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1. Introduction and main results

In recent decades many authors have studied the solvability of singular differential equations under 
different boundary conditions. A wealth of general results for singular ordinary differential equations can be 
found in monographs such as [1] or [14]. It is worth mentioning also that in [18] the reader may get acquainted 
with a rich collection of singular problems, arising in the applied sciences, whose solutions illustrate a wide 
variety of mathematical techniques.

In the present note, we deal with a one dimensional singular problem of p-Laplacian type which, specifi-
cally, can be put in the form

(|u′|p−2u′)′ = |u′|k
us

− f(t, u, u′), (1)

where p > 1, k, s > 0, I ⊂ R is an interval and f : I × R
+ × R → R

+ is positive and continuous.
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Motivation for the study of this kind of equations may be traced back at least to [11] or [3] and is given 
also in some more recent articles where this or similar equations are studied; we refer the reader to [5,7,19,
21,22,20,16,23] and their references. Let us just mention that the problem appears in physics in connection 
with (possibly degenerate) parabolic equations from fluid flow theory, in particular involving non-Newtonian 
models.

In the articles we have mentioned, all concerning ordinary differential equations, the research is focused 
on the two-point boundary value problem for (1) in a finite interval I = [0, T ], namely the problem of finding 
a positive function u(t), solving (1) in (0, T ) and satisfying the boundary conditions

u(0+) = 0, u(T−) = 0.

For brevity, we shall refer to such solutions as Dirichlet type solutions.
Some authors have also pointed out the existence of the so-called T -periodic solutions, that is, solutions 

of Dirichlet type whose derivative also vanishes at the endpoints of its domain

u′(0+) = 0, u′(T−) = 0

(a feature already accounted in [19,20,23]).
With the present paper we add a contribution to understanding the nature of the solutions of (1) in a 

number of aspects. First, we wish to extend in some way the range of powers k, s that have been considered 
in the literature. Second, we include new information about the appearance of the T -periodic solutions.

Finally, we intend to highlight the fact that the order relation between s and k determines the type of 
solutions that one can expect: roughly speaking, if s < k, (1) has “Dirichlet solutions”, while if I = R and 
s ≥ k, positive homoclinic solutions appear (a definition is recalled before the statement of Theorem 5).

The Dirichlet solutions will be presented, for simplicity, in case p = 2 only. It will be apparent that, 
differently from other results in the literature, we show that s and k may take any values as long as s < k; 
in particular the size of k is not restricted by p.

We wish also to point out that, taking advantage from the particular structure of our one-dimensional 
problem, we can adopt suitable techniques based on well known results of classical nonlinear analysis. 
Nevertheless let us remark that in the recent literature one can find results about either the n-dimensional 
Dirichlet problem, or homoclinics for n-dimensional systems, that are clearly related to those that concern 
us here (see [2,4,7,10,12,13,24]).

The paper is organized in such a way that Dirichlet solutions are studied through Sections 2–6 and the 
approach to homoclinics is done in the final section.

In order to state our results for Dirichlet solutions let us write the equation, for notational convenience, 
as

u′′ = |u′|2β
uμ

− f(t, u, u′). (2)

In the statements of Theorems 1–4 we assume
(H) f : [0, T ] × R

+ × R → R
+ is continuous and

Mf = sup
[0,T ]×R+×R

f < +∞, mf := inf
[0,T ]×R+×R

f > 0.

Theorem 1. Let 2β > μ. Then equation (2) has a solution of Dirichlet type on the interval (0, T ).

Recall that a T -periodic positive solution is a function u ∈ C2(0, T ) ∩ C1([0, T ]) such that u(t) > 0 for 
t ∈ (0, T ), satisfying (2) in (0, T ) and u(0+) = 0 = u(T−), u′(0+) = 0 = u′(T−).
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Theorem 2. If μ = β, then equation (2) has a T -periodic solution under one of the following conditions:
(i) β ≥ 1, or (ii) β ∈ (0, 1) and

Mf ≤ (2β)
β

1−β (1 − β). (3)

Theorem 3. If β > μ ≥ 1, then equation (2) has a T -periodic solution.

Theorem 4. If 2β > μ > β, then equation (2) has a T -periodic solution under one of the following conditions:
(i) μ ≥ 1, or (ii) μ ∈ (0, 1) and either

Mf ≤ min
{

8
T 2 , (2β)

β
1−β (1 − β)

}
(4)

or

T ≤ 2
√

2M
− 1+μ−2β

2(μ−β)
f

(
2β(1 − β)

1 − μ

) β
2(μ−β)

(1 − β)
1−β

2(μ−β) . (5)

Remark 1. Theorems 2 and 4 include the case when μ ∈ (0, 1), as far as we know this is the first work where 
an equation put in the form (2) is considered with a weak singularity. We refer the reader to [6,15,17] to 
review works dealing with this type of singularity. In Theorem 3 an analogous result cannot be proven (see 
Remark 3).

Remark 2. The existence of T -periodic solutions to the equation (2) when μ ∈ (0, 1) and β ≤ μ/(1 − μ)
seems to be a more difficult problem, even in the autonomous case (see Section 5). The analysis of this case 
can be a nice open problem.

Finally we state a result concerning homoclinic solutions of (1). By a (positive) homoclinic solution of (1)
we mean a solution u(t) defined in R such that u(t) > 0 ∀t ∈ R and

lim
t→±∞

u(t) = 0, lim
t→±∞

u′(t) = 0.

Theorem 5. Let 1 < p < ∞, k > 1 and s ≥ k, and assume in addition

(i) there exist positive constants α, γ, r and a positive, continuous function β : R × R
+ → R, with 

0 < α ≤ β, such that

0 < r < k (6)

and

α ≤ f(t, x, y) ≤ β(t, x) + γ|y|r, (7)

for every (t, x, u) ∈ R × [0, +∞) × R and moreover

sup
t∈R

max
x∈[0,M ]

β(t, x) < ∞ (8)

for every M > 0.

Then for every M > 0 equation (1) admits at least one positive homoclinic solution u such that 
maxt∈R u = M .
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2. The method of lower and upper solutions

We start by recalling the meaning of lower and upper solutions to a general equation

u′′ = h(t, u, u′), (9)

where h ∈ C([a, b] ×D × R; R), with D ⊆ R an open interval. The following definition is a particular case 
of the definitions of lower and upper functions introduced in [8] (see also [9]).

