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Abstract: We study the resonant dipole–dipole interaction energy between two non-inertial identical
atoms, one excited and the other in the ground state, prepared in a correlated Bell-type state,
and interacting with the scalar field or the electromagnetic field nearby a perfectly reflecting
plate. We suppose the two atoms move with the same uniform acceleration, parallel to the plane
boundary, and that their separation is constant during the motion. By separating the contributions
of radiation reaction field and vacuum fluctuations to the resonance energy shift of the two-atom
system, we show that Unruh thermal fluctuations do not affect the resonance interaction, which is
exclusively related to the radiation reaction field. However, non-thermal effects of acceleration
in the radiation-reaction contribution, beyond the Unruh acceleration–temperature equivalence,
affect the resonance interaction energy. By considering specific geometric configurations of the
two-atom system relative to the plate, we show that the presence of the mirror significantly modifies
the resonance interaction energy between the two accelerated atoms. In particular, we find that
new and different features appear with respect to the case of atoms in the free-space, related to the
presence of the boundary and to the peculiar structure of the quantum electromagnetic field vacuum
in the locally inertial frame. Our results suggest the possibility to exploit the resonance interaction
between accelerated atoms as a probe for detecting the elusive effects of atomic acceleration on
radiative processes.

Keywords: dipole–dipole interaction; Unruh effect; quantum field theory in curved space

1. Introduction

Quantum field theory in accelerated backgrounds has led to deep insights into the fundamental
notions of vacuum and particles, forcing us to reconsider these basic concepts as observer-dependent
notions. A prominent example of this feature is given by the Unruh effect [1], affirming that an
observer moving with constant acceleration in the Minkowski vacuum feels a thermal bath at an Unruh
temperature proportional to its proper acceleration, a:

TU =
h̄

2πkBc
a, (1)
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where c is the speed of light, h̄ the Planck constant, and kB is the Boltzmann constant.
An analogous effect, in a curved space-time, is the Hawking radiation from a black hole:

a free-falling observer outside a black hole should experience a bath of thermal radiation at the
temperature TH = h̄g/(2πkBc), g being the local acceleration due to gravity at the event horizon [2].

As paradoxical as the concept of thermal radiation from vacuum may appear, the Unruh effect
is a clear manifestation of the non-unicity of the notion of quantum vacuum (and of particles),
as extensively discussed in the seminal paper by Fulling [3] and in following papers on the subject [4,5].
This conceptually subtle effect, merging classical general relativity and quantum field theory, has been
the object of intense investigations in the literature, with different and sometimes conflicting
conclusions on its physical interpretation [6–12]. Additionally, from Equation (1) (cgs units), we have

TU ∼
(

10−23a
)

K, (2)

and therefore extremely high accelerations, of the order of 1023 cm/s2, are necessary to obtain an
Unruh thermal bath of a few kelvin, thus making the detection of this effect in the laboratory drastically
difficult [6,8,13–18]. Whilst the absence of any experimental observation of the Unruh effect has led
to question the reality of the effect [12], it has been argued that the Unruh effect is a fundamental
requirement to ensure the consistency of quantum field theory [19]. In any case, a direct verification of
the effect, and in general of acceleration-dependent effects, could allow us to solve some fundamental
controversies about its physical interpretation.

Recently, the effects of an accelerated motion on the radiative properties of atoms/molecules
in vacuum have been discussed in the literature [20–26]. Changes in the spontaneous emission
rate [20,27–29] or in the Lamb shift of single uniformly accelerating atoms [21,22], as well as
the dispersion Casimir–Polder interaction between a uniformly accelerated atom and a reflecting
plate [30–34] or between two uniformly accelerated atoms [35,36], have been investigated, and their
relation with the Unruh effect was discussed. The effect of non-equilibrium boundaries on radiative
properties of atoms has been also considered [37,38].

Another, albeit related, problem, recently addressed in the literature, concerns the equivalence
between acceleration and temperature. For example, it has been discussed that non-thermal features
(related to a uniform acceleration) manifest in the dispersion (van der Waals/Casimir-Polder) and
resonance interaction between non inertial atoms in the free-space [25,26,36,39]. These investigations
reveal that the effects of a uniform acceleration are not always equivalent to Unruh thermal effects.

Motivated by these issues, in this paper, we investigate the effect of a non-inertial motion on the
resonance interaction between two atoms, that accelerate with the same constant acceleration, parallel
to a reflecting plate. The imposition of boundary conditions on the quantum field on the plate changes
vacuum field fluctuations and the density of states of the quantized radiation field, and, thus, it can
significantly influence radiative properties of atoms placed nearby [40–45]. Our aim is to investigate in
detail physical manifestations of atomic acceleration in the radiation-mediated resonance interaction
between the two atoms located in the proximity of a reflecting plate.

Resonance and dispersion Casimir–Polder interactions are long-range interactions involving
neutral objects such as atoms or molecules [46,47], due to the zero-point fluctuations of the quantum
electromagnetic field or to the source field [47–49]. When one or more atoms are in their excited
state, a resonance interaction between the atoms can occur, as a result of the exchange of real photons
between them. If the two atoms are prepared in a factorized state, the resonance interaction is a
fourth-order effect in the coupling and scales as R−2 in the far-zone limit, R� λ (λ is the wavelength
associated to the main atomic transition, and R is the interatomic distance) [50]. These interactions,
for atoms in a factorized state, have been recently investigated in the literature, also in connection with
some controversial results concerning the presence or not of space oscillating terms [51–54]. Recent
results show that the force on the excited state is oscillatory in space, while that on the ground state is
monotonic [52,53]. A different physical phenomenon occurs if two identical atoms are prepared in a
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superradiant (or subradiant) Dicke-state. In this case, the resonance interaction energy is obtained at
the second-order in the coupling, and it shows space oscillations in the far-zone limit. Such interaction
is usually stronger than dispersion interactions and scales as R−1, for very large separations (R� λ).
Resonance interactions, and the related Förster energy transfer [55], have been extensively investigated
in the literature [56]. The possibility to manipulate (enhance or inhibit) the dispersion and resonance
interactions through a structured environment has been also recently investigated [57–61].

