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A B S T R A C T

The aim of this paper is to present the implementation of 3D fractional viscoelastic constitutive theory presented
in Alotta et al., 2016 [1]. Fractional viscoelastic models exactly reproduce the time dependent behaviour of
real viscoelastic materials which exhibit a long “fading memory”. From an implementation point of view, this
feature implies storing the stress/strain history throughout the simulations which may require a large amount
of memory. We propose here a number of strategies to effectively limit the memory required. The form of the
constitutive equations are summarized and the finite element implementation in a Newton-Raphson integration
scheme is described in detail. The expressions that are needed to be coded in user-defined material subroutines
for quasi static and dynamic implicit and explicit analysis (UMAT and VUMAT) in the commercial finite element
software ABAQUS are readily provided. In order to demonstrate the accuracy of the numerical implementation
we report a number of benchmark problems validated against analytical results. We have also analysed the
behaviour of a viscoelastic plate with a hole in order to show the efficiency of these types of models. The source
codes for the UMAT and VUMAT are provided as online supplements to this paper.

1. Introduction

In the last decade the use of fractional viscoelastic models has gained
interest among researchers as they are capable of accurately represent
both creep and relaxation behaviour of viscoelastic materials and the
effects of “fading” memory captured experimentally. It has been widely
shown that, during a creep/relaxation test, the stress/strain response
of viscoleastic materials is characterized by a power law with respect
to time; examples are polymers, biological tissues, asphalt mixtures,
soils ([2–6]) among others. A power-law in the creep and relaxation
responses leads to fractional viscoelastic constitutive models which
are characterized by the presence of derivatives and integrals of non-
integer order (see Refs. [7,8]). The most attractive aspect of using
fractional operators in the viscoelastic constitutive laws is that the
stress/displacement response depends on the previous stress/strain his-
tory, which allows the long “fading” memory of the material to be taken
into account. Another advantage of fractional viscoelastic models is that
they are defined by a small number of parameters compared to classical
integer order viscoelastic models. Numerous studies have been devoted
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to theoretical aspects of 1D fractional constitutive laws ([3,9–14]) as
well as experimental aspects and parameter characterization ([15–20])
of the constitutive behavior and also application to beam models sub-
jected to both deterministic ([21,22]) and stochastic ([23–25]) condi-
tions. The influence of temperature on the response of fractional vis-
coelastic models has also been investigated ([26,27]). Some numeri-
cal implementation of 1D fractional constitutive laws in finite element
codes has been presented (see for example [28]).

3D formulations of fractional viscoelastic models have been pro-
posed and studied (see for example [1,29–32]). In order to be able
to use these models to represent the behaviour of real-life engineer-
ing components with complex shapes, it is necessary to perform the
implementation of these constitutive models into finite element soft-
ware. To the author’s knowledge the implementation of 3D formula-
tions of fractional viscoelastic models in a finite element context is lack-
ing. Indeed, to the best of the authors’ knowledge only in Ref. [33] an
effort was made to implement fractional viscoelasticity in a finite ele-
ment code. However, only the fractional standard linear solid (FSLS)
model was considered in the paper [33], while many researchers of
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the field use also other fractional viscoelastic model such as the spring-
pot, the fractional Kelvin-Voigt (FKV) model and the fractional Maxwell
(FM) model. Hence, the aim of this paper is the implementation of the
most used three dimensional fractional viscoelastic constitutive laws
in finite element (FE) codes. In particular, we fully cover the details
of the implementation of these models in user-defined material sub-
routines in the commercial finite element software ABAQUS. In our
opinion, the numerical implementation of a new fractional viscoelas-
tic theory using the finite element method is often a laborious task
especially for researchers new to this area. Here we clearly show the
expression of the constitutive tangent tensor that needs to be imple-
mented in the UMAT routine; the implementation is straightforward
also for researchers and engineers that have not specific knowledge
of fractional calculus. The details of numerical procedures and related
expressions that need to be implemented in user defined routines are
not extensively published in the literature. Recently, there has been an
interest in the dissemination of new computational procedures through
publishing research papers addressing all of the aspects related to their
implementation. For instance Chester et al. [34] recently presented the
implementation of a coupled diffusion mechanics model for elastomeric
gels as a user-defined element (UEL) subroutine in ABAQUS. Further-
more, the implementation of a coupled mechanics-diffusion theory in
a user defined material routine (UMATHT) in ABAQUS has been pre-
sented by Barrera et al. [35] in order to study hydrogen embrittlement
mechanisms of steels. Also a cohesive finite element as a UEL subroutine
in ABAQUS has also been published by Park and Paulino [36]. Here we
show that these 3D fractional viscoelastic models can be easily imple-
mented numerically in a finite element context by using the discretized
version of fractional derivatives provided by Grünwald-Letnikov [7]. In
this paper we also include the details of computational tools used to
access the strain (and/or the stress) history and the possible strategies
to reduce the amount of memory required to run analysis of large FE
models. This issue has not been discussed elsewhere. The source codes
for implicit and explicit analysis of the 3D fractional Kelvin Voigt model
are reported as an online supplement to this paper.

