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Abstract In this paper a three-dimensional isotropic

fractional viscoelastic model is examined. It is shown

that if different time scales for the volumetric and

deviatoric components are assumed, the Poisson ratio

is time varying function; in particular viscoelastic

Poisson ratio may be obtained both increasing and

decreasing with time. Moreover, it is shown that, from

a theoretical point of view, one-dimensional fractional

constitutive laws for normal stress and strain compo-

nents are not correct to fit uniaxial experimental test,

unless the time scale of deviatoric and volumetric are

equal. Finally, the model is proved to satisfy corre-

spondence principles also for the viscoelastic Pois-

son’s ratio and some issues about thermodynamic

consistency of the model are addressed.

Keywords Fractional viscoelasticity � 3D
constitutive models � Creep � Relaxation �
Viscoelastic Poisson ratio

1 Introduction

Real viscoelastic materials, such as polymers [1, 2],

biological tissues [3–5], asphalt mixtures, soils [6]

and many more exhibit power-law creep and relax-

ation behaviour. This means that during a creep/

relaxation test the stress/strain response is character-

ized by a power law with respect to time. The main

issue is then how to model this behaviour in a robust

and efficient way. In the classical modeling approach,

relaxation and creep functions have been modeled,

mainly, by means of single and/or linear combina-

tions of exponential functions in an attempt to

capture the contribution of both solid and fluid

phases. This approach does not allow for a correct fit

of experimental results. It has been demonstrated that

a power-law in the creep and relaxation responses

leads to fractional viscoelastic constitutive models

that are characterized by the presence of so-called

fractional derivatives and integrals, namely deriva-

tives and integrals of non-integer order (see [7, 8]);

when the order of derivation (or integration) is

integer, the fractional operators reduce to the classi-

cal differential operators. The most interesting aspect

of fractional operators is that they have a long

‘‘fading’’ memory. In this context the term
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Palermo, Viale delle Scienze Ed. 8, 90128 Palermo, Italy

e-mail: gioacchino.alotta@unipa.it

M. D. Paola

e-mail: mario.dipaola@unipa.it

O. Barrera � A. C. F. Cocks
Department of Engineering Science, University of

Oxford, Parks Road, Oxford OX1 3PJ, UK

e-mail: olga.barrera@eng.ox.ac.uk

A. C. F. Cocks

e-mail: alan.cocks@eng.ox.ac.uk

123

Meccanica

DOI 10.1007/s11012-016-0550-8

http://orcid.org/0000-0002-9091-5655
http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-016-0550-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-016-0550-8&amp;domain=pdf


‘‘hereditariness’’ is usually used in the sense that the

actual response in terms of stress/displacement

depends on the previous stress/strain history. If a

relaxation or creep test is well fitted by a power-law

decay, then the fractional constitutive law is directly

derived by simply applying Boltzmann’s superposi-

tion principle [9, 10]. Such a constitutive law is

defined by a small number of parameters and avoids

the need to combine a number of simple models

which depend on several parameters to capture both

the creep and relaxation behaviour. Although some

aspects remain unclear, for example how to distin-

guish between elastic and inelastic strain, the use of

this kind of model is attractive for many researchers

because of its ability to capture both creep and

relaxation behaviour and the effects of ‘‘fading’’

memory observed experimentally. In the last dec-

ades, a lot of effort has been devoted to theoretical

aspects of 1D fractional constitutive laws [2, 11–13]

as well as experimental aspects and parameters

characterization [3, 14–16] of the constitutive behav-

ior and to numerical implementation in finite element

codes [5]; fractional viscoelastic beams have been

also studied, both from a deterministic and stochastic

point of view [17–19]. However it is very important

to properly define multi-axial constitutive relation-

ship in order to simulate the viscoelastic behavior of

complex shaped engineering components. Some

authors (see for example [4, 20–22]) have proposed

3D formulations of fractional viscoelastic models

with both small strain and large strain formulations,

but to the best of authors’ knowledge only in one case

[22] the three-dimensional behavior of these models

is investigated; in particular in [22] the behaviour of

the three-dimensional fractional viscoelastic model is

investigated in terms of storage and loss moduli in the

frequency domain and in terms of Poisson’s ratio in

the time domain; a generalized three-dimensional

fractional viscoelastic model is adopted in order to

reproduce the experimental behaviour of some poly-

mers in frequency domain.

For this reason, in this paper, some theoretical aspects

about three-dimensional fractional viscoelasticity are

discussed. First of all, a linear isotropic fractional

viscoelastic model is defined in terms of deviatoric and

volumetric contributions; it is shown that as soon as

different time scales are assumed for the two contribu-

tions, the interpretation of uniaxial test (creep and

relaxation) should be performed bymeans of two power

law and not only one as usual researchers of the field do.

Moreover, it is shown that time varying Poisson’s ratio

can be easily obtained by choosing different time scales

for the deviatoric and volumetric components; in

particular increasing, decreasing or constant viscoelas-

tic Poisson’s ratios are determined by the order of the

power law in the deviatoric and volumetric contribu-

tions. This is a desirable feature, since viscoelastic

materials exhibit increasing and decreasing viscoelastic

Poisson’s ratio [23]. The influence of the Poisson’s ratio

behavior is also shown bymonitoring strain and stresses

in creep and relaxation tests.

Finally, it is shown that the model satisfies corre-

spondence principles [24] hence can be accepted by

the general theory of viscoelasticity; moreover, by

means of correspondence principles it is proved that

for fractional viscoelasticity that the equivalent of the

elastic Poisson’s ratio is the viscoelastic Poisson’s

ratio in relaxation conditions and not in creep. This is

an important result that confirms results by other

authors [25, 26] that have not referred to fractional

viscoelasticity. Some concepts about thermodynamic

consistency of the model are also discussed.

2 Preliminary concepts

In this section we introduce some preliminary con-

cepts on fractional viscoelasticity and fractional

differentiation and integration.

It is well known that a viscoelastic material can be

characterized, for one dimensional problems, by its

Relaxation and Creep functions GRðtÞ and GCðtÞ
respectively. These functions describe the behavior of

the material when a constant strain and a constant

stress are applied, respectively. Classical models are

characterized by exponential functions. This happens

when viscoelastic materials are modeled by different

combinations of elastic elements (springs) and viscous

elements (dashpots); the simplest models of this kind

are Maxwell and Kelvin-Voigt models in which a

spring and a dashpot are combined in series and in

parallel, respectively. Although these models are able

to describe a kind of time-dependent behavior of

viscoelastic materials, they fail to capture both the

relaxation and the creep behavior of real materials; for

this reason more complicated models with combina-

tions of springs and dashpots are used (Zener models),

but this leads to complicated creep and relaxation
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functions and governing equations; furthermore these

classical models are not able to describe the long-time

memory of real viscoelastic materials. Creep and

relaxation tests on real viscoelastic materials, such as

polymers, asphalt mixtures, biological tissues, have

shown that creep and relaxation tests are well fitted by

power laws of real order rather than exponential

functions. These functions can be written as follows

[1, 27]:

GRðtÞ ¼
Cqt

�q

Cð1� qÞ ð1aÞ

GCðtÞ ¼
tq

CqCð1þ qÞ ð1bÞ

where Cð�Þ is the Euler gamma function, q is a real

number 0� q� 1 and Cq is a material parameter

evaluated by fitting creep or relaxation experimental

curves; the subscripts R and C stand for relaxation and

creep, respectively. It is to be noted that the coefficient

Cq has an anomalous dimension; indeed it depends on

the value of q; if mega-Pascal and minute seconds are

used for the stress and the time, respectively, then the

coefficient Cq has dimension MPa sq½ �. As a conse-

quence GRðtÞ and GCðtÞ have dimension (MPa) and

(MPa�1), respectively.

