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Abstract. In this tutorial paper we present a comprehensive review
of the escape dynamics from quantum metastable states in dissipative
systems and related noise-induced effects. We analyze the role of dissi-
pation and driving in the escape process from quantum metastable
states with and without an external driving force, starting from a
nonequilibrium initial condition. We use the Caldeira–Leggett model
and a non-perturbative theoretical technique within the Feynman–
Vernon influence functional approach in strong dissipation regime. In
the absence of driving, we find that the escape time from the metastable
region has a nonmonotonic behavior versus the system-bath coupling
and the temperature, producing a stabilizing effect in the quantum
metastable system. In the presence of an external driving, the escape
time from the metastable region has a nonmonotonic behavior as a
function of the frequency of the driving, the thermal-bath coupling and
the temperature. The quantum noise enhanced stability phenomenon
is observed in both systems investigated. Finally, we analyze the res-
onantly activated escape from a quantum metastable state in the
spin-boson model. We find quantum stochastic resonant activation,
that is the presence of a minimum in the escape time as a function
of the driving frequency. Background and introductory material has
been added in the first three sections of the paper to make this tutorial
review reasonably self-contained and readable for graduate students
and non-specialists from related areas.
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1 Introduction

Noise-induced phenomena, such as stochastic resonance [1–10], noise enhanced sta-
bility [11–17], stochastic resonant activation [16,18–27], and nonlinear relaxation
with multiplicative noise [28–32], characterize the nonlinear relaxation of nonequilib-
rium physical systems towards equilibrium states. This relaxation process proceeds
through metastable states with different time scales, often characterized by long life-
times [17,33,34]. Metastability in open quantum systems and relaxation processes
from metastable states are a fundamental issue in many branches of physics, chemistry
and biology, and recently have been subject of increasing interest in superconducting
phase transitions and also in topological condensed matter structures [35–50].

Common wisdom is that environmental fluctuations always enhance the escape
from a quantum metastable state. A critical issue of great importance is whether the
dissipation can enhance the stability of a quantum metastable state.

Here, we show that dissipation can enhance the stability of a quantum metastable
system consisting of a particle moving in a strongly asymmetric double well potential,
interacting with a thermal bath and starting from a nonequilibrium initial condition.
We find that the escape time from the metastable region has a nonmonotonic behavior
versus the system-bath coupling and the temperature, producing a stabilizing effect.
Specifically, the escape time has a nonmonotonic behavior, with a maximum, as a
function of the system-bath coupling intensity, that is the damping strength γ.

In other words, there is an optimal value of the damping strength which maximizes
the escape time, producing a stabilization of the quantum metastable system, named
quantum noise enhanced stability (qNES) [38]. This phenomenon is the quantum
analogue of that observed in classical physical systems, called noise enhanced sta-
bility (NES), theoretically and experimentally well investigated [11,12,14–17,51–68].
This resonance-like behavior indicates that, contrary to the result predicted by
Kramers [69,70], the average lifetime of a particle can be enhanced with respect
to the deterministic one [14]. For a classical Brownian particle in a cubic potential,
the mean first passage time (MFPT) as a function of the noise intensity D is char-
acterized by a maximum when the particle is placed initially outside the metastable
well, in a region on the right of the potential maximum, that is in a nonequilibrium
position.

For very low noise intensities, that is for D → 0, there is a trapping phenomenon
and the MFPT diverges. Increasing the noise intensity value, the particle can escape
out more easily and the MFPT decreases. As the noise intensity reaches a value
D ≈ ∆U , with ∆U the potential barrier height, the escape process of the Brownian
particle is slowed down, because the probability to reenter the well is increased. At
higher noise intensities, we recover a monotonic decreasing behavior of the MFPT.
In the presence of an external driving we get similar nonmonotonic behavior with
initial condition in the metastable state [11,14,16].

In this tutorial paper, we shortly review some recent results concerning the escape
dynamics of a quantum particle moving along an asymmetric bistable potential,
strongly interacting with a thermal bath, characterized by different spectral func-
tions. We analyze the dynamics starting from a nonequilibrium initial condition, in
the absence and in the presence of an external driving. The system dynamics is
described by the well known Caldeira–Leggett model [71,72], in which a quantum
particle, the open system, is linearly coupled to a reservoir of N independent quan-
tum harmonic oscillators [71–75]. The role of different spectral densities, both in
sub-Ohmic and super-Ohmic dissipation regime and with different cutoff frequencies,
in the relaxation dynamics from the quantum metastable initial state is investigated.
We find that, in the crossover dynamical regime characterized by damped intrawell
oscillations and incoherent tunneling, the spectral properties of the thermal bath
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influence non-trivially the time scales of the relaxation dynamics from a metastable
state. In the absence of driving, we find a nonmonotonic behavior of the escape time
as a function of the system-bath coupling and the temperature. In the presence of
driving, we find a nonmonotonic behavior of the escape time from the metastable
region versus the frequency of the driving, the thermal-bath coupling and the tem-
perature. We observe the quantum noise enhanced stability phenomenon in both the
systems investigated. Finally, the quantum stochastic resonant activation, that is the
presence of a minimum in the escape time as a function of the driving frequency
[18–25], is observed in the resonantly activated escape from a quantum metastable
state in the spin-boson model.

Background and introductory material has been added to make this tutorial
review reasonably self-contained and readable for graduate students and non-
specialists from related areas. Specifically, the paper is organized as follows. In the
introductory and background Sections 1–3, a brief description of the Caldeira–Leggett
model, quantum Langevin equation, Feynman–Vernon (FV) influence functional for
an open quantum system and the generalized master equation in the discrete vari-
able representation is given. In Section 4, the role of different spectral densities,
sub-Ohmic and super-Ohmic regimes, in the dissipative relaxation dynamics from a
quantum metastable state is presented. Section 5 deals with the stabilizing effect of
dissipation and temperature on quantum metastable states in the absence of external
driving. In Section 6, the driven quantum dissipative dynamics and the stochastic
resonant activation are investigated. The conclusions are drawn in Section 7.

2 Caldeira–Leggett model and quantum Langevin equation

2.1 Caldeira–Leggett model

The model of dissipation considered throughout this paper is the so-called
Caldeira–Leggett (CL) model [71,76–79]. Considering the reduced dynamics of the
system interacting with a thermal bath, that is the environment, a microscopic
derivation of dissipation can be easily obtained.

Let us consider a system, that is a particle of mass M and coordinates q̂ and p̂
subject to a potential V (q̂), linearly coupled to the environment, a reservoir of N
independent quantum harmonic oscillators of masses mj , frequencies ωj and coordi-
nates x̂j and p̂j . The reservoir is also called, in the thermodynamical limit N →∞,
bosonic thermal bath, since its excitations obey the Bose statistics.

The full Hamiltonian is the sum of a free system term, a free reservoir term and
a system-reservoir interaction term, that is

Ĥ = ĤS + ĤR + ĤI

=
p̂2

2M
+ V (q̂) +

N∑
j=1

1
2

[
p̂2
j

mj
+mjω

2
j x̂

2
j

]
−

N∑
j=1

cj x̂j q̂. (1)

The interaction of the particle with the individual degrees of freedom of the bath is
defined by the set of constants cj and is proportional to the inverse of the reservoir’s
volume [75,79]. Thus, for a macroscopic environment, the coupling with the individual
oscillators is weak, which justifies the linear coupling assumption. As a consequence
we can consider the bare system energy levels unaffected by the reservoir. The col-
lective effect of the reservoir on the system level structure can be assumed to be
a frictional level broadening. Nevertheless, since the number of degrees of freedom
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coupled to the system is very large for a macroscopic reservoir, such as that sur-
rounding a superconducting device, the overall effective system-bath coupling can be
strong [71,79].

The effective potential energy to which the system is subject is

Veff(q̂, x̂j) = V (q̂) + ∆V (q̂, x̂j) (2)

where

∆V (q̂, x̂j) =
N∑
j=1

(
−cj x̂j q̂ +

1
2
mjω

2
j x̂

2
j

)
. (3)

The minima surface of Veff, with respect to the reservoir coordinates at fixed q̂, is at
x̂min
j = cj q̂/(mjω

2
j ). The corresponding q̂-dependent offset in the potential felt by the

particle is

∆V (q̂)x̂min
j

= −
N∑
j=1

c2j
2mjω2

j

q̂2. (4)

This term can be large and modify qualitatively the potential V (q̂). To have a purely
dissipative environment and get rid of this additional potential term we add a renor-
malization term −∆V (q̂)x̂min

j
to the Hamiltonian. The new renormalized Hamiltonian

can be rewritten as [75,79]

Ĥ =
p̂2

2M
+ V (q̂) +

N∑
j=1

1
2

 p̂2
j

mj
+mjω

2
j

(
x̂j −

cj
mjω2

j

q̂

)2
 . (5)

The model described by equation (5) is the Caldeira–Leggett model.
In this tutorial paper we will consider an asymmetric bistable potential

V (q̂) =
M2ω4

0

64∆U
q̂4 − Mω2

0

4
q̂2 − q̂ε, (6)

where ω0 is the natural oscillation frequency around the minima, ∆U the barrier
height, and ε the asymmetry parameter. Throughout the present work we scale all the
physical quantities with ω0, which is of the same order of magnitude of the frequency
spacing between ground state and the first excited energy level. We will consider two
different values of the asymmetry parameter. The smaller one, ε = 0.02

√
M~ω3

0 , will
be used in Section 4 to analyze the dissipative relaxation dynamics in sub-Ohmic and
super-Ohmic regime, and the larger one, ε = 0.27

√
M~ω3

0 , will be used in Section 5
to treat the strong asymmetric bistable potential as a cubic potential, allowing to
deal in an effective way with the metastable state dynamics and escape problems.

2.2 Quantum Langevin equation

The dissipation dynamics on a microscopic basis, within the Caldeira–Leggett model,
can be described by using the density matrix formalism or deriving a quantum version
of the Langevin equation for the particle’s position operator q̂ in Heisenberg picture.
This latter approach, though not easily manageable in practice for predicting the
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actual time evolution of the system, has the advantage to allow for a clear comparison
with the classical case [79,80].

Taking the time derivative of the Heisenberg equations of motion for q̂(t) and
x̂j(t), the following two second order differential equations are obtained [78–80]

M ¨̂q(t) +
dV (q̂(t))
dq̂(t)

+ q̂(t)
N∑
j=1

c2j
mjω2

j

=
N∑
j=1

cj x̂j(t), (7)

and

mj
¨̂xj(t) +mjω

2
j x̂j(t) = cj q̂(t). (8)

By Laplace transform of equation (8), then transforming back to the time domain,
we obtain the solution x̂j(t) of this equation [78–80]. Substituting this solution x̂j(t)
into equation (7), we get the following generalized Langevin equation for the particle’s
position operator [78,80]

M ¨̂q(t) +M

∫ t

0

dt′γ(t− t′) d
dt′
q̂(t′) +

dV (q̂(t))
dq̂(t)

= −Mγ(t)q̂(0) + ζ̂(t), (9)

where

γ(t) = Θ(t)
1
M

N∑
j=1

c2j
mjω2

j

cos (ωjt), (10)

and ζ̂(t) =
∑N
j=1 cj

[
x̂j(0) cos (ωjt) + p̂j(0)

mjωj
sin (ωjt)

]
are respectively the memory-

friction kernel and the bath force operator. Suppose the bath is in the thermal state

ρRth =
e−βĤR

Z
, (11)

with β = 1/kBT being the inverse temperature, then the expectation value of the
bath force operator and the bath force autocorrelation are

〈ζ̂(t)〉R = TrR

[
ρRthζ̂(t)

]
= 0 (12)

and

〈ζ̂(t) ˆζ(0)〉R =
N∑
j=1

~c2j
2mjωj

[
coth

(
~ωjβ

2

)
cos (ωjt)− i sin (ωjt)

]
, (13)

respectively.
In the classical limit (~ → 0) the bath force correlation function is

lim~→0〈ζ̂(t) ˆζ(0)〉R = MkBTγ(t). Therefore the two relations in equations (12)
and (13), in the continuum limit (N → ∞), describe a stochastic force which in
turn reproduces, in the classical limit, a colored noise source.

Note that in the quantum Langevin equation (9) a term appears in the RHS which
is dependent on the initial condition q̂(0). This term vanishes at long time due to the
interference of the quasi-continuum of spectral components of γ(t), and is ascribable
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to the fact that we have implicitly assumed a factorized initial condition with the
reservoir in the canonical equilibrium [79].