The paper is organized as follows: firstly the three-dimensional
springpot model is summarized (this is also discussed extensively in
Ref. [1]) and then its implementation is described; second, the other
fractional viscoelastic models are introduced and their implementa-
tion is presented. We then discuss possible solutions to limit the mem-
ory required to run large simulations. Finally, comparisons with some
benchmark problems are presented in order to show the accuracy of
the routines and the possibility to reproduce a wide range of different
behaviours.

2. 3D fractional constitutive law

It is well known that a viscoelastic material can be characterized,
for one dimensional problems, by its Relaxation and Creep functions
R(t) and C(t) respectively. These functions describe the behaviour of
the material when a constant strain and a constant stress are applied,
respectively.

Experimental tests on real viscoelastic materials, such as polymers,
asphalt mixtures, biological tissues, have shown that creep and relax-
ation are well fitted by power laws of real order rather than expo-
nential functions. In the simplest case in which only one compo-
nent of the stress is present (hydrostatic or tangential stress), and the
creep/relaxation behaviour is well fitted by pure power laws, the relax-
ation function R(t) and the creep function C(t) are given as [1]:

R(t) =
C𝜌t−𝜌

Γ(1 − 𝜌) ; C(t) = t𝜌
C𝜌Γ(1 + 𝜌) (1)

where Γ(·) is the Euler gamma function, 𝜌 is a real number 0 ≤ 𝜌 ≤ 1
and C𝜌 is a material parameter evaluated by fitting creep or relaxation

experimental curves.
In the frame of linear viscoelasticity, the Boltzmann superposition

principle allows us to obtain the response of a material when the
imposed stress s(t) or strain history e(t) is not constant and can be
expressed in two forms:

s(t) = ∫
t

0
R(t − 𝜏)ė(𝜏)d𝜏 (2a)

e(t) = ∫
t

0
C(t − 𝜏)ṡ(𝜏)d𝜏 (2b)

These integrals are often labelled as “hereditary” integrals, because the
actual value of s(t) (or e(t)) depends on the entire previous history of
e(t) (or s(t)). Eqs. (2a) and (2b) are valid for unstrained/unstressed state
for t ≤ 0. If e(0) = e0 ≠ 0 the term R(t)e0 has to be added in Eq. (2a)
or if s(0) = s0 ≠ 0 the term C(t)s0 has to be added in Eq. (2b). In the
following, without any loss of generality, we suppose that e0 = 0 and
s0 = 0.

Substitution of Eq. (1) in Eqs. (2a) and (2b) leads to constitutive
laws that involve fractional operators, namely derivatives and integrals
of real order ([7], [8]). This is straightforward for the case in which a
strain history is applied (Eq. (2a)) and we want to evaluate the corre-
sponding stress history:

s(t) =
C𝜌

Γ(1 − 𝜌) ∫
t

0
(t − 𝜏)−𝜌ė(𝜏)d𝜏 = C𝜌

(C
0 D𝜌

t e
)
(t) (3)

In Eq. (3) the symbol
(

C
0D𝜌

t ·
)

represents the Caputo fractional derivative
([7]) of order 𝜌, that is a convolution integral with a power law kernel.
In the following sections we will refer to it as (D𝜌·). If we consider the
case in which a stress history is applied (Eq. (2b)), integrating by parts
and after some manipulations we obtain the Riemann-Liouville (RL)
fractional integral of order 𝜌

(
0D−𝜌

t ·
)

([7]):

e(t) = 1
C𝜌Γ(1 + 𝜌) ∫

t

0
(t − 𝜏)𝜌ṡ(𝜏)d𝜏 = 1

C𝜌Γ(𝜌) ∫
t

0
(t − 𝜏)𝜌−1s(𝜏)d𝜏

= 1
C𝜌

(
0D−𝜌

t s
)
(t) (4)

In the following we will refer to the RL fractional integral as D−𝜌.
The constitutive laws in Eq. (3) and Eq. (4) represent the response of
a “springpot” element ([37]). It has been shown in Ref. [9] that the
behaviour of the springpot can be reproduced in a classical viscoelas-
ticity framework by an infinite sequence of massless laminae linked
by springs/dashpots and laying in a bed of dashpots/springs. This is
the reason why the use of fractional viscoelasticity results in a signif-
icant reduction of mechanical parameters compared to using calssical
viscoelastic models.In order to model the isotropic three-dimensional
behaviour of the springpot, it is sufficient to define two relaxation (or
creep) functions. The most convenient choice is to use volumetric and
deviatoric relaxation (or creep) functions. The relaxation matrix can be
written as follows:

Rijkh(t) =
(

KR(t) −
2
3

GR(t)
)
𝛿ij𝛿kh + GR(t)

(
𝛿ik𝛿jh + 𝛿ih𝛿jk

)
(5)

where 𝛿ij is the Kronecker symbol. For both deviatoric GR(t) and vol-
umetric relaxation functions KR(t), power law functions analogous to
first of Eq. (1) are selected:

GR(t) =
G𝛼t−𝛼

Γ(1 − 𝛼) (6a)

KR(t) =
K𝛽 t−𝛽

Γ(1 − 𝛽) (6b)

where K𝛼 and G𝛽 are anomalous bulk and shear relaxation moduli,
respectively, while 𝛼 and 𝛽 are real numbers indicating the orders of
bulk and shear power laws, respectively.
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Table 1
Fractional viscoelastic models.