It is well known that, in the frame of linear

viscoelasticity, the Boltzmann superposition principle

is valid; this principle allows us to obtain the response

of a material when the imposed stress or strain history

is not constant and can be expressed in two forms:

sðtÞ ¼
Z t

0

GRðt � �tÞ _cð�tÞd�t;

cðtÞ ¼
Z t

0

GCðt � �tÞ _sð�tÞd�t
ð2Þ

where sðtÞ and cðtÞ are tangential stress and the

corresponding strain, respectively. These integrals are

often labeled as ‘‘hereditary’’ integrals, because the

actual value of sðtÞ (or cðtÞ) depends on all previous

history of cðtÞ (or sðtÞ). By taking Laplace transforms

of Eq. (2) an interesting relationship between the

relaxation and creep functions in the Laplace domain

is obtained:

ŝðsÞ ¼ ĜRðsÞsĉðsÞ; ĉðsÞ ¼ ĜCðsÞsŝðsÞ;

) ĜRðsÞĜCðsÞ ¼
1

s2

ð3Þ

where the superimposed hat means Laplace transform

and s 2 C is the variable in the Laplace domain. This

implies that it is sufficient to perform a creep or

relaxation test to determine all the relevant parameters

of the viscoelastic model.

Substitution of Eq. (1) in Eq. (2) leads to constitu-

tive laws that involve fractional operators, namely

derivatives and integrals of real order [7, 8]:

sðtÞ ¼ Cq

Cð1� qÞ

Z t

0

ðt � �tÞ�q _cð�tÞd�t ¼ Cq
C
0D

q
t c

� �
ðtÞ

ð4aÞ

cðtÞ ¼ 1

CqCð1þ qÞ

Z t

0

ðt � �tÞq _sð�tÞd�t

¼ 1

CqCðqÞ

Z t

0

ðt � �tÞq�1sð�tÞd�t

¼ 1

Cq
0I

q
t s

� �
ðtÞ

ð4bÞ

where cð0Þ ¼ 0 and sð0Þ ¼ 0 has been assumed,

respectively. In Eq. (4a) C
0D

q
t �

� �
is the so called

Caputo fractional derivative [7] of order q. In

Eq. (4b) 0I
q
t �ð Þ is the Riemann-Liouville fractional

integral of order q. For brevity sake’s in the remainder

part of the paper we will refer to these as Dq and Iq.

Both the Caputo and the Riemann-Liouville operator

are convolution integrals with power law kernel [7].

These constitutive laws represent the response of a

springpot element, introduced in [28]. It has been

shown in [11, 29, 30] that the behaviour of the

springpot can be reproduced in a classical viscoelas-

ticity framework by an infinite sequence of springs and

dashpots linked in a hierarchical way. These results

are a confirmaton of the fact that fractional models can

reproduce the viscoelastic behavior of real materials

with much less mechanical parameters than those

needed in classical viscoelasticity.

Caputo’s fractional derivative and the Riemann-

Liouville fractional integral are considered integro-

differential operators because all rules for derivatives

and integrals of integer order are still valid (Fourier

and Laplace transforms of a derivative or an integral,

Leibniz rule, semi group rule, for more informations

see [7]). Moreover, when q reaches limit values of 0

and 1, derivatives of order 0 and 1 are obtained. This

underlines a very important characteristic: when q !
0 the fractional viscoelastic constitutive law of Eq. (4)
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reduces to the purely elastic (one-dimensional) Hooke

law, while for q ! 1 the fractional constitutive law

becomes the constitutive law of a dashpot. For this

reason, as the fractional operators are generalizations

of integro-differential operators of integer order, the

constitutive law of the springpot can be seen as a

generalization of the constitutive laws of springs and

dashpots. This concept is summarized in Fig. 1.

The main advantages of fractional viscoelastic

models in comparison with classical models are:

• The fitting of experimental tests is straightforward

with a power law type relaxation and creep

functions and it leads to very good results, both

for the short and long time behaviour; this is not

true for classical viscoelastic models that need a

number of mechanical elements (springs and

dashpots) thus requiring many fitting parameters

to capture the long time behaviour.

• Constitutive equations are derived consistently

with the Boltzmann superposition principle.

• Fractional viscoelastic models are characterized

by long fading memory because of the power law

kernel and this is in agreement with the time

dependent behaviour of real viscoelastic materials.

• When the order of derivation reaches integer

values, the springpot reduces to one of the classical

elements, spring or dashpot; it can therefore be

considered as an element with intermediate

behaviour between the two classical elements.

• Viscoelastic models with fractional derivatives are

linked to molecular theories that describe the

macroscopic behaviour of viscoelastic materials

[31, 32].

• Fractional order viscoelasticity has proved to

satisfy the second law of thermodynamics and to

predict elliptical stress-strain hysteresis loop

[31, 32].

Equations of this section are intentionally written

referring to shear stress and strain; usually the same

form of creep functions, relaxation functions and

governing equations are assumed also for normal

stresses and strains. However, in the next section it

will be shown that the form of Eqs. (1), (2) and (4) is

not correct for the normal stresses and strains.

3 Three-dimensional fractional constitutive law

In this section we introduce the isotropic 3D fractional

model of the springpot; the model is intended to be

isotropic throughout the deformation, hence it is

assumed that the effects due to memory do not alter

the material symmetries.