We consider two atoms moving with the same uniform proper acceleration in a direction
parallel to a reflecting boundary and interacting with the quantum scalar and the electromagnetic
field in the vacuum state. Following a procedure originally introduced by Dalibard, Dupont-Roc,
and Cohen-Tannoudji [62,63], we identify the contribution of self reaction and vacuum fluctuations to
the resonance energy shift of the two accelerated atoms [25,39,44,64]. This approach has been recently
used to investigate radiative process of atoms at rest in the presence of a boundary [44,65] or in a
cosmic string spacetime [66], and it has been recently generalized to the fourth order to evaluate
the dispersion Casimir–Polder interaction between two atoms accelerating in the vacuum space [36].
We show that only the radiation reaction field (source field) contributes to the interatomic resonance
interaction energy, while vacuum field fluctuations do not. Consequently, the resonance interaction
does not show Unruh thermal-like terms (which are related to vacuum field fluctuations). However,
non-thermal effects of acceleration appear in the source field contribution, which significantly affect the
resonance interaction energy between the two accelerated atoms. To explore these effects, we consider
two distinct geometric configurations of the two-atom-plate system: atoms aligned perpendicular or
parallel to the plane boundary. We show that the presence of the mirror significantly modifies the
character of the resonance interaction energy between the two accelerated atoms. By an appropriate
choice of the orientation of the two dipole moments, we show that new effects of atomic acceleration
(not present for atoms at rest) appear, yielding a non-vanishing resonance interaction energy even for
specific configurations in which the interaction for stationary atoms is zero. This result also suggests
new possibilities of observing the effects of a uniform acceleration through a modification of the
resonance interatomic interaction between two identical entangled atoms. Thus, our findings could
have relevance for a possible detection of the effect of an accelerated motion in radiation-mediated
interactions between non-inertial atoms.

The paper is structured as follows. In Section 2, we briefly introduce the method used, and discuss
the resonance interaction energy between two accelerating atoms interacting with a massless relativistic
scalar field nearby a reflecting mirror. In Section 3, we extend our investigation for atoms interacting
with the vacuum electromagnetic field. Final remarks and conclusions are given in Section 4.

Throughout the paper, we adopt units such that h̄ = c = kB = 1.

2. Resonance Interaction between Two Uniformly Accelerating Atoms: The Scalar Field Case

We consider two identical atoms, A and B, interacting with a massless relativistic scalar field
in the vacuum state and in the presence of a perfectly reflecting plate satisfying Dirichlet boundary
conditions. The two atoms are modeled as point-like systems with two internal energy levels, ∓ω0/2,
associated with the eigenstates | g〉 and | e〉, respectively. We suppose that the mirror is located
at z = 0 and that the two atoms move in a direction parallel to the mirror, with the same uniform
proper acceleration, perpendicular to their (constant) separation. The atom-field Hamiltonian in the
multipolar coupling scheme and within the dipole approximation, in the locally inertial frame of the
two atoms (comoving frame), is as follows [25,36,48,67]:

H = ω0σA
3 (τ) + ω0σB

3 (τ) + ∑
k

ωka†
kak

dt
dτ
− λ

(
σA

2 (τ)φ(xA(τ)) + σB
2 (τ)φ(xB(τ))

)
, (3)

where σ3 = 1
2 (|e〉〈e| − |g〉〈g|) and σ2 = i

2 (|g〉〈e| − |e〉〈g|) are the pseudospin atomic operators,
a†

k and ak are the creation and annihilation operators of the scalar field, λ is the coupling constant,
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and xξ(τ)(ξ = A, B) is the trajectory of atom ξ (τ is the proper time of the atoms); φ(x(τ)) is the scalar
field operator, with Dirichlet boundary conditions at the surface of the plate. Equation (3) is expressed
in the comoving frame of the two atoms, and we use the Heisenberg representation.

We assume two identical atoms prepared in one of the two correlated, symmetrical (superradiant),
or antisymmetrical (subradiant) states (|ψ+〉 or |ψ−〉, respectively):

|ψ±〉 =
1√
2
(|gA, eB〉 ± |eA, gB〉). (4)

To investigate the interatomic resonance dipole–dipole interaction energy, we exploit the
procedure originally introduced in Refs. [62,63], allowing to identify the contributions of the source
field and vacuum fluctuations to the interaction energy. As discussed in [25,36,62,63], this leads to the
introduction of an effective Hamiltonian that governs the time evolution of the atomic observables,
pertaining to atom A (B), given by the sum of two terms (similar expressions are obtained for atom B,
by exchange of A and B):

(He f f
A )v f = −

i
2

λ2
∫ τ

τ0

dτ′CF(xA(τ), xA(τ
′))[σ

A f
2 (τ), σ

A f
2 (τ′)], (5)

(He f f
A )sr = − i

2 λ2
∫ τ

τ0
dτ′χF(xA(τ), xA(τ

′)){σA f
2 (τ), σ

A f
2 (τ′)} − i

2 λ2
∫ τ

τ0
dτ′
[
χF(xA(τ), xB(τ

′))

× {σA f
2 (τ), σ

B f
2 (τ′)}

]
,

(6)

where the functions CF(xA(τ), xA(τ
′)) and χF(xA(τ), xA(τ

′)) are the field statistical function
(symmetric correlation function and the linear susceptibility), respectively:

CF(x(τ), x(τ′)) =
1
2
〈0|{φ(x(τ)), φ(x(τ′))}|0〉, (7)

χF(x(τ), x(τ′)) =
1
2
〈0|[φ(x(τ)), φ(x(τ′))]|0〉. (8)

To obtain the contributions of source field and vacuum fluctuations to the energy shift of the
system, we take the average values of the effective Hamiltonians (He f f