Model Sketch Constitutive law R(t) C(t)

Springpot s = C𝜌 (D𝜌e) C𝜌 t−𝜌

Γ(1−𝜌)
t𝜌

C𝜌Γ(1+𝜌)

FKV s = Ee+ C𝜌 (D𝜌e) E + C𝜌 t−𝜌

Γ(1−𝜌)
1
E − 1

E E𝜌

(
− E

C𝜌
t𝜌
)

FM (D𝜌s) + E
C𝛽

s = E (D𝜌e) EE𝜌

(
− E

C𝜌
t𝜌
)

1
E
+ t𝜌

C𝜌Γ(1+𝜌)

FSLS 1 s + C𝜌
E1+E2

(D𝜌s) = E1E2
E1+E2

e + C𝜌E1
E1+E2

(D𝜌e) E1E2
E1+E2

+
E2
1

E1+E2
E𝜌

(
− (E1+E2)t𝜌

C𝜌

)
E1+E2
E1E2

− 1
E2

E𝜌

(
− E2

C𝜌
t𝜌
)

FSLS 2 s + C𝜌
E2

(D𝜌s) = E1e + (E1+E2)C𝜌
E2

(D𝜌e) E1 + E2E𝜌

(
− E2

C𝜌
t𝜌
)

1
E1

− E2
E1(E1+E2)

E𝜌

[
− E1E2 t𝜌

(E1+E2)C𝜌

]

By assuming deviatoric and volumetric relaxation functions with
the form of Eqs. (6a) and (6b), a four parameter mechanical model
is obtained. The strain-stress relationship can be obtained simply by
substituting Eq. (5) into the following:

𝝈(t) = ∫
t

0
R(t − 𝜏)�̇�(𝜏)d𝜏 (7)

where 𝝈
T (t) =

[
𝜎11 𝜎22 𝜎33 𝜏12 𝜏13 𝜏23

]
and 𝜺

T(t) =[
𝜀11 𝜀22 𝜀33, 𝛾12 𝛾13 𝛾23

]
are the stress and strain vectors, respec-

tively, and R(t) is the relaxation matrix in Eq. (5). Since R(t) contains
power law functions, the components of the stress vector 𝝈(t) depend
on the fractional derivatives of the components of the strain vector
𝜺(t):

𝜎ii(t) = 2G𝛼

(
D𝛼𝜀ii

)
(t) + 3K𝛽

(
D𝛽𝜀

)
(t) i = 1,2,3; (8a)

𝜏ij(t) = G𝛼

(
D𝛼𝛾ij

)
(t); i, j = 1,2,3; i ≠ j (8b)

where 𝜀(t) is the mean value of the strain (𝜀 =
(∑3

i=1 𝜀ii

)
∕3) and

𝜀ii(t) = 𝜀ii(t) − 𝜀(t). The inverse relationships of Eqs. (8a) and (8b) are
readily obtained as follows:

𝜀ii(t) =
1

2G𝛼

(
D−𝛼𝜎ii

)
(t) + 1

3K𝛽

(
D−𝛽𝜎

)
(t) i = 1,2,3; (9a)

𝛾ij(t) =
1

G𝛼

(
D−𝛼𝜏ij

)
(t); i, j = 1,2,3; i ≠ j (9b)

where 𝜎 is the mean value of the stress (volumetric component 𝜎 =(∑3
i=1 𝜎ii

)
∕3 and 𝜎(t) is the deviatoric component 𝜎(t) = 𝜎ii(t) − 𝜎(t).

Eqs. (8a), (8b), (9a) and (9b) have been obtained assuming that
the volumetic and the deviatoric creep/relaxation functions are both
well fitted by pure power law function and then their behaviour can
be reproduced by the springpot model. However, in many cases of
engineering interest, the springpot can result not adequate to repro-
duce completely the time dependent features of viscoelastic materials,
then other fractional viscoelastic material models may be used; such an
example, the shear creep of some soils is well fitted by the FKV model
[6]. Furthermore, several types of polyethylene such as UHMWPE are

modelled with the FM model [19,41,42] and, a range of biological tis-
sues are modeled by means of the FSLS model [28]. Moreover it is
not excluded that for some materials the volumetric behaviour is well
fitted by one fractional viscoelastic model while the deviatoric one is
reproduced by using a different fractional viscoelastic model. For these
reasons, in the next sections we will introduce other fractional models
mentioned above. However, for the sake of clarity, we will first intro-
duce the numerical implementation of the springpot model.

3. Numerical implementation of the 3D springpot

Viscoelastic constitutive laws are time dependent equations that
in the frame of finite element method (FEM) are solved step by step
through numerical integration schemes. Most of the finite element
codes allow for the solution of time-dependent problem with two alter-
native schemes: implicit (Newton-Raphson algorithm) and explicit. We
show here details of the implementation of the 3D springpot model in a
user material routine into the commercial FE software ABAQUS both in
an implicit (UMAT) and explicit scheme (VUMAT). For the implementa-
tion of fractional viscoelasticity in an implicit integration scheme, all of
the components of stress and the Jacobian at the end of a time step must
be provided for each Gauss point. For the implementation in an explicit
integration scheme only the components of stress must be provided.