The constitutive model is obtained by means of a

generalization of the elastic constitutive law (Hooke’s

Law); in that case only two parameters are required to

define the whole stiffness (or compliance) matrix of

the material and these two parameters can be chosen as

Young’s modulus and Poisson’s ratio, or Young and

shear modulus, or Bulk and shear modulus, or Lamé

constants. Hereinafter, we choose to write the relax-

ation matrix in terms of the shear and Bulk (volumet-

ric) contributions, for two main reasons: (1) the terms

of the relaxation (or creep) matrix can be expressed as

a simple summation of the relaxation (or creep)

volumetric and deviatoric functions, leading to simple

and easy manageable governing equations as it is

shown later in this section; (2) the volumetric and

deviatoric contributions have clear physical meanings

and the relative relaxation (or creep) functions have to

be measured experimentally. The relaxation matrix

can be easily obtained by substituting in the stiffness

matrix the shear modulus G ¼ E
2ð1þmÞ and the Bulk

modulus K ¼ E
3ð1�2mÞ, where E is the Young modulus

and m is the Poisson’s ratio, with the deviatoric

relaxation function G(t) and the volumetric relaxation

function K(t), respectively; in this way the relaxation

matrix is written as follows:

RijkhðtÞ ¼ KRðtÞ �
2

3
GRðtÞ

� �
dijdkh þ GRðtÞ dikdjh þ dihdjk

� �

ð5Þ

where dij is the Kronecker symbol and Rijkh has

dimension (MPa). For both deviatoric and volumetric

relaxations functions power law functions, analogous

G

C ρρ

μ

0τ(t)=G(D γ)(t)=Gγ(t)

1τ(t)=μ(D ε)(t)=μγ(t)

ρ
τ(t)=C (D γ)(t)ρ

Spring

SPRINGPOT

Dashpot

ρ=0

0≤ρ≤1

ρ=1

Fig. 1 Spring, springpot and dashpot and related constitutive

law
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to the one dimensional relaxation law of the springpot

[27, 28], are selected:

GRðtÞ ¼
Gat

�a

Cð1� aÞ ð6aÞ

KRðtÞ ¼
Kbt

�b

Cð1� bÞ
ð6bÞ

whereGa, a and Kb, b are parameters of the deviatoric

and volumetric relaxation functions, respectively.

By assuming relaxation functions with the form of

Eq. (6), a four parameters mechanical model is

obtained. The strain-stress relationship can be

obtained simply by applying the Boltzmann superpo-

sition principle:

rðtÞ ¼
Z t

0

Rðt � sÞ _eds ð7Þ

where rðtÞ ¼ r11 r22 r33 s12 s13 s23½ � and eðtÞ ¼
e11 e22 e33½ c12 c13 c23� are the stress and strain vectors,

respectively, and RðtÞ is the relaxation matrix (5).

Since RðtÞ contains power law functions, the compo-

nents of the stress vector rðtÞ depends on the fractional
derivatives of the components of the strain vector eðtÞ:

riiðtÞ ¼
4

3
Ga Da eii �

ejj þ ekk
2

� �h i
ðtÞ

þ Kb Db eii þ ejj þ ekk
� �� 	

ðtÞ
i; j; k ¼ 1; 2; 3; i 6¼ j 6¼ k

ð8aÞ

sijðtÞ ¼ Ga Dacij
� �

ðtÞ i; j ¼ 1; 2; 3; i 6¼ j ð8bÞ

The inverse relationship of Eq. (7) is obtained by

applying the dual form of Boltzmann’s superposition

principle:

eðtÞ ¼
Z t

0

Cðt � sÞ _rðsÞds ð9Þ

In order to use Eq. (9) we need to obtain the creep

matrix CðtÞ by using Eq. (3) (adapted for the 3D case).

CðtÞ is evaluated by performing a Laplace transfor-

mation of the relaxation matrix and evaluating its

inverse in the Laplace domain:

ĈðsÞ ¼ R̂�1ðsÞ
s2

ð10Þ

By taking the inverse Laplace transform of ĈðsÞ in

Eq. (10) the creep matrix can be written as:

Cijkh ¼
KCðtÞ
9

� GCðtÞ
6

� �
dijdkh þ GCðtÞ dikdjh �

dihdjk
2

� �

ð11Þ

where Cijkh has dimension (MPa�1), KCðtÞ and GCðtÞ
are creep functions of the volumetric and deviatoric

parts, respectively, and are analogous to Eq. (1):

GCðtÞ ¼
ta

GaCð1þ aÞ ð12aÞ

KCðtÞ ¼
tb

KbCð1þ bÞ ð12bÞ

Note that in both Eqs. (5) and (11) the shear strain is

considered as the engineering shear strain, e.g.

c12 ¼ 2e12. By substituting Eq. (12) in Eq. (9), the

components of the strain vector eðtÞ depend on the

fractional integrals of the components of the stress

vector rðtÞ:

eiiðtÞ ¼
1

3Ga
Ia rii �

rjj þ rkk
2

� �h i
ðtÞ

þ 1

9Kb
Ib rii þ rjj þ rkk
� �� 	

ðtÞ

i; j; k ¼ 1; 2; 3; i 6¼ j 6¼ k

ð13aÞ

cijðtÞ ¼
1

Ga
Iasij
� �

ðtÞ i; j ¼ 1; 2; 3; i 6¼ j ð13bÞ

Governing equations can be also obtained simply by

writing separately the volumetric and deviatoric

contribution and then summing them.

It is to be emphasized that as in the pure torsion case

there is a perfect duality between the direct and the

inverse constitutive laws [see Eq. (4)], such a duality

is preserved in the three dimensional direct and inverse

constitutive laws [see Eqs. (8a) and (13a)].

In some applications it could be necessary to define

anisotropic viscoelastic models; this is for example the

case of fiber reinforced composites with polymeric

matrices, especially when the fiber have a prevalent

orientation (pultruded bars); for this reason the

mechanical properties are different between the

direction along the fibers and the directions orthogonal

to fibers hence anisotropic constitutive model are

required. As in elasticity the number of mechanical

constant increases with the increasing level of

anisotropy, in viscoelasticity for anisotropic models
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more than two relaxation (or creep) tests have to be

performed in order to define more than one viscoelas-

tic Poisson’s ratio, however concepts discussed in this

paper remain valid with the correct adaptation for the

level of anisotropicity at hand. At this stage some

remarks are important for understanding the physics of

the problem at hand.

Remark 1 It is worth noticing that the three-dimen-

sional fractional viscoelastic constitutive law of

Eq. (7) can be obtained also by using correspondence

principles, also know as comparable elasticity rela-

tions [24]. Based on these principles, constitutive

equations and relationships between different moduli

for a viscoelastic model can be found simply by

substituting in the correspondent elasticity relation-

ship the s-multiplied Laplace transform to the elastic

quantity. For example since in elasticity:

G ¼ E

2ð1þ mÞ ð14Þ

in viscoelasticity the following relation holds:

sĜRðsÞ ¼
sÊRðsÞ

2ð1þ sm̂ðsÞÞ
ð15Þ

Using the correspondence principles, the three-dimen-

sional fractional viscoelastic model in the Laplace

domain is written as:

sr̂ðsÞ ¼ sR̂ðsÞsêðsÞ ð16Þ

or

r̂ðsÞ ¼ R̂ðsÞsêðsÞ ð17Þ

Now since in Laplace domain multiplication for

s corresponds to derivation in time domain and the

product between two functions corresponds to convo-

lution product in time domain, inversion of Eq. (17)

yields directly Eq. (7).

