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Abstract
This paper presents some mechanical models for amplitude and frequency
modulation. The equations governing both modulations are deduced alongside
some necessary approximations. Computer simulations of the models are
carried out by using available educational software. Amplitude modulation
is achieved by using a system of two weakly coupled pendulums, whereas
the frequency modulation is obtained by using a pendulum of variable length.
Under suitable conditions (small oscillations, appropriate initial conditions,
etc) both types of modulation result in significantly accurate and visualized
simulations.

1. Introduction

Many topics in the field of physics require formal reasoning, familiarity with mathematical
notation, the ability to break problems down into manageable components, manipulation
of formulae, and the know-how to extract general principles from specific cases. Many
studies [1, 2] have pointed out that the use of visual representations can both accelerate and
facilitate learning and that supportive software and visualization tools can further improve
this process. Indeed, some scientific visualization techniques, involving suitably prepared
images and animations, enable the user to correlate information and to determine cause/effect
relationships more readily by taking advantage of the human visual system’s capacity to
recognize patterns [3].

Moreover, it has been shown that the use of computer tools to model the behaviour of
physical systems can bridge the gap between graphic, symbolic and visual representations [4].

Mechanical analogues of electronic circuits and vice versa have been used in physics
education for many years [5, 6]. The pedagogical aim is to develop a broader understanding of
the phenomenology by highlighting their similarities and differences. To tie similar phenomena
together is also the main objective of the new approaches based on modelling and simulation
[7, 8].
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In this paper, we will present an approach that aims at illustrating some specific aspects
of signal modulation through the construction and validation of some mechanical models.
It is aimed at introducing the amplitude and frequency modulation concepts in introductory
physics courses and/or laboratories.

The techniques used for electric modulation require a basic knowledge of concepts and
facts that a typical physics or electrical engineering student does not often have. Moreover,
the introduction of such phenomena at a purely technical level barely improves students’
understanding, since the electric modulation is produced by effects that cannot be directly
observed. This can hinder their conceptual understanding.

For these reasons, our approach involves the formulation of mechanical models which are
capable of directly visualizing the main characteristics of amplitude/frequency modulation.
These models use simple moving components which help students to understand the concepts
of this abstract phenomenon through the visualization of motion and graphical displays of the
related time equations.

By analysing these two types of analogue modulation, it is possible to construct some
simulated models whose aims are to exploit the basic peculiarities of modulation, determine
the numerical values of characteristic mechanical parameters and stimulate an understanding
of the relationships with the electronic equivalent.

Section 2 describes the main features of amplitude modulation, in the presence of a
sinusoidal modulating signal, and discusses the conditions that are necessary if a mechanical
system exhibiting similar kinematic behaviour to the electronic process is to be created.
Validation of the model, using appropriate computer simulations, is provided. Section 3
develops an analogous procedure for frequency modulation. The last section draws conclusions
about the pedagogical usefulness of the proposed models.

2. A mechanical model for amplitude modulation (AM) with sinusoidal
modulating signals

A mechanical model for amplitude modulation, in the simple case of a sinusoidal modulating
signal, can be constructed according to the following deductive reasoning.

If vc(t) = Vc cos ωct indicates the high frequency carrier and vm(t) = Vm cos ωmt the
modulation term, with ωm � ωc, an amplitude modulated signal [9] is defined according to

v(t) = (Vc + Vm cos ωmt) cos ωct. (1)

Equation (1) can be considered as the sum of the high frequency carrier vc(t) and the modulation
product

vm(t) cos ωct = Vm cos ωmt cos ωct. (2)

The modulation product, which contains the information to be transmitted, can be broken up
into two harmonic components of equal amplitude, with frequencies ωc − ωm and ωc + ωm,
respectively, constituting the upper and lower side bands of the AM signal. If ia = Vm/Vc

denotes the amplitude modulation index, (1) can then be rewritten in the form

v(t) = Vc

{
cos ωct +

ia

2
[cos(ωc − ωm)t + cos(ωc + ωm)t]

}
. (3)

2.1. A possible mechanical model

A mechanical system capable of representing the modulation product can be created with two
simple pendulums of length l and mass m connected by a spiral spring with stiffness constant
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Figure 1. Two pendulums of mass m and length l elastically coupled through a spiral spring of
elastic constant k.

k, as shown in figure 1. The spring is unstretched when the pendulums are in the vertical
position.

