasma drains evenmore slowly. The
maximum pressure has an evolution between that of the density
and of the temperature and explains why the plasma dynamics is

time shiftedwith respect to the plasma thermal evolution. Figure 5
shows that the plasma velocity is constantly below 20 km s�1

except during the heat pulse, when it grows to about 50 km s�1.
These values are quite subsonic.

From the output results of the hydrodynamic simulations,
i.e., distributions of temperature, density, and velocity along the
loop sampled at regular time intervals, it is possible to compute
the UV and X-ray emission from the confined plasma. Figure 6
shows the emission along the loop in three representative X-ray/
UV lines, i.e., Ca x k558,Mg ix k368, andMg x k625, peaking at
log T ¼ 5:9, 6.0, and 6.1, respectively, at the same times as the
distributions shown in the left and middle columns of Figure 4.
Since the line emission is sensitive both to the temperature and
to the square of the density, the emission distributions are less
uniform and fluctuate more. This may be a distinctive signature
of this model in loop observations. In these lines the loop is
visible for a limited time during this segment. In the hottest line
(Mg x k625) it decays very rapidly.

3.2. High Pulse

In the course of the whole sequence of heating evolution, the
most intense heat pulse, RefH, occurs a little after time t ¼ 90 ks
(Fig. 1, fourth row, right column). Figure 7 shows the evolution
of the loop maximum temperature, the loop minimum density
and pressure, and the maximum velocity, to be compared with
the evolution obtained in segment Ref1 (Fig. 5). The loop max-
imum temperature reaches 1.5 MK around time t ¼ 90:5 ks.

Fig. 5.—Evolution of the loop maximum temperature, minimum density, minimum pressure, and maximum velocity along the loop during segment Ref1. The
dashed lines indicate the loci of the equilibrium conditions of the loop according to the loop scaling laws, corresponding to the heating evolution in Fig. 1. In the
velocity plot, the dotted line is the sound speed at the loop maximum temperature.
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Fig. 6.—Emission distributions (in ergs cm�3 s�1) along the loop in three relevant X-ray/UV lines (Ca x k558, Mg ix k368, and Mg x k625) during segment Ref1
at the same times as the left and middle columns of Fig. 4. For the chosen loop parameters, 10�10 ergs cm�3 s�1 is a reasonable threshold for detection.



Then it decays below 1 MK, but stays above 0.5 MK for the rest
of the segment because of the occurrence of other minor heat
pulses. The density at the apex reaches about 4 ; 108 cm�3, and
the pressure reaches 0.1 dyn cm�2 around time t ¼ 91 ks, about
500 s later than the temperature peak. The velocity gets above
60 km s�1, always amply subsonic.

Figure 8 shows the light curves integrated along the whole
loop during segment RefH in the 171 and 195 8 filter bands of
the Transition Region and Coronal Explorer (TRACE; Handy
et al. 1999). The light curve in the 1718 filter band resembles the
evolution of the heat pulses (although much smoother). In the
1958 filter band, only the first pulse is significant, and only in its
initial phase is the emission significant, giving the impression of
an anticipated evolution. This evolution resembles more closely
the evolution of the maximum temperature shown in Figure 7.

4. DISCUSSION AND CONCLUSIONS

This work is devoted to exploring the effect of nanoflares
due to the magnetic energy dissipation throughMHD turbulence
on the dynamic and thermal evolution of the plasma in a coronal
loop. The parameters considered in NMCV04, i.e., an Alfvén
speed of 2000 km s�1 corresponding to a magnetic field of about
10G in corona, lead to a loopwith a typical maximum temperature
of 5 ; 105 K. Since coronal loops are typically observed at higher
temperatures, �1 MK, here we focus on the effects produced by
the most intense heat pulses predicted in NMCV04. We com-
pute in detail the hydrodynamics and thermodynamics of the loop
plasma during the pulses and analyze the results.

Although the spatial distribution of the heating has significant
fluctuations traveling along the loop and also rapid fluctuations
in time, we find that the plasma is not so fast to react and smooths
out the fluctuations both in space and in time. We find that, un-
der the effect of a medium heat pulse, the loop plasma reaches
T � 1 MK and density �0:2 ;109 cm�3. The efficient thermal

Fig. 7.—Evolution of the loop maximum temperature, minimum density, minimum pressure, and maximum velocity along the loop during segment Ref H. The
dashed and dotted lines are the same as in Fig. 5.

Fig. 8.—Light curves integrated along the whole loop during segment Ref H
in the 1718 (solid line) and in the 1958 (dashed line) filter bands of the TRACE
telescope. The 195 8 emission is multiplied by 4.
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conduction makes the plasma respond promptly to the heating
deposition but also smooths the heating fluctuations. The plasma
rapidly reaches the equilibrium temperature (according to the
loop scaling laws) and then cools following the decay of the heat
pulse. The same evolution occurs for a higher heat pulse, which
produces a higher peak temperature of 1.5MK and a higher den-
sity of 0:5 ; 109 cm�3. The density (and pressure) of the plasma
shows more significant fluctuations traveling along the loop but
globally responds on longer timescales. The heat pulses do not
last long enough to let the plasma reach the thermo-/hydrostatic
equilibrium: the plasma is underdense during the heat pulse and
overdense after the pulse with respect to thermal equilibrium.
This density evolution is a consequence of the impulsive heating
(Winebarger et al. 2003a; Warren et al. 2003). The speed of the
plasma driven by the heat pulse is relatively small, largely sub-
sonic, and speeds of a few tens of km s�1 occur only for very few
minutes. The emission distribution in relevant spectral lines may
be relatively more sensitive to fluctuations due to the turbulent
heating and may be used to diagnose this model. For the highest
heat pulse, our model also predicts the light curves in two rele-
vant TRACE filter bands to be ‘‘out of phase’’ from each other.
This phase difference is in qualitative agreement with observa-
tions (Winebarger et al. 2003b) but is also predicted by other
loop models (Warren et al. 2003).

The heating model used here has very few free parameters
(essentially the magnetic field strength and the loop length) and
depends on basic physical effects. The shell model does not yield
a detailed description of turbulence and cannot reproduce the
energy distribution in the direction transverse to the magnetic
field. However, it should be adequate to describe the behavior of
the loop integrated in the transverse direction and the detailed
energy dissipation along the loop, matching the scope of the
Palermo-Harvard loop model.

A series of questions is opened by this work. First, charac-
teristic features of the proposed heating are the disturbances
traveling along the loop. We have shown that observations in

single spectral lines may be sensitive to disturbances in the loop,
but detecting such effects may not be trivial with present-day
instruments. Also, one may wonder about the effect of changing
the magnetic field strength: can a stronger field lead to hotter
active region loops or even major flares? Even if the heating
function can be modified with a simple scaling, this possibility
still requires additional detailed loop modeling, since the loop
plasma evolves nonlinearly under the effect of the heating, cou-
pled with the dynamics and the cooling processes.
As a further issue to investigate, we note that the heating func-

tion is modified by the local plasma conditions, e.g., the density
stratification and its time variation (i.e., the Alfvén speed depends
on the density). Self-consistently including feedback of the loop
plasma conditions on the energy dissipation may easily modify
some characteristics of the heating function, such as the pulse
duration, and thus influence the results. Tackling this question re-
quires the coupling of the hybrid MHD turbulence model with
the loop time-dependent hydrodynamic model, a task planned for
future work.
This first work paves the road to future works along several

lines, such as the time decomposition analysis of results, the
coupling of the heating and loop models, and comparison with
observations, encompassing the selection (or acquisition) and
analysis of observations with long and regularly sampled image
sequences.
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