Definition 1. The continuous function σ : (a, b) → D is said to be a lower (upper) solution to equation (9) if, 
for some a < t1 < . . . < tn < b, σ ∈ C2((a, b) \{t1, . . . , tn}; D), there exist finite limits σ(a+), σ(b−), σ′(ti+), 
and σ′(ti−), i = 1, . . . , n, such that

σ′(ti−) ≤ σ′(ti+) (resp. σ′(ti−) ≥ σ′(ti+)), i = 1, . . . , n,

and

σ′′ ≥ h(t, σ, σ′) (resp. σ′′ ≤ h(t, σ, σ′)) for t ∈ (a, b) \ {t1, . . . , tn}.

The following lemma deals with the existence of a solution to equation (9) satisfying the boundary 
conditions

u(a+) = c1, u(b−) = c2. (10)

The result is a simple modification of the Scorza-Dragoni Theorem and its proof can be found in [9].

Lemma 1. Assume D = R. Let σ1 and σ2, respectively, lower and upper solutions to equation (9) such that

σ1(t) ≤ σ2(t) for t ∈ (a, b), (11)

and

|h(t, x, y)| ≤ K for t ∈ (a, b), σ1(t) ≤ x ≤ σ2(t), y ∈ R,

where K > 0. Let c1 ∈ [σ1(a+), σ2(a+)] and c2 ∈ [σ1(b−), σ2(b−)]. Then, problem (9)–(10) has a solution 
u ∈ C2((a, b); R) satisfying

σ1(t) ≤ u(t) ≤ σ2(t) for t ∈ (a, b). (12)

We are now in a position to prove the following result for equation (2).

Proposition 1. Let σ1 > 0 and σ2 be lower and upper solutions to equation (2) such that (11) holds with 
a = 0, b = T , and

σ1(0+) = 0 = σ1(T−), σ2(0+), σ2(T−) ≥ 0

hold. Then, equation (2) has a solution u ∈ C2((0, T ); R+) satisfying (12) (with a = 0, b = T ) and u(0+) =
0 = u(T−).
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Proof. Consider the equation

u′′ = χ(u′)
[
|u′|2β
uμ

− f(t, u, u′)
]
, (13)

where

χ(y) =

⎧⎪⎪⎨⎪⎪⎩
1, for |y| ≤ ρ1,

2 − |y|
ρ1
, for ρ1 < |y| < 2ρ1,

0 for 2ρ1 ≤ |y|,

and ρ1 := TMf + ‖σ1‖C1 + ‖σ2‖C1 (we denote the C1-norm by ‖ · ‖C1 := ‖ · ‖∞ + ‖ ·′ ‖∞). Define 
σ̃1n ≡ σ1|[t1n,t2n]. Here, (t1n)n∈N ⊆ (0, T/2), (t2n)n∈N ⊆ (T/2, T ) are sequences of points satisfying

t1n ↘ 0, t2n ↗ T,

and verifying

σ′
1(t1n) ≥ 0 ≥ σ′

1(t2n). (14)

Observe that σ̃1n is a lower solution of (13) in the interval [t1n, t2n] for any n ∈ N. Since σ2 is also an upper 
solution of (13), by Lemma 1, for any n ∈ N equation (13) has a solution un defined on [t1n, t2n] such that

un(t1n) = σ1(t1n), un(t2n) = σ1(t2n), (15)

σ1(t) ≤ un(t) ≤ σ2(t) for t ∈ [t1n, t2n]. (16)

Furthermore, in view of (14), (15) and (16) one observes that

u′
n(t1n) ≥ 0 ≥ u′

n(t2n). (17)

The proof will be completed by checking three claims.

Claim 1. un is a solution of (2) on [t1n, t2n]. We notice that

u′′
n ≥ −f(t, un, u

′
n) for t ∈ [t1n, t2n].

Taking into account (17) one easily proves that

max
t∈[t1n,t2n]

|u′
n(t)| < ρ1 (18)

so that, indeed, un is solution of (2) in the interval [t1n, t2n].

Claim 2. un → u uniformly on every compact interval of [0, T ]. Moreover, u is solution of (2) in the interval 
(0, T ). Let [α, δ] ⊆ (0, T ) be a compact interval. We take n0 ∈ N sufficiently large such that t1n < α, t2n > δ

for any n ≥ n0. It is obvious that

max
t∈[α,δ]

un(t) < ρ1, max
t∈[α,δ]

|u′
n(t)| < ρ1.

Moreover,
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|u′′
n| ≤

ρ2β
1

σμ
1∗

+ ‖f‖∞ for t ∈ [α, δ],

where σ1∗ := mint∈[α,δ] σ1(t). According to the Arzelà–Ascoli Theorem we can assume without loss of gen-
erality that

un → u uniformly on [α, δ],

u′
n → v uniformly on [α, δ].

Now, it is standard to verify that u ∈ C2([α, δ]; R) with u′ = v and it is a solution to (2). This concludes 
the proof of the Claim.

Claim 3. u(0+) = 0 = u(T−). With respect to (15) and (18), for every n ∈ N we have

|un(t) − σ1(t1n)| =

∣∣∣∣∣∣
t∫

t1n

u′
n(s)ds

∣∣∣∣∣∣ ≤ ρ1|t− t1n|,

|un(t) − σ1(t2n)| =

∣∣∣∣∣∣
t∫

t2n

u′
n(s)ds

∣∣∣∣∣∣ ≤ ρ1|t− t2n|,

for t ∈ [t1n, t2n]. Hence, taking limits as n → +∞ in the last inequalities one obtains that

|u(t)| ≤ ρ1 min{t, T − t} for t ∈ (0, T ).

Therefore, u(0+) = 0 = u(T−).

The proof follows immediately from Claims 2 and 3. �
3. Periodic solutions

Throughout this section we shall assume that the equation (2) has a solution u defined on (0, T ) satisfying 
u(0+) = 0 = u(T−). The goal of this section consists in studying under what conditions we can ensure that 
u is T -periodic.

The lemma below shows that if the singularity of equation (2) is “strong” (i.e., μ ≥ 1), then the solutions 
of Dirichlet type defined on the interval (0, T ) satisfy u′(0+) = 0 = u′(T−).

Proposition 2. If μ ≥ 1, then u′(0+) = 0 = u′(T−).