Let x1 and x2 denote the small displacements from the equilibrium position of the two
pendulums. The equations of motion of such a system are in first approximation [10]

ẍ1 = −g

l
x1 − k

m
(x1 − x2) (4a)

ẍ2 = −g

l
x2 +

k

m
(x1 − x2). (4b)

Assuming ε = kl/mg � 1, the normal mode frequencies of the system can be
approximately written in the form

ωS =
(g

l

)1/2
(5a)

ωF ≈
(g

l

)1/2
(1 + ε), (5b)

where ωS and ωF denote the slow and fast frequencies, respectively. Imposing the initial
conditions {

x1(0) = x0

x2(0) = 0
and

{
ẋ1(0) = 0
ẋ2(0) = 0

(6)

we finally obtain

x1(t) = 1
2x0(cos ωSt + cos ωF t) ≈ x0 cos ωSt cos 1

2εωSt (7a)

x2(t) = 1
2x0(cos ωSt − cos ωF t) ≈ x0 sin ωSt sin 1

2εωSt. (7b)

These solutions show that both the pendulums oscillate with frequency ωS and their oscillation
amplitude varies slowly with time, due to the small value of ε.
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Figure 2. The system of figure 1 with its support oscillating in the horizontal direction.

Setting ωc = ωS and ωm = 1
2εωS , equation (7a) becomes analogous to the modulation

product (2), since ε is a small quantity. For this reason, it can be deduced that a system of two
weakly coupled pendulums may, in amplitude modulation with sinusoidal modulating signals,
model the modulation product, or, equivalently, the suppressed carrier amplitude modulation.

In order to introduce an effect which can simulate the contribution of the carrier, the
system of figure 1 is modified by applying periodical horizontal motion to the support of the
two pendulums, described by the equation D(t) = D0 cos ωct . This new system makes it
possible to visualize a kind of motion whose displacement can be described by (1).

Indeed, upon modifying the system of figure 1 as shown in figure 2, the equations of
motion assume the form

ẍ1 = −g

l
x1 − k

m
(x1 − x2) + D0ω

2
c cos ωct (8a)

ẍ2 = −g

l
x2 +

k

m
(x1 − x2) + D0ω

2
c cos ωct (8b)

with the same normal mode frequencies found in (5a) and (5b). The general solutions of these
equations (8) are

x1(t) = c11 cos ωSt + c12 sin ωSt + c21 cos ωF t + c22 sin ωF t +
D0ω

2
c

ω2
S − ω2

c

cos ωct (9a)

x2(t) = c11 cos ωSt + c12 sin ωSt − c21 cos ωF t − c22 sin ωF t +
D0ω

2
c

ω2
S − ω2

c

cos ωct. (9b)

With an appropriate choice of system parameters

c11 = c21 = iaVc/2 c12 = c22 = 0 D0ω
2
c

/(
ω2

S − ω2
c

) = Vc

they reduce to

x1(t) = Vc

[
cos ωct +

ia

2
(cos ωSt + cos ωF t)

]
(10a)



Mechanical models of amplitude and frequency modulation 413

x2(t) = Vc

[
cos ωct +

ia

2
(cos ωSt − cos ωF t)

]
. (10b)

By setting the carrier and the modulating frequency to ωc = (ωF + ωS)/2 and ωm =
(ωF − ωS)/2 respectively, we finally obtain

x1(t) = Vc(1 + ia cos ωmt) cos ωct (11a)

x2(t) = Vc(cos ωct + ia sin ωct sin ωmt). (11b)

These solutions correspond to the following choice of the initial conditions,{
x1(0) = Vc(1 + ia)

x2(0) = Vc

and

{
ẋ1(0) = 0
ẋ2(0) = 0

(12)

and make (1) and (11a) identical.
The following equations show the relationships between the mechanical parameters l, k,

m, and the values of ωc, ωm, Vc, which, together with the modulating amplitude, characterize
the amplitude modulated signal

l

g
= 1

(ωc − ωm)2
(13a)

k

m
= 2ωmωc (13b)