In order to implement these equation in a FE code, the fractional
derivatives must be discretized; to this purpose the Grunwald-Letnikov
(GL) [7] fractional derivative may be used:

(GL
0 D𝜌

t f
)
(t) =

(GL
0 D𝜌

t f
)
(kΔt) = lim

Δt→0
Δt−𝜌

k+1∑
j=1

𝜆
(𝜌)
j f (k−j+2) (10a)

𝜆
(𝜌)
j+1 = j − 1 − 𝜌

j
𝜆j; 𝜆1 = 1 (10b)

where f (k−j+2) = f[(k − j + 1)Δt]. For sufficiently small Δt the GL frac-
tional derivative coincides with the Caputo’s fractional derivative; in
practical applications, it is not possible to know the sufficiently small
time step value a priori. However, it can be determined by analyzing
the convergence of the result for decreasing magnitude of Δt; indeed
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Table 2
Implementation of fractional viscoelastic models.

Model Element Expression

springpot A(k+1)
𝜌 [e] C𝜌Δt−𝜌

∑k+1
j=1 𝜆

(𝜌)
j e(k−j+2)

J𝜌 C𝜌Δt−𝜌

FKV A(k+1)
𝜌 [e] Ee(k+1) + C𝜌Δt−𝜌

∑k+1
j=1 𝜆

(𝜌)
j e(k−j+2)

J𝜌 E + C𝜌Δt−𝜌

FM A(k+1)
𝜌 [e, s] J𝜌

(
e(k+1) − Δt𝜌

C𝜌

∑k+1
j=2 𝜆

−(𝜌)
j s(k−j+2)

)
J𝜌

EC𝜌
EΔt𝜌+C𝜌

FSLS 1 A(k+1)
𝜌 [e, s] J𝜌e(k+1) + C𝜌Δt−𝜌

E1+E2+C𝜌Δt−𝜌
∑k+1

j=2 𝜆
(𝜌)
j

(
E1e(k−j+2) − s(k−j+2))

J𝜌
E1(E2+C𝜌Δt−𝜌)
E1+E2+C𝜌Δt−𝜌

FSLS 2 A(k+1)
𝜌 [e, s] J𝜌e(k+1) + C𝜌Δt−𝜌

E2+C𝜌Δt−𝜌
∑k+1

j=2 𝜆(𝜌)j

[
(E1 + E2) e(k−j+2) − s(k−j+2)]

J𝜌
E1E2+(E1+E2)C𝜌Δt−𝜌

E2+C𝜌Δt−𝜌

Fig. 1. Applied stress hisotries of Eqs. (20a), (20b), (20c): constant (a), linear ramp (b) and sinusoidal (c).

there is not a general rule but it depends of the function at hand. For
negative values of 𝜌, and small Δt, the GL operator reverts to the RL
fractional integral.

When the FE software calls the UMAT (or VUMAT) the strain at
the end of the time increment is already known and the corresponding
stress has to be evaluated. If the constitutive model of Eqs. (8a) and
(8b) is assumed, by using the GL fractional derivative the stress at the
end of the k − th time increment (t = kΔt) may be written as:

𝜎(k+1)
ii = 2A(k+1)

𝛼 [𝜀ii] + 3A(k+1)
𝛽

[𝜀]; i = 1,2,3; (11a)

𝜏
(k+1)
ij = A(k+1)

𝛼 [𝛾ij]; i, j = 1,2,3; i ≠ j (11b)

where A(k+1)
𝜌 are operators dependent on the fractional order 𝛼 and

𝛽 and on the other mechanical parameters. For the three-dimensional

springpot model (Eqs. (8a), (8b), (9a) and (9b)) these operators are
given as:

A(k+1)
𝜌 [e] = C𝜌Δt−𝜌

k+1∑
j=1

𝜆
(𝜌)
j e(k−j+2) i = 1,2,3; (12)

Such an example, the term A(k+1)
𝛼 [𝜀ii] in Eq. (11a) is returned by Eq.

(12) if e, 𝜌 and C𝜌 are replaced by 𝜀ii, 𝛼 and G𝛼 , respectively. The
components of the Jacobian may be easily evaluated as:

𝜕Δ𝜎(k+1)
ij

𝜕Δ𝜀(k+1)
kh

=
(

J𝛽 −
2
3

J𝛼
)
𝛿ij𝛿kh + J𝛼

(
𝛿ik𝛿jh + 𝛿ih𝛿jk

)
(13)
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Fig. 2. Strain histories obtained with a quasi-static implicit analysis for constant (a), linear ramp (b) and sinusoidal (c) applied stress hisotry. Results with Δt = 0.1 s coalesce with
analytical results.