Proof. First we point out that u has derivatives at the endpoints of the interval [0, T ]. Since there exist 
t1n → 0+ and t2n → T− such that u′(t1n) ≥ 0 and u′(t2n) ≤ 0 we see that |u

′(s)|2β
uμ(s) is integrable and

T∫
0

|u′(s)|2β
uμ(s) ds ≤ TMf < +∞. (19)

Hence u′(0) and u′(T ) exist. Assume now, for instance, without loss of generality, that u′(0) > 0. Thus there 
exists tu > 0 such that

2u′(0) > u′(t) > u′(0) for t ∈ [0, tu]. (20)
2
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Hence, the function u has inverse on [0, tu] and moreover

u′(0)
2 < u′(u−1(y)) < 2u′(0) for y ∈ [0, u(tu)] (21)

holds. Therefore, according to (20) and (21), the following computations can be easily verified:

T∫
0

|u′(s)|2β
uμ(s) ds ≥

tu∫
0

|u′(s)|2β
uμ(s) ds

≥
(
u′(0)

2

)2β tu∫
0

ds

uμ(s)

=
(
u′(0)

2

)2β tu∫
0

u′(s)
u′(s)uμ(s)ds

=
(
u′(0)

2

)2β u(tu)∫
0

dy

yμu′(u−1(y))

>

(
u′(0)

2

)2β 1
2u′(0)

u(tu)∫
0

dy

yμ
.

Thus, because 

u(tu)∫
0

dy

yμ
= +∞, the previous inequalities group contradicts (19).

The proof of relation u′(T−) = 0 is identical and it will be omitted. �
Solving the problem posed in this section when μ ∈ (0, 1) becomes a difficult task and requires a deeper 

treatment. There are examples proving that under this assumption solutions of Dirichlet type may exist 
which are not periodic.

4. Construction of lower and upper solutions

We now describe the construction of lower and upper solutions to the equation (2). Throughout this 
subsection the equation

u′′ = |u′|2β
uμ

− α, (22)

where α > 0, will be considered. We take advantage of the fact that the equation is autonomous and perform 
a change of variables that leads to a first order differential equation. The information obtained in this way 
will be used to construct lower (or upper) solutions to equation (2).

Given M > 0, the classical theory of the Cauchy problem ensures that the solution of

u′′ = |u′|2β
uμ

− α, u(0) = M, u′(0) = 0 (23)

is even and it is defined in some interval (−τα(M), τα(M)) and u(−τα(M)+) = 0 = u(τα(M)−). To better 
justify the feature of τα(M), we take advantage of the autonomous character of the problem (23) to reduce 
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it to a first order Cauchy problem. In fact, observing that the solution t �→ u(t) is strictly increasing, and 
therefore invertible, in (−τα(M), 0], we infer that u′ 2 may be written as a function of u, say

u′(t)2 = ψ(u(t)) for t ∈ (−τα(M), 0], (24)

where ψ = ψ(u) solves the following first order problem in (0, M ]:

ψ′ = 2
[
ψβ(u)
uμ

− α

]
, ψ(M) = 0, (25)

the letter u now denoting the independent variable. Conversely, the solution of (25) yields the restriction of 
the solution u(t) of (23) to (−τα(M), 0] by solving u′ =

√
ψ(u) with the initial condition u(0) = M . (We 

remark that, since the square root is an increasing function, this equation is uniquely solvable backwards.)
The following classical proposition holds. Its proof is omitted here.

Proposition 3. Let f : (a, b] × R → R be a continuous function and y1, y2 ∈ C1((a, b]) such that:

(i) y1(b) = y2(b),
(ii) y′2(u) = f(t, y2(u)) for u ∈ (a, b],
(iii) y′1(u) > f(t, y1(u)) for u ∈ (a, b].

Then, y1(u) < y2(u) for u ∈ (a, b).

Lemma 2. The solution of (25) is defined on the interval (0, M ]. In particular, if μ < 2β equation (22) has 
a solution of Dirichlet type in some interval (−τα(M), τα(M)).

Proof. The existence of a unique maximal positive solution ψα,M of (25) defined in the interval (0, M ]
is established by applying the classical theory of the Cauchy problem. A further reasoning based on the 
following direct observation

ψ′
α,M (u)

⎧⎪⎪⎨⎪⎪⎩
< 0, if ψα,M (u) < α

1
β u

μ
β ,

= 0, if ψ(u)α,M = α
1
β u

μ
β ,

> 0 if ψ(u)α,M > α
1
β u

μ
β ,

(26)

shows that there exists (a unique) uM ∈ (0, M) such that

(ψα,M (u) − α1/βuμ/β)(uM − u) > 0 for u ∈ (0,M) \ {uM} (27)

Indeed, (25) shows that ψα,M (u) cannot vanish in (0, M) and (26) implies that ψα,M (u) < α1/βuμ/β

∀u ∈ (0, M ] cannot hold. Hence, from (26) again we infer that the equation ψα,M (u) = α1/βuμ/β has 
exactly one solution in (0, M).

In particular, we stress that from (27) it follows that

ψα,M (u) is concave in (uM ,M). (28)

Indeed, a direct computation shows that

ψ′′
α,M (u) = 2

uμ−1ψβ−1
α,M (u) (

βuψ′
α,M (u) − μψα,M (u)

)
< 0 for u ∈ (uM ,M).
u2μ
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Finally, put

τα(M) :=
M∫
0

du√
ψα,M (u)

. (29)

First of all, observe that (28) leads to

ψα,M (u) ≥ ψα,M (uM )
M − uM

(M − u) for u ∈ [uM ,M ]. (30)

Hence, from (27) and (30), having in mind that μ < 2β, one has

τα(M) ≤ 1√
α1/β

uM∫
0

du

uμ/2β +

√
M − uM

ψα,M (uM )

M∫
uM

du√
M − u

= 1√
α1/β

2β
2β − μ

u
(2β−μ)/2β
M + 2 M − uM√

ψα,M (uM )
< +∞.

The above estimate of τα(M) concludes the proof. �
Now let us estimate the (time-map) function τα(·) associated to the problem (25). We set the function 

τα : (0, +∞) → (0, +∞), τα(M) being as in (29) for all M > 0.

Lemma 3. lim
M→+∞

τα(M) = +∞; lim
M→0+

τα(M) = 0.

Proof. We integrate (25) over the interval [u, M ] ⊆ (0, M ] in order to obtain

−ψα,M (u) = 2
M∫
u

[
ψβ
α,M (s)
sμ

− α

]
ds.

Consequently,

ψα,M (u) < 2α(M − u) for u ∈ (0,M ].

Hence

τα(M) =
M∫
0

du√
ψα,M (u)

>
1√
2α

M∫
0

du√
M − u

, (31)

whence τα(M) → +∞ as M → +∞.
We continue now with the second part of the proof. This task will be divided into two cases:

Case 1. 0 < μ ≤ β. Let us fix γ ∈ (0, β) and we define the auxiliary function

ηM (u) := u(M − u)
Mγ/β

for u ∈ [0,M ].

