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Abstract

In mathematical modeling, it is often required the analysis of the vector field topol-
ogy in order to predict the evolutions of the variables involved. When the dynamical
system shows a multi-stability the trajectories have di�erent configuration depending
on the initial conditions.
The aim of this work is the analysis of the boundaries of the di�erent basins of
attraction by means the detection of the invariant manifolds of the saddle points. We
show as the detection method works with di�erent number of stable points and in
presence of strange attractors. Once that a su�cient number of separatrix points is
found, a Moving Least Squares meshfree method is involved for the reconstruction.
Numerical results are presented to assess the method.
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1 INTRODUCTION

Mathematical modeling and experimental investigations are nowadays commonly used in applied sciences to explain biological
or physics process4, 11, 30. The dynamics within the phenomenon studied can be modeled by means of unknown and suitable
parameters to describe their interactions.
One of the most important goal is the analysis of the vector field topology, i.e. the space of all solutions, in order to predict
the possible outcomes of the system. The trajectories, or solutions, are completely determined by the parameters value and
the di�erent initial conditions. In fact, changing the set of parameters usually leads to the appearance (or disappearance) of
alternative stable states27, 11, 32. While, when a dynamical system admits more than one steady state, the phase-space is thus
partitioned into di�erent regions, called basins of attraction. In this case the final configuration of a process depends on the
domain to which the initial condition belongs.
The aim of this work is the reconstruction of the boundaries of these basins to have a completely knowledge of the vector
field dynamics. This approach allows to modify or to avoid the initial state too close to the boundaries that are subject to shift
from one basin to another. These regime shifts are very common in the biological process and they can lead to undesirable
configuration of the model such as the extinction of a specie9, collapse of fisheries31 or the destruction of the coral reef29.

The simpler way to visualize the domains of the phase space is the graphical representation of the separatrix surfaces, therefore
the main goal is to develop an algorithm that could be easy used by the biologist, the ecologist or the medical researchers that
are investigating on the dynamical process. The first attempt in graphical representation of these surfaces is presented in12–15.
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The authors developed a bisection method to detect the separatrix points coupled with a Partition of Unity meshfree method to
reconstructed them. Following these ideas in19, 20, 21, we give a complete analysis of the Allee e�ect induced by the pack hunting
in a predator-prey model25. We reconstruct the separatrix with a Moving Least Squares method to avoid the resolution of the
interpolation system. In particular we adapted the bisection method to the model considered in order to reduce the computational
e�ort. However it still remains quite expensive, therefore we oriented the research to the topological features of the critical points.
Although in vector field analysis the algorithms are well formulated in 2D systems8,24, 28, 36, only little attempts exist to analyze
the 3D models22, 34, 35. We extend these results, obtaining a new numerical approach to detect the points of the separatrix surfaces
by considering the stable and the unstable manifolds of the saddle points. Indeed they divide the phase domain into invariant
flow regions, representing themselves the boundaries of the attractor domain.
Here we show as the algorithm developed works for the three dimensional multi-stable models with any number of steady states
simultaneously stable. Usually an attractor is represented by a fixed point, however persistent oscillation or chaotic behavior
could arise. We demonstrate that the reconstruction of the separatrix is possible even in presence of these strange attractors. The
article is organized as follow. In Section 2 we present the main topic in vector field topology introducing the notation used in
the other sections. Then we describe the two di�erent phases of the algorithm developed in Section 3 and 4. To test our method
we present two di�erent case studies in Section 5. Finally some conclusions are given.

2 CRITICAL POINTS TOPOLOGY IN 3D MODELS

Given a three dimensional vector field: Üu = F (u) with u : E3 ô R3 and F a linear or non linear functional, a first order critical
point x0 is a fixed point ( Üu(x0) = 0), such that J (x0) ë 0, where J is the Jacobian matrix associated to the system30. Through
the analysis of the eigenvalues of J (x0) it is possible classified the critical points as follow:

Stable Point Re(�1) < Re(�2) < Re(�3) < 0
Unstable Point 0 < Re(�1) < Re(�2) < Re(�3)

Repelling Saddle Re(�1) < 0 < Re(�2) < Re(�3)
Attracting Saddle Re(�1) < Re(�2)< 0 < Re(�3)

where Re(�i)i=1,2,3 represents the real part of the three eigenvalues �1, �2, �3.
This general classification is divided into other subclasses depending on the nature of the eigenvalues. Indeed when the Jaco-
bian admits two conjugate complex eigenvalues the points are called "focus".
In a neighborood of the stable points all the trajectories converge to the point itself. In this case all the eigenvalues are inde-
pendent. When the stable point is a focus the only real eigenvalue describes the direction of the straight inflow, in addiction the
plane generated by the two complex eigenvectors contain all the trajectories tending to the critical point but they spiral around it.
Inverse behavior is observed for the unstable point for which all the trajectories diverge from it.
The saddles are always unstable steady state because at least one eigenvalues has a positive real part. However an attracting
saddle has one direction of outflow behavior and a plane in which all the stream lines collapse to the point. Opposite behavior
works for the repelling saddle.
The separatrix surfaces that we are looking for are manifold that partitioned the phase-space into basins with di�erent flow
behavior. Since around the stable/unstable points the trajectories are homogenous, these particular steady state are not involved
on the reconstruction of the surfaces. On the contrary the saddle points possess two di�erent kind of invariant manifold that
represents the separatrices themselves.
If x0 À R3 is a saddle, the stable manifold W s(xs) has the property that all its orbits tend to the saddle in forward time:

W s(xs) =
�

x À E3 limtô+ÿ u(x, t) = x0
�

.

On the other hand, the unstable manifold W u(xs) is generated by the eigenvalues with positive real part, and it includes all the
trajectories tending to xs in backward time:

W u(xs) =
�

x À E3 limtô*ÿ u(x, t) = x0
�

.
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FIGURE 1 A) Seeding points on the ellipse generated by the two eigenvectors v1 and v2. B) Integration of the trajectories
starting from the seeding points.

3 INVARIANT MANIFOLD RECONSTRUCTION

In the following we illustrate the basic idea used to approximate the invariant manifolds of saddle points.
We describe the computational approaches adopted to find a su�cient number of scattered data on the separatrix surfaces or
curves.
The analysis considers only the three dimensional models, however the same procedure can be applied to the linear or bi-
dimensional model.

3.1 Detection of the separatrix points
In previous section we have presented the most important characteristic of the vector field and its possible critical points. In
particular we have highlighted about the invariant manifolds of the saddle. In this paragraph we present the first part of the
algorithm dedicated to the detection of the manifold scattered data.
The general idea is finding the bidimensional manifold for each saddle xs À R3. The first step is calculate and analyze the
Jacobian matrix J (xs) by finding the respective eigenvalues �i and eigenvectors vi with i = 1, 2, 3 (Step 1).
If the saddle is repelling there are two eigenvalues with positive real part. Therefore the corresponding eigenvectors generate a
plane Eu that is tangent to the unstable manifold W u 23. While if the saddle is attracting the eigenvectors v1 and v2 generate a
plane Es that is tangent to the stable manifold W s.
Di�erent procedure is applied if there is a saddle-focus because the two eigenvectors generating the subspace Es(u) are complex
conjugated such that :

Re(v1) = Re(v2) and Im(v1) = *Im(v2).

Therefore, in this case we consider as first generating vector the real part and as second the imaginary part (Step 2.1).
Now, to integrate the points on the invariant manifold we place N points on an ellipse centered at the saddle whose semi-axes
are the corresponding eigenvectors (Figure 1 A). They serve as seeding points of the separatrix surface. Because these points
belong to the invariant manifold all their trajectories lye on the manifold itself. Therefore we numerical integrate the seeding
points flow. We use a fourth order Runge-Kutta method and the direction of the integration depends on the topology of the
saddle considered: forward in time for repelling saddle and backward in time for the attracting one (Step 4).
To reconstruct the separatrix is necessary identify the scattered data, thus for each trajectory we identify the state obtained for
each step of integration (Figure 1 B). When the system has more than two stable attractors as consequence we have more than
one saddle point. In this case we have to reconstruct more separatrix manifold by applying the same procedure for each one
(Step 5). Similar procedure is applied to find the one dimensional curve W u. In this case we integrate the flow starting from a
point of the unstable eigenvectors v3.
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In the following we report the sketch of the computational process developed:

• - s À Rnx3: is a matrix whose rows contain the saddle of the model.

• - parameter À R1xk: the parameters vector.

• - l À R: the edge length of the cubic domain considered.

• - t À R: size of integration interval.

• - M À R: number of the seeding points on the ellipse.

• - String: A string with the name of the 3D model that it is considered.

• STEP 1 Consider one saddle point xs À E and calculate the Jacobian
matrix J (xs).

• STEP 2 Calculate and order the eigenvectors and eigenvalues in
ascending order:

V = [v1; v2; v3] such that Re(�1) < Re(�2) < Re(�3)
STEP 2.1 if v1 and v2 are complex conjugated

then v1 = Re(v1) · v2 = Im(v1)

• STEP 3 for i = 0 : M
STEP 3.1 Consider the i-th point on the ellipse:

x = i < pi_M ; y = (1 * cos(x))_2 < pi;
v = cos(x) < v2 + sin(y) < v1;

STEP 3.2 Define the initial condition : z = xs + v.
STEP 3.3 Integrate the system in the interval [0, t].

if �1 < 0 · �2 < 0 then t = *t
[t, u] = ode45(@system, [0, t], parameter, z)

• STEP 4 Plot the scattered data on the phase-plane:
scatter3(u(:,1),u(:,2),u(:,3));

• STEP 5 Repeat the procedure for each saddle point.