This means that the three-dimensional fractional

viscoelastic mechanical model satisfies correspon-

dence principles and then it may be included in the

general framework of the theory of viscoelasticity.

Remark 2 It is to be remarked that the choice of

deviatoric and volumetric relaxation or creep leads to

the most simple and correct choice for the direct

derivaton of the three-dimensional governing law. As

soon as Eq. (6) are assumed then in the tensile creep

test, in which a constant unitary stress is applied to the

specimen, we obtain:

eLðtÞ ¼
ta

3GaCð1þ aÞ þ
tb

9KbCð1þ bÞ
ð18aÞ

eTðtÞ ¼ � ta

6GaCð1þ aÞ þ
tb

9KbCð1þ bÞ ð18bÞ

leading to the constitutive equations:

eLðtÞ ¼
IarLð ÞðtÞ
3Ga

þ
IbrL
� �

ðtÞ
9Kb

ð19aÞ

eTðtÞ ¼ � IarLð ÞðtÞ
6Ga

þ
IbrL
� �

ðtÞ
9Kb

ð19bÞ

where rLðtÞ and eLðtÞ are the longitudinal stress and

strain, respectively, while eTðtÞ is the transverse strain.
From these relations it is evident that, from a

theoretical pint of view, the constitutive laws

expressed with the unique parameter q defined in

Eq. (4) is not correct for the normal components of

stress and strain. The reason is that the summation of

two power laws [see Eqs. (18) and (19)] cannot be

expressed as an unique power law, except if the two

power laws are of the same order. People working in

experimental fractional viscoelasticity may be discon-

certed for the previous statement because the exper-

imental tests (creep or relaxation) are usually

performed with a uniaxial test; the best fitting

procedure of the data appears to be good and

absolutely acceptable. The same concept holds for

the relaxation; however, in uniaxial relaxation, while

the superimposed longitudinal strain is constant, the

transverse strain is not constant and must be evaluated

in Laplace domain in order to obtain its contribution to

the longitudinal stress; this implies a number of

manipulations that for the sake of simplicity are not

reported here.

On the other hand, the use of the three-dimensional

fractional constitutive law confirms that the single

power law function and governing equation of Sect. 2

are correct for the interpretation of pure shear or

torsion tests. This may explains the reason that, in the

uniaxial test, the parameter q that fits very well the

creep phase do not fits the recovery phase. In

conclusion the ideal tests in order to characterize a

viscoelastic material are shear and volumetric tests,

since only one component of stress and corresponding
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strain are present (shear and hydrostatic). On the other

hand the volumetric test (creep or relaxation) is not

easy to perform since the experimental machines are

manufactured only for uniaxial and torsion creep or

relaxation test. It follows that, in order to define the 3D

constitutive laws, it may be performed the torsion test

and uniaxial test and by using Eqs. (18) and (19) both

deviatoric and volumetric components may be easily

separated.

The concepts outlined in this remark may be readily

applied to the interpretation of experimental data. The

one dimensional creep of some polymers is well fitted,

both in creep and recovery phase, by a fractional

Maxwell model constituted by a spring and a springpot

connected in series; a practical example is the Ultra

High Molecular Weight PolyEthylene (UHMWPE)

[16] commonly used for human joint replacements.

The creep function in one dimensional conditions

ECðtÞ of the fractional Maxwell model reads as

follows:

ECðtÞ ¼
1

E
þ tq

CqCð1þ qÞ ð20Þ

where E is the Young modulus of the spring and q and

Cq are the mechanical parameters of the springpot.

The same creep function can be obtained from

Eq. (18a) if a ¼ q, 3Ga ¼ Cq, b ¼ 0 and 9Kb ¼ E is

assumed. This means that theoretically the three

dimensional viscoelastic features of the UHMWPE

may be captured with the three-dimensional fractional

viscoelastic model discussed in this paper with b ¼ 0.

Such a model is similar to elastically compressible

fractional viscoelastic model described in [22]; the

difference is that the deviatoric behaviour here is

described by a spingpot model, while in [22] it is a

fractional Kelvin-Voigt model. This possibility cannot

be completely verified only by means of a uniaxial

test, but it is necessary to perform at least a uniaxial

and a torsion test as explained above.

Remark 3 It is to be remarked that the volumetric

component assumed as in Eq. (12b) has an undesired

physical inconsistence: as t ! 1 a finite specimen

will be collapsed in a single point. In order to avoid

this undesired feature some authors propose a modi-

fication on KCðtÞ (and as consequence on KRðtÞ) by
simply adding a purely elastic contribution [4].

However this way to enforce a constant contribution

in Eq. (12b) is meaningless. In the authors opinion the

correct way is to follow the path in large displacement

theory. When the specimen reduces in size the

repulsive effects between adjacent particles (coming

from the Lennard-Jones potential) modify the original

constitutive law in a sensible manner since the

repulsive force between adjacent particles are strongly

non linear when their distance becomes smaller.

On the other hand the example of the UHMWPE

described at the end of Remark 2 reveals that

potentially a special case (b ¼ 0) of the three-dimen-

sional springpot model could be already acceptable in

order to reproduce the behaviour of some materials.

However the authors do not exclude that some

applications requires necessarily the adoption of

models not simple as the springpot, as for example it

has been found in [22], at least for the interpretation of

tests in frequency domain.

4 The fractional viscoelastic Poisson’s ratio

One of the most important aspects of 3D viscoelastic

models is the behavior of the ratio between the lateral

contraction and the elongation, i.e. the viscoelastic

Poisson ratio. It is well known that during the

infinitesimal deformation of any real viscoelastic

material, the lateral contraction is a time-dependent

(or equivalently frequency-dependent) function.

Among all studies devoted to the viscoelastic Pois-

son’s ratio, the works of Lakes and Tschoegl

[23, 25, 26] are of particular interest. In the paper

[25] some concepts about viscoelastic Poisson’s ratio

are clarified: firstly, it is shown that the viscoelastic

Poisson’s ratio depends on the test performed, then

viscoelastic Poissson’s ratio is different in creep and in

relaxation test; secondly it is shown, by means of

correspondence principles [24], that the viscoelastic

counterpart of the elastic Poisson’s ratio is the

viscoelastic Poisson’s ratio in relaxation and not in

creep; finally, it is shown how to switch between

Poisson’s ratio in creep and in relaxation. In the paper

[26] the same results are achieved. Moreover, in the

papers [23, 26] it is shown that the viscoelastic

Poisson’s ratio can increase or decrease with time;

indeed, most polymers for example exhibit an increas-

ing Poisson ratio because of the fact that the

volumetric part of stress relaxes much less than the

deviatoric part, but materials with a particular

microstructure can behave in the opposite way.
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Furthermore, in the paper [26] it is demonstrated that

the viscoelastic Poisson’s ratio do not need to be

monotonic with time.