By a direct calculation we have
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M∫
0

du√
u(M − u)

= π. (32)

Now we shall prove that there exists M̄ < 1 such that for every M ∈ (0, M̄),

ηM (u) < ψα,M (u) for u ∈ (0,M). (33)

Indeed, observe that there exists M̄ ∈ (0, 1) such that

2M2β−μ−γ + M1−γ/β < 2α for M < M̄.

At this point, given M < M̄ , a direct computation shows that, for every u ∈ (0, M) one has

η′M (u) = M1−γ/β − 2 1
Mγ/β

u > −M1−γ/β > 2
[
M2β−μ−γ − α

]
= 2

[
1

Mγ
Mβ−μMβ − α

]
> 2

[
1

Mγ

uβ(M − u)β

uμ
− α

]
= 2

[
ηM (u)β

uμ
− α

]
.

The inequality (33) follows directly from Proposition 3. Finally, for M ∈ (0, M̄), according to (32), (33) it 
follows that

τα(M) < M
γ
2β

M∫
0

du√
u(M − u)

= πM
γ
2β .

Thus τα(M) → 0 as M → 0. The proof is complete in this case.

Case 2. β < μ < 2β. Let us now fix r > 0 such that 1 < μ/β < r < 2 and define the auxiliary function

ζM (u) := ur(M − u)
M

for u ∈ [0,M ].

Then

M∫
0

du√
ur(M − u)

= kM
1−r
2 , (34)

where k > 0 is independent of M . This follows easily by the substitution u = Mv, and

k :=
1∫

0

dv√
vr(1 − v)

< +∞.

Following the same arguments of Case 1, now we shall prove that there exists M̄ ∈ (0, 1) such that for every 
M ∈ (0, M̄),

ζM (u) < ψα,M (u) for u ∈ (0,M). (35)
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In fact, there exists M̄ ∈ (0, 1) such that

2Mrβ−μ + (r + 1)Mr−1 < 2α for M < M̄.

For a fixed M < M̄ one has

ζ ′M (u) = rur−1 − (r + 1)u
r

M
> −(r + 1)Mr−1 > 2

[
Mrβ−μ − α

]
= 2

[
1

Mβ
Mrβ−μMβ − α

]
> 2

[
1

Mβ
urβ−μ(M − u)β − α

]
= 2

[
1

Mβ

urβ(M − u)β

uμ
− α

]
= 2

[
ζM (u)β

uμ
− α

]
.

The inequality (35) follows directly from Proposition 3. Finally, for M ∈ (0, M̄), according to (34), (35) it 
follows that

τα(M) < M1/2
M∫
0

du√
ur(M − u)

= kM1− r
2 .

Thus τα(M) → 0 as M → 0. The proof is complete. �
Using Lemma 3 and the continuity of the map τα(M) we can state the following assertion.

Corollary 1. Im τα = (0, +∞).

The next step is devoted to compare the time maps associated to the following problems

ψ′ = 2
[
ψβ

uμ
− αi

]
, ψ(Mi) = 0, for i = 1, 2;

assuming that α2 > α1.

Lemma 4. τα1(M) > τα2(M) for M := M1 = M2.

Proof. Observing that ψ′
α2,M

(M) < ψ′
α1,M

(M), from Proposition 3 follows that ψα2,M (·) > ψα1,M (·) on the 
interval (0, M). Hence,

τα2(M) =
M∫
0

du√
ψα2,M (u)

<

M∫
0

du√
ψα1,M (u)

= τα1(M). �

Lemma 5. For every M1 > 0 there exists M2 > M1 such that τα1(M1) = τα2(M2). Moreover, the inequality

ψα2,M2(u) > ψα1,M1(u) for u ∈ (0,M1) (36)

holds.
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Proof. Given M1 > 0, Lemma 4 assures that τα2(M1) < τα1(M1). In view of Lemma 3, limM→+∞ τα2(M) =
+∞. Hence, by the continuity of the function τα2(·) one has that the set τα2([M1, +∞)) is an unbounded 
interval containing τα1(M1) in its interior. This leads to the existence of M2 > M1 such that τα2(M2) =
τα1(M1).

Now let us prove that (36) holds. Following the same arguments as in the proof of Lemma 2, if we put 
Λ = {ω ∈ (0, M1) : ψα2,M2(u) ≥ ψα1,M1(u) for u ∈ (ω, M1]}, as a consequence of Proposition 3 one can 
verify that

Λ = (0,M1). (37)

Moreover, if by contradiction there exists ū ∈ (0, M) such that ψα2,M2(ū) = ψα1,M1(ū), then from α1 < α2
one deduces that ψ′

α2,M2
(ū) < ψ′

α1,M1
(ū). Hence, there exists ω ∈ (ū, M) such that ψα2,M2(u) < ψα1,M1(u)

for every u ∈ (ū, ω), in contradiction with (37). �
Combining Lemma 2 and Corollary 1 and introducing a translation of time, the following assertion is 

obtained.

Proposition 4. Assume that μ < 2β. For any T > 0, equation (22) has a solution of Dirichlet type in the 
interval (0, T ). That solution is symmetric about the midpoint of the interval.

We close this section with some comments on the construction of lower (also upper) solutions to equa-
tion (2) based on Proposition 4.

Corollary 2. There exists a lower solution σ1 (resp. an upper solution σ2) to the equation (2) such that 
σ1(0+) = 0 = σ1(T−) (resp. σ2(0+) = 0 = σ2(T−)).

Proof. Observe that σ1 can be defined as the solution of Dirichlet type defined in the interval (0, T ) for the 
equation (22) with α = mf (see Proposition 4). Analogously we construct σ2, the only difference being to 
consider α = Mf instead of α = mf . �

Next we investigate the well-ordering of the lower and upper solutions constructed in Corollary 2 i.e., 
letting σ1 and σ2, respectively, be the lower and upper solution of (2) connected to the equation (25) with 
α1 = mf , resp. with α2 = Mf (see Corollary 2), we want to know whether σ1 ≤ σ2 on the interval (0, T ). 
For this purpose we denote by τα1(·) and τα2(·), respectively, their associated time maps. The lemma below 
provides the desired order.

Proposition 5. With the above notation the inequality

σ1(t) ≤ σ2(t) for t ∈ (0, T ) (38)

holds.