A(B))v f and (He f f
A(B))sr on the

correlated state (4):

(δEA)v f = −iλ2
∫ τ

τ0

dτ′CF(xA(τ), xA(τ
′))χA(τ, τ′), (9)

and

(δEA)sr = −iλ2
∫ τ

τ0

dτ′χF(xA(τ), xA(τ
′))CA(τ, τ′)− iλ2

∫ τ

τ0

dτ′χF(xA(τ), xB(τ
′))CAB(τ, τ′), (10)

where τ0 → −∞ and τ → ∞ are the initial and final times (similar expressions are obtained for atom B);
χA(B)(τ, τ‘) and CA(B)(τ, τ‘) are respectively the antisymmetric and symmetric statistical functions of
atom A (B), while χAB(τ, τ‘) and CAB(τ, τ‘) refer to the collective two-atom system:

χAB(τ, τ′) =
1
2
〈ψ±|[σA f

2 (τ), σ
B f
2 (τ′)]|ψ±〉, (11)

CAB(τ, τ′) =
1
2
〈ψ±|{σA f

2 (τ), σ
B f
2 (τ′)}|ψ±〉. (12)

From expressions above, it is clear that the resonance interaction is entirely due to the source field
contribution [25]. In fact, Equation (9) does not depend on the interatomic distance; it only gives the
vacuum fluctuations contribution to the Lamb shift of each atom (A or B). Hence, this term does not
contribute to the resonance force between the atoms. Similar considerations apply to the first term
on the right-hand side of Equation (10). On the contrary, the second term on the right-hand side of



Symmetry 2018, 10, 185 5 of 18

Equation (10), which depends on the distance between the two atoms, is the only contribution relevant
at the second order to the interatomic interaction energy. Therefore, the interatomic resonant energy
shift is obtained as

δE = −i
∫ τ

τ0

dτ′χF(xA(τ), xB(τ
′))CAB(τ, τ′) + (A ⇀↽ B). (13)

This conclusion is indeed expected on a physical ground, as the resonance interaction is due to
the exchange of a (real and virtual) scalar quantum between the two correlated atoms. It is thus related
to the field emitted by the two atoms (source field). This property has important consequences when
we consider the interaction between accelerated atoms. In fact, as discussed in [25,26], this interaction
energy does not show signatures of the Unruh thermal effect (which is exclusively related to the
vacuum field correlations in the locally inertial frame). However, we find that the atomic acceleration
can determine a qualitative change of the interaction between the two atoms, even if not equivalent to
a thermal effect.

We now apply the procedure discussed above to evaluate the resonance interaction energy
between two atoms moving with uniform acceleration, interacting with the vacuum scalar field nearby
a reflecting plate. We first evaluate the field’s linear susceptibility. In the presence of a reflecting
boundary, it can be expressed as the sum of two terms, a free term (χF

0 ) that coincides with that
obtained in free-space, and a boundary-dependent term (χF

b ), related to the presence of the reflecting
plate [68]:

χF(xA(τ), xB(τ
′)) = χF

0 (xA(τ), xB(τ
′)) + χF

b (xA(τ), xB(τ
′)), (14)

with

χF
0 (xA(τ), xB(τ

′)) =
i

8π|∆x−|
[δ(∆t + |∆x−|)− δ(∆t− |∆x−|)], (15)

χF
b (xA(τ), xB(τ

′)) =
i

8π|∆x+|
[δ(∆t + |∆x+|)− δ(∆t− |∆x+|)], (16)

where xA(τ) = (t, x, y, z), xB(τ
′) = (t′, x′, y′, z′), ∆t = t− t′, and |∆x∓| = [(x− x′)2 + (y− y′)2 + (z∓

z′)2]1/2.
The atomic statistical function CAB(τ, τ‘) can also be easily obtained [25]:

CAB(τ, τ′) = ±1
8
(eiω0(τ−τ′) + e−iω0(τ−τ′)) , (17)

where the ± sign respectively refers to the symmetric or antisymmetric states (Equation (4)).
Equation (14) has a general validity and can be applied to different situations, for example,

two atoms at rest in the presence of a mirror or uniformly accelerating near a plane boundary, provided
the appropriate atomic trajectories, xA(τ) and xB(τ), are given.

We now specialize our considerations to two specific cases. We suppose a mirror located at
z = 0 and assume that the two atoms accelerate in the half-space z > 0, with the same uniform
proper acceleration, parallel to the reflecting plate. The distance between the atoms is thus constant.
We consider two different geometric configurations of the two-atom system relative to the plate:
two atoms aligned along the z-axis, perpendicular to the boundary, and two atoms aligned in a
direction parallel to the plate. This permits us to simplify our calculation and to discuss some
relevant effects of the presence of the plate on the resonant interaction energy between the two
accelerating atoms.

We first consider both atoms located along the z-direction, perpendicular to the mirror,
and uniformly accelerating along the x-direction, perpendicular to their (constant) separation, as shown
in Figure 1.
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Atom A

xy

z

z

Atom B

LL

m Btom 

a

a

Figure 1. Pictorial description of the first geometrical configuration considered for the physical
system: two atoms placed on the z-axis, perpendicular to the plate, and uniformly accelerating along
the x-direction.

In the locally inertial frame of the two-atom system, the atomic trajectories, as a function of the
proper time τ of both atoms, are

tA(τ) = tB(τ) =
1
a sinh(aτ), xA(τ) = xB(τ) =

1
a cosh(aτ),

yA = yB = 0, zA = z, zB = z + L .
(18)

In order to obtain the distance-dependent energy shift of the two-atom system, we first give the
linear susceptibility of the scalar field on the trajectories (Equation (18)) of the two atoms. Substituting
Equation (18) into the expressions of the scalar-field linear susceptibility (Equations (15) and (16)),
we obtain

χF
⊥(xA(τ), xB(τ

′)) = − 1
8π2

∫ ∞
0 dω(eiω∆τ − e−iω∆τ)

(
sin( 2ω

a sinh−1( aL
2 ))

L
√

1+ 1
4 a2L2

− sin( 2ω
a sinh−1( aR

2 ))

R
√

1+ 1
4 a2R2

)
, (19)

where ∆τ = τ − τ‘, L is the interatomic distance, andR = zA + zB = L + 2z is the distance between
one atom and the image of the second atom relative to the mirror.