For the sake of clarity:

𝜕Δ𝜎(k+1)
ii

𝜕Δ𝜀(k+1)
ii

= J𝛽 +
4
3

J𝛼; i = 1,2,3; (14a)

𝜕Δ𝜎(k+1)
ii

𝜕Δ𝜀(k+1)
jj

= J𝛽 −
2
3

J𝛼 i, j = 1,2,3; i ≠ j (14b)

𝜕Δ𝜏(k+1)
ij

𝜕Δ𝛾 (k+1)
ij

= J𝛼 i, j = 1,2,3; i ≠ j (14c)

where

J𝜌 = C𝜌Δt−𝜌 (15)

As an example, the term J𝛽 is returned by Eq. (15) if C𝜌 and 𝜌 are
replaced by K𝛽 and 𝛽, respectively. It is to be noted that the Jacobian
depends only on the value of Δt and on the mechanical parameters.

Some commercial FE codes that use an implicit Newton-Raphson
integration scheme allow the time increment to be determined auto-
matically to optimize the run time. The GL formula for evaluating of
the fractional derivatives has been derived assuming a constant incre-
ment (i.e. the time) and, to the best of our knowledge, a corresponding
formulation for a variable increment is not available in the literature;
furthermore, the automatic time increment requires the definition of a
tolerance criterion, that is difficult to define without knowledge of the
elastic and inelastic parts of the strain. For these two reasons we have
currently limited ourselves to using this model with a fixed time incre-
ment. In order to evaluate the GL derivative the history of strain at each
Gauss Point must be stored leading possibly to a considerable amount
of memory when analysing large FE models. Hence a number of strate-
gies to overcome this problem have been explored and are discussed in
Section 5.

In the next section the fractional Kelvin Voigt (FKV), the fractional
Maxwell (FM) and the fractional standard linear solid (FSLS) models
are introduced and their implementation in user material routines is
presented.

4. Other fractional constitutive models

So far we have presented the details of the formulation of the simple
springpot model in three-dimensional fractional constitutive model. In
particular, it has been assumed that volumetric and deviatoric compo-
nents of the stress are power laws with different time scales:

𝜎(t) = 3K𝛽

(
D𝛽𝜀

)
(t); 𝜏ij = G𝛼

(
D𝛼𝛾ij

)
(t) (16)

However, in some cases of practical interest, it is necessary to intro-
duce more complicated fractional viscoelastic models which may give
a better representation of real viscoelastic materials. For example, the
volumetric component of the creep function expressed with a single
springpot gives rise to a non-physical situation. Namely, under a con-
stant hydrostatic pressure at t = ∞, the material will collapse to a sin-
gle point. In order to overcome to this undesired feature some authors
add one or more elastic terms into the fractional differential equation.
It is not clear the correct way to define the elastic part in the con-
stitutive equations of a fractional viscoelastic model, but it is known
that the viscoelastic behaviour of some material is well reproduced by
means of models like the FKV, the FM and the FSLS models (see Refs.
[6,17,19,28,32]).

In Table 1 the constitutive laws for the generic stress s(t) (volu-
metric or deviatoric) and the corresponding strain e(t) (volumetric or
deviatoric) as well as the creep and relaxation functions are reported
for the most common models: the FKV, the FM and two FSLS models.
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Fig. 3. Strain histories obtained with a dynamic implicit analysis for constant (a), linear ramp (b) and sinusoidal (c) applied stress hisotry. Results with Δt = 10−4 s practically coalesce
with analytical results.

The two FSLS models (FSLS1 and FSLS2) are equivalent, but since they
are both used in literature, their implementation has been included.In
Table 1 E𝜌(·) is the one parameter Mittag-Leffler function defined as
follows

E𝜌(z) =
∞∑
j=0

zj

Γ(𝜌j + 1) (17)

Any of the three dimensional fractional viscoelastic models can be
reconstructed by properly selecting the constitutive laws in Table 1. Let
us assume, for example, that the volumetric component is a fractional
KV element characterized by K𝛽 , 𝛽 and K and the deviatoric one is a
pure springpot characterized by G𝛼 and 𝛼. Then the three dimensional
fractional constitutive laws are given as:

𝜎ii(t) = 2G𝛼

(
D𝛼𝜀ii

)
(t) + 3K𝜀(t) + 3K𝛽

(
D𝛽𝜀

)
(t); i = 1,2,3; (18a)

𝜏ij(t) = G𝛼

(
D𝛼𝛾ij

)
(t); i, j = 1,2,3; i ≠ j (18b)

The implementation of all of the models of Table 1 can be performed
in a way analogous to the procedure of Section 3; indeed, by discretizing
the fractional derivatives in the constitutive equations of Table 1 the
stress at the end of the time increment of the FE simulation can be
found in terms of the history of strain. When the FM is selected, the
history of stress instead of the history of strain is needed; when one of
the FSLS models is chosen, the stress at the end of the time increment
depends on both the history of stress and the history of strain; for this
reason Eqs. (11a) and (11b) are slightly modified as follows:

𝜎(k+1)
ii = 2A(k+1)

𝛼 [𝜀ii,
𝜎ii
2
] + 3A(k+1)

𝛽
[𝜀, 𝜎

3
]; i = 1,2,3; (19a)

𝜏(k+1)
ij = A(k+1)

𝛼 [𝛾ij, 𝜏ij]; i, j = 1,2,3; i ≠ j (19b)

This fact implies that for the FSLS models the amount of memory
required to evaluate the increment of stress is double than the memory
required for the springpot, the FKV and FM models.

