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Abstract: The aim of this paper is the implementation of a 3D fraction al viscoelastic constitutive 

law in a user material subroutine (UMAT) in the finite element software Abaqus. Essential to the 

implementation of the model is access to the strain history at each Gauss point of each element in 

a constructive manner. Details of the UMAT and comparison with some analytical results are 

presented in order to show that the fractional viscoelastic constitutive law has been successfully 

implemented. 
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1. Introduction 

Real viscoelastic materials like rubbers, polymers, biological tissues, asphalt mixtures, soils etc 

exhibit power law creep and relaxation behaviour (Nutting, 1921; Di Paola, 2014; Deseri, 2013; 

Di Mino, 2014; Bagley, 1984). Relaxation and creep of this type of material has been modelled in 

the scientific literature, mainly, by means of single and/or linear combinations of exponential 

functions, in an attempt to capture the contributions of both solid and fluid phases. This approach 

does not allow for a correct fit of experimental results. Power law creep and relaxation leads to 

fractional viscoelastic constitutive models that are characterized by the presence of so-called 

fractional derivatives and integrals, namely derivatives and integrals of non-integer order; when 

the order of derivation (or integration) is integer, the fractional operators restore the classical 

differential operators. The most interesting aspect of fractional operators is that they have a long 

“fading” memory. In this context the term “hereditariness” is usually used in the sense that the 

actual response in terms of stress/displacement depends on the previous stress/strain history. If a 

relaxation or creep test is well fitted by a power law decay then the fractional constitutive law can 

be directly derived. Such a constitutive law is defined by a small number of parameters to avoid 

the conventional use of combinations of simple models which can require a much larger number 

of parameters to capture both the creep and relaxation behaviour. The aim of this paper is to 

describe the implementation of a 3D fractional viscoelastic constitutive model in a user material 
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routine (UMAT). The use of other subroutines is necessary to access the strain history at each 

gauss point to evaluate the stress response.  

2. Preliminary concepts 

In this section we introduce some preliminary concepts on fractional viscoelasticity and fractional 

differentiation and integration.  

It is well known that a viscoelastic material can be characterized, for one dimensional problems, 

by its Relaxation and Creep functions, ( )R t  and ( )C t  respectively. These functions describe the 

behaviour of the material when a constant strain and a constant stress are applied, respectively.  

Classical models are characterized by exponential type relaxation and creep functions. This 

happens when viscoelastic materials are  modelled by different combinations of elastic elements 

(springs) and viscous elements (dashpots); the simplest models of this kind are Maxwell and 

Kelvin-Voigt models in which a spring and a dashpot are in series and in parallel, respectively. 

Although these models are able to describe the time-dependent behaviour of viscoelastic materials, 

they fail to capture both the relaxation and the creep behaviour; for this reason more complicated 

models, with combinations of springs and dashpots are used, but this leads to more complex creep 

and relaxation functions and governing equations; furthermore these classical models are not able 

to describe the long-time memory of real viscoelastic materials.  

Creep and relaxation tests on real viscoelastic materials, such as polymers, rubbers, asphalt 

mixtures, biological tissues, have shown that creep and relation tests are well fitted by power laws 

of real order (Nutting, 1921; Deseri, 2013; Di Mino, 2014; Di Paola, 2014; Bagley, 1984) rather 

than exponential functions. These functions can be written as follows: 

 
   

 
( ) ;         ( )

1 1

C t t
R t C t

C

 


 



 
   

                               (1a,b) 

where     is the Euler gamma function. For viscoelastic materials  0 1  . 

It is well known that, within the framework of linear viscoelasticity, the Boltzmann superposition 

principle is valid; this principle allows us to obtain the response of a material when the imposed 

stress or strain history is not constant and can be expressed in two forms: 

0 0

( ) ( ) ( ) ;         ( ) ( ) ( )  

t t

t R t d t C t d                                   (2a,b) 

These integrals are often labelled as “hereditary” integrals, because the actual value of ( )t  (or 

( )t ) depends on the previous history of ( )t (or ( )t ). By taking the Laplace transform of 

Equations 2, an interesting relationship between the relaxation and creep functions is obtained in 

Laplace domain: 

2

1ˆˆ( ) ( )R s C s
s

                                                              (3) 
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where the ‘hat’ means Laplace transform and s  is the variable in the Laplace domain. This 

implies that it is sufficient to perform a single creep or relaxation test to determine all the relevant 

parameters of the viscoelastic model. 