The resonance dipole–dipole interaction energy is then obtained using Equations (17) and (19) in
Equation (13). We obtain

δE⊥(z, L, a) = ∓ λ2

16π

cos( 2ω0
a sinh−1( aL

2 ))

L
√

1 + 1
4 a2L2

−
cos( 2ω0

a sinh−1( aR
2 ))

R
√

1 + 1
4 a2R2

 , (20)

where the∓ sign refers to the symmetric or antisymmetric superposition of the atomic states, respectively.
The expression above describes the resonance dipole–dipole interaction energy in terms of the

proper acceleration of the two atoms and the atom-plate distances. In the limit a→ 0, it reduces to that
for atoms at rest. It consists of two terms: a term coinciding with the resonance interaction energy for
two accelerating atoms in the free-space, discussed in [25], and a new term, depending onR, related
to the presence of the mirror. The latter term, describing the effect of the boundary on the energy
shift, originates from the interaction of one atom (e.g., atom A) with the image of the other atom (B).
When both atoms are very distant from the reflecting boundary, the boundary-dependent term in



Symmetry 2018, 10, 185 7 of 18

Equation (20) goes to zero, and we recover the resonance interaction between two atoms accelerating
in free-space [25]. On the other hand, when the atoms are very close to the mirror, we can approximate
R ∼ L, and the resonance interaction is strongly suppressed. Thus, in this limit, the interaction
between the two entangled atoms can be strongly inhibited by means of the nearby plate, analogously
to the case of atoms at rest discussed in [44].

Most importantly, Equation (20) shows that the effects of the atomic acceleration are not
thermal-like. Nevertheless, the relativistic acceleration significantly affects the interaction energy,
giving a different scaling of it with the interatomic distance. In fact, similarly to the results in [25,36]
for atoms accelerating in the unbounded space, we can identify a characteristic length scale related
to the acceleration, za = 1/a. For distances larger than za, the effects of relativistic acceleration can
significantly change the interaction between the two non-inertial atoms; in fact, when R > L � za,
we obtain

δE⊥(z, L, a) ∼ ∓ λ2

8πa

[
1
L2 cos(

2ω0

a
ln(

aL
2
))− 1

R2 cos(
2ω0

a
ln(

aR
2

))

]
, (21)

giving a different scaling law of the interaction compared to the case of inertial atoms. In the near-zone
limit,R, L� za, we recover the well-known result for inertial (static) atoms:

δE⊥(z, L, a) ∼ ∓ λ2

16π

[
1
L

cos(ω0L)− 1
Rcos(ω0R)

]
. (22)

In the intermediate zone,R � za � L, when the distance between the two atoms is smaller than
the characteristic length za but their distance from the mirror is such thatR � za, we obtain

δE⊥(z, L, a) ∼ ∓ λ2

8π

[
1

2L
cos(ω0L)− 1

aR2 cos(
2ω0

a
ln(

aR
2

))

]
. (23)

Thus the relativistic acceleration and the presence of the boundary affect the qualitative features
of the resonance interaction, in particular, its power-law distance dependence, decreasing at large
distances more rapidly than in the inertial case. Additionally, in the presence of a boundary,
the non-inertial character of acceleration modifies the interatomic interaction energy, even when
the separation between the two atoms is much smaller then za. In fact, such a result can be expected on
a physical ground: the boundary-dependent term, as mentioned, can be interpreted as the interaction
of one atom with the image of the other atom with respect to the plate. When the atoms are accelerating,
the distance traveled by the photon emitted by one atom to reach the other one, after reflection from
the mirror, increases with time; ifR � za, this effect becomes relevant and causes an overall decrease
of the interaction strength between the two atoms.

We now investigate whether similar effects manifest also for a different geometric configuration
of the atom-plate system. Specifically, we consider two atoms aligned in the y-direction, parallel to
the mirror, as shown in Figure 2, and uniformly accelerating in the x-direction, perpendicular to their
(constant) separation. In this case, the atomic trajectories are

tA(τ) = tB(τ) =
1
a sinh(aτ), xA(τ) = xB(τ) =

1
a cosh(aτ),

yA = 0, yB = D, zA = zB = z,
(24)

with D > 0.
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Atom A 

Atom B 

D 

y 

x y 

z 
 a 

 a 

Figure 2. Pictorial description of the second geometrical configuration considered for the physical
system: two atoms aligned along the y-axis, parallel to the plate, and uniformly accelerating along
the x-direction.

Following the same procedure as before, we first obtain the scalar-field linear susceptibility:

χF
‖ (xA(τ), xB(τ

′)) = − 1
8π2

∫ ∞
0 dω(eiω∆τ − e−iω∆τ)

(
sin( 2ω

a sinh−1( aD
2 ))

D
√

1+ 1
4 a2D2

− sin( 2ω
a sinh−1( aR

2 ))

R
√

1+ 1
4 a2R2

)
, (25)

where D is the interatomic distance, ∆τ = τ − τ‘, and we have defined R = R(z, D) =
√

D2 + 4z2.
The substitution of Equations (25) and (17) into Equation (13) yields, after algebraic calculations,

the resonance dipole–dipole interaction for accelerating atoms:

δE‖(z, D, a) = ∓ λ2

16π

cos( 2ω0
a sinh−1( aD

2 ))

D
√

1 + 1
4 a2D2

−
cos( 2ω0

a sinh−1( aR
2 ))

R
√

1 + 1
4 a2R2

 . (26)