Considering a different preparation, e.g. with the particle held fixed at the
position q0 from t = −∞ to t = t0, the reservoir starts in a shifted thermal con-
dition [80,81]. The new initial condition, with the particle held fixed at q0 and the
shifted reservoir ξ̂(t) = ζ̂(t)−Mγ(t)q̂(0), gives to the quantum Langevin equation a
close correspondence with the classical version, featuring the single stochastic force
term ξ(t)

M ¨̂q(t) +M

∫ t

0

dt′γ(t− t′) d
dt′
q̂(t′) +

dV (q̂(t))
dq̂(t)

= ξ̂(t). (14)

This kind of preparation is actually realized for a large class of experimental
settings [75,78–80].

2.3 Spectral density function

Here we introduce the bath spectral density function [75,79], which describes the
frequency distribution of the thermal bath and the coupling of each oscillator with
the particle

J(ω) =
π

2

N∑
j=1

c2j
mjωj

δ(ω − ωj). (15)

Note that J(ω) has the dimension of a mass times a frequency. By comparing
equation (10) and equation (15) one can see that the bath spectral density function
and the memory damping kernel are related by the equation

γ(t) = Θ(t)
1
M

2
π

∫ ∞
0

dω
J(ω)
ω

cos(ωt). (16)

To relate J(ω) to γ̃(ω), the Fourier transform of the memory damping kernel γ(t),
we have to get the explicit expression of γ̃(ω). The Laplace transform of γ(t) (see
Eq. (10)) is

γ̂(λ) =
1
M

N∑
j=1

c2j
mjω2

j

λ

λ2 + ω2
j

. (17)

The Fourier transform is related to the Laplace transform through the relation γ̃(ω) =
limε→0+ γ̂(λ = −iω + ε), so that one gets

γ̃(ω) = lim
ε→0+

1
M

N∑
j=1

c2j
mjω2

j

iω

ω2 − ω2
j + 2iεω

. (18)

The real part of γ̃(ω) = γ̃′(ω) + iγ̃′′(ω) is

<γ̃(ω) = γ̃′(ω) =
1
M

π

2

N∑
j=1

c2j
mjω2

j

δ(ω − ωj). (19)
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As a result the real part of the Fourier transform of the damping kernel is related to
the spectral density function through the equation

J(ω) = M [<γ̃(ω)]ω. (20)

Already for a moderate number of reservoir oscillators, the periodicity in the time
evolution of the system, given by the Poincarè recurrence time, is practically lost
so that the continuum or thermodynamical limit N →∞ of the reservoir is usually
considered. In this case the frequencies of the bath oscillators become continuous
(ωj → ω), so that the coupling constants cj and the masses mj reads c(ω) and
m(ω), respectively. In the special case of frequency independent (Ohmic) damping
<γ̃(ω) = γ, equation (20) gives J(ω) = Mγω [79].

However, allowing for this linear behavior up to arbitrarily high frequency gives
non-physical results as, for example, the divergence of the renormalization term

−∆V (q̂)x̂min
j

= 2γMq2
0π

∫ ∞
0

dω =∞ (21)

in the Hamiltonian (5) [75,79]. To avoid this kind of difficulties a cut-off is introduced
on the memory time of the kernel at a finite time τD = ω−1

D , the inverse of the Drude
frequency ωD [75]. The friction memory kernel with Drude cut-off reads

γ̃(t) = Θ(t)γωD exp(−ωDt). (22)

This exponential cut-off corresponds to an algebraic cut-off in the spectral density
function. Indeed

γ̂(λ) =
γωD
λ+ ωD

(23)

and, using the relation γ̃(ω) = limε→0+ γ̂(λ = −iω + ε),

γ̃′(ω) + iγ̃′′(ω) =
γ

1 + (ω/ωD)2
+ i

γω/ωD
1 + (ω/ωD)2

. (24)

The corresponding spectral density is [75,79]

J(ω) = Mγ̃′(ω)ω =
Mγω

1 + (ω/ωD)2
. (25)

The physical consequences of the introduction of the cut-off is that the system
behaves as being in contact with an Ohmic environment on time scales longer than
τD. At shorter times the higher frequencies are coupled to the system according to
equation (25). So the cut-off corresponds to a coarse grained model for the system
dynamics. What is the effect of the high frequency modes of the reservoir on the
coarse grained dynamics?

To answer this question we consider a general cut-off f(ωc) at a characteristic
frequency ωc and take into account the high frequency part (ω > ωc) of the reservoir
by writing the spectral density as the sum [75,79]

J(ω) = Jlf(ω)f(ωc) + Jhf(ω)[1− f(ωc)]. (26)
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Comparing the definition of J(ω) in equation (15) with the expression in
equation (18), we get

γ̃(ω) = lim
ε→0+

2
Mπ

∫ ∞
0

dω′
J(ω′)
ω′

iω

ω2 − ω′2 + 2iεω
. (27)

At ω � ωc we have

γ̃(ω � ωc) ∼
Jlf(ω)
Mω

− i ω
M

∆hf, (28)

where ∆hf = 2/π
∫∞

0
dω′Jhf(ω′)/ω′3. Inserting this expression into the Fourier

transform of the quantum Langevin equation (Eq. (9)) we have

iω(M + ∆hf)q0 + F [V ′(q̂)] = ζ(−iω), (29)

which makes clear that, at sufficiently long times (t � ω−1
c ), the effect of the high

frequency spectral density function consists in dressing the particle’s bare mass by
the high frequency modes of the bath. In the coarse grained description, once the
mass has been redefined, one can consider only the low frequency part of the spectral
density function and drop the subscript “lf ” [75,79].

In the general case, the spectral density function is modeled as a power law,
characterized by the exponent s with respect to ω, with an exponential cutoff at ωc

J(ω) = Mγsω
1−s
ph ωse−ω/ωc . (30)

The bath is sub-Ohmic for 0 < s < 1, Ohmic for s = 1, and super-Ohmic for s > 1.
The “phononic” reference frequency ωph is introduced for γs to mantain the dimension
of a frequency also in the non-Ohmic case (s 6= 1) [75,79].

2.3.1 Coupling with the individual bath oscillators in the Ohmic case

Having introduced the bath spectral density function J(ω) and its continuous limit, it
is now possible to extrapolate the frequency dependence of the coupling of the system
with the individual bath oscillators for frequencies ω � ωc. The general expression
for the spectral density is

J(ω) =
π

2

N∑
j=1

c2j
mjωj

δ(ω − ωj). (31)

If the nth coupling coefficient is given by

cn =
(
γ

2Mm

πn
ω3
n

)1/2

, (32)

then, substituting equation (32) in equation (31), with ωn/n =: ∆ωn, we get

J(ω) = Mγ

NΩ∑
j=1

∆ωjωjδ(ω − ωj)
N�1−−−→Mγ

∫ ∞
0

dω′ω′δ(ω − ω′) = Mγω, (33)
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and we obtain the Ohmic spectral density in the continuous limit. The result (32)
shows that, if the environment is a large collection of oscillators, one can have strong
dissipation, quantified by γ, and still a weak coupling with the individual oscillators,
as anticipated at the beginning of Section 2 [75,79].

3 Feynman–Vernon influence functional approach

3.1 Path integral representation of quantum mechanics

In this sub-section we give a brief outline of the path integral expression of the
propagator for a generic quantum system (see, as general Refs., [75,79,82]). For a basic
introduction to path integrals see the books of Kleinert [83] and Schulman [84]. For a
quantum system described by the time independent Hamiltonian Ĥ = T (p̂) + V (q̂),
the probability amplitude to be in the eigenstate |q〉 of the position operator q̂ at
time t is given by

〈q|ψ(t)〉 = 〈q|U(t− t′)|ψ(t′)〉 =
∫
dq′〈q|U(t− t′)|q′〉〈q′|ψ(t′)〉, (34)

where U(t) = exp(−iĤt/~) is the time evolution operator, solution of the Schrödinger
equation i~U̇(t) = ĤU(t), which satisfies the composition law U(t − t′) = U(t −
t′′)U(t′′ − t′) (where t′ < t′′ < t). The function

G(q, t; q′, t′) ≡ 〈q|U(t− t′)|q′〉 (35)

is the propagator for the quantum state of the system from the state |q′〉 at time
t′ to the state |q〉 at time t. Dividing the time interval t − t′ in N � 1 intervals
∆t = (t− t′)/N and using the Trotter splitting formula

e−i(T̂+V̂ )(t−t′)/~ =
(
e−i(T̂+V̂ )∆t/~

)N
= lim
N→∞

(
e−iT̂∆t/~e−iV̂∆t/~

)N
, (36)

the propagator can be put in the form

G(q, t; q′, t′) ' 〈q|
N∏
n=1

e−iT̂∆t/~e−iV̂∆t/~|q′〉

=
N∏
n=1

∫
dqndpn〈qn|pn〉〈pn|e−iT̂∆t/~e−iV̂∆t/~|qn−1〉∆(qN − q)∆(q0 − q′)

=
N∏
n=1

∫
dqn

dpn
2π~

e
− i
~∆t

[
p2
n/2M+V (qn−1)−pn

qn−qn−1
∆t

]

∆(qN − q)∆(q0 − q′).

(37)

Here the identity operator I =
∫
dqn

∫
dpn|qn〉〈qn|pn〉〈pn| has been introduced N

times in passing from the first to the second line and the scalar product 〈qn|pn〉 =
exp(iqnpn/~)/

√
2π~ has been used. Performing the Gaussian integrals over pn and

taking the limit N → ∞, the path integral representation of the propagator is
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obtained

G(q, t; q′, t′) =
∫ q(t)=q

q(t′)=q′
Dqe i~S[q]. (38)

The functional S[q] =
∫ t
t′
dt′′L(q, q̇) is the classical action functional associated to

the Lagrangian L(q, q̇) = Mq̇2/2− V (q). In equation (38), the integration symbol is
defined as ∫

Dq = lim
N→∞

√
M

i2π~∆t

N−1∏
n=1

dqn. (39)

The meaning of equation (38) is that the propagator is the sum of the amplitudes
exp(iS[q(τ)]/~) over all possible paths q(τ) with fixed extrema, that is the values of
the function q(τ) at τ = t′ and τ = t.

3.2 Path integral and dissipation: the Feynman–Vernon influence functional –
exact path integral expression for the reduced density matrix

Although the quantum Langevin equation (14) is simple and gives a clear insight into
the physics described by the Caldeira–Leggett model, a direct integration can only
be performed for very special cases. Feynman and Vernon determined the dynamics
of the generic quantum system, by using real-time path integral methods [85]. This
theoretical approach allows to capture environmental effects in terms of functionals
depending on the coordinates of the system investigated. This corresponds to elim-
inate the bath degrees of freedom of the full density matrix ρSB(t) and considering
the reduced dynamics, after the bath degrees of freedom have been traced out (see,
as general Refs., [75,76,79,82–88]).

Starting with the system described by the full Hamiltonian Ĥ in equation (5), the
full (system plus reservoir) density matrix ρSB(t) evolves according to

ρSB(t) = U(t, t0)ρSB(t0)U†(t, t0), (40)

where ρSB(t0) is the full density matrix at the initial time t0 and U(t, t0) the time
evolution operator given by

U(t, t0) = exp[−iĤ(t− t0)/~]. (41)

In the position representation the matrix elements of ρSB(t) are given by

〈qf ,xf |ρSB(t)|q′f ,x′f 〉 =
∫
dq0dq

′
0dx0dx′0〈qf ,xf |U(t, t0)|q0,x0〉

×〈q0,x0|ρSB(t0)|q′0,x′0〉〈q′0,x′0|U†(t, t0)|q′f ,x′f 〉, (42)

where we have used equation (40) and inserted two times the identity operator∫
dq0dx0|q0,x0〉〈q0,x0|, (43)

before and after ρSB(t0). In equation (42) the position eigenvalues of the bath
oscillators are denoted by x := (x1, . . . , xN ).
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The transition amplitude for the full system in the path integral representation
reads [79,82,86,87]

〈qf ,xf |U(t, t0)|q0,x0〉 =
∫ qf ,xf

q0,x0

Dq(t)Dx(t) exp
(
i

~
S[q(t),x(t)]

)
, (44)

where S[q(t),x(t)] is the classical action for the full system’s path q(t),x(t) with fixed
extrema (q0,x0) at time t0 and (q,x) at time t

S[q(t),x(t)] =
∫ t

t0

dt′L(q(t′), q̇(t′),x(t′), ẋ(t′), t′). (45)

Hereinafter we omit the time dependencies of the coordinates. The classical
Lagrangian function for the full system is

L(q, q̇,x, ẋ, t) = LS(q, q̇, t) +
N∑
j=1

LjR(q, q̇, xj , ẋj , t), (46)

where the bare system Lagrangian is

LS(q, q̇, t) =
Mq̇2

2
− V (q) (47)

and the Lagrangian of the jth oscillator under the influence of the external time-
dependent force exerted by the particle is

LjRI(q, q̇, xj , ẋj) =
ṗ2
j

2mj
−
mjω

2
j

2

(
xj −

cj
mjω2

j

q(t)

)2

, (48)

with the subscript RI refering to the interaction term and the free-bath Lagrangian.
Let us suppose the interaction starts at time t0 and that the bath is in the unper-

turbed thermal state of equation (11). The full density matrix at initial time is then
in the factorized form

ρSB(t0) = ρ(t0)⊗ ρRth, (49)

where ρ(t0) is an arbitrary state of S.
The reduced dynamics of the open system S is given by the trace of the full

density matrix ρSB over the bath degrees of freedom

ρ(t) = TrB
[
U(t, t0)ρSB(t0)U†(t, t0)

]
, (50)

where the time evolution operator is that given in equation (41), with Ĥ the full
Hamiltonian of the model given in equation (5).