Proof. Notice that there is no loss of generality in assuming that α1 < α2 (otherwise the proof is trivial). By 
Corollary 1 there exists M1 > 0 such that τα1(M1) = T/2. From Lemma 5 there exists M2 > M1 such that 
τα2(M2) = τα1(M1) and (36) holds. Hence, according to the discussion done in this section with respect to 
the relation between σi and the solutions of the problem (25) (remember that α1 = mf and = α2 = Mf ), 
we have the estimate σ2(T/2) = M2 > M1 = σ1(T/2). If (38) does not hold, we can assume without loss 
of generality that there exists t∗ ∈ (0, T/2) such that 0 < σ2(t∗) = σ1(t∗) < M1. From (36) remember that 
ψα2,M2(u) > ψα1,M1(u) for all u ∈ (0, σ1(t∗)). Hence, we achieve the contradiction
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t∗ =
σ1(t∗)∫
0

ds√
ψα1,M1(s)

>

σ2(t∗)∫
0

ds√
ψα2,M2(s)

= t∗.

The proof is complete. �
5. Periodic solutions in the autonomous case

In this section we shall analyze equation (22) with respect to the existence of T -periodic solutions. This 
will be done by exploring the fact that solutions of this type are related to solutions of (25) such that 
ψ(0+) = 0 (see (24) in Section 4).

5.1. Case μ = β

This is the easiest case, since our problem (25) then concerns a first order homogeneous equation:

ψ′ = 2
[(

ψ

u

)β

− α

]
, ψ(M) = 0.

According to the elementary technique applicable to such equations, we introduce a new dependent variable 
z by the transformation ψα,M (u) = uz(u) and we obtain

z′ = 2zβ − z − 2α
u

, z(M) = 0,

and we find explicitly

u = M exp

⎡⎢⎣ z(u)∫
0

ds

2sβ − s− 2α

⎤⎥⎦ . (39)

Lemma 6. Assume that μ = β. Under one of the following conditions

1. β ≥ 1,
2. (2β)

β
1−β (1 − β) ≥ α,

it follows that ψα,M (0+) = 0. In other words, the equation (22) possesses a T -periodic solution.

Proof. Consider the function

ξ : [0,+∞) → R, ξ(x) := 2xβ − x− 2α.

Observe that under the hypotheses 1. or 2. there exists r > 0 such that ξ(r) = 0 and ξ(x) < 0 for all 
x ∈ (0, r). In view of (39) we infer that z(0+) = r, whence it follows that ψα,M (0+) = 0. �
5.2. Case β > μ

In this case examples may be given which show that T -periodic solutions are not always available. The 
following remark better explains this circumstance.
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Remark 3. Assume that β > μ/(1 − μ), μ ∈ (0, 1). Then the solution of (25) is such that ψα,M (0+) > 0. In 
other words, the equation (22) does not possess T -periodic solutions. Indeed, if ψα,M(0+) = 0 then there 
exists an interval (0, u∗) where ψα,M (u) < 1. Hence, in such an interval one has

ψα,M (u) = ψα,M (u) − ψα,M (0+) = 2
u∫

0

ψβ
α,M (s)
sμ

ds− 2αu

< 2
u∫

0

ds

sμ

= 2
1 − μ

u1−μ.

On the other hand, in view of (27), one has

α1/βuμ/β < ψα,M (u) < 2
1 − μ

u1−μ

for all u ∈ (0, u∗) small enough, a contradiction since μ/β < 1 − μ.

Nevertheless, after combining Propositions 2 and 4, the result below follows easily.

Lemma 7. Assume that 1 ≤ μ < β. Then (22) has a T -periodic solution.

5.3. Case β < μ < 2β

In this case (25) will be compared with a homogeneous problem to be solved for w = w(u):

w′ = 2
[(w

u

)β
− α

]
, w(M) = 0,

using the results from Subsection 5.1.

Lemma 8. Assume that β < μ < 2β. Under one of the following conditions

1. μ ≥ 1,
2. α ≤ min

{
8/T 2, (2β)

β
1−β (1 − β)

}
,

it follows that ψα,M (0+) = 0. In other words, the equation (22) possesses a T -periodic solution.

Proof. Taking into account that α ≤ 8/T 2 and τα(M) = T/2, by (31) one observes that 0 < M < 1. Since 
uμ < uβ if u ∈ (0, 1) (observe that μ > β and w is defined above), we obtain ψα,M (u) ≤ w(u) for u ∈ (0, 1). 
According to Lemma 6 (or Proposition 2) we have w(0+) = 0, and we deduce that ψα,M (0+) = 0. �

Now we show that for a suitable small T > 0 there exists a T -periodic solution of (22) assuming that 
μ ∈ (0, 1). More precisely,

Lemma 9. Assume that β < μ < 2β and μ ∈ (0, 1). Then, the equation (22) has a T -periodic solution 
provided that
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T ≤ 2
√

2
(

1
α

) 1+μ−2β
2(μ−β)

[
2β(1 − β)

1 − μ

] β
2(μ−β)

(1 − β)
1−β

2(μ−β) . (40)

Proof. Consider the problem (25). By the transformation z = ψα,M (uγ) we obtain the equivalent problem

z′ = 2γ
(( z

u

)β
− αuγ−1

)
, z(M1/γ) = 0,

here γ := (1 − β)/(1 − μ) > 1. Compare this problem with

w′ = 2γ
((w

u

)β
− αM

γ−1
γ

)
, w(M1/γ) = 0. (41)

Since γ > 1 one easily checks that z ≤ w in some neighborhood of 0. Again, we introduce a new dependent 
variable v by the transformation w(u) = uv(u) in order to reduce the problem (41) to

v′ = 2γvβ − v − 2γαM
γ−1
γ

u
, v(M1/γ) = 0,

and we obtain

u = M1/γ exp

⎡⎢⎣− v(u)∫
0

ds

s− 2γsβ + 2γαM
γ−1
γ

⎤⎥⎦ . (42)

Consider the function

ξ : [0,+∞) → R, ξ(x) := x− 2γxβ + 2γαM
γ−1
γ .

Observe that there exists r > 0 such that ξ(r) = 0 and ξ(x) > 0 for all x ∈ (0, r) if we assume that

M ≤
(

1
α

) 1−β
μ−β

(
2β(1 − β)

1 − μ

) β
μ−β

(1 − β)
1−β
μ−β . (43)

Hence, according to (42) we deduce that v(0+) = r, whence it follows that z(0+) = 0; therefore 
ψα,M (0+) = 0. The remaining of the proof is devoted to check that (40) implies (43). Indeed, in view 
of the discussions done above it turns out that τα(M) = T/2, and by (31) we obtain that M ≤ αT 2/8. The 
latter inequality combined with (40) yields (43). The proof is complete. �
6. Proof of Theorems 1–4

We now assume the framework of Section 1.