As before, we find that the resonance interaction energy consists of two terms. The first term
on the right-hand side of Equation (26) coincides with that for atoms uniformly accelerating in
free-space [25], while the second new term is related to the boundary. In the static (inertial) limit,
we recover the expression of the resonance interaction for atoms at rest near the mirror for the
configuration considered [44]:

δE‖(z, D) = ∓ λ2

16π

[
cos(ω0D)

D
− cos(ω0

√
D2 + 4z2)√

D2 + 4z2

]
. (27)

It is worth noting that the expression of δE‖(z, D, a) given by Equation (26) is formally equal to
that obtained for δE⊥(z, L, a) in Equation (20), providedR is replaced by R. This is indeed expected,
as the distance R =

√
D2 + 4z2 is the distance between one atom and the image of the other. In order to

compare the results obtained in the two geometric configurations, in Figure 3 are plotted Equations (20)
and (26) of the resonance interaction energy (in units of eV/λ2), as a function of the atomic acceleration.
In the plots, the value used for ω0 is the ionization energy of 87Rb, and the distances L = D and
z have been chosen in such a way that the plots cover near, intermediate, and far zones, for both
perpendicular and parallel alignments of the atoms. The plots show that the resonance interaction
energy depends on the acceleration and the geometric configuration of the two atoms with respect to
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the plate (perpendicular or parallel alignment) and that it can be enhanced or inhibited, depending on
the atomic acceleration.
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2
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δE⊥ a)

δE∥ a)

δE⊥ static)

δE∥ static)

Figure 3. Resonance interaction energy between the two atoms (units: eV/λ2, where the coupling
constant λ in our units is dimensionless), as a function of the atomic acceleration, for two different
geometric configurations. Blue continuous line: atoms positioned on the z-axis, which is perpendicular
to the plate. Green dashed line: atoms along the y-axis, which is parallel to the plate. For comparison,
the yellow dot-dashed line and the red dotted line respectively refer to the case of inertial atoms aligned
in a perpendicular or parallel direction relative to the plate. The plots show that the interaction depends
on the acceleration and on the geometric configuration of the two-atom system relative to the mirror.
Parameters, in the units used, are chosen such that L = D = 7.5× 10−2 eV−1, z = 2.0× 10−2 eV−1,
and ω0 = 4.17 eV.

3. Resonance Interaction for Two Accelerating Atoms Interacting with the Electromagnetic Field

In this section, we extend our investigations to two uniformly accelerated identical atoms
interacting with the vacuum electromagnetic field, placed nearby a perfectly reflecting plate. As before,
the atoms move with a uniform proper acceleration a in a direction parallel to the plane, located at z = 0,
and their distance is constant. Our aim is to discuss whether new and further effects of acceleration
may manifest in their interaction, as a consequence of the vector nature of the electromagnetic field.

We adopt the Hamiltonian in the Coulomb gauge and in the multipolar coupling scheme,
within dipole approximation. In the comoving reference frame of both atoms, this is

H = ω0σA
3 (τ) + ω0σB

3 (τ) + ∑
k,λ

ωka†
kλakλ

dt
dτ
− µA(τ) · E(xA(τ))− µB(τ) · E(xB(τ)). (28)

λ = 1, 2 indicates the polarization , µ = er is the dipole moment operator of the atoms (restricted to
the subspace of the two atomic levels considered), and E(x(τ)) is the electric field operator, with the
appropriate boundary conditions on the reflecting plate.

As shown in the previous section, the resonance interaction energy is due only to the
radiation-reaction term and can be obtained through the effective Hamiltonian (He f f

A )sr + (He f f
B )sr

(terms referring to atoms A and B, respectively) on the correlated state |ψ±〉 (see Equations (4)–(6)),
taking only terms depending on the interatomic distance:

δE = −i
∫ τ

τ0

dτ′χF
ij(xA(τ), xB(τ

′))CAB
ij (τ, τ′) + (A ⇀↽ B), (29)

where i, j = x, y, z. We first evaluate the electromagnetic field susceptibility χF
ij(xA(τ), xB(τ‘)) = 1

2 〈0 |[
Ei(xA(τ)), Ej(xB(τ‘))

]
| 0〉 and the atomic symmetric correlation function CAB

ij (τ, τ‘).
The field susceptibility in the comoving frame can be obtained from the two-point correlation

function of the field [68]. The two-point correlation function of the electric field operator in the
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presence of the reflecting boundary, is the following (for brevity, we omit the time-dependence in the
following expressions):

gij(xA, xB) = 〈0|Ei(xA)Ej(xB)|0〉. (30)

It can be written as the sum of a free part, g(0)ij (xA, xB), and a boundary-dependent term,

g(b)ij (xA, xB):

gij(xA, xB) = g(0)ij (xA, xB) + g(b)ij (xA, xB), (31)

where
g(0)ij (xA, xB) = −

1
4π2 (δij∂0∂0′ − ∂i∂j′)

1
(∆t− iε)2 − |∆x−|2

, (32)

g(b)ij (xA, xB) =
1

4π2 [(δij − 2ninj)∂0∂0′ − ∂i∂j′ ]
1

(∆t− iε)2 − |∆x+|2
, (33)

and n is the unit vector along the line joining the two atoms.
We now specialize our considerations to the two specific configurations considered for the

scalar-field case in Section 2 and illustrated in Figures 1 and 2, that is, atoms aligned in a direction
perpendicular or parallel to the plate, respectively.