4 MOVING LEAST SQUARES METHOD

Given a set of data, i.e measurements obtained from the experimental investigation, the aim of the numerical algorithm is to
find a function G that is a good fit for these data. As we observed in Figure 1 A the scattered data are not always gridded or
uniform distributed therefore it is necessary impose some conditions to the approximant G to obtain a satisfy result.
In this section we present a Moving Least Square method that achieve a polynomial reproduction approximation of any order
d. In particular we use a mesh-free approach that allows to work with a large number of data and that it is not influenced by the
geometry domain1–3,10, 18.
In our case the set of data are the M scattered points of the separatrix manifold projected on the plane XY obtaining the set
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� =
�

x1, ..., xM
�
œ R2 and the heights

�
zii = 1, ...,M

�
represents the set of the data values.

The general idea of the MLS is to calculate the generating functions �i(y) = �(y, xi) necessary for the construction of the
quasi-interpolant5:

G(y) =
M…
i=1

f (xi)�i(y). (1)

First, to achieve a certain order of approximation, the generating functions have to minimize the least-squares quantity:

1
2

M…
i=1

�2
i (y)

1
!(xi, y)

, (2)

that depends on the weight functions ! that govern the influence of data xi in the approximation of the evaluation point y.
Usually the radial basis functions represent a good choice, because they depend only on the distance between the two arguments:
r = xi * y2 and becomes smaller the further away from each other its arguments are.
Specifically we use the Wendland C2 supported compacted centered on y:

!(xi, y) = (1 * ✏y * xi2)4+(4✏y * xi2 + 1). (3)

Therefore, in the construction of the approximant, the data values xi outside the support are not considered, reducing the com-
putational cost.
Let Q = span

�
p1, ..., pm

�
with m < N the approximation space with pm À ±d

2 , the space of the bi-variate polynomial of degree
at most d, imposing the polynomial constraints:

M…
i=1

p(xi)�i(y) = p(y) ≈p À ⇧

d
2 , (4)

we ensure that the quasi-interpolant P reproduces polynomials of a certain degree d. The generating functions � satisfying (2)
and (4) are given by37:

�i(y) = !(xi, y)
m…
j=1

�jpj(xi), i = 1, ...M (5)

where �k are the Lagrange multipliers, i.e. the only solutions of the Gram system:
M…
i=1

pk(xi)pl(xi)!(xi, y)�(y) = p(y) k, l = 1, ...,m. (6)

In our case, by imposing a linear reproduction, the Gram systems are three dimensional, thus we find the explicit formula for
the multipliers by avoiding to solve any system17.
The computational cost for each evaluation point y is reduced and it is limited by the quantity:

O(Q3 +Q2Iy +QIy), (7)

where Iy is the number of the data values xi lying on the support of the weighted function centered on y.

5 NUMERICAL EXAMPLES

In this section we reconstruct the separatrix for two eco-epidemiological model, in order to test the algorithm. In the first example,
the system analyzed has three stable state, therefore we reconstruct the invariant manifold of the two di�erent saddle nodes. In
the second one, we demonstrate that the algorithm works in presence of strange attractors.
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5.1 Tristable predator-prey model
Let consider the following dynamical system26:

dS
dt

= S [(S * ✓) (1 * S * I) * �I * aP ] , (8)
dI
dt

= �SI * aIP * �I , (9)
dP
dt

= P [bs + ↵I * d] . (10)

It analyzes a predator-prey interaction with prey subjected to Allee e�ect and disease. Therefore these latter are divided into
susceptible (S) and infected (I) individuals and P represents the predators density. The model is already in an a-dimensional
form where the parameters involved are resumed in the following table:

Parameter Biological Meaning
✓ Allee threshold
� Infection Rate
a Attack rate of predator
b Total e�ect to predator by consuming susceptible prey
� Death rate of infected prey
↵ Total e�ect to predator by consuming infected prey
d Natural death rate of predator.

Letting � = 1.5, ✓ = 0.2, a = 2, b = 1.35, � = 1 and d = 1 the system admits three stable equilibria: the origin E0 í (0, 0, 0),
the disappearance of the disease E1 ˘ (0.7407, 0, 0.0701) and the predator extinction E2 ˘ (0.6667, 0.0791, 0).
For the reconstruction of their basins of attraction we consider the invariant manifolds of the attractive saddle points Es1 í
(✓, 0, 0) and Es2 ˘ (0.7329, 0.0211, 0.0497).
We start with the first saddle that admits the stable eigenvectors v1 ˘ (0.4099, 0, 0.9121) and v2 ˘ (0.329, 0.9442, 0). We inte-
grate the separatrix considering M = 20 equispaced on the ellipse generated by v1 and v2. Then, through a backward integration
we obtain all the scattered data on the manifold (Figure 2 A).
Applying the same procedure to the saddle Es2 we generate the separatrix points on the second manifold taking the stable com-
plex conjugated eigenvectors v1,2 ˘ (0.9817,*0.0088 ± 0.08731i,*0.0552 ± 0.1599i). (Figure 2 B).
Finally we approximate the two surfaces (Figure 2 C) applying the MLS approximant using the Wendland C2 compactly
supported function:

!(xi, y) = (1 * ✏y * xi2)4+(4✏y * xi2 + 1) (11)
where the shape parameter ✏ = 3 and 60 evaluation points y are taking into account (Figure 2 D).

5.2 Separatrix manifold and strange attractor
Now, we present another predator-prey model but this time we consider a set of parameters value that induce a complex dynamics
with the appearance of strange attractor. Usually an attractor is a fixed stable point, however in eco-epidemiological modeling
is very common the presence of persistent oscillation after particular bifurcation point.
In7 the authors analyze two relatively eco-epidemiological models, but we present only the study of the system with density
dependent transmission6:

dS
dt

= rN (1 *N) * NP
h +N

, (12)

dI
dt

= NP
h +N

* mP * �IP , (13)

dP
dt

= i
⇠
(� * �) (1 * i) * NP

h +N

⇡
. (14)

This represents the a-dimensional form. N is the prey density that grows logistically in absence of the predator population with
a per capita growth rate r. They decrease because of the predation modeled by an Holling Type II functional response ( NP

h+N ).
The predators P are infected by an SI disease, therefore there is no recovery and it is not considered a vertical transmission, from
mothers to the newborns. To analyze the e�ect of the disease in the predator-prey dynamics, the authors replace the densities of
susceptible (S) and infected (I) with the entire population P and the prevalence of the disease i, i.e. the fraction of the infected
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FIGURE 2 A) Scattered data on invariant manifold of saddle Es1 ; B) Scattered data on invariant manifold of saddle Es2 ; C)
Intersection of the two separatricies; D) Reconstruction of the two surfaces.

on the entire predator density: i = I_P .
The predators decrease because the per capita death-rate m and the infected su�er of an additional mortality � disease-induced.
Finally � represents the transmissibility.
Despite the simplicity of the model the authors observe quasi-periodicity, torus, oscillation and even chaos. Such complex behav-
ior means that small changes to parameters or initial conditions can have large e�ect on the biological system in long term.
Therefore the reconstruction of the separatrix o�ers an important tool to study the vector field and the biological dynamics.
When � = 2, r = 0.5,h = 0.1,m = 0.2, � = 27 the system is tri-stable between the disease-free predator prey oscillation, a
coexistent torus and the coexistent equilibrium E1 ˘í (0.6884, 0.1228, 0.366).
Here we reconstruct the separatrix manifold between the oscillation and the steady state E1 by considering the other coexistence
point E2 ˘ (0.1282, 0.995, 0.5).
The Jacobian matrix admits two complex conjugate eigenvalues �1 and �2 and one real positive �3, presenting an attractive sad-
dle.
We take N = 20 points on the ellipse generated by the two vectors: v1 ˘ (0.1294,*0.0129,*0.9638) and v2 ˘
(*0.0358,*0.228, 0), representing respectively, the real and the imaginary part of the complex eigenvectors. In Figure 3 A the
red curve evolves toward the fixed point while the green one oscillate.
Finally the manifold is reconstructed by considering again the Wendland C2 function with the shape parameter ✏ = 2 (Figure
3 B)

6 CONCLUSIONS

In this paper we present a new strategy to detect the invariant manifold of the saddle points. These surfaces are fundamental to
the dynamical analysis of multi-stable models because they partitioned the phase-space into disjoint regions of di�erent flow
behavior.
Furthermore, by representing these surfaces, it is possible predict the possible evolution for each initial conditions.
We show that the algorithm presented works for every 3D models with a di�erent number of equilibrium points contemporary
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FIGURE 3 A)In blu the scattered data lying on the invariant manifold. In red it is represented the trajectory of the point
P1 í (0.2, 0.2, 0.2), in green the trajectory of the point P2 í (0.1, 0.2, 0.4) evolves toward the coexistent thorus. The values of
the parameters are: � = 2, r = 0.5,h = 0.1,m = 0.2, � = 27. B) Reconstruction of the surface

stale. In fact the detection of the manifold depends only on the saddle node.
We extend the previous results showing that, even in presence of strange attractors, such as torus or limit cycle, the algorithm still
works. This kind of detection strategies yields good results for most topologies except for focus saddle with strong circulation
that can intersect the seeding ellipse. Future work is devoted on solving these problems, by opportunely involving the bisection
method coupled with our strategy.
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