However in the aforementioned papers the authors

do not refer to Poisson’s ratio for fractional viscoelas-

ticity. For this reason in the following section results

of papers [23, 25, 26] are confirmed for fractional

viscoelasticity. It will be shown that the fractional

viscoelastic Poisson’s ratio can be constant, decreas-

ing or decreasing depending only on the parameters a
and b, demonstrating the great flexibility of the 3D

fractional viscoelastic constitutive law.

4.1 Poisson’s ratio in creep

The Poisson ratio is evaluated in an ideal creep test on

a viscoelastic cube; only one face of the cube is fixed

only in the normal direction and in the opposite face

the cube is loaded by a constant normal stress r0; using
the springpot model of Fig. 1 considering the creep

functions specified in Eq. (12) the Poisson ratio in

creep, denoted as mCðtÞ, is given as:

mCðtÞ ¼ � eTðtÞ
eLðtÞ

¼ �
KCðtÞ
9

� GCðtÞ
6

� �
r0UðtÞ

KCðtÞ
9

þ GCðtÞ
3

� �
r0UðtÞ

¼ �
tb

9KbCð1þbÞ � ta

6GaCð1þaÞ
tb

9KbCð1þbÞ þ ta

3GaCð1þaÞ
¼ �2þ 3ata�b

2 1þ 3ata�bð Þ

ð21Þ

where eLðtÞ ¼ KCðtÞ
9

þ GCðtÞ
3

� �
UðtÞ and eTðtÞ ¼

KCðtÞ
9

þ
�

� GCðtÞ
6

�
UðtÞ are the longitudinal and trans-

verse strain, respectively, U(t) is the unit step function

and a ¼ KbCð1þbÞ
GaCð1þaÞ [ 0. If a ¼ b, the Poisson ratio is

constant over time:

mCðtÞ ¼ �m ¼ �2Ga þ 3Kb

2ðGa þ 3KbÞ
ð22Þ

Note that Eq. (21) can be written in this form because,

since in creep all the components of the stress vector

are unit step functions (the longitudinal one is a unit

step function, while the others are zero), the convo-

lution (9) reduces to a product between CðtÞ and rðtÞ.
Both eLðtÞ and eTðtÞ can then be simply written in

terms of volumetric and deviatoric creep functions.

If a 6¼ b, the Poisson ratio varies in time and it has

limit values at t ¼ 0 and t ¼ 1, as summarized in the

Table 1.

Note that both the values have to be evaluated as a

limit. The main consequences of these results are:

• If a[ b, the material exhibits a Poisson ratio of

-1 at t ¼ 0, then its behavior gradually changes

until it becomes incompressible for large values of

t. The anomalous behaviour at t ¼ 0 has been

already found for the elastically compressible

fractional viscoelastic material described in [22].

• If b[ a, the material is incompressible at t ¼ 0,

then its behavior gradually changes until it exhibits

a negative Poisson ratio for large values of t.

It is to be emphasized, that although the coefficient Ga

and Kb are dimensionally anomalous, the viscoelastic

Poisson’s ratio is non-dimensional as expected.

Indeed, since the coefficients Ga and Kb have dimen-

sion MPa sa and MPa sb, the term a of Eq. (21) has

dimension sb�a; since the term a is multiplied for ta�b

in Eq. (21) and the other terms of the same equation

are pure numbers, the viscoelastic Poisson’s ratio in

creep mCðtÞ is a non-dimensional quantity.

4.2 Poisson’s ratio in relaxation

The Poisson ratio can also be evaluated for an ideal

relaxation test on a cube with the same boundary

conditions of the creep test; on the face opposite the

fixed one, a normal constant displacement is applied.

In this case the longitudinal strain is imposed while the

transverse strain is unknown; in order to obtain it we

simply need to write Eq. (7) and assume that the

transverse components of the stress are both zero.

Since eTðtÞ is not constant as eLðtÞ ¼ e0UðtÞ, relation-
ship (7) does not simplify in a simple product between

RðtÞ and eðtÞ, then an expression of the Poisson ratio in
relaxation in terms of the relaxation functions is not

Table 1 Limiting values for the Poisson ratio in a creep test

t ¼ 0 t ¼ 1

a[b m ¼ �1 m ¼ 1=2

a ¼ b mðtÞ ¼ �2Gaþ3Kb

2ðGaþ3KbÞ

b[ a m ¼ 1=2 m ¼ �1
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straightforward. In [33] a relationship between the two

ratios has been found:

mCðtÞ ¼
R t

0
mRðt � sÞ _C11ðsÞds

C11ðtÞ
ð23Þ

whereC11ðtÞ is the term that gives r11ðtÞ for an applied
e11ðtÞ, that is C11ðtÞ ¼

�KðtÞ
9

þ �GðtÞ
3
. In order to find mRðtÞ

Laplace transform can be used, but inversion of the

Laplace transform of mRðtÞ to the time domain is very

difficult. Only in the case when a ¼ b the transverse

strain eTðtÞ is constant during the relaxation test and is
equal to:

eTðtÞ ¼ ��2GðtÞ þ 3KðtÞ
2ðGðtÞ þ 3KðtÞÞ e0UðtÞ ða ¼ bÞ ð24Þ

where e0 is the amplitude of the superimposed strain.

Since eLðtÞ ¼ e0UðtÞ the Poisson ratio is

mRðtÞ ¼
�2GðtÞ þ 3KðtÞ
2ðGðtÞ þ 3KðtÞÞ ¼

�2Ga þ 3Kb

2ðGa þ 3KbÞ
ða ¼ bÞ

ð25Þ

The Poisson ratio in relaxation when a 6¼ b can be

found in another way. The longitudinal stress rLðtÞ can
be decomposed into its deviatoric and volumetric

components, labeled as rdLðtÞ and rvLðtÞ, respectively;
the volumetric component of the longitudinal

stress is

rðvÞL ðtÞ ¼ I1

3
¼ rLðtÞ

3
ð26Þ

being I1 the first invariant of stress; the deviatoric

component of the stress is instead

rðdÞL ðtÞ ¼ rLðtÞ � rðvÞL ðtÞ ¼ 2

3
rLðtÞ ð27Þ

On the other hand, by considering the constitutive

law (7), rðvÞL ðtÞ and rðdÞL ðtÞ are written as:

rðvÞL ðtÞ ¼Kb D
b
0þeV

� �
ðtÞ ð28aÞ

rðdÞL ðtÞ ¼ 4

3
Ga Da

0þðeL � eTÞ
� 	

ðtÞ ð28bÞ

where eV is the volumetric strain.