3.1. Atoms Aligned Perpendicularly to the Plate

We first consider two atoms aligned along the z-direction, perpendicular to the boundary,
and uniformly accelerating along the x-direction, as shown in Figure 1. Thus they move on the
trajectory given by Equation (18). Because of the vector structure of the electromagnetic field, the
calculation of the field susceptibility turns out to be more complicated than for the scalar field [68].
After lengthy algebraic calculations, involving a Lorentz transformation of the fields to the comoving
frame, we obtain the following (in the locally inertial frame):

g⊥ij(xA, xB) = g(0)⊥ij
(xA, xB) + g(b)⊥ij

(xA, xB), (34)

where

g(0)⊥ij
(xA, xB) = a4

16π2
1

(sinh2( a
2 (∆τ−iε))− 1

4 a2L2)3 ×
{

1
4 a2L2(δij − 2ninj)

+

[
δij +

1
2 a2L2(δij − kik j − 2ninj) + aL(kinj − k jni)

]
sinh2

(
a
2 ∆τ

)} (35)

is the two-point correlation function of two atoms uniformly accelerated in vacuum [25], and

g(b)⊥ij
(xA, xB) = − a4

16π2
(1−2ninj)

(sinh2( a
2 (∆τ−iε))− 1

4 a2R2)3 ×
{

1
4 a2R2(δij − 2ninj)

+

[
δij +

1
2 a2R2(δij − kik j − 2ninj) + aR(kinj + k jni)

]
sinh2

(
a
2 ∆τ

)} (36)

is the contribution due to the presence of the boundary. In the equations above, k = (1, 0, 0) is a unit
vector along the acceleration. As discussed in [25], the function g⊥ij(xA, xB) is not isotropic, displaying
a non-diagonal component. In fact, in the present case, we have two specific directions in space:
the direction perpendicular to the plate and that of the acceleration. Similar anisotropies were already
found for a single uniformly accelerated atom near a boundary [31] or for two accelerated atoms in the
free-space [25]. They arise from the spatially extended structure of the two-atom-plate system here
considered, as well as from the vector character of the electromagnetic field. This peculiarity, as we
now show, has deep consequences for the interaction energy between the two atoms.
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In order to evaluate the resonance energy, we first focus our attention on the boundary-dependent
term and calculate the linear susceptibility of the electric field. Using Equation (36), after lengthly
algebraic calculations, involving a Fourier transform of the statistical function of the field,
we finally obtain

χ
F(b)
⊥ij

(xA(τ), xB(τ
′)) = 1

8π2

∫ ∞
0 dω(eiω∆τ − e−iω∆τ)

(
f⊥(b)ij (a,R, ω) cos

(
2ω
a sinh−1

(
aR
2

))
+h⊥(b)ij (a,R, ω) sin

(
2ω
a sinh−1

(
aR
2

)))
,

(37)

where we have introduced the functions f⊥(b)ij (a,R, ω) and h⊥(b)ij (a,R, ω) given in Appendix A
(see Equations (A1) and (A2)).

Substituting Equation (37) and the atomic symmetric statistical function:

CAB
ij (τ, τ′) =

1
2
(µA

ge)i(µ
B
ge)j(eiω0∆τ + e−iω0∆τ), (38)

into Equation (29), we finally obtain the boundary-dependent contribution to the resonant energy shift
of the two accelerating atoms:

δE(b)
⊥ = ∓ 1

4π
[δij(µ

A
ge)i(µ

B
eg)jP

⊥(b)
ij (a,R, ω0)± ((µA

ge)x(µ
B
eg)z + (µA

ge)z(µ
B
eg)x)P⊥(b)xz (a,R, ω0)], (39)

where we have introduced the function P⊥(b)ij (a,R, ω0):

P⊥(b)ij (a,R, ω0) = f⊥(b)ij (a,R, ω0) sin
(

2ω0
a sinh−1

(
aR
2

))
− h⊥(b)ij (a,R, ω0) cos

(
2ω0

a sinh−1
(

aR
2

))
, (40)

modulating the interaction as a function ofR and of the atomic acceleration.
With a similar procedure, evaluation of the boundary-independent contribution, δE(0)

⊥ , to the
resonance interaction energy yields the following [25]:

δE(0)
⊥ = ± 1

4π
[δij(µ

A
ge)i(µ

B
eg)jP

⊥(0)
ij (a, L, ω0)± ((µA

ge)x(µ
B
eg)z − (µA

ge)z(µ
B
eg)x)P

⊥(0)
xz (a, L, ω0)], (41)

where

P⊥(0)ij (a, L, ω0) = f⊥(0)ij (a, L, ω0) sin
(

2ω0
a sinh−1

(
aL
2

))
− h⊥(0)ij (a, L, ω0) cos

(
2ω0

a sinh−1
(

aL
2

))
, (42)

and the functions f⊥(0)ij (a, L, ω) and h⊥(0)ij (a, L, ω) are given by Equations (A3) and (A4) of Appendix A.
The complete resonance interaction energy of the accelerated two-atom system is then obtained

by summing Equations (39) and (41):

δE⊥ = δE(0)
⊥ + δE(b)

⊥ . (43)

The result (Equation (43)) is valid for any value of the parameters a, L, andR. It is easy to show that
in the near-zone limit, L� a−1 andR � a−1, the linear susceptibility is well described by its stationary
counterpart, and we recover the expression of the resonance interaction for two atoms at rest [25,44].
However, at higher orders in aR (and/or aL), corrections related to the accelerated motion of the
two atoms become relevant, yielding a different scaling of the interaction energy with the distance,
in analogy to the scalar-field case discussed in the previous section. Interestingly, a comparison with
the scalar-field case shows the emergence of new features in the resonance interaction, due to the
boundary, and related to the anisotropic structure of the electromagnetic field susceptibility. Indeed,
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from Equation (39), it follows that the effect of the acceleration on the interaction can be controlled by
an appropriate choice of the dipoles’ orientations and of the distance of the two atoms from the plate.
For example, when the dipole moments are orthogonal to each other, with one along x and the other
along z, the diagonal term in Equation (39) vanishes, and only the second (non-diagonal) term survives.
The non-diagonal term is present only for a 6= 0, and its contribution is a peculiar characteristic
of the non inertial atomic motion, giving a non-vanishing interaction energy, in a configuration
where that for static atoms is zero. This term is thus a sharp signature of an accelerated motion.
To numerically estimate this energy shift, we can assume a = 1018 m/s2 (2.2× 10−6 eV, in our units),
z = 10−8 m (∼ 5× 10−2 eV−1), L = 1.5× 10−8 m (∼ 7.5× 10−2 eV−1), and h̄ω0 = 4.17 eV, obtaining
δE ' 4.4× 10−10 eV. This energy shift is about 4 orders of magnitude smaller than the Lamb shift
for the n = 2 level of the hydrogen atom. Although quite small, we expect that such an energy shift
should be measurable using high-resolution spectroscopy, provided the assumed constant acceleration
could be reached.