390 The European Physical Journal Special Topics

The reduced density matrix at time t in the position representation has matrix
elements ρqfq′f given by

ρqfq′f = 〈qf |ρ(t)|q′f 〉 =
∫
dx〈qf ,xf |ρSB(t)|q′f ,xf 〉

=
∫
dq0dq

′
0〈q0|ρ(t0)|q′0〉

∫ qf

q0

Dq
∫ q′f

q′0

D∗q′e i~ (SS [q]−SS [q′])FFV [q, q′], (51)

or in a compact way

ρqfq′f (t) =
∫
dq0

∫
dq′0G(qf , q′f , t; q0, q

′
0, t0)ρq0q′0(t0), (52)

where the propagator G is the double path integral over the paths of the left and
right coordinates qf and q′f

G(qf , q′f , t; q0, q
′
0, t0)=

∫ qf

q0

Dq(τ)
∫ q′f

q′0

D∗q′(τ)e
i
~ (SS [q(τ)]−SS [q′(τ)])FFV [q(τ), q′(τ)]. (53)

Here SS [q] =
∫ t
t0
dt′LS(q(t′), t′) is the classical action given by the Lagrangian LS

of the bare system defined in equation (47). The functional FFV is the so called
Feynman–Vernon influence functional whose explicit expression is

FFV [q, q′]=
∫
dx0dx′0〈x0|ρRth|x′0〉

∫
dx
∫ xf
x0

Dx
∫ xf
x′0

D∗x′e i~ (SRI [q,x]−SRI [q′,x′]), (54)

where SRI [q,x], using equation (48), is given by

SRI [q,x] =
N∑
j=1

∫ t

t0

dt′LjRI(q, q̇, xj , ẋj). (55)

The bath oscillators are mutually independent, therefore the amplitude for a path
of the reservoir under the influence of the particle factorizes as the product of the
amplitudes for the single oscillators as follows∫ xf

x0

Dxe
i
~SRI [x,q] =

N∏
j=1

∫ xj,f

xj,0

Dxje
i
~S

j
R[xj ,q]. (56)

Also the elements of the thermal density matrix, describing the state of the bath at
the initial time, factorize as the product

〈x0|ρRth|x′0〉 =
N∏
j=1

1
Zj
〈xj,0|e−βĤ

j
R |x′j,0〉, (57)

where

Zj =
∞∑

nj=0

〈nj |e−β~ωj n̂j |nj〉 =
1

1− e−β~ωj
=

1
2 sinh(β~ωj/2)

. (58)
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The path integral for the harmonic oscillator in the presence of a time-dependent
potential V (t) is solved in references [75,84]. The solution for the jth oscillator, in
the product on the RHS of equation (56), is∫ xj,f

xj,0

Dxje
i
~S

j
R[xj ,q] =

√
mjωj

2πi~ sin (ωj(t− t0))
exp

(
i

~
S[xCl

j (t)]
)
, (59)

where S[xCl
j (t)] is the action for the classical path xCl

j (t). This path is the solution
of the Euler–Lagrange equation of motion with the Lagrangian function given in
equation (48) and boundary conditions xj(t0) = xj,0 and xj(t) = xj . Explicitly

S[xCl
j (t)] =

mjωj
2 sin (ωj(t− t0))

[
(x2
j,0 + x2

j,f ) cos (ωj(t− t0))− 2xj,0xj,f
]

+
xj,0cj

sin (ωj(t− t0))

∫ t

t0

dt′ sin (ωj(t− t′)) q(t′) +
xj,fcj

sin (ωj(t− t0))

×
∫ t

t0

dt′ sin (ωjt′) q(t′)−
c2j

2mjω2
j

∫ t

t0

dt′q2(t′)−
c2j

mjωj sin (ωj(t− t0))

×
∫ t

t0

dt′
∫ t′

t0

dt′′ sin (ωj(t− t′)) sin (ωjt′′) q(t′)q(t′′). (60)

Equation (59) is the path integral expression for the transition amplitude [79]

〈xj,0|e−
i
~
∫ t
t0
dt′ĤjR(t′)|xj,f 〉, (61)

where Ĥj
R is the Hamiltonian operator of the driven jth harmonic oscillator, i.e.

Ĥj
R(t) =

p̂2
j

2mj
+
mjω

2
j

2

(
x̂j −

cj
mjω2

j

q(t)

)2

. (62)

It is important to note that there is a formal identity of the j-th term of the
product defining the canonical thermal equilibrium of the bath (Eq. (57)) and the
transition amplitude of equation (61). Therefore, the solution of the path integral
expression for equation (62), given by equation (59), represents also the state of the
j-th bath’s oscillator in the canonical equilibrium state (non-normalized), provided
that we express it (i) in imaginary time t = −i~β, (ii) with cj = 0 (because the
interaction starts at t > t0) and (iii) with different endpoints. From equations (59)
and (60), the matrix elements of the product (57) are given by

〈xj,0|e−βĤ
j
R |x′j,0〉=

√
mjωj

2π~ sinh(β~ωj)

× exp
{
− mjωj

2~ sinh(β~ωj)

[
(x2
j,0+x′2j,0)cosh(β~ωj)−2xj,0x′j,0

]}
.

(63)

Now, by using equations (54), (56), and (63) we get the final expression for the
Feynman–Vernon functional as

FFV = exp(−ΦFV ), (64)
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where the influence phase functional ΦFV takes the form

ΦFV [y, x] =
1
~2

∫ t

t0

dt′
∫ t′

t0

dt′′y(t′) [L′(t′ − t′′)y(t′′) + iL′′(t′ − t′′)x(t′′)]

+i
λ

~

∫ t

t0

dt′x(t′)y(t′). (65)

Here we have introduced the relative and center of mass coordinates

y(t) = q(t)− q′(t) and x(t) = q(t) + q′(t). (66)

L′ and L′′ are the real and imaginary part of bath correlation function L(t) defined
by

L(t) = L′(t) + iL′′(t) =
~
π

∫ ∞
0

dωJ(ω)
[
coth

(
~ωβ

2

)
cosωt− i sinωt

]
, (67)

and the constant λ =
∫∞

0
dωJ(ω)/ω = MγsΓ (s)ωc(ωc/ωph)s−1 is proportional to

the so-called reorganization energy, which measures the overall system-bath coupling
[88,89].

Performing by parts the time integrations in equation (65), the Feynman–Vernon
influence phase functional becomes

ΦFV [x, y] = −
∫ t

t0

dt′
∫ t′

t0

dt′′
[
ẏ(t′)Q′(t′ − t′′)ẏ(t′′) + iẏ(t′)Q′′(t′ − t′′)ẋ(t′′)

]
+ y(t)

∫ t

t0

dt′ [ẏ(t′)Q′(t− t′) + iẋ(t′)Q′′(t− t′)]

+ y(t0)
[
y(t)Q′(t− t0)−

∫ t

t0

dt′ẏ(t′)Q′(t′ − t0)
]

+x(t0)
[
y(t)Q′′(t− t0)−

∫ t

t0

dt′ẏ(t′)Q′′(t′ − t0)
]
, (68)

which is an useful expression to work with discrete variables representation. Here the
function

Q(t) = Q′(t) + iQ′′(t) =
1
π~

∫ ∞
0

dω
J(ω)
ω2

[
coth

~ωβ
2

(
1− cosωt

)
+ i sinωt

]
(69)

is related to the bath force correlation function by L(t)/~2 = d2Q(t)/dt2 (see
Eq. (67)). Substituting in equation (69) the bath spectral density function in the
general continuous limit form, given in equation (30), the integral of equation (69)
can be performed and yields [75,79]

Q(t) =
Mγs
π~

(
ωc
ωph

)s−1

Γ (s− 1)
{

1− (1 + iωct)1−s + 2(~βωc)1−sζ(s− 1, 1 + κ)

− (~βωc)1−s [ζ(s− 1, 1 + κ+ iκωct) + ζ(s− 1, 1 + κ− iκωct)]
}
, (70)
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where the dimensionless quantity κ = (~βωc)−1 is a measure of the ratio between
the temperature and the cutoff frequency. The function ζ(z, q) is the Hurwitz zeta
function, related to the Riemann zeta function ζ(z) by ζ(z) ≡ ζ(z, 1), and Γ (z) is the
Euler gamma function.

The limit s→ 1 of equation (70) gives Q(t) in the Ohmic case

Q(t) =
Mγ

π~
ln
(

κ−1Γ 2(1 + κ)
Γ (κ+ iκωct)Γ (1 + κ− iκωct)

)
. (71)

At finite temperature and assuming a high frequency cutoff ωc � ω0 i.e. in the scaling
limit κ� 1, that is kBT/~ωc � 1, the function Q(t) has the form

Q(t) =
Mγ

π~
ln
(√

1 + ω2
c t

2
sinh(πκωct)
πκωct

)
+ i

Mγ

π~
arctan(ωct). (72)

The long time or high temperature limit (κωct� 1) of equation (72) has a time linear
dependence

Q(t) ' Mγ

π~

[
π

~β
t− ln

(
2π
β~ωc

)]
+ i

Mγ

2~
. (73)

3.3 Discrete variable representation – exact path integral expression for the
propagator of a dissipative M-state system

The exact path integral expression for the reduced dynamics (Eq. (51)) can be com-
puted only in special cases. If the potential V (q) is harmonic, the propagator for the
reduced density matrix can be evaluated analytically [90], yielding the exact dynam-
ics of the dissipative harmonic oscillator. However, such an analytic solution does not
exist for a nonlinear potential, such as the asymmetric bistable potential considered
here (see Eq. (6)). Nevertheless, an approximate treatment is possible in a tempera-
ture regime where the system is not going to be excited to high energy levels and the
potential barrier is crossed by tunneling. In this temperature regime, on the energy
scale set by ω0, the time evolution of the particle is practically confined to a reduced
Hilbert space spanned by the first M energy eigenstates |Ei〉, provided that the par-
ticle is not initially excited to energy levels higher than M . Thus the problem reduces
to that of a dissipative M -state system. In this truncated Hilbert space we perform
the unitary transformation T which diagonalizes the position operator x̂ according
to [50,91]

qDVR = TxT†

= diag{q1, . . . , qM}, (74)

where x is the matrix representing x̂ in the energy basis. The resulting states are

|qµ〉 =
M∑
ν=1

T ∗µν |Eν〉, (75)

where Tνµ = (T)νµ, satisfy the eigenvalue equation qDVR|qµ〉 = qµ|qµ〉.
The set {(qµ, |qµ〉), µ = 1, . . . ,M} constitutes the so-called discrete variable

representation (DVR) [92,93]. The diagonal element ρµµ = 〈qµ|ρ|qµ〉 of the reduced
density matrix in the DVR, i.e. the population of the state |qµ〉, is the probability
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Fig. 1. Potential profile (solid grey line) and the probability densities of the four DVR
states. Adapted from reference [88].