D0 = ωm

ωc

(
ωm

ωc

− 2

)
Vc. (13c)

2.2. The computer simulation

The model validation was achieved using computer simulations implemented with
commercially available educational software [11]. The Fourier analysis was performed using
Microsoft Excel and its integrated development environment, Visual Basic for Applications
Edition (VBA), to code the routines for the numerical integration of the differential equations
of motion (Runge–Kutta method [12]) and the harmonic analysis of signals (FFT algorithm
[12]).

The choice of the numerical values for the characteristic parameters of the mechanical
system was aimed at producing observable effects in terms of amplitude modulated signals.
Figure 3 shows the mechanical system used in our simulation together with the values of the
characteristic parameters. It also shows the interface that allows the user to set the initial
conditions according to (12). Each mass is m = 0.1 kg, the length l = 0.31 m and the
coupling spring elastic constant k = 0.79 N m−1.

The support oscillates horizontally according to the law D(t) = −1.90 × 10−3 cos(2πt).
At time t = 0 the two pendulums are at rest in the positions x1(0) = 2 × 10−2 m and

x2(0) = 1 × 10−2 m, respectively. Although the mechanical system is symmetric, the initial
conditions are not and therefore the motions of the two masses are not symmetric either.
Figure 4(a) shows that, with this particular choice of system parameters and initial conditions,
the time dependence of x1(t) fits with good approximation an AM signal of the form

v(t) = 1 × 10−2[1 + cos(2 × 10−1πt)] cos(2πt)

with a unitary modulation index. Figure 4(b) shows the Fourier spectrum of x1(t), which is
the classical spectrum of an AM signal.
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Figure 3. User interface of the simulation, showing the motion of the pendulums and the graphical
display of x1(t). The slider bar controls on the right indicate the values of the carrier amplitude,
the carrier frequency, the modulating amplitude and the modulating frequency, respectively. They
can be set by the user. In the example shown, the modulation index is 1 and the frequency ratio
is 10.

Figure 5(a) shows the temporal behaviour of x2(t) and figure 5(b) gives its Fourier
spectrum.

Although (11b) indicates that the analytic form of x2(t) does not represent an AM signal
with a sinusoidal modulation, its spectrum seems to be the same as that of x1(t). However,
a more careful analysis reveals that the phase distribution of the spectral components is not
correct. In fact, only the phase spectrum of x1(t) is symmetric with respect to the carrier phase,
as it must be for an AM signal. The matter becomes clearer if we observe from (10a) that
x1(t) is a linear superposition of three harmonic components with the same phase, whereas in
x2(t), (10b), the higher frequency appears to be out of phase with respect to the lower one.
Figure 6 reports the phase distribution of the harmonic components.

Equations (12) show that a change in the initial positions of the two pendulums allows
us to settle different values for the carrier amplitude and for the modulation index. The
particular choice of initial values for the speed also guarantees the existence of the correct
phase relationships amongst the various spectral components.

Equations (13) show that the system parameters are only related to the carrier and
modulating frequencies, while the amplitude of the bar’s horizontal displacement also depends
on the carrier amplitude. As a consequence, an arbitrary choice of parameters, as well as initial
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(a)

(b)

Figure 4. (a) Displacement of pendulum 1 versus time; (b) amplitude spectrum of x1(t).

conditions, produces a system response which can still be expressed as the sum of three spectral
components that do not satisfy the correct amplitude ratio and phase relationships required in
an AM signal with a sinusoidal modulation waveform.

3. A mechanical model of frequency modulation (FM) with sinusoidal
modulating signals

The implementation of a mechanical model of frequency modulation cannot proceed in a
similar way to that outlined for the AM. The basic difference is that the FM signal has an
extremely large frequency content (in theory infinite, although discrete) even in the simple
case of a sinusoidal modulating waveform.