Substitution of Equations 1 into 2 leads to constitutive laws that involve fractional operators, 

namely derivatives and integrals of real order (Podlubny, 1999). This is straightforward for the 

case in which we apply a strain history (Equation 2a) and we want to evaluate the corresponding 

stress history: 

 0

0

( ) ( ) ( )  ( )
(1 )

t

C

t

C
t t d C D t

  

     


  
                                     (4) 

In Equation 4  0

C

tD   is the so called Caputo fractional derivative (Podlubny, 1999), which is a 

convolution integral with a power law kernel. If we consider the case  in which we apply a stress 

history (Equation 2b), performing an integration by parts and after some manipulations we obtain 

the Riemann-Liouville (RL) fractional integral  0 tI   (Podlubny, 1999): 

 1

0

0 0

1 1 1
( ) ( ) ( ) ( ) ( ) ( )

(1 ) ( )

t t

tt t d t d I t
C C C
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  
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    
            (5) 

These constitutive laws do not correspond to a springs or dashpot or a simple combination of 

springs and dashpots and is generally referred to as a springpot. in the scientific literature (Scott 

Blair, 1949). 

Caputo’s fractional derivative and the Riemann-Liouville fractional integral are considered 

integro-differential operators because all rules of integer order derivatives and integrals are still 

valid (Podlubny, 1999).  Moreover, when the value of   reaches the limit values of 0 and 1, 

derivatives of order 0 and 1 are obtained. This illustrates a very important feature of these 

equations: when 0   the fractional viscoelastic constitutive law of Equations 4 and 5 reduces 

to the purely elastic (one-dimensional) Hooke’s law, while for 1  the fractional constitutive 

law becomes the constitutive law of a dashpot. For this reason, as the fractional operators are 

generalization of integro-differential operators of integer order, the constitutive law of the 

springpot can be seen as a generalization of the constitutive laws of springs and dashpots. This 

concept is summarized in Figure 1. 
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Figure 1. Spring, springpot and dashpot and related constitutive law 

 

For numerical purposes there is a discrete version of the fractional derivative, namely the 

Grünwald-Letnikov (GL) fractional derivative; after some manipulation the GL fractional 

derivative can be written in this form: 

  0
0

0

( ) lim ( )
N
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t k
t

k
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                                      (6)  

where 
k are coefficients evaluated in a recursive way in the form: 

 
1 0

1
;            1k k

k

k


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 
                                         (7) 

The fractional derivative of Equation 6 becomes an integral if 0  . The summation of the GL 

fractional derivative is a discrete convolution and for sufficiently small t  Equation 6 gives the 

same results of the Caputo fractional derivative. 

An important feature of fractional operators is that the fractional derivative (or integral) depends 

on the past history of the function, hence they are able to describe the “fading” memory of real 

viscoelastic materials. 

In some cases it is necessary to introduce a more complete model to better represent the behaviour 

of real viscoelastic materials. This model is the so-called fractional Kelvin-Voigt model and it is 

constituted by a springpot in parallel with a spring with elastic modulus E (see Figure 2).  
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Figure 2. Fractional Kelvin-Voigt model 

This ensures that the relaxation and creep responses asymptote towards constant stress and strain, 

respectively, and reflect  a more realistic material behaviour, especially when the stress tensor has 

a hydrostatic component. For this model, the relaxation and creep laws are: 

 
 

 1
( ) ;            ( ) 1

1

C t E
R t E C t E t

E C



 





   
            

                        (8) 

where  E   is the one parameter Mittag-Leffler function defined as 
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In the next section the extension to a 3D fractional constitutive law is presented. 

 

 

3.    3D fractional constitutive law 

The constitutive model is obtained by means of a generalization of the elastic constitutive law 

(Hooke Law); in that case only two parameters are required to define the whole stiffness (or 

compliance) matrix for an isotropic material and these two parameters can be chosen as Young’s 

modulus and the shear modulus, Young’s modulus and Poisson’s ratio, the Lamé constants, or 

shear modulus and Bulk modulus. In this case we choose to write the stiffness matrix in terms of 

shear modulus and Bulk modulus, for their clear physical meaning (deviatoric and volumetric part 

of the stiffness). The terms of the stiffness matrix D  can be written as follows:  

  
2

3
ijkh ij kh ik jh ih jkD K G G     

 
    
 

                                 (10) 

where 
3(1 2 )

E
K





 is the Bulk modulus, G  is the shear modulus, 

ij  is the Kronecker delta, E  

is Young’s modulus and   is Poisson’s ratio. 
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To generalize these elastic laws and obtain a fractional viscoelastic constitutive model, it is 

sufficient to substitute the shear modulus and Bulk modulus with appropriate relaxation functions; 

we choose to consider both the behaviour of the deviatoric part (shear relaxation function) and the 

behaviour of the volumetric part (Bulk relaxation function) as given by the fractional Kelvin-

Voigt model: 
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where  and G K 
are the elastic parts of  the deviatoric and volumetric relaxation functions, 

respectively, while , ,  and G G     are parameters of the time varying parts of the deviatoric 

and volumetric relaxation functions,  respectively. 

