

EUROPEAN

SOCIETY

MECHANICS

UNIVERSITÀ DI TRENTO

alma mater studiorum Università di Bologna

ESMC 2018

10th European Solid Mechanics Conference

BOLOGNA July 2-6, 2018 | Palazzo dei Congressi PROGRAM BOOK

Scientific Committee

Chairman

Prof. A. Corigliano Politecnico di Milano

Members

Prof. D. Bigoni	University of Trento
Prof. S. Bordas	Université du Luxembourg and Cardiff University
Prof. P. Camanho	University of Porto
Prof. L. Dormieux	Université Paris-Tech
Prof. A. Freidin	Russian Academy of Sciences, St. Petersburg
Prof. U. Galvanetto	University of Padova
Prof. G.A. Holzapfel	Graz University of Technology; Norwegian University of Science and Technology
Prof. P.E. McHugh	National University of Ireland Galway
Prof. J. Huyghe	Technical University Eindhoven
Prof. J.F. Molinari	École Polytechnique Fédérale de Lausanne
Prof. C.F. Niordson	Technical University of Denmark
Prof. F. Ubertini	University of Bologna

Local Organizing Committee

Chairmen

Prof. D. Bigoni	University of Trento
Prof. F. Ubertini	University of Bologna

Members

Prof. C. Carloni	University of Bologna
Dr. G. Castellazzi	University of Bologna
Dr. F. Dal Corso	University of Trento
Prof. S. de Miranda	University of Bologna
Prof. L. Deseri	University of Trento
Prof. M. Gei	Cardiff University
Dr. C. Gentilini	University of Bologna
Prof. A. Marzani	University of Bologna
Dr. D. Misseroni	University of Trento
Dr. L. Molari	University of Bologna
Prof. A. Piccolroaz	University of Trento
Prof. N. Pugno	University of Trento
Prof. T. Ruggeri	University of Bologna
Prof. M. Savoia	University of Bologna
Dr. R. Springhetti	University of Trento

1-9 - Modeling of Fracture in Hard and Sof materials Afternoon Session

DAY: Thursday

ROOM: Ciano B

TIME 14:30-16:30

CHAIR: David Kammer, Mikhail Perelmuter

INVITED	333	Multiscale Damage Models for Composite Laminates
		Authors: Su Zhoucheng, Jerry Quek, Brian Cox, Sridhar Narayanaswamy
		Presenting Author: Sridhar Narayanaswamy
INVITED	1292	The role of friction in the 3ENF and 4ENF delamination tests: an analytical solution
		Authors: Francesco Parrinello, Guido Borino
		Presenting Author: Francesco Parrinello
INVITED	431	Fracture modeling of adhesive connection by an imperfect soft interface model
		Authors: Francesco Ascione, Marco Lamberti, Frédéric Lebon, Aurélien Maurel-Pantel, Maria Letizia Raffa
		Presenting Author: Francesco Ascione
	1140	Influence of shear on interface fracture of sandwich beams
		Authors: Roberta Massabò, Luca Barbieri
		Presenting Author: Roberta Massabò
	833	Evaluation of facesheet-to-core interface strength in sandwich panels in the dynamic debonding propagation analysis
		Authors: Vyacheslav Burlayenko, Tomasz Sadowski, Svetlana Dimitrova
		Presenting Author: Vyacheslav Burlayenko
	1250	Crack front fingering in failure of heterogeneous brittle solids
		Authors: Manish Vasoya, Véronique Lazarus, Laurent Ponson
		Presenting Author: Laurent Ponson

Coffee Break 16.30-17.00 - Ground floor and 1st floor

The role of friction in the 3ENF and 4ENF delamination tests: an analytical solution

Francesco Parrinello¹, Guido Borino¹ ¹ Universitá di Palermo, DICAM E-mail: francesco.parrinello@unipa.i, guido.borino@unipa.it

Keywords: Friction, Delamination, Toughness

In composite structures, the presence and growth of delamination mechanisms in static or fatigue loading conditions is of paramount interest and the American Society for Testing and Materials (ASTM) has adopted the three-points bend end-notched flexure test (3ENF) as the standard for measurement of mode II toughness. The drawback of the 3ENF test is the unstable crack growth and a modified version of the test, namely the four points bend end-notched flexure test (4ENF), has been proposed in [1]. The main advantage of the 4ENF over the 3ENF is that crack growth is stable under displacement control, but it can be strong influenced by the interlaminar frictional effects, as pointed out in [2].

The effect of frictional contact between the delamination surfaces has been initially analysed for the 3ENF test in [3], whereas the evaluation of frictional effects on the 4ENF test has been proposed in [4]. Recently, the analytical solution of the mode II delamination toughness in the 4ENF test, with interlaminar friction, has been proposed in [5].

In the present paper, the analytical solution of the mode II delamination toughness, in presence of friction on the delamination surface, is proposed also for the 3ENF delamination tests. This solution is rigorously developed in the framework of Classical Beam Theory (CBT), under Bernoulli bending condition, and in the framework of linear elastic fracture mechanics. The frictional phenomenon is modelled as rigid perfectly-plastic with Mohr-Coulomb activation condition and non-associative flow rule. The mode II fracture energy is defined by the Griffith approach, by evaluating the energy release rate and the frictional dissipation.

The results of the 3ENF and 4ENF mode II delamination toughness are compared for some values of the frictional coefficient. In order to verify the accuracy of the analytical solution, a comparison with a finite element numerical solution with cohesive-frictional interface element is presented.

References

- [1] Martin, R. and Davidson, B., "Mode II fracture toughness evaluation using four point bend, end notched flexure test.", Plas. Rubber Compos. Proc. Appl., **28(8)**, 401–406. (1999).
- [2] Schuecker, C. and Davidson, B., "Effect of friction on the perceived mode II delamination toughness from three- and four-point bend end-notched flexure tests." ASTM Special Technical Publication, 1383, 334–344 (2000).
- [3] Gillespie, J., Carlsson, L., and Pipes, R., "Finite element analysis of the end notched flexure specimen for measuring mode II fracture toughness", Composites Science and Technology, 27(3), 177 – 197 (1986).
- [4] Fan, C., Ben Jar, P.-Y., and Roger Cheng, J.-J., "A unified approach to quantify the role of friction in beam-type specimens for the measurement of mode II delamination resistance of fibre-reinforced polymers. Composites Science and Technology, 67(6), 989–995. (2007).
- [5] Parrinello, F., "Analytical solution of the 4ENF test with interlaminar frictional effects and evaluation of mode II delamination toughness." Journal of Engineering Mechanics, in press (2018).