The results above suggest investigation of whether analogous effects of acceleration manifest also
for other geometric configurations of the two atoms system, for example, when both atoms are aligned
parallel to the reflecting plane boundary. This configuration is considered in the next subsection.

3.2. Atoms Aligned Parallel to the Plate

We now consider the configuration of two atoms aligned along the y-direction, parallel to
the boundary, which move with uniform proper acceleration along the x-direction, such that their
trajectories are those given by Equation (24). As before, the distance between the two atoms remains
constant during their motion. This configuration is illustrated in Figure 2.

The two-point correlation function of the field in the locally inertial frame of both atoms is

g‖ij
(xA, xB) = g(0)‖ij

(xA, xB) + g(b)‖ij
(xA, xB) , (44)

where g(0)‖ij
(xA, xB) is the two-point correlation function in free-space [25] and g(b)‖ij

(xA, xB) is the

boundary-dependent contribution, which consists of a diagonal term:

g(b)‖ij
(xA, xB) = − a4

16π2
(δij−2ninj)

(sinh2( a
2 (∆τ−iε))− 1

4 a2R2)3

{
1
4 a2R̃2(ninj − pi pj)

+ 1
4 a2R2kik j +

[
1 + 1

2 a2R̃2(1− kik j − 2pi pj)

]
sinh2

(
a
2 ∆τ

)}
(i = j)

(45)

that is non-vanishing only for i = j, and a non-diagonal term:

g(b)‖ij
(xA, xB) = − a4

16π2
1

(sinh2( a
2 (∆τ−iε))− 1

4 a2R2)3

{
−a2zD(pinj − pjni)

+[aD(ki pj − k j pi) + 2az(kinj + k jni)− 2a2zD(pinj − pjni)] sinh2
(

a
2 ∆τ

)}
(i 6= j)

(46)

that is different from zero only for i 6= j. We have here introduced the unit vector p = (0, 1, 0) and the
distances R =

√
D2 + 4z2 and R̃ =

√
D2 − 4z2). The boundary-dependent contribution to the linear

susceptibility of the field is then obtained as

χ
F(b)
‖ij

(xA(τ), xB(τ
′)) = 1

8π2

∫ ∞
0 dω(eiω∆τ − e−iω∆τ)

(
f ‖(b)ij (a, D, z, ω) cos

(
2ω
a sinh−1

(
aR
2

))
+h‖(b)ij (a, D, z, ω) sin

(
2ω
a sinh−1

(
aR
2

)))
,

(47)



Symmetry 2018, 10, 185 13 of 18

where the functions f ‖(b)ij (a, D, z, ω) and h‖(b)ij (a, D, z, ω), given in Equations (A5) and (A6) of
Appendix A, modulate the resonance interaction energy with the distance D and the atomic
acceleration a.

Substituting Equations (47) and (38) into Equation (29), we find the boundary-dependent
contribution to the resonant energy shift:

δE(b)
‖ = − 1

4π

[
δij(µ

A
ge)i(µ

B
eg)jP

‖(b)
ij (a, D, z, ω0) +

(
(µA

ge)x(µB
eg)y − (µA

ge)y(µB
eg)x

)
P‖(b)xy (a, D, z, ω0)

+
(
(µA

ge)x(µB
eg)z + (µA

ge)z(µB
eg)x

)
P‖(b)xz (a, D, z, ω0) +

(
(µA

ge)y(µB
eg)z − (µA

ge)z(µB
eg)y

)
P‖(b)yz (a, D, z, ω0)

]
,

(48)

where

P‖(b)ij (a, D, z, ω0) = f ‖(b)ij (a, D, z, ω0) sin
(

2ω0
a sinh−1

(
aR
2

))
− h‖(b)ij (a, D, z, ω0) cos

(
2ω0

a sinh−1
(

aR
2

))
.

(49)

The resonance interaction energy between the accelerating atoms is finally obtained by adding
Equation (48) to the free-space interaction energy δE(0)

‖ , given by the following [25]:

δE(0)
‖ =

1
4π

[
δij(µ

A
ge)i(µ

B
eg)jP

‖(0)
ij (a, D, ω0) +

(
(µA

ge)x(µ
B
eg)y − (µA

ge)y(µ
B
eg)x

)
P‖(0)xy (a, D, ω0)

]
, (50)

with

P‖(0)ij (a, D, ω0) = f‖(0)ij (a, D, ω0) sin
(

2ω0
a sinh−1

(
aR
2

))
−h‖(0)ij (a, D, ω0) cos

(
2ω0

a sinh−1
(

aR
2

)) (51)

(the functions f‖(0)ij (a, D, ω) and h‖(0)ij (a, D, ω) can be obtained from Equations (A3) and (A4) in
Appendix A by exchanging subscripts z and y).

A comparison with the case of accelerated atoms aligned along the z-axis, considered in
the previous subsection, shows the emergence of a new effect, related to the specific geometric
configuration of the two-atom system with respect to the plane boundary. In fact, from the equations
above, it follows that when the dipole moments are orthogonal to each other, one of them along y and
the other in the plane xz, a new non-vanishing contribution to the interaction energy (not present for
atoms located perpendicular to the boundary) arises. This contribution exists only when a 6= 0,
and thus it is a peculiarity of an accelerated motion. This gives new additional possibilities to
exploit the resonance interaction between accelerated atoms for detecting (non-thermal) effects
of acceleration and, in general, physical effects of the accelerated motion on radiation-mediated
interactions between atoms.