By assuming the relaxation functions in Equation 11, a six parameter mechanical model is 

obtained; the model can be particularized in many ways, simply by changing values of these 

parameters. The strain-stress relationship can be obtained simply by applying the Boltzmann 

superposition principle: 

 
0

( ) ( ) ( )d

t

t t    σ R ε                                              (12)  

where ( )tR is the relaxation matrix and ( )tσ  and ( )tε  are the stress and strain tensor, 

respectively. The relaxation matrix ( )tR can be written in the same way as the stiffness matrix of 

Equation 10, in which G  is substituted with ( )G t of Equation 11a and K  is substituted with 

( )K t of Equation 11b. 

Since relaxation functions contain power laws, Equation 12 contains relationships that involve 

fractional derivatives of order   and  . It is obvious that this model is also able to reproduce 

Hooke’s law (for 0   and 0  ) , a generalized 3D Kelvin-Voigt model (for 1   and 

1  ) or a generalized 3D viscous law (for 1  , 1  , 0G   and 0K  ). 

In order to obtain the inverse relationship of Equation 12 we need to obtain the creep matrix ( )tC  

by using  Equation 3. ( )tC  is evaluated by performing a Laplace transformation of the relaxation 

matrix (that is Laplace transforms element by element) and evaluating its inverse: 

 
1

2

ˆ ( )ˆ ( )
s

s
s




R

C                                                       (13) 

4. Numerical implementation of the 3D fractional constitutive law 

The constitutive model in equation 12 has been implemented in a user material subroutine UMAT 

in Abaqus/Standard. The subroutine calculates the increment of stress at the end of each increment 

and the Jacobian.  
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When the UMAT is called, the following information is available as ‘Input’: the stress at the 

beginning of the increment, the strain at the beginning of the increment and the increment of 

strain. We also need to have access to the history of strain i.e. the values of strain in all the 

increments of the analysis. We will give some details of how this is achieved in the next 

paragraph.  

We start evaluating the direct component of stress 
11  at the end of increment k , which is the first 

component of the stress vector in Equation 12:    
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where 
11 22 33V       is the volumetric strain. The stress at the beginning of the increment 

(which is known when the UMAT is called) can be written as follow: 
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We obtain the increment of stress by evaluating the difference between Equations 14 and 15 that 

will be useful to calculate the Jacobian: 
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where 
, 2 , 2 , 1i k j i k j i k j          , with 11,22,33i  , and 

, 1 , 1 ,V k V k V k      . In the UMAT, 

we code Equation 14; the other direct components of stress can be obtained simply by rotating 

indices of the strain components. 

To evaluate all three direct components of the increment of stress, we define a scalar quantity 

related to the volumetric deformation (TERMV) and a three components vector(TERMK) each 

related to one direct component of strain: 
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With these two quantities we are able to evaluate the direct component of stress as follows: 
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In an analogous way it is possible to compute of shear components of stress and their increments: 
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Where 
, 2 , 2 , 1lm k j lm k j lm k j           and

, 1 , 1 ,lm k lm k lm k      , with 12,13,23lm  . These 

terms can be computed directly one by one. 

At this point, from Equation 16 and 20b, we can evaluate the components of  the Jacobian as:
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To code this terms we need  two quantities; one related to the volumetric relaxation function 

(TERM1) and the other related to the deviatoric function (TERM2) 
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The main issue in the implementation of the fractional viscoelasticity law is that we need to have 

access to the history of strains in order to obtain the increment of stress. To overcome this problem 
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we store the values of the components of strain at each increment in a COMMONBLOCK. that 

keeps track of these values when the UMAT is called.   

5. Testing of the UMAT 

In order to validate the UMAT a number of simple tests have been carried out for which we are 

able to evaluate the analytical solutions. 

Here we show a viscoelastic cube (Figure 3) subjected to creep and relaxation tests. The 

mechanical properties of the cube are:
85 10  Pa sec ,K x 

 
910  Pa,K 

83.75 10  Pa sec ,G x 

 

87.5 10  Pa,G x   0.3.     

In the creep test of Figure 3a the cube has one of its faces normal to the direction x   constrained 

to prevent motion in the x  direction. On the opposite face a uniform and constant tensile stress  

10 MPaxx    is applied in the x  direction.   

 

Figure 3. Viscoelastic cube for the creep test (a) and relaxation test (b). 