to find the particle in a region of space localized around qµ (see the following Figs. 1
and 6). In this picture of DVR the description of the dynamics as transitions between
energy eigenstates is transformed to a hopping among the M discrete position eigen-
values qµ. In other words, the paths of the coordinates q and q′ are represented by a
sequence of transitions among the positions qµ. To describe the dynamics in the DVR
basis, we define a quantum mechanical path q(τ) along which the system evolves in
time, with t0 ≤ τ ≤ t. It starts at time τ = t0 in the state q(τ = t0) = qµ0 and evolves
via N jumps between the M discrete states into the final state q(t′ = tN ) = qµN . The
full time interval is split into N short time intervals such that the jumps happen at
times t′ = tj . The intermediate states are labeled by qµj , where µj = 1, . . . ,M is the
quantum state index, and j = 1, . . . , N denotes the time index. Therefore, the full
path is assumed to be a sequence of constant path segments as [75,79,91]

q(τ) =
N−1∑
j=0

qµj [Θ(τ − tj)−Θ(τ − tj+1)] + qµNΘ(τ − tN )

= qµ0Θ(τ − t0) +
N∑
j=1

(
qµj − qµj−1

)
Θ(τ − tj). (76)

As a consequence the paths of the relative and center of mass coordinates read

y(τ) =
N∑
j=0

ξjΘ(τ − tj)

x(τ) =
N∑
j=0

χjΘ(τ − tj), (77)

where, for j 6= 0, the quantities ξj and χj , called charges, are defined by

ξj = (qµj − qµj−1)− (q′µj − q
′
µj−1

)

χj = (qµj − qµj−1) + (q′µj − q
′
µj−1

), (78)

whereas ξ0/χ0 ≡ qµ0 ∓ q′µ0
. The name charges is due to the coupling of the paths

in the influence functional (see next Eq. (84)), thus miming the case of interacting
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electrical charges [75]. The time intervals in which the system is in a diagonal state of
the reduced density matrix are called sojourns. They are characterized by ξ(t′) = 0
and χ(t′) 6= 0. The time spans in which the system is in an off-diagonal state are
called clusters. The clusters are characterized by ξ(t′) 6= 0 and χ(t′) 6= 0. For the
spin-boson model [71,73,75] the off-diagonal states are called blips and characterized
by ξ(t′) 6= 0 and χ(t′) = 0. The time derivatives of the y and x coordinates, entering
in the phase of the influence functional (see Eq. (68)), are

ẏ(τ) =
N∑
j=0

ξjδ(τ − tj)

ẋ(τ) =
N∑
j=0

χjδ(τ − tj). (79)

In the DVR representation a path consists of a sequence of transitions in the
spatial grid defined by the set {q1, . . . , qM} so that the double path integral (53)
turns into a sum over all the possible discrete paths {µj , νj} with transitions at
times {t1, t2 . . . , tN}, integrated over the times {tj} and summed over all the possible
numbers N of transitions.

To calculate the time evolution of the diagonal elements of the reduced density
matrix in the DVR, i.e. the populations

ρ(qµ, qµ, t) = ρµµ(t) = 〈qµ|ρ(t)|qµ〉, (80)

we consider the DVR expression of exact reduced density matrix given in
equation (52)

ρµµ(t) =
∑

qµ0 ,qν0

G(qµ, qµ, t; qµ0 , qν0 , t0)ρqµ0qν0
(t0), (81)

where the propagator has the formal expression

G(qµ, qµ, t; qµ0 , qν0 , t0) =
∞∑
n=0

∫ t

t0

DN{t}A[qµ]A∗[q]FFV [ξ(tj), χ(tj)], (82)

where A[qµ] = exp{iSS [qµ]/~} denotes the bare system amplitude, with SS [qµ] being
the classical action functional of the system variable qµ along a path qµ(t). The sum
is over the number N of transitions of the paths and the symbol

∫ t
t0
DN{tj} denotes

the sum
∑

pathsN

∫ t
t0
dtN

∫ tN
t0

dtN−1· · ·
∫ t2
t0
dt1 over all path configurations with N

transitions at times tj .
Using the relative coordinate ξ(tj) = qµj − qνj = q(tj)− q′(tj) and the center of

mass coordinate χ(tj) = qµj + qνj = q(tj) + q′(tj), the equation (81) becomes

ρµµ(t) =
M∑

µ0,ν0=1

ρµ0,ν0(t0)
∞∑
N=1

{∫ t

t0

dtm

∫ tN

t0

dtN−1· · ·
∫ t2

t0

dt1

×
∑
{paths}

e
i
~S[qµj ]− i

~S[qνj ] exp(−Φ[ξ, χ]FV )

}
(j = 1, . . . , N). (83)
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In equation (82), the amplitude A[qµ] for the path qµ(tk) of the isolated system
includes the product of the transition amplitudes per unit time ∆ij = 〈qi|ĤS |qj〉/~,
relative to the transitions |qi〉 → |qj〉. The influence of the environment is encap-
sulated in the Feynman?-Vernon influence phase, whose expression in the DVR
is [88,91]

Φ[ξ, χ]FV = −
n∑
i=1

i−1∑
j=0

[ξiQ′(ti − tj)ξj + iξiQ
′′(ti − tj)χj ] , (84)

obtained using equation (79) and the simplified expression of equation (68) for the
Feynman?-Vernon functional phase. This simplified expression, not reported here (see
Ref. [75]), is obtained considering that the paths contributing to the summation which
gives ρµµ are those ending in a diagonal configuration at the final time t, i.e. those
for which y(τ = t) = 0 [75,79].

From equation (84) we see that the Feynman–Vernon functional couples the
ξ- and χ-charges through the function Q(t), called pair interaction [75]. This accounts
for the name charges. The nature of the coupling is nonlocal in time and reflects the
non-Markovian character of the general time evolution for a dissipative quantum
system. This feature constitutes a major difficulty in the practical evaluation of the
propagator.

Collecting all parts we get the dissipative real-time path integral for the diagonal
elements of the reduced density matrix of an M -level system in the DVR-basis [75,91]

ρµµ(t) =
M∑

µ0,ν0=1

ρµ0,ν0(t0)G(qµ, qµ, t; qµ0 , qν0 , t0)

=
M∑

µ0,ν0=1

ρµ0,ν0(t0)
∞∑
N=0

∫ t

t0

DN{tj}B0(t1 − t0)
N∏
j=1

(−i) ∆jBj(tj+1 − tj)

× exp

− n∑
i=1

i−1∑
j=0

[ξiQ′(ti − tj)ξj + iξiQ
′′(ti − tj)χj ]

 . (85)

The N = 0 term in this sum is δq′0q0δq0qk . The q/q′ transition amplitudes per unit
time ∆j in equation (85) are defined by

∆j =
{

1
~ 〈qj |ĤS |qj−1〉 for a q transition
− 1
~ 〈q
′
j |ĤS |q′j−1〉 for a q′ transition,

(86)

and the bias factors by

Bj(tj+1 − tj) = exp [−iεj(tj+1 − tj)] , (87)

where

εj =
1
~

(
〈qj |ĤS |qj〉 − 〈q′j |ĤS |q′j〉

)
. (88)
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3.4 Generalized master equation within the generalized noninteracting cluster
approximation

From the expression for the Feynman?-Vernon functional phase (84), we see that the
influence functional FFV = exp(−ΦFV ) is nonlocal-in-time as it couples the ξ and
χ charges at every transition time. This feature prevents an exact evaluation of the
path integral expression for the populations. Nevertheless, in the context of dissipa-
tive real-time path integrals, a common strategy of approximate treatment exists. It
concerns the interactions between different paths, which are induced by the coupling
to the heat bath and are described by the influence functional. We recall here the
path integral jargon: the time intervals spent in a diagonal state of the reduced den-
sity matrix (RDM) are called sojourns, those spent in an off-diagonal configuration of
the RDM are called blips for two-level systems, while, are called clusters for M -state
systems.

The central idea of this strategy (see as general references for this subsec-
tion [71,73,75,91] and in particular Sects. IV, V and Appendix D of [91]) is to neglect
some of these correlations in order to get tractable expressions. One possible approx-
imation within the spin-boson problem (M = 2) is the so-called non-interacting
blip approximation (NIBA) [71,73]. There, the interactions between off-diagonal
states (blips) and the sojourn-blip interactions are neglected, except the sojourn-blip
neighboring interactions. With these approximations, the influence phase simplifies
drastically.

For a multilevel system, we make a further approximation consisting in restricting
the sum over paths in the propagator G of equation (82) to the leading contributions.
These are given by the class of paths consisting in sojourns in diagonal states inter-
rupted by single off-diagonal excursions called blips for a spin-boson system or clusters
for a multilevel system. In the dissipation regimes from intermediate to high temper-
ature, on the scale fixed by ~ω0, considered here, the nonlocal in time interactions
among different clusters in equation (84) (inter-blip interactions) can be neglected.
This corresponds to a multilevel version [88,91,94–96] of the non-interacting blip
approximation (NIBA) [73–75].

However, the relevant part of the interactions, the intra-cluster (or intra-blip)
interactions, are retained to all orders in the coupling strength. These interactions
are indicated by the red wavy lines in Figure 2. Since the total sum of the charges in
a path connecting two diagonal elements is zero, all the interactions between different
paths connecting two diagonal elements (ρµµ(t1)↔ ρνν(t2)) are neglected. This is the
content of the generalized non-interacting cluster approximation (gNICA) [91]. This
approximation is justified when, on a time scale comparable to the average interblip
time distance, Q′ assumes its linear form with respect to time (see Eq. (73)) and Q′′

becomes approximatively constant [91]. For intrawell clusters this time is ∼ω−1
0 while

for tunneling clusters it is ∼Ω−1
1,2 � ω−1

0 , being Ω1 and Ω2 the frequency spacing
of the first and second energy doublet of the potential profile of Figure 1 (see also
Fig. 3). For s & 1 the linearized form is reached on a time scale that is shorter at
higher temperature [75,88]. With the parameters considered in this work, this time
scale is that of the intrawell clusters ∼ω−1

0 . For s < 1 the intercluster interactions are
suppressed because, as Q′ grows rapidly, the exponential cutoff due to the real part
of the Feynman–Vernon influence functional becomes severe on the same time scale.
Therefore, this approximation is justified from the sub-Ohmic to the super-Ohmic
regime for the intrawell motion. In turn this means that the same approximation
scheme is valid a fortiori for the tunneling clusters, as their time scale is longer and
their effective damping is larger due to the larger distance of DVR states separated
by the potential barrier. The above reasoning justifies our gNICA treatment in both
sub-Ohmic and super-Ohmic regimes [88].
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Fig. 2. Example of a path of the reduced density matrix in the coordinate y = q − q′. The
path consists of five intrawell blips and one tunneling blip between t7 and t8. The intrablip
interactions retained in the influence functional (see Eq. (84)) are denoted by the red wavy
lines. Adapted from reference [88].
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Fig. 3. Bath spectral density function (see Eq. (30)) as a function of ω in log scale. Three
values of s are considered in the sub-Ohmic (s = 0.5), Ohmic (s = 1) and super-Ohmic
(s = 1.2) regimes. The cutoff frequency is ωc = 10. Frequencies are in units of ω0. Adapted
from reference [88].

By comparing the transition probabilities per unit time among the |qi〉’s with
kBT/~, we obtain the limit T & 0.1~ω0/kB as a rough estimate for the validity of
the gNICA for our system.

It is worthwhile to note that the range values of the temperature, on the energy
scale set by ω0, should be sufficiently low to confine the dynamics of the quantum
particle to a reduced Hilbert space spanned by the first M energy eigenstates, and
sufficiently high to take the function Q(t) in the linearized form at all times (see
Eq. (73)), which corresponds to performing the gNICA. For temperature values in the
range [0.1 ~ω0/kB , 0.5 ~ω0/kB ], that we used in our investigations, both conditions
are satisfied.