Proof of Theorem 1. Considering the equation (22) with α = mf , by Proposition 4 we obtain σ1 a solution 
of Dirichlet type in the interval (0, T ), which is a lower solution of (2). Now we apply Proposition 4 with 
α = Mf in order to find σ2 an upper solution to equation (2). In view of Proposition 5, the inequality 
σ2 ≥ σ1 holds on the interval (0, T ). Finally the result follows applying Proposition 1. �
Proof of Theorem 2. The first part follows immediately from Theorem 1 and Proposition 2. The second part 
is a direct consequence of Proposition 1 after combining (3), Lemma 6, Corollary 2 and Proposition 5 in order 
to obtain σ1 and σ2, respectively, T -periodic lower and upper solutions to the equation (2) verifying (38). �
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Proof of Theorem 3. This follows immediately from Theorem 1 and Proposition 2. �
Proof of Theorem 4. The first part follows by using Theorem 1 and Proposition 2. Now, by combining (4)
(resp. (5)), Lemma 8 (resp. Lemma 9), Corollary 2 and Proposition 5 we find σ1 and σ2, respectively, 
T -periodic lower and upper solutions to the equation (2) satisfying (38). Consequently, the second part of 
the statement follows on the basis of Proposition 1. �
7. Proof of Theorem 5

Let us start with some preliminary results.
Given M > 0 we will consider the following Cauchy problem⎧⎪⎪⎨⎪⎪⎩

(|u′|p−2u′)′ − |u′| k
us

+ f(t, u, u′) = 0,
u(0) = M,

u′(0) = 0.

(44)

Let us recall that a solution (around zero) of problem (44) is any function w ∈ C1(a, b), with 0 ∈ (a, b) ⊆ R, 
such that |w′|p−2w′ ∈ C1(a, b) and⎧⎪⎪⎨⎪⎪⎩

(|w′(t)|p−2w′(t))′ − |w′(t)| k
ws(t) + f(t, w(t), w′(t)) = 0, ∀t ∈ (a, b)

w(0) = M,

w′(0) = 0.

The next two propositions stress some nice properties of the positive solutions of (44) that will be crucial 
in the proof of Theorem 5.

Proposition 6. Let w : (a, b) → R be a positive solution of (44) and put

K(w) = {t ∈ (a, b) : w′(t) = 0}, M(w) = {t ∈ (a, b) : t is a local maximizer of w}.

Then K(w) ⊂ M(w).

Proof. First observe that K(w) �= ∅ since 0 ∈ K(w). Pick t0 ∈ K(w), then for every t ∈ (t0, b) one has

|w′(t)|p−2w′(t) =
t∫

t0

(
|w′(τ)| k
ws(τ) − f(τ, w(τ), w′(τ))

)
dτ.

Hence, if t is in a suitable right neighborhood U+ of t0, in view of the fact that w′ ∈ C1, recalling that 
t0 ∈ K(w) and exploiting the positivity of w and of f , it is clear that

w′(t) < 0 ∀t ∈ U+.

Reasoning in a similar way, it is possible to find a left neighborhood U− of t0 such

w′(t) > 0 ∀t ∈ U−.

Finally, it is easy to conclude that t0 ∈ M(w). �
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Proposition 7. Let w : (a, b) → R be a positive solution of (44). Then w can not be locally constant.

Proof. Assume that there exist t0 ∈ (a, b), δ > 0 such that (t0 − δ, t0 + δ) ⊂ (a, b) and w(t) = w(t0) for all
t ∈ (t0 − δ, t0 + δ). Then,

f(t, w(t), w′(t)) = −(|w′(t)|p−2w′(t))′ + |w′(t)|k
ws(t) = 0

for every t ∈ (t0 − δ, t0 + δ), in contradiction with (i). �
Proposition 8. Let w : (a, b) → R be a positive solution of (44). Then,

K(w) = {0}. (45)

Proof. It has been already observed that 0 ∈ K(w). Assume that there exists t0 ∈ K(w) \ {0} and suppose 
t0 < 0 (the other case is analogous). From Proposition 6 one has that 0 and t0 are both local maximizers 
of w. Thus, there exists t1 ∈ (t0, 0) that is a global minimum of w|[t0,0]. Hence, if we put N (w) = {t ∈
(a, b) : t is a local minimum of w}, having in mind Proposition 6, we obtain

t1 ∈ M(w) ∩N (w),

namely w is constant in a neighborhood of t1, in contradiction with Proposition 7. �
Proposition 9. Let w : (a, b) → R be a positive solution of (44). Then, w is increasing in (a, 0) and decreasing 
in (0, b) and, in particular, w(0) = maxt∈(a,b) w(t).

Proof. From Propositions 6 and 8 it follows that 0 is the only critical point that, in particular, is a local 
maximum of w.

We claim that

w′(t) > 0 ∀t ∈ (a, 0), (46)

that leads to the first part of the conclusion. If (46) does not hold, because of Proposition 8, there exist 
t0 ∈ (a, 0) such that w′(t0) < 0. But, again from Proposition 8, this means that w′(t) < 0 for every t ∈ (a, 0), 
namely w is decreasing in (a, 0) which implies that w is constant in left neighborhood of 0, in contradiction 
with Proposition 7. Hence claim (46) is true.

Reasoning in a similar way one can verify that w is decreasing in (0, b). Finally, it is obvious that 0 is 
the unique global maximum of w. �

We are now in a position to prove Theorem 5.

Proof of Theorem 5. Fix M > 0 and divide the proof in three steps.

Step 1: existence of the local solution.
Observe that, since f is continuous, after writing (44) as a system of equations, the classical theory of the 
Cauchy problem ensures that there exists T > 0 and a positive function v ∈ C1(−T, T ) that is a solution of 
problem (44) in (−T, T ).

Step 2: existence of the maximal solution.
For every interval (a, b) ⊆ R, with −∞ ≤ a ≤ −T < T ≤ b ≤ +∞, put Iba = (a, b) and

X(a,b) = {w ∈ C1(Iba)
∣∣ w is positive and solves (44) in Iba },
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E =
{

(Iba, w)
∣∣∣ w ∈ X(a,b) and w|IT

−T
= v

}
.

Of course (IT−T , v) ∈ E . Moreover, let us point out that for every (Iba, w) ∈ E , with −∞ < a (b < +∞), one 
has

w(a+) = lim
t→a+

w(t) > 0,
(
w(b−) = lim

t→b−
w(t) > 0

)
. (47)

In fact, consider the case −∞ < a (the case b < +∞ is the same) from Proposition 9 we already know that 
w(a+) exists. Moreover, because w is positive, it is clear that

w(a+) ≥ 0.