 

The analytical solution is obtained by using Equation 13 and the convolution of Equation 5 as 

follows: 

 ( ) 1 1
3 9

xx

G K
t E t E t

G G K K

 

 

 

 
  

 

      
              

         

                           (29) 

 ( ) ( ) 1 1
6 9

yy zz

G K
t t E t E t

G G K K

 

 

 

 
   

 

      
                

         

                   (30) 

Figure 4 shows a comparison between the Abaqus/Standard result and the analytical solution of 

Equations (29) and (30); red dashed lines are responses evaluated with Abaqus/Standard with a 
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constant time step of 0.1 sec , while black continuous lines represent the solutions of Equations 

(29) and (30). From this figure it is possible to appreciate that the numerical procedure reproduces 

the analytical results. 

In the relaxation test in Figure 3b all of the faces of the cube but one are fixed only in the normal 

direction. We then apply a displacement of 1 mm to the free face (normal to the x  direction), 

which corresponds to a strain  0.01 1%xx     (see Figure 5); the displacement was applied 

with a linear ramp of 1 sec and then held for another 9 secs, as shown in Figure 5. With the 

 Figure 4. Comparison between analytical and Abaqus/Standard responses for 
creep test of the cube in Figure 3. 

boundary conditions described above, ( ) ( ) 0yy zzt t   and all the direct components of stress are 

different from zero. The history of the superimposed strain can be written as follows: 

  ( ) ( ) ( 1) ( 1)xx t t U t U t U t                                            (31) 

where ( )U   is the Unit-step function; then by inserting Equation (31) in Equation  (12) we obtain: 

  
     

          

4 3 4 3 2
3 2

                                       1 4 3 1 4 3 2 1

xx t G K t G K

t G K t G K U t



 



 


 







 



 

         

         
 

   (32) 
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 


  







 



 

          

           
 

 (33) 
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Figure 5. Strain history during the relaxation test 

The analytical solution given in Equations (32) and (33) have been compared with the solution 

obtained by running the UMAT and it can be seen in Figure 6 that the analytical results are 

reproduced by the numerical calculations . 

 
Figure 6. Comparison between analytical and Abaqus/Standard responses for 

relaxation test of the cube in Figure 5. 

A 2D plain strain model of a viscoelastic Euler-Bernoulli beam (Figure 7) under a uniformly 

distributed load and constant over the time has been analysed. The beam is 5 m long, has a 

rectangular cross section with base 10 cm and height of 20 cm and the same material properties 

used of the previous examples; the beam is simply supported. Figure 7 shows the Abaqus model 

of the beam modelled with 100 4-noded plain strain element (CPE4) with dimension 10x10 cm. 

 
Figure 7. 2D plain strain model of the viscoelastic beam 
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Displacements of two points of the beam were monitored, located at 1 m (A) and 2 m (B) from the 

left end of the beam, respectively; Abaqus results have been compared with analytical results 

evaluated with the same approach of (Di Paola, 2013) as shown in Figure 8. 

 

Figure 8. Comparison between analytical and Abaqus results for displacements of 
two points of the beam 

The analytical and Abaqus results are in very good agreement; a contour plot of 
11  (stress in x  

direction) is also reported in the deformed configuration in Figure 9. 

 

Figure 9. Contour plot of longitudinal normal stress in the deformed configuration 
of the beam. Values of stress in Pa 

A number of other tests, such as creep tests with initial ramps and relaxation tests with a range of 

different boundary conditions have been carried out and they all give the same responses as the 

analytical solutions. These results are discussed elsewhere. 

6. Conclusions 

In this paper the implementation of a fractional viscoelastic constitutive model in 

Abaqus/Standard has been presented. This constitutive model is derived by fitting creep or 

relaxation data of real materials like rubbers, polymers, asphalt mixtures, biological tissues, and 

many others and the application of the Boltzmann superposition principle (linear viscoelasticity). 

Moreover it has the feature that the actual strain (or stress) at a point of the solid depends on the 

previous history of stress (or strain) and not only on the current stress (or strain). In order to access 

the history of strain, the components of strain at each increment are stored in a 
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COMMONBLOCK. Comparison between analytical results and results obtained with the UMAT 

shows the accuracy of the implementation of the fractional viscoelastic model presented here. 

We believe that this novel fractional viscoelastic model simulates  the viscoelastic behaviour of 

real material in a more realistic way.  Examples of the use of the UMAT to solve a range of 

practical engineering problems are presented elsewhere. 
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