We observe now that every path which begins and ends in a diagonal state can
be seen as a sequence of p clusters punctuated by sojourns. Within the gNICA, the
nested time integrals over the sojourn times in equation (85) acquire the form of
convolutions. Therefore, to use this property it is convenient to make the Laplace
transform ρµµ(λ). The integration over each sojourn contributes a factor λ−1, while
each cluster yields a factor which depends on the number of charges and on their
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configuration inside that particular cluster, according to equation (85). We consider
transitions from the initial state (µ0, ν0) at time t0 to the final state (µN , µN ) at time
tN [91]. We get for the Laplace transform

ρµNµN (λ) =
∫ ∞

0

dte−λtρµNµN (t), (89)

the following expression comprising the summation over all the M states

ρµNµN (λ) =
M∑
µ0=1

ρµ0µ0ρµNµND(λ), (90)

where we consider only the contributions coming from diagonal initial states ρµNµND.
We consider now an arbitrary cluster which begins in the diagonal state (µi, µi) at
time ti and ends in the diagonal state (µj , µj) at time tj . We sum over all the path
configurations and denote this collected contribution the cluster function kµjµi(λ)
(see Appendix D of Ref. [91] for its calculation and explicit expression). Each contri-
bution to ρµNµND(λ) can be viewed as a sequence of sojourns punctuated by clusters.
We sum up the contributions of all paths which start in (µ0, µ0) and end in (µN , µN )
and which contain p clusters starting in some intermediate diagonal states (σk, σk)
and ending in (σk+1, σk+1), that is

ρ
(p)
µNµND

(λ) =
∑

σ1,σ2,...,σp

1
λ
kσ1,µ0(λ)

1
λ
kσ2,σ1(λ) . . . kµN ,σp(λ)

1
λ
, (91)

where the sum runs over all possible intermediate diagonal states σ = 1, . . . ,M . The
factors 1/λ are the results of the integration over the sojourns. Defining the cluster
matrix K(λ) with the matrix elements kµjµi(λ), we can rewrite equation (91) as a
matrix product

ρ
(p)
µNµND

(λ) =
1
λ

{[
K(λ)
λ

]p}
µNµ0

. (92)

By making the summation over all possible numbers p of clusters within a path, we
get

ρµNµND(λ) =
{

1
λ−K(λ)

}
µNµ0

. (93)

By inserting this equation into equation (90) we obtain

ρµNµN (λ) =
M∑
µ0=1

ρµ0µ0

{
1

λ−K(λ)

}
µNµ0

. (94)

Equation (94) can be considered as a vector equation with a vector-matrix product
on the right side. For convenience we introduce a vector-matrix notation, with −→ρ (λ)
being a vector whose elements are ρµNµN (λ). Therefore, equation (94) reads

−→ρ (λ) =
1

λ−K(λ)
−→ρ0. (95)
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Multiplying equation (95) with the inverse of the matrix 1
λ−K(λ) and rearranging the

equation, we get

λ−→ρ (λ)−−→ρ0(λ) = K(λ)−→ρ (λ). (96)

By doing the inverse Laplace transform, we obtain the differential equation for the
vector −→ρ (λ)

−̇→ρ (t) =
∫ t

t0

dt′K(t− t′)−→ρ (t′). (97)

We note that in order to simplify the derivation of equation (97) from equation (85), in
equations (90), (94)–(97) we did not insert the inhomogeneity term Iµ(t− t0), which
contains the coherences, that is the off-diagonal elements of the reduced density
matrix at initial time t0. Considering this term now, and inserting it in the last
equation (97), we get the complete differential equation

−̇→ρ (t) =
∫ t

t0

dt′K(t− t′)−→ρ (t′) +
−→
Iµ(t− t0). (98)

Finally, the single components ρµµ(t) of the vector −→ρ (t), that is the populations of
the DVR states, obey the following generalized master equation (GME)

ρ̇µµ(t) =
M∑
ν=1

∫ t

0

dt′Kµν(t− t′)ρνν(t′) + Iµ(t− t0). (99)

The inhomogeneity term Iµ(t− t0) vanishes when the non-diagonal elements of the
particle’s density matrix at t = t0 are zero. Here we choose as initial condition (see
Eq. (85)) ρµ0ν0(t0) = |qµ〉〈qµ|, so that initially non-diagonal elements of the particle’s
density matrix vanish and therefore the term Iµ(t − t0) is equal to zero. Moreover,
Iµ(t− t0) is exponentially damped on a time scale determined by the damping con-
stant γ and the temperature T . By investigating the long-time dynamics, in the case
of non-diagonal initial states different from zero, Iµ(t− t0) can be neglected and only
the populations remain involved in the GME [91]. Therefore, we have in both cases

ρ̇µµ(t) =
M∑
ν=1

∫ t

0

dt′Kµν(t− t′)ρνν(t′). (100)

This generalized master equation is an integro-differential equation that governs the
relaxation dynamics of the population out of the metastable region. It relates the pop-
ulations at final time t to their values at earlier times through the kernels Kµν(t− t′).
According to the gNICA, within the leading order approximation, we consider only
single off-diagonal excursions, starting from diagonal initial states. This has the con-
sequence that the lowest order for the kernels in the integral part of the GME (100)
is the second order, because at least two jumps are required, starting in a diagonal
state, to end again in a diagonal state. Therefore, the gNICA kernels are given by [88]

Kµν(t) = 2∆2
µνe
−(qµ−qν)2Q′(t) cos[εµνt+ (qµ − qν)2Q′′(t)], (µ 6= ν). (101)
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The conservation of probability implies for the diagonal kernels the condition

Kνν(t) = −
M∑

l( 6=ν)=1

Klν(t). (102)

In equation (101), ∆µν = 〈qµ|hatHS |qν〉, εµν = (〈qµ|ĤS |qµ〉 − 〈qν |ĤS |qν〉)/~ (see
Eqs. (86), (88)), and HS is the bare system Hamiltonian of equation (1). The ker-
nel Kµν(t) represents the transition probability for a path starting in the diagonal
state (ν, ν), then jumping to the off-diagonal state (ν, µ)/(µ, ν), and finally ending
in the diagonal state (µ, µ), where both tunneling and vibrational relaxation con-
tribute [91]. Note that, due to the prefactors (qi − qj)2 multiplying Q, the effective
damping strength is much larger for transitions between states in different wells.
Moreover, the frequency scales ∆ij associated to these transitions are smaller than
those associated to the intrawell transitions. As a consequence, by increasing the
coupling strength γs, the tunneling oscillations are damped out already at relatively
small values of the coupling, while the intrawell oscillations survive until much larger
values are reached. The dynamical regime resulting from our choice of parameters
is the crossover regime of damped intrawell oscillations and incoherent tunneling, a
regime which lies between the completely coherent and the fully incoherent dynamics.
In reference [96], by using a beyond-NIBA scheme we have investigated this crossover
dynamical regime in the Ohmic case down to temperatures for which NIBA-like
approximations break down.

To extract analytically one single rate from equation (100) we need a further
approximation. The kernel elements Kνν(t) are taken at the second order in the tran-
sition amplitudes per unit time ∆µν , and at all orders in the system-bath coupling.
They go to zero exponentially due to the presence of a cut-off. At strong damping,
as in our case, in the short time interval in which Kνν are substantially different
from zero, ρνν are practically constant. Under the assumption that the populations
ρνν(t) in (100) are practically constant on the time scales at which the kernels Kνν
are significantly different from zero, we can put ρνν outside the integral and bring
the upper limit to ∞ . This is the Markovian approximation. Setting t0 = 0, the
time-independent rates are thus given by

Γµν =
∫ ∞

0

dτKµν(τ), (103)

where the kernels Kνν(t) are given by equation (101). Under these assumptions we
get finally the Markovian approximated generalized master equation,

ρ̇µµ(t) =
M∑
ν=1

Γµνρµν(t). (104)

In other words, since the relaxation dynamics is governed by the incoherent tunneling
and, as shown in the following Figure 4, the intrawell oscillations are damped out on
relatively short time scales, the Markovian approximation gives a good estimate for
the relaxation time, the time scale on which the system relaxes towards the station-
ary state. The set of coupled ordinary first-order differential equation (104) can be
decoupled by a diagonalization procedure. Using a transformation matrix R, whose
elements are Rµν , the eigenvalues Λµ of the diagonalized rate matrix Γ are given by

Λµδµν =
M∑

α,β=1

(R−1)µαΓαβRβν . (105)
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Fig. 4. Time evolution of the population ρ11 of the state |q1〉 for different values of s, at
two cutoff frequencies ωc = 5 and ωc = 50 and for two temperatures T = 0.2 and T = 0.5.
(Insets) Relaxation towards the stationary values of ρ11. The coupling strength γs is fixed to
the value 0.1 ω0. Temperatures and frequencies are in unit of ~ω0/kB and ω0, respectively.
Adapted from reference [88].

The general solution of the Markov approximated GME (104) reads

ρµµ(t) = ρ∞µµ +
M∑
α=2

M∑
β=1

Rµα(R−1)eΛα(t−t0)ρββ(t0), (106)

where ρ∞µµ =
∑M
µ=1,ν=0Rνµ(R−1)µνρνν(0) is the asymptotic value of the popula-

tion and the condition for the conservation of probability Γνν = −
∑M
µ6=ν Γµν , which

implies that Λ0 = 0 has been used. The smallest, in absolute value, of the remaining
Λµ determines the largest time-scale of the dynamics of ρµµ(t), that is the quantum
relaxation time τrelax defined as Λ−1

min.
Notice that in this definition of relaxation time there is no reference to the initial

condition. Equation (104) does not capture transient oscillations and is accurate only
in the fully incoherent regime. Nevertheless it gives a good estimate of the relaxation
time also in the crossover dynamical regime [96]. The master equation (104) has been
used to obtain the dynamics and stationary populations in the presence of an external
driving [50] and to address the problem of the escape from a quantum metastable
state, starting from a nonequilibrium initial condition, with a strongly asymmetric
bistable potential and Ohmic dissipation [38].

To summarize, in this section, after a brief introduction to the path integral rep-
resentation for an open quantum system, the exact path integral expression for the
reduced density matrix has been presented. Three successive approximations have
been shown: (i) the truncation of the Hilbert space to the first M energy levels,
followed by the so-called discrete variable representation (DVR), to get the exact
path integral expression for the propagator of a dissipative M -state system; (ii)
the generalized non-interacting cluster approximation (gNICA) to obtain the gen-
eralized master equation (GME) for the populations of the DVR states; (iii) the
Markovian approximation to get the time behavior of populations during the relax-
ation process. All these approximations will be used in the following Sections 4–6 to
analyze the role of the dissipation and eventually of an external driving force on the
escape process from quantum metastable states, starting from nonequilibrium initial
conditions.
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4 Dissipative relaxation dynamics in sub-Ohmic and
super-Ohmic regime

Here we consider the role of different spectral densities on the relaxation dynamics
from a quantum metastable state [88,97]. The potential profile is that of equation (6)
with M = 4 states, asymmetry parameter ε = 0.02

√
M~ω3

0 , and potential barrier
height ∆U = 1.4~ω0. With this choice of parameters the first four energy levels are
organized in two doublets separated by a frequency gap Ω ∼ ω0 with internal fre-
quency separations Ω1, Ω2 � ω0. The four DVR eigenstates and the potential profile
are shown in Figure 1. We assume as a functional form of the spectral density the
algebraic expression of equation (30), that is J(ω) = Mγs (ω/ωph)s−1

ω e−ω/ωc , and
we set the phononic frequency equal to the oscillation frequency around the poten-
tial minima of the potential profile, namely ωph = ω0. In the following Figure 3, we
show the spectral density functions J(ω) in the sub-Ohmic, Ohmic, and super-Ohmic
regimes. We note that the density of low frequency modes is the highest in the sub-
Ohmic regime, while that of high frequency modes is the largest in the super-Ohmic
regime.

We assume that the environment has a physical cutoff at ωc = 10ω0, which may
be the Debye frequency of the medium in which the system is immersed. The bath
modes with frequencies up to the frequency scale set by ω0 affect the particle dynam-
ics through the quantum friction modeled by the Caldeira–Leggett Hamiltonian
(Eq. (5)) on the time scales of the intrawell motion or longer. The modes with higher
frequencies, that is for ω & ωc, affect the system dynamics by renormalizing the
mass [88].

We obtain the time evolution of populations of our quantum system by numerical
integration of the GME (Eq. (100)) with the gNICA kernels given by equation (101)
and initial time set to t0 = 0. Calculations are performed by varying s, the exponent of
ω in the spectral density function J(ω), in the range 0.5 ≤ s ≤ 1.2, and for two values
of cutoff frequencies ωc = 5, 50. We consider two temperature values T = 0.2, 0.5 in
unit of ~ω0/kB and fix the coupling strength to the value γs ≡ γ = 0.1 ω0. The
system is assumed to be initially in the localized state |q1〉 belonging to the left well
(see Fig. 1).