By contradiction assume that (47) does not hold, namely w can be extended up to t0 = a with continuity 
by putting

w(a) = w(a+) = 0. (48)

Letting 0 < b̃ < b, for every ε > 0 small enough, because w solves (44) in I b̃a, integrating one has

b̃−ε∫
a+ε

|w′(t)|k
w(t)s dt =

b̃−ε∫
a+ε

(
(|w′(t)|p−2w′(t))′ + f(t, w(t), w′(t))

)
dt

≤ |w′(̃b− ε)|p−2w′(̃b− ε) − |w′(a + ε)|p−2w′(a + ε)

+
b̃−ε∫

a+ε

(β(t, w(t)) + γ|w′(t)|r) dt (49)

≤ (̃b− a) max
[a,b̃]×[0,M ]

β(t, x) + γ

b̃−ε∫
a+ε

|w′(t)|r
w

sr
k (t)

w
sr
k (t) dt

≤ (̃b− a) max
[a,b̃]×[0,M ]

β(t, x) + c1γ

⎛⎜⎝ b̃−ε∫
a+ε

|w′(t)|k
ws(t) dt

⎞⎟⎠
r/k

with c1 a positive constant independent from ε and where the fundamental theorem of calculus, condition (i) 
of the statement of Theorem 5, as well as Proposition 9 and the Hölder inequality have been exploited. 
Passing to the limit as ε → 0+ in (49) and recalling condition (6), one has

|w′|k
ws

∈ L1(a, b̃).

Hence, if k′ is the conjugate exponent of k and t is such that w(τ) < 1 for every τ ∈ [a, t], we have

t∫
a

|w′(τ)| dτ =
t∫

a

|w′(τ)|
|ws/k(τ)| |w

s/k(τ)| dτ

≤

⎛⎝ t∫ |w′(τ)|k
ws(τ) dτ

⎞⎠1/k⎛⎝ t∫
wsk′/k(τ) dτ

⎞⎠1/k′
a a
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≤

⎛⎜⎝ b̃∫
a

|w′(τ)|k
ws(τ) dτ

⎞⎟⎠
1/k⎛⎝ t∫

a

wk′
(τ) dτ

⎞⎠1/k′

.

This implies that, for every τ ∈ (a, t), w(t) ≤
t∫

a

|w′(τ)| dτ ≤ c2

⎛⎝ t∫
a

wk′
(τ) dτ

⎞⎠1/k′

, so that

wk′
(t) ≤ ck

′

2

t∫
a

wk′
(τ) dτ,

where c2 is a constant independent from t. Thus, Gronwall’s lemma leads to w(τ) = 0 for every τ ∈ [a, t]
which is absurd, and (47) holds.

Let us introduce the following order in E

(Ib1a1
, w1) ≤ (Ib2a2

, w2) ⇔ (a1, b1) ⊆ (a2, b2) and w2|(a1,b1) = w1,

namely (Ib2a2
, w2) is greater than (Ib1a1

, w1) if w2 is a solution of (44) that extends w1 to the interval (a2, b2).
Fix a chain (that is, a totally ordered subset) C in E and put

IC = ∪
{
Iba : (Iba, w) ∈ C for some w ∈ X(a,b)

}
.

That is IC is an open interval containing (−T, T ), let us say

IC = I b̄ā,

with −∞ ≤ ā ≤ −T < T ≤ b̄ ≤ +∞. Define z̄ : I b̄ā → R by putting

z̄(t) = w(t)

for every t ∈ I b̄ā, where w ∈ X(a,b) with t ∈ Iba for some Iba and (Iba, w) ∈ C. The function z̄ is well defined, 
because if Ib1a1

, Ib2a2
are such that t ∈ Ib1a1

∩ Ib2a2
and (Ib1a1

, w1), (Ib2a2
, w2) ∈ C, then, assuming that Ib1a1

≤ Ib2a2

(the opposite case is analogous) one has w1(t) = w2(t). It is easy to check that

(I b̄ā, z̄) ∈ E and (Iba, w) ≤ (I b̄ā, z̄) ∀(Iba, w) ∈ C.

Hence, Zorn’s lemma ensures the existence of a maximal element (Ib∗a∗ , u∗) ∈ E .
We claim that

Ib
∗

a∗ = R. (50)

By contradiction, assume that (50) is false. Namely, suppose −∞ < a∗ (the case b < +∞ is analogous). 
From (47) u∗ can be extended with continuity up to a∗ by putting

u∗(a∗) = lim
t→a∗+

u∗(t),

and u∗(a∗) > 0. Let us distinguish the cases

(u∗ ′)1 lim inf
∗+

u∗ ′
(t) ≤ lim supu∗ ′

(t) < +∞,

t→a t→a∗+
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(u∗ ′)2 lim inf
t→a∗+

u∗ ′
(t) < lim sup

t→a∗+
u∗ ′

(t) = +∞,

(u∗ ′)3 lim
t→a∗+

u∗ ′
(t) = +∞.

Assume (u∗ ′)1. Then, from Proposition 9,

0 ≤ lim inf
t→a∗+

u∗ ′
(t) ≤ lim sup

t→a∗+
u∗ ′

(t) < +∞,

that is, u∗ ′ is bounded on (a∗, 0). Hence, since for every t ∈ (a∗, 0)

(|u∗ ′
(t)|p−2u∗ ′

(t))′ = |u∗ ′(t)|k
(u∗)s(t) − f(t, u∗(t), u∗ ′

(t)),

putting

v∗ = |u∗ ′ |p−2u∗ ′
, (51)

there exists K > 0 such that

sup
t∈(a∗,0)

|(v∗)′(t)| ≤ K.

Thus, for every {tn} in Ib
∗

a∗ with tn → a∗ one has

|v∗(tm) − v∗(tn)| =

∣∣∣∣∣∣
tm∫

tn

(v∗)′(t) dt

∣∣∣∣∣∣ ≤ K|tm − tn|,

namely {v∗(tn)} is a Cauchy sequence and

0 ≤ lim
t→a∗+

v∗(t) < +∞.

Put u∗ ′(a∗) = (limt→a∗+ v∗(t))1/(p−1). It is clear that u∗ ∈ C1[a∗, 0] and, in particular,

u∗ ′
(a∗) > 0.

In fact, if u∗ ′(a∗) = 0, then reasoning as in Proposition 6, a∗ is a local maximum. Recalling that u∗ is 
increasing in (a∗, 0) we obtain that u∗ is locally constant near a∗ in contradiction with Proposition 7.