Since from Eqs. (26) and (27) descends that

rðdÞL ðtÞ ¼ 2rðvÞL ðtÞ, by considering Eq. (28) the follow-
ing equation is obtained:

4

3
Ga Da

0þðeL � eTÞ
� 	

ðtÞ ¼ 2Kb D
b
0þeV

� �
ðtÞ ð29Þ

This equation can be solved in the Laplace domain and

gives the following results for the Poisson’s ratio:

mRðtÞ ¼

1

2
� 3

2
Ea�b � 3Kb

Ga
ta�b

� �
a[ b

�1þ 3

2
Eb�a � Ga

3Kb
tb�a

� �
b[ a

8>>><
>>>:

ð30Þ

where Ek �ð Þ, with k[ 0, is the one parameter Mittag-

Leffler function defined as:

EkðatkÞ ¼
X1
j¼0

ðataÞj

Cðkjþ 1Þ ð31Þ

As expected, the expression for mðtÞ is not the same as

for the creep test; however since, for c[ 0,

Ekð�ctkÞ ! 1 for t ! 0 and Ekð�ctkÞ ! 0 for

t ! 1, the general trend and limiting values still

hold, hence observations made above for the creep test

are still valid. In particular for a ¼ b the Poisson ratio

assumes the same constant value �m of Eq. (22). As

noted for mCðtÞ, the viscoelastic Poisso’s ratio in

relaxation mRðtÞ is non dimensional since the term
3Kb

Ga
ta�b is non dimensional.

It is to be emphasized that Eq. (30) can be obtained

directly by using the three-dimensional constitutive

law (7) particularized for the case in which a uniaxial

relaxation test is performed.

In Fig. 2 it is shown the viscoelastic Poisson ratio in

a relaxation test for fixed a ¼ 0:5 and different values

of b; from this Figure it is possible to appreciate that

β=0.25 β=0.75β=α=0.5

Fig. 2 Poisson’s ratio in relaxation test for the 3D springpot

model for Kb ¼ 1MPa sb,Ga ¼ 1MPa sa, a ¼ 0:5 and different
values of b
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the proposed 3D model is able to produce different

trends in the behavior of the viscoelastic Poisson ratio;

in creep conditions the viscoelastic Poisson’s ratio is

only slight different from the behaviour described in

Fig. 2 and is not reported for brevity. In Fig. 3 the

influence of the parametersGa andKb on the Poisson’s

ratio is shown; Fig. 3a shows an increasing Poisson’s

ratio (a[ b) for fixed Ga and different values of Kb;

the same is shown in Fig. 3b for a decreasing

Poisson’s ratio (a\b). From this figures it is possible

to appreciate that the greater is Kb than the faster the

Poisson’s ratio approaches the limit value of m ¼ 0:5

for increasing Poisson’s ratio, while for decreasing

Poisson’s ratio the greater is Kb than the slower the

Poisson’s ratio reaches the limit value of m ¼ �1. The

parameters Ga affects the Poisson’s ratio in the

opposite way of the coefficient Kb: for increasing

Poisson’s ratio, a greater Ga determines a slower

increasing Poisson’s ratio, while for decreasing Pois-

son’s ratio a greater Ga determines a faster decreasing

one.

It is theoretically possible to further manipulate the

behavior of the Poisson’s ratio; this can be done by using

more complex fractional viscoelastic models, as for

example fractional Kelvin-Voigt model, fractional Max-

well model or fractional Standard Linear Solid model

(see for example [3, 22]); in particular the value in t ¼ 0

and at t ¼ 1 can be modified by the use of the

aforementioned multi-element fractional models.

However these fractional models are not investigated

here for brevity.

4.3 Poisson’s ratio from correspondence

principles

The Poisson’s ratio can be evaluated also by means of

correspondence principles. In elasticity the Poisson’s

ratio can be evaluated from elastic constants as

m ¼ �2Gþ 3K

2ðGþ 3KÞ ð32Þ

It follows from correspondence principles that

sm̂ðsÞ ¼ �2sĜRðsÞ þ 3sK̂RðsÞ
2sðĜRðsÞ þ 3K̂RðsÞÞ

ð33Þ

or from the equivalences sĜRðsÞ ¼ 1=sĜCðsÞ and

sK̂RðsÞ ¼ 1=sK̂CðsÞ (see Eqs. (3) and (10))

sm̂ðsÞ ¼ �2K̂CðsÞ þ 3ĜCðsÞ
2ðK̂CðsÞ þ 3ĜCðsÞÞ

ð34Þ

Equation (34) can be obtained by means of corre-

spondence principle. To this purpose, let us consider a

relaxation test as in Sect. 4.1; the correspondence

principles allow to write the Poisson ratio in Laplace

domain as

sm̂ðsÞ ¼ � sêTðsÞ
sêLðsÞ

¼ �
K̂CðsÞ
9

� ĜCðsÞ
6

� �
K̂CðsÞ
9

þ ĜCðsÞ
3

� � ¼ �2K̂CðsÞ þ 3ĜCðsÞ
2ðK̂CðsÞ þ 3ĜCðsÞÞ

ð35Þ

Substitution of the relaxation or creep functions in

Eq. (33) or in Eq. (34), respectively, gives the

following:

m̂ðsÞ ¼ 3Kbs
b � 2Gas

a

2sðGasa þ 3KbsbÞ
ð36Þ

Application of the inverse Laplace transform operator

yields exactly Eq. (30), that is the Poisson’s ratio in

time domain for the relaxation test and not for the

creep test. This is an important result because reveals

that also for fractional viscoelastic models the Pois-

son’s ratio in relaxation is the equivalent of the

Poisson’s ratio in elasticity, confirming results of other

authors [25, 26] that were not devoted specifically to

fractional viscoelasticity.

α=0.50
β=0.25

0 10 20 30 40 50

0.0

0.5

t (s) t (s)

K =1β K =2β K =4β

(a)

α=0.50
β=0.75K =1β K =2β K =4β

(b)

Fig. 3 Poisson’s ratio in

relaxation test for the three-

dimensional springpot

model for Ga ¼ 2MPa sa,

a ¼ 0:5 and different values

of Kb: a increasing,

b decreasing
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5 Influence of Poisson’s ratio on stress and strain

time evolution

The influence of the Poisson ratio, and then of the

relative values of a and b, can be analyzed also by

monitoring the normal components of stress and strain

in ideal creep and relaxation tests in 3D conditions.

To this purpose, two ideal tests, one in creep with

recovery and one in relaxation, are considered.

In the creep test, the boundary conditions are the

same of those considered for the evaluation of the

Poisson’s ratio; in this case the final value of the

applied stress r0 ¼ 1 MPa is reached with a linear

ramp of duration t0; after a time t1 the loading is

removed with a linear ramp of duration t2 � t1 ¼ t0.

The applied stress history rðtÞ for the creep/recovery
test depicted in Fig. 4a can be written as following:

rðtÞ ¼ r0
t0

t � ðt � t0ÞUðt � t0Þ½ �f

� ðt � t1ÞUðt � t1Þ � ðt � t2ÞUðt � t2Þ½ �g
ð37Þ

The value of a is fixed, while different b values are

considered. The evolution of the longitudinal and

transverse strain is monitored and reported in Fig. 5.