In electronic circuits, if vc(t) = Vc cos ωct denotes the high frequency carrier and
vm(t) = Vm cos ωmt is the modulating waveform, the modulated signal [9]

v(t) = Vc cos(ωct + if sin ωmt) (14)

is produced by varying the frequency ωc of the carrier vc(t), according to the low frequency
modulating information signal vm(t). The term if = Kf Vm/ωm represents the frequency
modulation index and Kf denotes the modulator constant whose dimension is such that if is
dimensionless.

A mechanical system, whose equation of motion is the typical one of frequency
modulation, was devised in line with the basic idea of controlling the frequency of a mechanical
oscillator by acting on one of its characteristic parameters.
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(a)

(b)

Figure 5. (a) Displacement of pendulum 2 versus time; (b) amplitude spectrum of x2(t).

Figure 6. Phases of the significant spectral components of x1(t) (filled circles) and x2(t) (crosses).

3.1. A possible mechanical model

Among the various possible mechanical systems, a simple pendulum of mass m and varying
length l was chosen. We assume that its length varies with respect to time according to

l(t) = l0 − �l cos ωmt (15)

where l0 is the pendulum rest length, while �l and ωm denote the small amplitude and the
angular frequency of the length variation, respectively. If θ indicates the instantaneous value
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of angular displacement, the equation of motion for such a system is given by [10]

ml2θ̈ + 2mll̇θ̇ = −mgl sin θ. (16)

Taking into account (15), in the approximation of small oscillation angles, sin θ ≈ θ , and
also assuming

�l

l0
� 1 (17)

we obtain, to the first-order approximation

θ̈ + 2
�l

l0
ωm sin ωmt

(
1 +

�l

l0
cos ωmt

)
θ̇ = − g

l0

(
1 +

�l

l0
cos ωmt

)
θ. (18)

By imposing the condition

ωm � 1 (19)

so that the quantity �lωm/l0 is an infinitesimal of higher order with respect to �l/l0, it is
possible to neglect the term which depends on the angular velocity appearing in (18). It
follows that, setting ωc = √

g/l0, (18) can be approximated in the form

θ̈ = −ω2
c

(
1 +

�l

l0
cos ωmt

)
θ = −ω2(t)θ (20)

where we have set

ω2(t) = ω2
c

(
1 +

�l

l0
cos ωmt

)
. (21)

Under condition (17), ω2(t) results in a real function of time and, in a first approximation,
we obtain

ω(t) = ωc

(
1 +

1

2

�l

l0
cos ωmt

)
. (22)

Equation (20) is a particular kind of Mathieu equation. The Floquet theorem [13] shows
that, with a particular choice of parameters, this equation leads to a periodic solution1.
Nevertheless, for our purpose we do not need to go into this matter in depth. However, a
heuristic reasoning may be followed so as to search for a periodic solution of (20) which has
the form

θ(t) = θ0 cos ϕ(t). (23)

By substituting (23) into (20), we obtain

−ϕ̇2(t)θ0 cos ϕ(t) − ϕ̈(t)θ0 sin ϕ(t) = −ω2(t)θ0 cos ϕ(t)

from which we deduce that (23) may be a solution of (20) if

ϕ̇(t) = ω(t) (24)

and

|ϕ̈(t)θ0 sin ϕ(t)| � 1. (25)

1 Mathieu’s equation is a differential equation, occurring very commonly in physics. It is written in the form
y′′ + f (x)y = 0, where f (x) is a periodic function of the independent variable x. This happens when x is an angle
(x ≡ x + 2πn) or the time in an oscillation of period T (x ≡ x + T ). The Floquet theorem states that there exists a
particular solution y(x) such that, when x is incremented by 2πn, the solution itself is multiplied by a constant k. If
|k| = 1 (i.e. k = ej2πn), the solution is periodic.
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Integrating (24) with respect to time, and also neglecting a trivial phase factor, the result
is

ϕ(t) = ωct +
1

2

�l

l0

ωc

ωm

sin ωmt. (26)

By substituting (26) into (23), we find

θ(t) = θ0 cos

(
ωct +

1

2

�l

l0

ωc

ωm

sin ωmt

)
. (27)