Moreover, since the fractional models have different constitutive
equations, the operator A(k+1)

𝜌 and the expressions for the compo-
nents of the Jacobian are different from those described in Eqs.
(11a), (11b), (14a), (14b) and (14c). In Table 2 the expression for
A(k+1)
𝜌 and J𝜌 are summarized for all the fractional models treated in

this work. Note that only in the springpot and in the FKV model the
operator A(k+1)

𝜌 does not depend on the stress history. For the implemen-
tation of fractional three dimensional models with different definition
of the volumetric and deviatoric contribution (see for example [32]),
Eqs. (11a) and (11b) (or Eqs. (19a) and(19b)) and Eqs. (14a), (14b)
and (14c) remain valid, while the definitions of the operators A(k+1)

𝜌

and the components of the Jacobian J𝜌 change according to Table 2.
The relationships of Table 2 demonstrate how the use of GL fractional
derivatives allows the unknown stresses to be determined also when a
simple analytical solution in terms of stress is not available. Then the
implementation of convolution integrals with Mittag-Leffler function
kernels as done in Ref. [28] is avoided. Furthermore, the evaluation
of the components of the Jacobian is straightforward and leads to sim-
ple expressions which are indeed suitable for implementation purposes
and since they depend only on the time increment and the mechani-
cal parameters, they can be evaluated only once during the FE simu-
lation. As it can been from Table 2 the implementation of fractional
viscoelastic constitutive models is straightforward also for researchers
and engineers not expert on fractional calculus.

The routines for the numerical implementation in FE framework
are efficient since they involve only summation of products; the time
needed for the evaluation of the solution through a single time interval
is different for each time interval and in particular the most demanding
time step is the last, because the number of terms in the summation of
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the operator A(k+1)
𝜌 is k. This means that for fixed time increment and

total time of simulation, the time needed for the analysis is approxima-
tively proportional to the square of the number of time increment in
which the time of observation is discretized.

The most important issue in the implementation of fractional vis-
coelastic laws is that we need to have access to and store the history
of strains (and/or stresses) in order to obtain the increment of stress
(and/or strain). This could potentially lead to a considerable amount
of memory required to run large simulations. In the next section we
discuss some strategies in order to reduce the memory required to run
simulations with large number of FEs.

5. Hereditariness and related computational problems

The implementation of fractional viscoelastic models require stor-
ing the history of strain at each gauss point. In order to satisfy this
requirement, we store the values of the components of strain at each
increment in a Common Block (CB) (available in FORTRAN program-
ming language). The CB is a piece of shared memory that allows us to
pass information between program units. Another strategy may be to
store the past history of strain/stress in a text file. However, in this way
the routines are much slower and for this reason is preferable to use the
CB. In order to reduce the amount of memory two possible strategies
are proposed:

∙ use a larger time increment Δt;
∙ “truncate” the memory of the material.

The first option discussed in Section 5.1 is only applicable to implicit
analysis, because in explicit analysis the solution diverges when the
time increment is not sufficiently small. The second strategy is applica-
ble only to explicit analysis and will be discussed in Section 5.2.

Another possible way to limit the memory needed for the simulation
is to use FEs of lower integration order which have a reduced number
of Gauss points. In the case of fractional viscoelasticity using more FEs
could lead to a fewer integration points in the structural model and, as
a consequence, to a reduced memory needed during the simulation.

5.1. Reducing the amount of memory required in implicit analysis (UMAT)

Implicit analysis uses the Newton-Raphson iterative algorithm to
find the solution with a prescribed accuracy. This allows the analysis
to run with a time increment larger than the time increment needed
to perform correctly the integration of a fractional differential equation
(which leads to the exact solution). In other words, in the simple case
of Fig. 3 a Δt = Tf /1000; s is needed to obtain the analytic solution
(i.e.perform correctly the integration of a fractional differential equa-
tion). However a Δt = Tf /10; s would still be adequate. Choosing a
larger Δt obviously costs in terms of accuracy. In the case of explicit
analysis a time increment of Δt = Tf /100; s is the largest value that
can be used in order to obtain a solution which converges to the exact
solution. The amount of memory used by the analysis can be signifi-
cantly reduced depending on the accuracy required. In order to show
this, some tests have been performed with a one FE model of a truss
forced by different stress histories; results remain valid also for bi- and
three-dimensional models. The material is a springpot with 𝜌 = 0.3 and
C𝜌 = 103MPas𝜌. The applied histories of stress are the following:

𝜎(t) = 𝜎0U(t) (20a)

𝜎(t) = 𝜎0
t

Tf
(20b)

𝜎(t) = 𝜎0 sin(𝜔t) (20c)

where 𝜎0 = 1 MPa, Tf is the final time of the analysis and 𝜔 is the
circular frequency of the sinusoidal load. The stress histories of Eqs.

Table 3
Mean percentage errors on predicted strains for the three
stress histories considered in the implicit quasi-static
analysis.