In Figure 4, the time evolution of the population ρ11 of the state |q1〉 is shown at
two temperatures and for two values of the cutoff frequency ωc. The time evolutions of
ρ11 display damped intrawell oscillations ending up in a metastable intrawell equilib-
rium state which relaxes further towards a stationary configuration over a much larger
time scale. The presence of these two different time scales reflects the two different
frequency scales of tunneling and intrawell motion in the bare system. Moreover the
tunneling dynamics is strongly damped due to the distance between states in different
wells. We observe that, in each panel of Figure 4, the intrawell oscillations are slower
for higher s. This can be ascribed to a larger renormalized mass due to the stronger
presence of high frequency modes, especially for the higher cutoff frequency. Further,
for both cutoff frequencies, the higher is s the less the oscillations are damped. This
is because, on the time scale of the intrawell motion, the bath modes contributing to
the quantum friction are those with ω . Ω, which are denser at lower s. Note also
that, by varying s, the long time dynamics of ρ11 has different behaviors for the two
cutoff frequencies. In particular, for ωc = 5 ω0 the relaxation is faster at high s, while
for ωc = 50 ω0 is faster at low s. This is also shown in the insets of Figure 4 along with
the asymptotic behavior [88]. The features of the relaxation towards the stationary
configuration are displayed in Figure 5, where the time evolution of the population
difference PL − PR, where PL(R) = ρ11(33) + ρ22(44) is shown for two values of the
temperature and cutoff frequency, along with the relaxation time Λ−1

min as a function
of s. The ωc-dependent minima in the relaxation time as a function of the exponent s,
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Fig. 5. Time evolution of the population difference PL − PR for different spectral densities
(0.5 ≤ s ≤ 1.2) at temperatures T = 0.2 (left panels) and T = 0.5 (right panels) and at
cutoff frequencies ωc = 5 (upper panels) and ωc = 50 (lower panels). (Insets) Relaxation
times Λ−1

min as a function of s. The coupling strength is γs = 0.1 ω0. Temperatures and
frequencies are in units of ~ω0/kB and ω0, respectively. Adapted from reference [88].

shown in the insets of Figure 5, emerge as the result of two competing mechanisms.
At low values of s, the density of low-frequency modes of the bath is increased, con-
tributing to enhance the dissipation and to hamper the tunneling. At higher values
of s, the consequent increase of the mass renormalization term slows down the relax-
ation due to the increased inertia of the system [88]. These two competing behaviors
yield the minima in the relaxation times. This physical picture is confirmed by the
fact that for large ωc, where the mass renormalization effect is stronger, the minimum
moves towards lower values of s.

5 Stabilizing effect of metastable states by dissipation and
temperature

5.1 Model

Our starting point is the Caldeira–Leggett Hamiltonian of equation (5), with
the asymmetric bistable potential V (q̂) of equation (6), with ∆U = 1.4~ω0 and
ε = 0.27

√
M~ω3

0 . Here ε is large enough that the potential (6) can be treated as a
cubic potential, which allows to treat in an effective way the metastable state dynam-
ics and escape problems. The interaction with the environment occurs through the
coupling with a thermal bath of N independent harmonic oscillators with position
coordinates x̂j . Here we consider the thermodynamical limit N →∞ and the Ohmic
spectral density J(ω) = Mγωe−ω/ωc with a cut-off frequency ωc much larger than any
other ones present in the system. The damping coefficient γ accounts for the overall
particle-bath coupling strength, according to the classical damping in the quantum
Langevin equation (14) [75].

Here we consider out-of-equilibrium initial conditions and not so high tempera-
ture, compared to the minimum tunneling splitting (see next Fig. 6). Therefore, the
dynamics is limited to the first M = 6 levels of the potential shown in Figure 6. This
reduced Hilbert space allows to pass, by suitably transforming, to the discrete vari-
able representation (DVR) [92]. The particle’s time evolution is obtained by tracing
off the freedom degrees of the bath, in terms of reduced dynamics in the localized
basis of the position eigenstates {|q1〉, . . . , |q6〉}, with q̂|qi〉 = qi|qi〉.
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Fig. 6. Potential V (Eq. (6)) for ∆U = 1.4~ω0 and ε = 0.27
√
M~ω3

0 . Horizontal lines: the
first 6 energy levels. Vertical lines: the position eigenvalues in the DVR. The dashed curve
is the initial probability density |Ψ(x, 0)|2. For the tunneling splitting we have ∆E4,3 =
E4 −E3 = 0.2~ω0 while E2 −E1 = 0.985~ω0. The initial condition q3 is the blue point. The
metastable region of the potential is to the left of the so-called exit point c. Adapted from
reference [38].

5.2 Reduced density operator and master equation

By considering a factorized initial condition, with the bath in the thermal state,
we use the particle’s reduced density operator in the DVR (81). In the frame-
work of the gNICA, we get the same GME (Eq. (100)) of Section 3.4, ρ̇µµ(t) =∑6
ν=1

∫ t
0
dt′Kµν(t− t′)ρνν(t′). This allows us to get the rate equation (see Eq. (104))

for the system considered, characterized by a reduced Hilbert space with six
eigenstates. The solution of this equation reads

ρµµ(t) =
6∑

ν,α=1

cµα.e
Λνtραα(0), (107)

with Λν being the eigenvalues of Γ . This equation (107) allow us to calculate the
quantum relaxation time τrelax for our quantum system.

5.3 Transient dynamics

Now we consider the transient dynamics of the quantum particle, as given by the
equation (107), with the nonequilibrium initial condition

ρ(0) = |q3〉〈q3|, (108)

that is with the particle’s probability density initially peaked on the right of the
potential barrier, in the interval (qb, qc), where qc is the exit point (see Fig. 1 and
Ref. [75]). This may be experimentally attained by preparing the particle in the
ground state of an appropriate harmonic well centered at the desired position, and
then releasing the harmonic potential by rapidly modifying its profile [98].

We note that the transient dynamics here considered is qualitatively different from
that usually investigated, for example, in references [65,99–104]. There, the calculated
decay rate gives information on the time the particle takes to leave the metastable
well. Specifically in reference [101] and references therein, the particle is initially
in the ground state of a metastable cubic potential. The thermodynamical method
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used there [101] is not suited to treat out-of-equilibrium dynamics, as we do in this
work. To this purpose we introduce an approach based on the escape time which
is suitable to describe out-of-equilibrium dynamics in asymmetric bistable quantum
systems, closely resembling the escape problems typical of the classical statistical
physics [11,14,16].

Processes starting from nonequilibrium initial conditions are commonly encoun-
tered in nature, at the classical and quantum scale (see, for example, Refs. [105,106]
and references therein). A typical example of nonequilibrium dynamics is that
emerging from a sudden quenching [106–112].

We introduce the escape time from the metastable region, defined as the region
to the left of the exit point (point c in Fig. 6), according to reference [102]. There,
the decay rate from the metastable region is calculated by using the probability of
penetration of the Gaussian wave packet from left to right through the potential
barrier of Figure 6. Here, we use a discretized version of this theoretical technique.
Therefore, we calculate the population of the lower (right side) well, that is the
cumulative population of the three DVR states from |q4〉 to |q6〉

Pright(t) =
6∑

µ=4

ρµµ(t). (109)

During the transient dynamics the populations of the metastable states (|q1〉 and
|q2〉) reach a maximum. Afterwards, by tunneling through the potential barrier, the
population of the metastable well decays, finally settling down to a stationary value
dependent on the temperature. We note that actually we calculate the escape time
from the metastable region, which we define as the region to the left of the exit point
qc (see Fig. 6 of this paper and page 190 of reference [75]), therefore comprising the
metastable well. We consider a large asymmetry of the potential, low temperatures
with respect to the barrier height, and damping regimes ranging from moderate to
strong (γ & ω0). Given the above conditions, the relaxation occurs in the incoherent
regime, with no oscillations in the populations [91]. As a consequence, we may consider
the particle irreversibly out from the metastable region once Pright(t) has reached a
certain threshold value that we set at Pright(τ) = 0.95.

In Figure 7, it is shown the nonmonotonic behavior of the escape time τ as a
function of the coupling parameter, or damping, γ and the temperature T . Specifically
the behavior of τ versus γ shows a maximum, whose height and position depend on
the temperature. A comparison between τ and τrelax versus γ indicates that the
two quantities exhibit roughly the same behavior until the peak in τ is reached
(see Fig. 7c). At higher γ, while τrelax continues to increase monotonically, τ has
a sudden fall off at a critical value γc, dependent on the temperature (for example
γc ≈ 1.2 at T = 0.2). This critical value corresponds to a dynamical regime in which
the population transfer from the initial state to the states of the metastable well is
inhibited, with a direct transfer occurring to the states of the lower right well.

In this regime the probability of finding the particle in the metastable region
is negligibly small throughout the entire dynamics. Indeed, while τrelax is the time
needed for the system to reach the equilibrium in the double well potential, the escape
time is a relevant quantity for the transient dynamics, involving the crossing of the
potential barrier and the emptying of the metastable well. Therefore, our analysis
applies to the general problem of the escape from a metastable well, starting from a
nonequilibrium condition.

The nonmonotonic behavior of τ vs. γ can be interpreted as the quantum coun-
terpart of the NES phenomenon observed in classical systems, and may be called
quantum noise enhanced stability (qNES).

Another interesting feature is the presence of a slow monotonic increase of τ for
γ > γc, which leads to the quantum Zeno effect [113–117]. Quantum Zeno effect,
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Fig. 7. (a) Potential V (∆U = 1.4~ω0 and ε = 0.2
√
M~ω3

0 , slightly less asymmetric than
that in Fig. 6) with the first M = 6 energies levels Ei (horizontal lines) and corresponding
position eigenvalues qi in the DVR (vertical lines). (b) Escape time τ , in units of ω−1

0 , vs. γ
and T for the threshold 0.9. (c) Escape time τ (for two different thresholds) and relaxation
time τrelax vs. the damping strength γ at T = 0.2. (Inset) Escape time vs. temperature at a
fixed value of damping, namely γ = 1. Both in (b) and (c) the particle is initially localized
around q3 (blue point in (a)). The parameters γ and T are given in units of ω0 and ~ω0/kB ,
respectively. Adapted from reference [38].

coined as the Zeno’s paradox in quantum theory, states that an unstable quantum
system, if observed continuously, will never decay. Hence we can slow down or even
“freeze” the evolution of the system by frequent measurements in its known initial
state. This can be realized by exposing the quantum system to a thermal bath with
increasing coupling coefficient γ, which together with the temperature represents the
“noise intensity”. The behavior of τ vs. the temperature is characterized by a mini-
mum as kBT approaches the tunneling splitting kBT ≈ 0.21~ω0 ≈ ∆E3,2 = E3 −E2

(see Fig. 7). This is the signature of the thermally activated tunneling, an experimen-
tally well established phenomenon [118]. This is better shown in the inset of Figure 7c.
We wish to point out that our results are robust against the variation of the poten-
tial asymmetry, threshold value, initial conditions, chosen within the interval (qb, qc),
and the dimension of the reduced Hilbert space of the system [38]. The path integral
approach within the discrete variable representation is not spatially continuous: the
spatial continuity is recovered in the limit of an infinite number of energy levels. Nev-
ertheless, by increasing gradually the number M of energy states taken into account
in our approximation of M -state system, the DVR states change their “localization”
and become more dense, especially in the regions where the potential energy is lower
(inside the two wells). This means that, enlarging the Hilbert space considered, new
DVR states with different eigenvalues in the interval (qb, qc) can be used as initial
conditions (see Fig. (6)). In what follows we show that the escape time τ as a function
of the threshold values, the number M of energy states considered, and the initial
localization of the particle, follows a behaviour qualitatively similar to that exhib-
ited as a function of γ and T (see Fig. 7). The results obtained by considering the



408 The European Physical Journal Special Topics

Fig. 8. (a) Potential V (see Eq. (6)) for ∆U = 2.5~ω0 and ε = 0.35
√
M~ω3

0 . Horizontal
lines: the first 8 energy levels. Vertical lines: position eigenvalues in the DVR. Here ∆E7,6 =
0.14~ω0, ∆E6,5 = 0.58~ω0, ∆E5,4 = 0.1~ω0. (b) Escape time τ , in units of ω−1

0 , as a function
of both γ and T for the initial condition q3 (blue point) shown in panel (a). The parameters
γ and T are given in units of ω0 and ~ω0/kB , respectively. The threshold value is 0.95.
Adapted from reference [38].