From these figures it is clear that while the behavior of

the longitudinal strain is affected only in the

amplitude, the transverse strain can even radically

change its behavior depending on the relative values of

a and b; indeed, if b[ a the amplitude of the

transverse strain decrease even if the longitudinal

one increase.

The values of a and b affect also the stresses; in

order to analyze this influence, a relaxation behavior

on a cube is considered. The cube has all faces but one

fixed in the normal direction and in the free face a

normal displacement is applied; with these boundary

conditions the transverse strain is zero, but the

transverse stress is not zero. The free face is strained

reaching the final value of the strain e0 ¼ 1% by a

linear ramp, as depicted in Fig. 4b and written as

follows:

eðtÞ ¼ e0
t0

t � ðt � t0ÞUðt � t0Þ½ � ð38Þ

While the behavior of the longitudinal stress is slightly

affected by the relative values a and b and it is always

decreasing with time, the transverse stress can increase

or decrease with time, in particular if b\a the

transverse stress increases instead of decreasing as

one expects.

The results of Figs. 5 and 6 have shown the

flexibility of the three-dimensional springpot model

in which the order of the power law for creep (and

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

t (s) t (s)

(a)

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

(b)

Fig. 4 Applied strain (a)
and stress (b) for the three-
dimensional springpot

model; t0 ¼ 1 s, t1 ¼ 10 s,

t2 ¼ 11 s

β=0.3

β=0.2

β=0.1

α=0.2

(a)

β=0.3

β=0.2

β=0.1
α=0.2

(b)

Fig. 5 Evolution of

longitudinal (a) and
transverse (b) strain for the

three-dimensional springpot

model in a creep test, with

fixed a and various values of
b, for Kb ¼ 1 MPa sb and

Ga ¼ 1 MPa sa
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relaxation) volumetric and deviatoric functions can

have different values. However these are only theo-

retical behaviors and in some cases they can be not so

intuitive, as for example when b[ a in creep and for

b\a in relaxation. In this light, it would be necessary
to apply the second principle of thermodynamics to

see if some restrictions apply to the mechanical

parameters of the mechanical model, especially regard

the value of a and b. Thermodynamic consistency of

material with memory have been widely investigated

and demonstrated (see e.g. [34, 35]). Some studies on

the thermodynamics of viscoelastic materials have

been devoted to fractional viscoelasticity only. In

particular, in [31] thermodynamics restrictions on the

parameters of a one-dimensional fractional Standard

Linear Solid (FSLS) viscoelastic model have been

found; the model holds the second principle of

thermodynamics if all multiplicative mechanical

parameters are positive and if the order of the power

law is in the range 0–1. In [32], thermodynamic

consistency of a one-dimensional springpot model has

been proved to be satisfied if the relaxation spectrum is

positive, and this happens if the multiplicative coef-

ficient is positive and if the order of power law lays in

the range 0–1. Although the works [31, 32] refer to

one-dimensional models, i.e. with only one relaxation/

creep function, their results can be extended to the

three-dimensional model studied in this paper. Indeed,

for the deviatoric and volumetric relaxations functions

considered separately, results of [32] are valid. When

both deviatoric and volumetric components are ‘‘ac-

tivated’’ during a loading process, in linear viscoelas-

ticity their contributions can be analyzed separately

and then summed. For the single relaxation function

the thermodynamic restrictions on parameters are

known, the same restrictions apply to both compo-

nents, deviatoric and volumetric. The fact that the

deviatoric and volumetric parts are both present does

not imply that the second principle of thermodynamics

imposes more restriction on the parameters a and b.
Then we must conclude that all the behaviors

described in this and in the previous section are

thermodynamically consistent, the mechanical model

of the three-dimensional springpot satisfies the second

principle of thermodynamics whatever are the order of

power laws a and b in the range 0–1. A further

confirmation of the last statement is reported in the

‘‘Appendix’’.

6 Conclusions and discussion

In this paper the 3D fractional constitutive model has

been presented for linear isotropic material. It has been

shown that as soon as the deviatoric and volumetric

components of the stress tensor are well fitted by [1]

power law for the creep (and/or relaxation) the

constitutive laws are ruled by fractional operators.

The Nutting experience was made on many mate-

rials like rubber, steel and many others and at that time

the test was made in pure tension or compression.

Many other experimentalists in the last half century

confirmed the Nutting experiments. However usually

the test is limited to the creep phase. People working

on this subject confirm the Nutting results in the creep

phase (by means of best fitting procedure); the

parameters obtained in such a phase do not fit the

recovery phase very well. Moreover the parameters

obtained by experimental data (by using the results in a

short time) have to be re-adapted when the duration of

the test increases. Another unsatisfactory result is that

the parameters obtained by a test with a sinusoidal

input do not coincide with those obtained by the creep

test. These inconsistencies are not explicitly claimed

β=0.3
β=0.2

β=0.1

α=0.2

(a)

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5
α=0.2

β=0.1 β=0.2

β=0.3

(b)

Fig. 6 Evolution of

longitudinal (a) and
transverse (b) stress for the
three-dimensional springpot

model in a relaxation test,

with fixed a and various

values of b, for Kb ¼
1 MPa sb and

Ga ¼ 1 MPa sa
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by the scientists working in this field but it is in

contrast with the linear theory of viscoelasticity. In

order to cover this lack of consistency many other

models have been proposed in the past by adding an

elastic or a viscous element to fractional one.

In the authors opinion all these modifications are

artificious and do not present a clear physical meaning.

In this paper we assume that the 3D costitutive law

may be expressed as a summation of two contribu-

tions: the first one is the volumetric and the second one

is the deviatoric contribution. For isotropic material

the deviatoric and volumetric parts are totally sepa-

rated (as in elasticity) and involve only one stress and

corresponding strain. As soon as it is assumed that the

creep law for the volumetric component is ruled by a

power law (say tb) and the deviatoric one is ruled by a

power law (say ta) then in the tensile test the creep law

is ruled by a linear combination of ta and tb. A

summation of two distinct fractional operators are

present. Now since a 6¼ b an unique power law of the

kind tq may not fit in a perfect way creep or relaxation.

This cause a dramatic withdraw from the experimental

result in the recovery phase. Once this aspect is

clarified it maybe stated that in order to fully

characterize the 3D constitutive law two tests have

to be performed: a creep test in pure torsion and a

creep test in hydrostatic regime. Since the test machine

in hydrostatic regime is not at the moment available, a

pure tension may be performed. The 3D equations can

be then written for the pure tension (or compression) in

terms of both deviatoric and hydrostatic parameters.

In this paper a wide discussion on the role played by

the Poisson ratio in creep and relaxation is presented.