4. Summary

We have discussed the resonance energy shift of two identical atoms, one excited and the other in
the ground state, prepared in a correlated (superradiant or subradiant) state, and moving with uniform
acceleration near a perfectly reflecting plate. The atoms interact with the massless scalar field or the
electromagnetic field in the vacuum state. Following the approach in Refs. [62,63], we have identified
the contributions of source field and vacuum fluctuations to the resonance interaction. We have shown
that Unruh thermal fluctuations do not influence the resonance interatomic interaction, which is
obtained from the source-field term only. We show that, in cases of both the scalar and electromagnetic
field, the presence of the plane boundary significantly affects the resonance interaction between the
accelerated atoms. Non-thermal effects of acceleration appear, yielding a change in the distance
dependence of the interaction. Finally, in the case of the electromagnetic field, we show, for different
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configurations of the two-atom-plate system, the emergence of new and different effects in the
resonance interaction energy, for example, a non-vanishing interaction energy in configurations/dipole
orientations for which the interaction is zero for inertial atoms. These effects, not present for atoms
at rest, therefore provide a sharp signature of the non-inertial motion of the atoms. These findings could
be exploited for the detection of the non-thermal effects of atomic acceleration in radiation-mediated
interactions between non-inertial atoms.
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Appendix A

In this Appendix, we give the expressions of the functions f⊥(‖)ij and h⊥(‖)ij used in Section 3.

The explicit expressions of the functions f⊥(b)ij (a,R, ω) and h⊥(b)ij (a,R, ω) are



f⊥(b)xx = ω(1+a2R2)
N 4R2 ,

f⊥(b)yy =
ω(1+ 1

2 a2R2)

N 2R2 ,

f⊥(b)zz =
ω(2+ 1

4 a2R2+ 1
8 a4R4)

N 4R2 ,

f⊥(b)xz = f⊥(b)zx = − aω(1− 1
2 a2R2)

2N 4R ,

(A1)



h⊥(b)xx = − 1+ 1
2 a2R2+ 1

4 a4R4

N 5R3 + ω2

N 3R ,

h⊥(b)yy = − 1
N 3R3 +

ω2

NR ,

h⊥(b)zz = − 2(1+ 5
8 a2R2)

N 5R3 + a2Rω2

4N 3 ,

h⊥(b)xz = h⊥(b)zx = a(1+a2R2)
2N 5R2 + aω2

2N 3 ,

(A2)

with N = N (a,R) =
√

1 + 1
4 a2R2.

Explicit expressions of f⊥(0)ij (a, L, ω) and h⊥(0)ij (a, L, ω) are

f⊥(0)xx = ω(1+a2L2)
N4L2 ,

f⊥(0)yy =
ω(1+ 1

2 a2L2)

N2L2 ,

f⊥(0)zz = −ω(2+ 1
4 a2L2+ 1

8 a4L4)

N4L2 ,

f⊥(0)xz = −f⊥(0)zx =
aω(1− 1

2 a2L2)

2N4L ,

(A3)



Symmetry 2018, 10, 185 15 of 18



h⊥(0)xx = − 1+ 1
2 a2L2+ 1

4 a4L4

N5L3 + ω2

N3L ,

h⊥(0)yy = − 1
N3L3 +

ω2

N1/2L ,

h⊥(0)zz =
2(1+ 5

8 a2L2)

N5L3 − a2Lω2

4N3 ,

h⊥(0)xz = −h⊥(0)zx = − a(1+a2L2)
2N5L2 − aω2

2N3 ,

(A4)

with N = N(a, L) =
√

1 + 1
4 a2L2.

Explicit expressions of f ‖(b)ij (a, D, z, ω) and h‖(b)ij (a, D, z, ω) are



f ‖(b)xx = ω(1+a2R2)
Ñ4R2 ,

f ‖(b)yy =
ω[4z2−2D2− 1

4 a2R2(D2−12z2)− 1
8 a4R4(D2−4z2)]

Ñ4R4 ,

f ‖(b)zz =
ω[z2(16+2a2R2+a4R4)−D2(2+ 3

2 a2R2+ 1
4 a4R4)]

2Ñ4R4 ,

f ‖(b)xy = − f ‖(b)yx = −ωaD(1− 1
2 a2R2)

2Ñ4R2 ,

f ‖(b)xz = f ‖(b)zx = −ωaz(1− 1
2 a2R2)

Ñ4R2 ,

f ‖(b)yz = − f ‖(b)zy = − 2ωzD(3+a2R2+ 1
4 a4R4)

Ñ4R4 ,

(A5)



h‖(b)xx = − 1+ 1
2 a2R2+ 1

4 a4R4

Ñ5R3 + ω2

Ñ3R ,

h‖(b)yy =
2D2−4z2+ 1

4 a2R2(5D2−4z2)

Ñ5R5 +
ω2[4z2− 1

4 a2R2(D2−4z2)]

Ñ3R3 ,

h‖(b)zz =
D2(1+ 1

4 a2R2)−8z2(1+ 5
8 a2R2)

Ñ5R5 +
ω2[a2z2R2−D2(1+ 1

4 a2R2)]

Ñ3R3 ,

h‖(b)xy = −h‖(b)yx = aD(1+a2R2)
2Ñ5R3 + ω2aD

2Ñ3R ,

h‖(b)xz = h‖(b)zx = az(1+a2R2)
Ñ5R3 + ω2az

Ñ3R ,

h‖(b)yz = −h‖(b)zy =
6zD(1+ 1

2 a2R2)

Ñ5R5 − 2ω2zD(1+ 1
2 a2R2)

Ñ3R3 ,

(A6)

with Ñ = Ñ(a, R) =
√

1 + 1
4 a2R2.
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