Δt (s) 𝜎0U(t) 𝜎0t/Tf 𝜎0 sin(𝜔t)

0, 1 0,28 0,49 1,06
1 1,86 3,23 5,48
2 3,04 5,22 103,73

Table 4
Percentage errors on predicted strain at the end of the
analysis for the three stress histories considered in the
implicit quasi-static analysis.

Δt (s) 𝜎0U(t) 𝜎0t/Tf 𝜎0 sin(𝜔t)

0, 1 0,05 0,09 0,13
1 0,52 0,96 5,03
2 1,04 1,91 32,77

(20a), (20b) and (20c) are depicted in Fig. 1. For a quasi-static analy-
sis, where inertial forces are neglected, Tf = 20 s and 𝜔 = 1 rad/s are
chosen; the analysis has been performed with three different time incre-
ments and results are compared in terms of obtained strain histories.
From Fig. 2 it is evident that, for all three applied stress histories in
Fig. 1, the results at the end of the analysis may be considered good
also for the larger time increment used that is Δt = 2 s. Indeed, the
choice of a larger time increment allows to save memory. However, it
is worth noting that in the case of a sinusoidal applied history Fig. 2 c,
by choosing larger time increment Δt = 2 s the accuracy of the solution
decreases in comparison with the case of Fig. 2 a, b. Tables 3 and 4
show the mean percentage error Em and the percentage error at the last
time increment Ef of each analysis, respectively; these quantities are
defined as follows:

Em = 1
N

N∑
k=1

|𝜀(FEM)
k − 𝜀(an)

k |
|𝜀(an)

k | × 100 (21a)

Ef =
|𝜀(FEM)

N − 𝜀(an)
N |

|𝜀(an)
N | × 100 (21b)

where 𝜀
(FEM)
k is the strain at the k − th time increment evaluated with

the subroutine, 𝜀(an)
k is the corresponding analytical strain and N is the

number of time increments in which the time of observation is dis-
cretized in the FE analysis. The error Ef is given because in some situa-
tions the user may be interested only to the final state of a FE analysis
(or a part of it) and not in the all history of stress/strain. From Tables 3
and 4 it can be concluded that the most demanding situation in implicit
quasi-static situation is when a periodic input is applied to the viscoelas-
tic model at hand, while accurate results are achieved more easily when
a constant load is applied.

The same tests have been performed in implicit dynamic condi-
tions; in order to observe transitory dynamical effects Tf = 0.2 s and
𝜔 = 100 rad/s are chosen. Results are reported in Fig. 3. Tables 5 and
6 show the values of Em and Ef , respectively, for each implicit dynamic
analysis. As for the case of quasi-static analysis, a large Δt gives always
acceptable results, however the strain histories are not reproduced with
great accuracy. Differently from quasi-static conditions, in a dynamic
implicit analysis, the less demanding situation is when a linear ramp
stress is applied. The major difference between quasi-static and dynamic
analysis is when a constant stress is applied; indeed, in a dynamical
analysis the materials oscillates when the load is applied suddenly, and
this oscillations cannot be well reproduced with a large time increment.
In the quasi-static analysis, instead, the obtained strain history is well
reproduced except at the beginning when results are affected by the
fact that the FE software must treat the stress as linear across the first
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Table 5
Mean percentage errors on predicted strains for the three
stress histories considered in the implicit dynamic analysis.

Δt (s) 𝜎0U(t) 𝜎0t/Tf 𝜎0 sin(𝜔t)

10–4 0,24 0,32 4,8
5 × 10−3 5,27 1,85 26,84
10–2 12,26 2,93 80,13

Table 6
Percentage errors on predicted strain at the end of the
analysis for the three stress histories considered in the
implicit dynamic analysis.

Δt (s) 𝜎0U(t) 𝜎0t/Tf 𝜎0 sin(𝜔t)

10–4 0,01 0,00 1,13
5 × 10−3 0,05 0,48 7,91
10–2 2,7 0,98 18,74

time increment, then the load is ramped up linearly over the first time
increment.

5.2. Reducing the amount of memory required in explicit analysis
(VUMAT)

In explicit analysis it is possible to “truncate” the memory of the
material. This can be done due to the short memory principle [7] that
allows the fractional derivative to be approximated by taking into
account a finite memory M:

(aD𝛼
t f )(t) ≃ (M−tD𝛼

t f )(t), (t > a + M) (22)

This imply that for t > a + M the fractional derivative is performed
with a moving lower limit and the number of terms of the discretized
fractional derivative is not larger that M/Δt. By this approximation it
is possible to limit the amount of memory required for the analysis.
This strategy costs, surely, in terms of accuracy; the error committed
by “truncating” the memory of the material may be estimated with the
strategy described in Ref. [7], where the memory length M is related
to the accuracy required, in terms of maximum error allowed. However
this is not meaningful for the scope of this work. Instead, the subroutine
for the springpot model has been tested with the same model of previ-
ous section with Tf = 0.2 s and 𝜔 = 100 rad/s and with different values
of the memory length M. Results of Fig. 4 show that in some cases it
is possible to truncate the memory of the material without losing the
accuracy of the solution. The errors Em and Ef are shown in Tables 7
and 8. It is evident that when the applied stress history is a linear ramp,
it is possible to save the memory used for the analysis by truncating the
memory; even when the memory is Tf /4 the results are overall accu-
rate. With an applied constant stress or a sinusoidal history of stress,
instead, an acceptable accuracy in terms of obtained strain requires
that memory is long at least Tf /2. It is to be noted that while in implicit
dynamic analysis the most demanding situation is when the applied
load is periodic, in explicit dynamic analysis the situation requiring
more computational effort is for sure the case with an applied constant
stress.