Let us now consider the Cauchy problem⎧⎪⎪⎨⎪⎪⎩
(|v′|p−2v′)′ − |v′|k

vs
+ f(t, v, v′) = 0,

v(a∗) = u∗(a∗),
v′(a∗) = u∗ ′(a∗),

that yields a solution z ∈ C1(a∗ − ε, a∗ + ε), with ε > 0 such that

z(t) > 0, z′(t) > 0

for every t ∈ (a∗ − ε, a∗ + ε). At this point, the function uε : (a∗ − ε, b∗) → (0, M ] defined by
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uε(t) =
{

z(t) if t ∈ (a∗ − ε, a∗]
u∗(t) if t ∈ [a∗, b∗)

is such that (Ib∗a∗−ε, uε) ∈ E . In particular, in order to verify that |u′
ε|p−2u′

ε ∈ C1(Ib∗a∗−ε), it is enough to 
check the regularity at a∗. Hence,

lim
t→a∗−

(|u′
ε(t)|p−2u′

ε(t))′ = lim
t→a∗−

(
|z′(t)|k
zs(t) − f(t, z(t), z′(t))

)
= |u∗ ′(a∗)|k

(u∗(a∗))s − f(a∗, u∗(a∗), u∗ ′
(a∗))

= lim
t→a∗+

|u∗ ′(t)|k
(u∗(t))s − f(t, u∗(t), u∗ ′

(t))

= lim
t→a∗+

(|u′
ε(t)|p−2u′

ε(t))′.

Moreover, (Ib∗a∗ , u∗) ≤ (Ib∗a∗−ε, uε), against the maximality of (Ib∗a∗ , u∗). Namely (u∗ ′)1 can not occur.
Assume (u∗ ′)2. In this case we have that v∗ defined in (51) is a C1 oscillatory function and one can find 

a sequence {tn} in (a∗, 0) with tn → a∗ and such that

lim
n→+∞

u∗ ′
(tn) = +∞,

(v∗)′(tn) = 0 ∀n.

Thus, for every n,

0 = (v∗)′(tn)
|u∗ ′(tn)|k = 1

(u∗(tn))s − f(tn, u∗(tn), u∗ ′(tn))
|u∗ ′(tn)|k .

Exploiting (i) and passing to the limit in the previous condition we achieve again a contradiction, namely 
(u∗ ′)2 can not occur.

Assume (u∗ ′)3. Then, because u∗ solves (44) and taking into account (i), it is clear that v∗ as defined 
in (51) is such that

lim
t→a∗+

(v∗)′(t) = +∞.

Let t̄ ∈ (a∗, 0) such that (v∗)′(t) > 1 for every t ∈ (a∗, ̄t). Then, one has

v∗(t̄) − v∗(t) =
t̄∫

t

(v∗)′(τ) dτ > t̄− t

for each t ∈ (a∗, ̄t). Hence, v∗ is bounded in (a∗, ̄t), as well as u∗ ′ , in contradiction with (u∗ ′)3.
Finally, all these contradictions assure that (50) is true.

Step 3: the maximal solution is a homoclinic.
Summarizing, with Steps 1 and 2 we have proved that the original positive local solution v ∈ C1(−T, T )
of (44) can be extended by u∗ up to the real line still preserving the positivity. Moreover, in view of 
Proposition 9, we are sure that u∗ is increasing in (−∞, 0) and decreasing in (0, +∞), and moreover 
M = u∗(0) = maxR u∗. Hence, the proof will be concluded choosing u = u∗ and verifying that
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L = lim
|t|→+∞

u(t) = 0 (52)

and

L′ = lim
|t|→+∞

u′(t) = 0. (53)

It is clear that, by the monotonicity and the sign properties of u, L exists and L ≥ 0. Moreover, because 
for every t ∈ R there exists τt ∈ (t − 1, t) such that

u(t) − u(t− 1) = u′(τt),

passing to the limit for t → −∞ and having in mind that u′(t) > 0 in (−∞, 0), we find

lim inf
t→−∞

u′(t) = 0. (54)

By contradiction, if L > 0 let us distinguish the cases

(u′)1 lim sup
t→−∞

u′(t) > 0,

(u′)2 lim sup
t→−∞

u′(t) = 0.

Assume (u′)1. Then |u′|p−2u′ is a C1 function having an oscillatory behavior at −∞, that is, from (54) one 
can find a sequence {tn} with tn → −∞ such that

u′(tn) → 0,

(|u′(tn)|p−2u′(tn))′ = 0 ∀n.

Hence, for every n

0 = (|u′(tn)|p−2u′(tn))′ = |u′(tn)|k
(u(tn))s − f(tn, u(tn), u′(tn)).

Passing to the limit inferior in the previous condition and taking into account assumption (i), one obtains

0 < α ≤ lim inf
n→∞

f(tn, u(tn), u′(tn)) = 0

which is a contradiction. Namely, (u′)1 does not hold.
Assume (u′)2. In this case limt→−∞ u′(t) = 0, which implies, arguing as in the proof of (54), but with 

|u′|p−2u′ in place of u, that

lim inf
t→−∞

|(|u′(t)|p−2u′(t))′| = 0.

Pick a sequence {tn} such that tn → −∞ and (|u′(tn)|p−2u′(tn))′ → 0. Then, since for every n one has

(|u′(tn)|p−2u′(tn))′ = |u′(tn)|k
(u(tn))s − f(tn, u(tn), u′(tn)),

passing to the limit inferior we achieve again the contradiction
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0 < α ≤ lim inf
n→+∞

f(tn, u(tn), u′(tn)) = 0
L2 = 0.

Thus also (u′)2 does not hold and we conclude that (52) is true.
Finally, we already observed that (54) holds. If we assume that (u′)1 is true, let us pick a sequence {tn}

with tn → −∞ such that

u′(tn) → lim sup
t→−∞

u′(t) = L̃ > 0,

(|u′(tn)|p−2u′(tn))′ = 0 ∀n.

Then, for every n

0 = (|u′(tn)|p−2u′(tn))′ = |u′(tn)|k
(u(tn))s − f(tn, u(tn), u′(tn)). (55)

Distinguish the cases:

(L̃)1 0 < L̃ < +∞
(L̃)2 L̃ = +∞.

If (L̃)1 holds, passing to the limit superior as n → +∞ in (55), it follows that

lim sup
n→+∞

f(tn, u(tn), u′(tn)) = +∞,

in contradiction with (i).
Otherwise, if (L̃)2 holds, from (55) we derive that, for every n

0 = 1
(u(tn))s − f(tn, u(tn), u′(tn))

|u′(tn)|k

and passing to the limit on n, having in mind i), one obtains a contradiction.
Thus the case (u′)1 is excluded, so (u′)2 holds together with (54). That is, (53) holds and the proof is 

complete. �
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