Equation (27) was obtained by choosing the following initial conditions:{
θ(0) = θ0

θ̇ (0) = 0
(28)

If, finally, we set

θ0 = Vc (29)

and

if = 1

2

�l

l0

ωc

ωm

(30)

we can rewrite (27) in the form

θ(t) = Vc cos(ωct + if sin ωmt) (31)

which is identical to (14).
By differentiating (26) twice with respect to time, (25) becomes∣∣∣∣1

2

�l

l0
Vcωmωc

∣∣∣∣ � 1. (32)

The definition of if , given in (30), indicates that, in order to have a frequency modulation index
which is of the same order as unity, the ratio �l/l0 must be of the same order of magnitude as
the ratio ωm/ωc.

The following relations highlight the connection between the characteristic parameters l0,
�l, of the mechanical system and ωc, Vm, Kf , of the electronic modulating system, which,
together with the modulating frequency and the carrier amplitude, characterize the frequency
modulated signal

l0

g
= 1

ω2
c

(33a)

�l

g
= 2

Kf Vm

ω3
c

. (33b)

3.2. The computer simulation

The model validation was achieved through computer simulations carried out using specific
educational software [11] and the above-mentioned VBA routine for harmonic analysis.

Figure 7 shows the mechanical system used in the simulation with a description of the
characteristic parameters. It also shows the interface that allows the user to set the initial
conditions easily, according to (28) and (29). Here, we refer to a pendulum with varying
length l(t) = 1 + 0.1 cos(5 × 10−2 πt). The numerical value of the modulator constant is set
equal to Kf = 1.57.
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Figure 7. User interface of the simulation showing the motion of the pendulum with the varying
length device and the graphical display of θ(t). The slider bar controls on the right indicate the
values of the carrier amplitude, the carrier frequency, the modulating amplitude and the modulating
frequency, respectively. They can be set by the user. In the example shown, the modulation index
is 1 and the frequency ratio is 20.

At time t = 0, the pendulum is at rest in the angular position θ(0) = 0.1 rad. Figure 8(a)
shows that with this particular choice of the system parameters and initial conditions, the time
dependence of θ(t) fits with a good degree of approximation a FM signal of the form

v(t) = 10−1 cos[πt + sin(5 × 10−2 πt)]

with unitary modulation index.
The Fourier spectrum of the angular position θ(t) is shown in figure 8(b) where the crosses

refer to the spectrum of the theoretical FM signal v(t) and the horizontal lines indicate the
values of the simulated one.

The differences between the two waveforms decrease as the conditions given in (17), (19)
and (32) are better satisfied. Nevertheless, the particular choice of the parameters is due to a
compromise between the necessity of satisfying the above-mentioned conditions and that of
limiting the number of carrier oscillations during a complete period of the modulating signal,
so as to achieve a better visualization of the time response. Condition (17), in particular, limits
the frequency deviation. As a result, and differently to what happens in the AM case, here
the effects of the modulation are difficult to visualize in the time domain, but they become
particularly evident in the frequency domain.
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(a)

(b)

Figure 8. (a) Angular pendulum displacement versus time; (b) amplitude spectrum of θ(t). The
crosses refer to the spectrum of the theoretical FM signal v(t) and the horizontal lines indicate the
values of the simulated one.

4. Conclusion

This paper outlines the implementation of two models of mechanical modulation. It aims at
providing a simpler way of teaching the main features of modulation in signal transmission at
an introductory level and at helping students understand the phenomenon in greater depth. The
simulations were validated on small groups of physics and engineering undergraduates. They
attended laboratory sessions dedicated to the subject in hand. Through informal interviews
with the students the authors carried out an assessment of the material’s pedagogical usefulness.
The students showed a positive attitude towards this didactic approach and a real interest in
the concepts, models and approximations lying behind the process of modulation. From their
answers, the authors have been able to infer both the students’ level of understanding of the
main concepts and their ability to differentiate the effects of the modulating frequency on
the carrier. Moreover, it has become evident that the visualization of these effects plays an
important role in the process of understanding modulation.