Fig. 9. (a) Potential V (∆U = 1.4~ω0 and ε = 0.27
√
M~ω3

0 , the same as in Fig. 1) with
the first M = 6 energies levels Ei (horizontal lines) and corresponding position eigenvalues
qi in the DVR (vertical lines). (b) Escape time τ , in units of ω−1

0 , as a function of both
the damping strength γ and the initial condition, for threshold value equal to 0.95 and
temperature T = 0.3. The initial conditions are taken as a statistical mixtures of |q3〉 and
|q4〉 (blue points), with average positions between q3 and qc (see Eq. (110)). The parameters
γ and T are given in units of ω0 and ~ω0/kB , respectively. Adapted from reference [38].

same potential profile as in Figure 7, with different potential parameters, are shown
in Figures 8 and 9. Specifically, we have: (a) Figure 7 with M = 6, ∆U = 1.4~ω0,
initial state q3, threshold values 0.85, 0.9, ε = 0.2

√
M~ω3

0 ; (b) Figure 8 with M = 8,
∆U = 2.5~ω0, initial state q4, threshold value 0.95, ε = 0.35

√
M~ω3

0 ; (c) Figure 9
with M = 6, ∆U = 1.4~ω0, threshold value 0.95, ε = 0.27

√
M~ω3

0 , and as initial
condition a statistical mixtures of |q3〉 and |q4〉 (blue points) [38].

A nonmonotonic behavior of the escape time with respect to the damping param-
eter, similar to that described above, is observed in all considered cases (see Figs. 8
and 9). In particular, in Figure 9 we show a 3D plot of the escape time, for M = 6, as a
function of both the damping strength and initial condition, at the fixed temperature
T = 0.3~ω0/kB . The statistical mixture

ρ(0) = (1− a)|q3〉〈q3|+ a|q4〉〈q4|, (110)

is chosen as initial condition. In equation (110), the parameter a varies such that the
average initial position is in the interval (q3, qc). Again, we recover the enhancement of
the escape time as a function of γ in the entire range of initial conditions considered.
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6 Driven quantum dissipative dynamics and quantum stochastic
resonant activation

As a model of driven dissipative quantum dynamics confined between two metastable
wells, we use the same Caldeira–Leggett Hamiltonian of equation (5), modifying the
asymmetrical bistable system used in Section 5, by considering an external periodi-
cal driving of amplitude A and angular frequency Ω. The resulting time-dependent
Hamiltonian reads

ĤS(t) =
p̂2

2M
+ V (q̂)− q̂A sin(Ωt) = Ĥ0 − q̂A sin(Ωt). (111)

The static potential V (q̂), shown in Figure 6, is given by equation (6), where all the
physical quantities are scaled with ω0, which is of the same order of magnitude of the
frequency spacing between the ground state and the first excited energy level. We
choose the asymmetry parameter ε sufficiently large to get a configuration that, in
the transient dynamics, is suitable for modeling the decay in a metastable potential,
starting from a nonequilibrium condition. At low temperatures, on the energy scale
set by ω0, the time evolution of the particle is practically confined to a reduced Hilbert
space spanned by the first M = 6 energy eignstates |Ei〉, provided that the particle is
not initially excited to energy levels higher than M . We consider for the dissipative
environment the Ohmic spectral density function J(ω) of Section 5.1 with the cutoff
frequency ωc = 10 ω0.

6.1 High-frequency driving

In the presence of a time-dependent driving, the GME of equation (100) becomes

ρ̇µµ(t) =
M∑
ν=1

∫ t

0

dt′Kµν(t, t′)ρνν(t′), (112)

where the kernels Kµν(t, t′) do not depend anymore only on the difference τ = t− t′
and, consequently, after the integration over τ we have time dependent rates

Γµν(t) =
∫ ∞

0

dτKµν(t, t− τ). (113)

However, if the frequency Ω of the monochromatic driving is sufficiently higher than
any other frequencies (renormalized by the bath) of the system, it is possible to
take the average over one period T = 2π/Ω [50,74,91], which gives for the rates of
equation (113)

Γ avµν =
Ω

2π

∫ 2π
Ω

0

dt

∫ ∞
0

dτKµν(t, t− τ). (114)

For µ 6= k, the kernels Kjk read

Kµν(t, t′) = 2∆2
µνe
−q2

µνQ
′(t−t′) × cos

[
ζµν(t, t′) + q2

µνQ
′′(t− t′)

]
, (115)

with the diagonal elements of the kernel matrix given by Kνν(t, t′) =
−
∑
µ6=ν Kµν(t, t′), according to the conservation of probability. In equation (115),
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∆µν ≡ 〈qµ|Ĥ0|qν〉/~, qµν = qµ − qν , and the functions ζµν(t, t′) are defined as the
time integrals

ζµν(t, t′) =
∫ t

t′
dt′′ [(∆µµ −∆νν)− qµν(A/~) sin(Ωt′′)] . (116)

In equation (115), Q′ and Q′′ are respectively the real and imaginary part of the
function Q(t) (see Eqs. (69)–(73) in Sect. 3.2), related to the bath correlation function
L(t) (see Eq. (67)).

Using the Markovian approximation (see Sect. 3.4), the master equation (112),
with rates given by equation (114), describes the average effect of the high frequency
driving on the time evolution of the populations ρjj of the DVR states

ρ̇µµ(t) =
M∑
ν=1

Γ avµν ρνν(t). (117)

The analytical solution of equation (117) now reads

ρµµ(t) =
M∑

n,k=1

Sµn(S−1)nkeΛn(t−t0)ρkk(t0), (118)

where S is the transformation matrix diagonalizing the rate matrix Γ , which has
eigenvalues Λn. The smallest, in absolute value, of the nonzero eigenvalues determines
the largest time-scale of the dynamics, that is the quantum relaxation time τrelax [91].

6.2 Escape time for the driven system

The transient dynamics of the driven system is analyzed by equation (118), with the
same nonequilibrium initial condition ρ(0) = |q3〉〈q3| used in the static case (108),
that is with the particle initially prepared in the central region of the potential, on
the right side of the barrier, between the maximum and the exit point, denoted by c
in Figure 6. The escape time from the metastable region is defined, as in the static
case (see Sect. 5), according to reference [102]. Therefore, we calculate the population
of the lower (right side) well, that is the cumulative population of the three DVR
states from |q4〉 to |q6〉, Pright(t) =

∑6
j=4 ρjj(t). During the transient dynamics the

cumulative population of the metastable well, coinciding with the overall population
of |q1〉 and |q2〉, reaches a maximum and then, by tunneling through the potential
barrier, decays settling down to a stationary value dependent on the temperature.
We define the escape time τ from the metastable region of the potential, the region
to the left of the exit point c, as the time the right well population takes to cross
a threshold value d. The nonmonotonic behavior of τ as a function of γ and T ,
coupling coefficient and bath’s temperature, respectively, predicted in the static case
(see Sect. 5), is robust against variations of the threshold around the value 0.9.

Here we set the threshold at d = 0.95, which means that we consider the particle
escaped from the metastable region when the probability to detect it in the lower
(right) well is equal or greater than 95%. Note that, due to the incoherent relaxation
described by equation (118), once the threshold is crossed no oscillatory behavior
of the populations occurs (no re-crossing of the threshold in the opposite direction).
Therefore, if the particle crosses the threshold at time τ , the overall population of
the metastable region is not going to be larger than 0.05 at later times.
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Fig. 10. Escape time vs. coupling strength for three driving settings, namely Ω/ω0 =
0, 0.2, 0.7. (Upper panel) Dimensionless temperature T̄ = 0.1. At Ω/ω0 = 0.7 no escape
occurs for γ/ω0 . 0.25. (Lower panel) Dimensionless temperature T̄ = 0.3. For Ω/ω0 = 0.2
and Ω/ω0 = 0.7, the escape occurs starting from γ/ω0 . 0.25 and 0.55, respectively. For both
panels the driving dimensionless amplitude is fixed at the value Ā = 0.15. Solid lines, in both
panels, give the behavior in the absence of driving Ω = 0. Adapted from reference [50].

We note that, in the static case, the metastable well can be thermally populated
at the steady state. In this scenario no escape can occur if the threshold d is close to
unit [38]. The same is true in the driven case for certain values of the frequency Ω,
especially at large amplitudes A, whenever the left well population, namely the sum
Pleft = ρ11 + ρ22, is kept substantially above zero at the steady state by the presence
of the driving.

In the absence of external driving, A = 0, as γ increases, both the escape time
τ and the relaxation time τrelax increase [38]. This holds until a critical value of γc,
dependent on the temperature, is reached: by increasing further γ the escape time
steeply diminishes whereas the relaxation time continues to increase monotonically. In
Figure 10, the behavior of the escape time τ versus γ/ω0 for three values of frequency,
namely Ω/ω0 = 0, 0.2, 0.7, and two different temperatures, that is T̄ = 0.1, 0.3, is
shown. At the lower temperature T̄ = 0.1, all the curves show a nonmonotonic behav-
ior, with a maximum, of τ as a function of the scaled coupling parameter γ/ω0. At
the higher temeperature T̄ = 0.3, the same behavior occurs for the lower values of
the scaled driving frequency Ω/ω0 = 0, 0.2, while a monotonic behavior is observed
for the higher frequency value, i.e. Ω/ω0 = 0.7. This monotonic behavior can be
ascribed to the conjunct effect of thermal bath and driving force, which accelerates
the escape process from the metastable region by increasing the coupling parameter
γ. The maxima in the escape time imply that, at a given temperature, there is an
optimal value of the coupling γ for which the depletion of the metastable region is
delayed. According to the well known classical phenomenon [11,14,16,66], we address
this feature as quantum noise enhanced stability (qNES) [38].

Moreover, a critical value of the coupling strength γc, dependent on the tem-
perature, exists also in the presence of driving. The critical values of this coupling
parameter in Figure 10 are found to be γc/ω0 ' 0.75 at T̄ = 0.1 and γc/ω0 ' 0.9 at
T̄ = 0.3. We also observe that at the higher temperature, for Ω/ω0 = 0.7, there is no
escape up to γ/ω0 ' 0.55. At stronger dissipation the interaction with the heat bath
forces the relaxation towards the lower well causing the depletion of the metastable
well, which would be otherwise populated due to the combined effect of driving and
thermal excitation. We note that γc is larger at the higher temperature, indicating
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Fig. 11. Escape time as a function of the coupling strength and the driving frequency
for dimensionless amplitudes Ā = 0.20. The dimensionless temperature is set to the value
T̄ = 0.1. Adapted from reference [50].

that at strong coupling, and in the presence of driving, the thermal excitations of the
heat bath contrast the relaxation induced by the bath itself.

An interesting feature of the dynamics is the presence, at strong coupling and
independently of the driving frequency, of a slow monotonic increase of the escape
time τ for γ/ω0 > γc/ω0, which is the signature of the quantum Zeno effect
[113,116,117]. In Figure 11, we show the 3D plot of the escape time as a function of
Ω/ω0 and γ/ω0 for Ā = 0.20. This behavior is characterized by resonant peaks and
dips whose magnitude is enhanced by increasing the driving amplitude, the escape
being completely quenched for frequencies around Ω/ω0 ' 0.75, when Ā ≥ 0.15. The
effect is easily interpreted because the case Ω/ω0 = 0.75 displays at the steady state
a left-well population larger than (1− d), implying that Pright < d. The frequencies
for which τ is maximized (or no escape occurs, depending on the amplitude) roughly
correspond to the energy separations E3 − E2 ≈ 0.6 ~ω0, E4 − E2 ≈ 0.8 ~ω0, and
E5 − E2 ≈ 1.25 ~ω0, showing that a resonance phenomenon between the external
driving and these frequencies occurs.

It is worthwhile to note that for Ω ≈ ω0, a minimum of τ is visible, which is akin to
the quantum stochastic resonant activation phenomenon [47]. This phenomenon is the
analogue of the classical stochastic resonant activation effect, whose signature is the
presence of a minimum in the behavior of the average escape time versus the external
driving frequency, for a particle moving in an oscillating metastable potential profile.
The particle escapes easily from the potential well when the potential barrier oscillates
on a time scale characteristic of the particle escape itself. Since the resonant frequency
is close to the inverse of the average escape time at the minimum, which is the mean
escape time over the potential barrier in the lower configuration, stochastic resonant
activation occurs [18–23,26,66,119,120]. It is important to note that this phenomenon
is different from the dynamic resonant activation [121–123], which appears when the
driving frequency matches the natural frequency of the system, that is the plasma
frequency in JJ devices [66].