It has been shown that if the exponent of the

hydrostatic component is greater than that of the

deviatoric one then the model exhibits a decreasing

Poisson’s ratio both in creep and in relaxation. If the

exponent of the hydrostatic component is smaller than

that of the deviatoric one then the Poisson ratio is

increasing with time both in creep and in relaxation. If

the two exponent are equal the Poisson ratio is

constant over time. Moreover, it has been found that

the equivalent of elastic Poisson’s ratio is the

fractional viscoelastic Poisson’s ratio in relaxation

and not in creep; this result was already found in other

works that however were not devoted to fractional

viscoelasticity. The influence of the Poisson ratio on

stress and strain components has also been analyzed

and the thermodynamic admissibility of the model has

been discussed.
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Appendix

The thermodynamic consistency of fractional vis-

coelastic model has been widely investigated and

demonstrated by several authors (see e.g.

[31, 32, 34, 35]). In this ‘‘Appendix’’ two cases are

studied in order to further confirm the results of other

authors, a relaxation test and a dynamic test.

The thermodynamic consistency is usually inves-

tigated by imposing non-negative internal work (elas-

tic energy stored in the solid) and non-negative rate of

energy dissipation and if these hold what restrictions

apply to its parameters in order to respect the

conditions. In classical models the internal work is

related to the stored energy in the solid, then to the

elastic part of strain; the dissipated energy is related to

the viscous part of the strain. However in fractional

viscoelasticity is not possible to distinguish between

elastic and inelastic strain; this is due to the the fact

that the springpot model contains in itself the features

of both spring and dashpot, as shown by the hierar-

chical or selfsimilar models that are able to reproduce

power law viscoelasticity [11, 29, 30]. To overcome

this problem, it is possible to work with state functions

and in particular with the concept of free energy

(corresponding to the elastic energy) and dissipation

rates; indeed, in the paper [36] it has been found what

is the right definition of the free energy for the

springpot model shown in the following. In this way

the free energy itself and the dissipation rate can be

evaluated.

The specific Helmotz free energy w is a thermody-

namic state function whose gradient with respect to the

actual value of strain e gives the measured stress; it

represents the energy stored in the solid, that is what in
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elasticity is defined as elastic energy. The rate of free

energy can be expressed as follows:

_w ¼ _u� T _s ð39Þ

where _u is the rate of specific internal energy, T is the

the absolute temperature and _s is the entropy produc-

tion. The second principle of thermodynamics states

that _s� _q=T , being _q the rate of change of specific

thermal energy, or simply the rate of thermal energy

exchange. It is to be emphasized that:

• The rate of change of specific internal energy is

related to the rate of the specific mechanical work

done on the system and on the thermal energy

exchange, then _u ¼ _wext þ _q.
• Introducing the entropy production rate due to

irreversible transformations labeled as _sðiÞ � 0, that

is related to the dissipated energy, the second

principle of thermodynamics can be written as

_s ¼ _q=T þ _sðiÞ.

By performing these two substitutions in Eq. (39) we

get:

_w ¼ _wext þ _q� T _q=T þ _sðiÞ
� �

¼ _wext � DðtÞ ð40Þ

where DðtÞ ¼ T _s denotes the dissipation rate.

When we apply a strain or stress history to the

viscoelastic solid, in Eq. (40) the external work

rate is known and can be evaluated as

_wext ¼ rðtÞ _eðtÞ. If it is possible to define also the free

energy rate then also the dissipation rate can be

evaluated from Eq. (40). Unfortunately the free

energy is not uniquely defined unless a rheological

model with well defined and distinct elastic and

viscous phases is available, as it is in classical

viscoelasticity. In fractional viscoelasticity the only

possibility to distinguish between elastic and viscous

phases is to make use of hierarchical models

[11, 29, 30] but the number of elements to be taken

into account is significant and depends also on the

observation time and on the input on the system; for

these reasons this strategy is not applicable. However,

in the paper [36] the mechanical models of fractional

viscoelasticity have been used to prove that the correct

form of the free energy function for the fractional

viscoelastic material is the one proposed by Staver-

mann and Schwartzl [37] and defined as:

wSS ¼
1

2

Z t

�1

Z t

�1
Rð2t � s1 � s2Þe0ðs1Þe0ðs2Þds1ds2

ð41Þ

where Rð�Þ is the relaxation function as usual and the

pedex SS stands for Stavermann and Schwartzl. By

using Eq. (41) in Eq. (40), the following expression

for the dissipation rate is obtained:

DðtÞ ¼ � 1

2

Z t

�1

Z t

�1
_Rð2t � s1 � s2Þe0ðs1Þe0ðs2Þds1ds2

ð42Þ

For the particular case of the springpot Eqs. (41) and

(42) read as follow:

wSS ¼
Ca

2Cð1� aÞ

Z t

�1

Z t

�1
ð2t � s1 � s2Þ�ae0ðs1Þe0ðs2Þds1ds2

ð43aÞ

DðtÞ ¼ Caa
Cð1� aÞ

Z t

�1

Z t

�1
ð2t � s1 � s2Þ�a�1e0ðs1Þe0ðs2Þds1ds2

ð43bÞ

Equations (43) should be firstly applied to the one-

dimensional springpot model and then to the three-

dimensional springpot model; however from a one-

dimensional point of view the thermodynamic consis-

tency of the springpot has been already proved. In this

case in order to evaluate the free energy and the

dissipation rate it is needed to take all the components

of stress and strain into account from both the

volumetric and deviatoric contributions. Limitations

on the relationship between a and b can be found by

enforcing the condition that wðtÞ� 0 8t and

DðtÞ� 0 8t. However the analytical solution of the

double integrals in Eqs. (43) is not straightforward

hence numerical integration has been performed. The

analysis is performed for two cases: i) a sinusoidal

hystory of strain is applied, but differently from the

paper [31], also transient conditions are examined; ii)

a constant strain, reached with a linear ramp, is

applied.

Equations (43) have been evaluated by considering

a large range of values of a and b; the other mechanical

parameters (Ga and Kb) are chosen positive, because

negative value of multiplicative parameters violate

thermodynamic restrictions also in one-dimensional

conditions. For simplicity here we show only results
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with the following values: (1) a ¼ b ¼ 0:5; (2)

a ¼ 0:5, b ¼ 0:25; (3) a ¼ 0:5, b ¼ 0:75. Figure 8

shows the specific dissipation rate (dissipation rate per

unit volume), while Fig. 9 show s the specific free

energy function for the two applied strain histories of

Fig. 7.

Figures 8 and 9 show that the dissipation rate and

the free energy function are non-negative whatever the

relationship between the values of a and b is. From this

evidence it has to be concluded that the 3D fractional

viscoelastic models are thermodynamically consistent

independently of the relationship between a and b; this
means that both an increasing and a decreasing

viscoelastic Poisson’s ratio are possible for 3D

fractional constitutivemodels that hence are suitable to

represent both behaviors.
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