The students, who had already studied amplitude modulation in electronics courses, were
aware of the fact that this process is substantially achieved by means of nonlinear devices.
Consequently, their first approach was to think that the mechanical equivalent could be obtained
through the introduction of nonlinear terms in the equations of motion. Indeed, this fact cannot
be applied in mechanical modulation since nonlinearity produces higher order harmonics. The
use of two weakly coupled pendulums allows the experimenter to obtain amplitude modulation,
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since the coupling produces effects similar to those caused by the nonlinearity in electronic
circuits.

In frequency modulation, as opposed to amplitude modulation, a mechanical device has
been proposed as an equivalent to the electronic circuit. Electronic frequency modulation
is usually achieved through capacity variation (e.g., using a varicap device) in an oscillating
circuit. The mechanical frequency modulation, obtained by changing the length of a pendulum,
has similar effects.

Moreover, it was emphasized that in electric modulation as well as in mechanical
modulation, unwanted combination frequencies or harmonics occur. They are eliminated,
in electronics, by the use of appropriate filters. The same task is accomplished in mechanical
modulation by setting suitable initial conditions or imposing restrictions on the dynamics of
the system (i.e. weak coupling between the pendulums) or on the pendulums’ motion (i.e.
low amplitude oscillations). This aspect has been highlighted during laboratory courses so as
to make the students aware of the fact that some treatment of modulated output is necessary
if an acceptable quality of the modulated signal is to be obtained, since both electronic and
mechanical modulations are approximate processes.

In conclusion, the mechanical systems here depicted, by visualizing cause–effect
relationships, supply an effective support for the conceptual understanding of the widely
used process of modulation.

Appendix. Modulation

Modulation is the process of producing a wave some characteristic of which varies as a function
of the instantaneous value of another wave called the modulating wave. The modulating wave
is usually called the signal, the wave to be modulated is denominated the carrier, Usually, the
modulation frequency is considerably lower than the carrier frequency. The ultimate purpose
is to alter some characteristic parameter of the carrier wave in a nonlinear manner to carry
information.

There are at least two reasons for transmitting information at a relatively high frequency
level: (1) transmission by radiation is practicable at high frequencies. In fact, efficient radiation
and reception of electromagnetic waves require the use of antennas and circuits tuned to the
frequencies of the waves. The antennas required at audio frequencies would be impractical
because of their great lengths, and they would not respond equally well to all frequencies in the
audio range or TV range. (2) It is possible to transmit a number of messages simultaneously
without interference if the frequency level is different for each message.

Since the sounds of the human voice and of musical instruments or the images of a
TV picture involve a large number of frequencies produced simultaneously, the form of
the modulating wave is rarely sinusoidal. To simplify theoretical analyses, however, each
modulating frequency can be treated separately. Consider a wave (the carrier), which may be
represented analytically by the expression

e(t) = A cos(ωt + ϕ)

where t is the time, ω the angular frequency and ϕ the phase. If either A, ω, or ϕ is varied
according to some nonlinear function of the instantaneous value of a modulating wave, then
this expression will represent the modulated wave. Although, it is possible to produce a wave
in which all three parameters vary simultaneously, in each of the modulating methods that are
important practically, only one of these parameters is varied.

In amplitude modulation, the amplitude A is varied in accordance with the modulating
wave, while ω and ϕ remain constant. In frequency modulation, the frequency ω is varied,
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and both A and ϕ remain constant. In phase modulation, the phase ϕ is varied, while A and
ω remain constant. Phase modulation is not of much practical importance in itself and it is
formally analogous to frequency modulation.

Frequency modulation has two main advantages with respect to amplitude modulation:
(1) the frequency modulated signal is less affected by noise than the amplitude modulated
since the most common sources of noise are due to spurious signals producing amplitude
variation, they have no effect on a frequency modulated wave. (2) The characteristic of the
amplifiers used in signal transmission/reception is nonlinear. This fact introduces distortions,
which depend on the amplitude of the modulating signal. They may be relevant and variable
in amplitude modulation, but they can be small and constant in frequency modulation.
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