Peaks and dips in τ as a function of the driving frequency are smoothed out as γ
increases, with τ becoming Ω independent as the coupling γ approaches the critical
value γc. For γ < γc the high frequency driving can delay or accelerate the escape,
while for coupling strengths above the critical value γc the escape time becomes
frequency independent and quantum Zeno effect occurs.

The critical value γc marks the transition to a dynamical regime, in which the
tunneling mechanism of population transfer towards the metastable region is sup-
pressed. This is because the tunneling dynamics becomes slow with respect to the
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depletion dynamics of the region where the particle is initially prepared. As a result,
the probability of detecting the particle in the metastable well, starting from the
initial condition (108), is always negligibly small as the population is directly trans-
ferred from |q3〉 to the right well states. This effect is not captured by the relaxation
time (see Sects. 5 and 6.1), which is independent of the initial condition and grows
monotonically as γ increases.

6.3 Quantum stochastic resonant activation

Stochastic Resonant activation (SRA) is one of the well-studied noise-induced phe-
nomena for thermally activated barrier crossing problems. It constitutes an archetypal
feature for escape processes under deterministic modulations or fluctuations of a
potential barrier. For a Brownian particle surmounting a fluctuating potential bar-
rier from an initial metastable state, the signature of the SRA effect is the presence
of a minimum of the mean escape time as a function of the mean switching frequency
of the external force. The general features of the average escape time as a function of
the characteristic frequency scale are a saturation to a maximal value for very slow
modulations, where the highest barrier configuration dominates the barrier passage,
followed by a decreasing behavior towards an intermediate minimum – signature of
the SRA – and then by an increase towards a limiting high-frequency behavior, as
determined by the corresponding averaged potential configuration [18–21,47,66].

To investigate the SRA phenomenon we consider the archetype quantum dissipa-
tive two-state system (TSS) [47,73,75], which can be driven by a dichotomous noise
and/or by a deterministic coherent field. Therefore, we modify the spin-boson model
by considering a time dependent tunneling matrix element. obtaining the following
total system-bath Hamiltonian

H(t) = HS(t) +HSB +HB

= −~
2

[∆(t)σx + ε(t)σz]−
~
2
σz
∑
i

ci(a
†
i + ai) +

∑
i

~ωia†iai , (119)

where ∆(t) denotes the TSS tunneling matrix element, modulated around its bare
value ∆0, ε(t) stands for a modulated bias energy of vanishing average, and σx =
|R〉〈L| + |L〉〈R|. The quantum TSS can be driven by a deterministic or stochastic
modulation of the tunneling amplitude ∆(t) and a time-periodically driven bias ε(t) =
Aε cos(Ωεt + φ), with φ the initial phase. We consider an Ohmic spectral density
function with a cutoff frequency

G(ω) = 2αωe−ω/ωc , (120)

where ωc is a cut-off frequency and the dimensionless parameter α is the dissipative
coupling strength [75].

We assume a factorized initial preparation, with a total density operator of the
form ρtot(0) = ρS(0) ⊗ ρB (the bath being initially in the thermal state at temper-
ature T ), the exact dynamics of the TSS can be cast into the form of a generalized
master equation (GME) for the population difference P (t) := 〈σz〉t = PR(t)− PL(t).
The population Pj(t) = 〈j|ρS(t)|j〉 is the probability to find the system in the localized
state j (j = R,L). The resulting non-Markovian GME assumes the form [47,74,75,94]

Ṗ (t) =
∫ t

0

dt′ [Ka(t, t′)−Ks(t, t′)P (t′)] , (121)
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which is formally valid for any coupling and temperature regime, spectral den-
sity function, and time dependence of the modulation. Within the non-interacting
blip approximation (NIBA), which is valid for strong coupling and not too low
temperatures, these kernels Ka/s take on the explicit expressions [47,74]

Ks(t, t′) = ∆(t)∆(t′)e−Q
′(t−t′) cos[Q′′(t− t′)] cos[ζ(t, t′)]

Ka(t, t′) = ∆(t)∆(t′)e−Q
′(t−t′) sin[Q′′(t− t′)] sin[ζ(t, t′)], (122)

where the function ζ is defined as ζ(t, t′) =
∫ t
t′
dt′′ ε(t′′). The kernels Ks(t, t′) and

Ka(t, t′) in equation (122) are symmetric and antisymmetric, respectively, under the
change ε(t) → −ε(t). This implies that, in the static unbiased case, Ka(t, t′) = 0.
The functions Q′(t) and Q′′(t) in equation (122) denote the real and imaginary part
of the thermal bath correlation function, respectively [47,75]. For the chosen Ohmic
spectral density and in the so-called scaling limit (kBT � ~ωc), Q(t) reads [91]

Q(t) = 2α ln
[(

1 + ω2
c t

2
) 1

2 sinh(κt)
κt

]
+ i2α arctan(ωct), (123)

where κ = πkBT/~. In the incoherent tunneling regime, occurring at finite temper-
atures and strong coupling (i.e., α > 0.5 for the symmetric TSS) [75], the nondriven
dynamics of the population difference is well approximated by the Markovian limit to
equation (121) with time-independent transition rates. This is so because the mem-
ory time of the kernels in equation (122) constitutes the smallest time scale. In the
driven case, using the definition of P (t) and the conservation of total probability,
i.e., PR(t) + PL(t) = 1, two coupled master equations for the individual probabilities
with time-dependent forward (+) and backward (−) rates are derived. These master
equations, valid for general modulations of ∆(t) and ε(t) [47,74], read

ṖL(t) = W−(t)PR(t)−W+(t)PL(t)

ṖR(t) = W+(t)PL(t)−W−(t)PR(t), (124)

where

W±(t) =
∆(t)

2

∫ ∞
0

dτ ∆(t− τ)e−Q
′(τ) × cos[Q′′(τ)∓ ζ(t, t− τ)] (125)

are the quantum transition rates from the left to the right well (forward) and vice
versa (backward). In this Markovian limit, the rates generally vary in time, but
are independent of the population themselves. These transition rates incorporate
implicitly both the quantum dissipation and the shape of the double-well potential
and depend as well only locally on the externally applied modulation.

The quantum master equation (124) can be understood as describing a discrete
stochastic process, randomly switching between two reflecting states; meaning that
the rates to go leftward at the left state and rightward at the opposite, right-placed
state are both vanishing. To perform a first passage time analysis, we consider the
situation in which the particle is initially prepared at time t = 0 in the left quantum
state (L). We then calculate the passage time statistics for the particle to become
detected (absorbed) at the right state (R) while the left state is kept reflecting.
This requirement is implemented upon introducing an absorbing boundary conditions
at the state R and reflecting boundary condition at the state L. Given these two
generally time-dependent “birth and death” quantum transition rates, this amounts
to setting for all times t ≥ 0, W−(t) = 0 and W+(t) > 0 in equation (124) [47].
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Moreover, given the initial condition PL(0) = 1, the left well population PL(t) must
be interpreted as the conditional survival probability P (L; t|L; 0). This conditional
survival probability in the left state, with R absorbing state, is thus governed by

ṖL(t) = −W+(t)PL(t), (126)

with initial condition PL(0) = 1 and forward rate W+(t) given by equation (125).
The negative rate of change of this so-tailored conditional passage time probability
to find the particle still in state L yields the first-passage time (FPT) probability
density function (pdf) which is given by

g(t) = −ṖL(t) = W+(t)PL(t) , (127)

with ṖL(t) determined from equation (126). With positive-valued forward rates and
starting out at PL(t = 0) = 1 we have, with absorption occurring at state R, that
PL(t =∞) = 0. The FPT pdf g(t) in equation (127) satisfies g(t) ≥ 0 and is properly
normalized, i.e.,

∫∞
0
dt g(t) = 1.

The MFPT to the state R of the TSS can be easily obtained as [47]

t1 =
∫ ∞

0

dt tg(t) . (128)

In the following we focus on this first moment, as it constitutes the quantity of interest
for our analysis of the stochastic resonant activation. However, the knowledge of
g(t), given by equation (127) upon solving equation (126), allows for the calculation
of higher moments of the FPT pdf. The FPT pdf also determines the so-termed
residence time and interspike pdfs, which generally are more readily available in
experiments, e.g., in the context of stochastic resonance phenomena [5], and involve
suitable averages over the FPT pdf [47].

Here, we consider a dichotomously fluctuating tunneling matrix element in
absence of a bias energy, that is ε(t) = 0 and ∆(t) = ∆0 + ∆η(t). The noise source
∆η(t) = ξ(t) is a Markovian two-state dichotomous process with zero average, ampli-
tude ∆ and correlation function 〈ξ(t)ξ(t′)〉η = ∆2e−ν|t−t

′|, where ν is the Poisson
parameter and the subscript η stands for ensemble average over the noise realizations.
The constant parameter ∆0 is the average value of the stochastic process ∆(t).

In this case, the problem can be solved analytically (for details see Ref. [47]),
giving rise to the following expression for the mean first passage time (MFPT)

t1(ν) =
C1(ν)
γ1(ν)

+
C2(ν)
γ2(ν)

=
W+

0 (ν) + ν

(W+
0 (ν))2 + νW+

0 (ν)− (W+
1 (ν))2

, (129)

with the rates W+
i explicitly given by

W+
0 = ∆2

0a0 + ∆2aν

W+
1 = ∆0∆(a0 + aν), (130)

where aν = 1
2

∫∞
0
dτ e−ντ−Q

′(τ) cos[Q′′(τ)], and a0 ≡ aν=0. In Figure 12, the MFPT
t1, evaluated according to equation (129), is depicted as a function of the Poisson
rate ν for different values of the noise amplitude ∆. The curves approach the right
analytical limits for ν → ∞ and ν → 0. The resonantly activated regime occurs at
intermediate noise switching time scales. At large noise switching rates ν, the MFPT
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converges to the results for the average configuration which, in our case, coincides with
the unmodulated, static case. These general features are shared with the predictions
obtained in references [18–20,25] using a classical Brownian motion escape dynamics.

In Figure 12, we note also that the different curves seemingly cross exactly the
horizontal line (static case) at a switching rate which surprisingly depends very weakly
on the noise amplitude ∆. Interestingly, a similar behavior has also been observed
numerically in reference [25] for classical Brownian particle dwelling a piecewise linear
fluctuating barrier and in experiments [119].

7 Conclusions

In this tutorial review paper, we present introductory and background material along
with a brief review of recent findings concerning the dynamics of escape processes from
quantum metastable states in dissipative systems and related noise-induced effects.
Specifically, we give a brief introduction to the Caldeira–Leggett model, quantum
Langevin equation, Feynman–Vernon influence functional together with the role of
different spectral densities in the relaxation dynamics from a quantum metastable
state. The theoretical analysis is performed by a non-perturbative technique based
on the real-time path integral approach of the Feynman–Vernon influence functional.
The system dynamics is described by the Caldeira–Leggett model with and without
an external driving force, and considering an unstable initial condition.

In the absence of driving, we find that the escape time from the metastable region
exhibits a nonmonotonic behavior, with a maximum, for increasing values of the
damping. This indicates the presence of a noise induced phenomenon, which we name
quantum noise enhanced stability (qNES). We observe stabilization of the quantum
metastable state due to the damping and its interplay with the temperature, in strong
damping regime.

In the presence of a periodical external driving, within the same framework of
the dissipative quantum dynamics of the asymmetric bistable system, we analyze the
escape time from the metastable region as a function of the driving frequency and the
parameters of the thermal bath. We find a nonmonotonic behavior of the escape time
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from the metastable region as a function of the temperature, frequency of the driving,
and thermal-bath coupling, which indicates the presence of a qNES phenomenon in
the system investigated. Moreover, we observe the presence of resonant peaks and dips
in the behavior of the escape time vs. the driving frequency for low and intermediate
values of the damping parameter γ, and a ?frequency-independent? regime for very
high values of γ. A value γc exists such that for γ > γc the behavior of the escape
time reveals the presence of a transition, occurring at this critical value γc, between
two qualitatively different dynamical regimes of the metastable system.

Finally, we observe the quantum stochastic resonant activation, that is the pres-
ence of a minimum in the escape time as a function of the driving frequency, in
the resonantly activated escape from a quantum metastable state in the spin-boson
model.

All these noise-induced phenomena, considered in this tutorial review paper, rep-
resent an effective way to control the escape dynamics from dissipative quantum
metastable states, in the strong coupling regime. This control mechanism should be
of great interest for the possibility of engineering dissipative environments in meso-
scopic devices and exploiting stabilization by dissipation and driving in quantum
information.
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