6. Validation of the code: benchmark problems

In this section the routines discussed above are tested by running
simple problems whose analytical solution is known. In particular in
Section 6.1 the FSLS1 is considered while in Section 6.2 the FKV model
is used to model the viscoelastic material; the tests with other fractional
viscoelastic models are not reported for the sake of brevity. The rou-

Fig. 4. Strain histories obtained with a dynamic explicit analysis for constant (a), linear ramp (b) and sinusoidal (c) applied stress history; Δt = 10−4 s. Results with M = 0.2 s = Tf
practically coalesce with analytical results.
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Table 7
Mean percentage errors on predicted strains for the three
stress histories considered in the explicit dynamic
analysis.

M (s) 𝜎0U(t) 𝜎0t/Tf 𝜎0 sin(𝜔t)

0, 2 0,24 0,31 4,77
0, 05 8,31 2,57 24,00
0, 02 47,13 16,34 117,92

Table 8
Percentage errors on predicted strain at the end of the
analysis for the three stress histories considered in the
explicit dynamic analysis.

M (s) 𝜎0U(t) 𝜎0t/Tf 𝜎0 sin(𝜔t)

0, 2 0,01 0,00 1,13
0, 05 31,19 9,80 15,08
0, 02 158,72 56,11 88,10

Fig. 6. Stress history (Eq. (23)) and strain history (Eq. (29)) for the creep and relaxation
tests, respectively.

tines have been tested with the finite element software ABAQUS 6.14
[38] with both implicit and explicit simulations and they gave the same
results in terms of accuracy. However, for the brevity sake, in the fol-
lowing only results of benchmark with implicit quasi-static simulations
are reported.

6.1. Creep with FSLS1 model

Here we analyze a viscoelastic cube (Fig. 5), made of the FSLS1
model material of Table 1, subjected to creep tests. The mechan-
ical properties of the cube are: K𝛽 = 5 × 108 Pa s𝛽 , K1 = 109 Pa,

K2 = 5 × 108 Pa, G𝛼 = 3.75 × 108 Pa s𝛼 , G1 = 7.5 × 108 Pa,
G2 = 3.75 × 108 Pa; different values of the parameters 𝛼 = 𝛽 have
been considered: 0, 0.25, 0.5, 0.75, 1. For this model the instantaneous
bulk and shear moduli are K1 and G1, respectively, while the long term
bulk and shear moduli are defined as K1K2

K1+K2
and G1G2

G1+G2
, respectively;

K𝛽 and G𝛼 are the viscoelastic bulk and shear coefficients, respectively.
The cube has one of its faces normal to the x-direction fixed only

in the x-direction. On the opposite face the stress history of Fig. 6
is applied in the x-direction; the final constant value of stress is
𝜎xx = 𝜎0 = 10 MPa. This stress history can be written as follow:

𝜎xx(t) = 𝜎0
[
t (U(t) − U(t − t0)) + U(t − t0)

]
(23)

where U(·) is the Unit step function and t0 = 1 s. The analytical solution
is easily obtained by using the second of Eq. (2); the creep laws of the
FSLS1 model are the following

KC(t) =
1
K2

[
K1 + K2

K1
− E𝛽

(
−K2

K𝛽
t𝛽
)]

(24a)

GC(t) =
1

G2

[
G1 + G2

G1
− E𝛼

(
−G2

G𝛼
t𝛼
)]

(24b)

By substituting Eqs. (24a), (24b) and (23) in Eqs. (9a) and (9b), the
response in terms of strain components is obtained as

𝜀xx(t) = 𝜎0 (L1(t) − L1(t − t0)) (25a)

𝜀yy(t) = 𝜀zz(t) = 𝜎0 (L2(t) − L2(t − t0)) (25b)

where

L1(t) = U(t)
[
(I1KC)(t)

9
+ (I1GC)(t)

3

]
(26a)

L2(t) = U(t)
[
(I1KC)(t)

9
− (I1GC)(t)

6

]
(26b)

and (I1KC)(t) and (I1GC)(t) are the first integrals of the creep functions
of Eqs. (24a) and (24b)

(I1KC)(t) = t
[

K1 + K2
K1K2

− 1
K2

E𝛽,2
(
−K2

K𝛽
t𝛽
)]

(27a)

(I1GC)(t) = t
[

G1 + G2
G1G2

− 1
G2

E𝛼,2
(
−G2

G𝛼
t𝛼
)]

(27b)

In E𝛽,𝜙(·) is the two parameter Mittag-Leffler function defined as

E𝛽,𝜙(z) =
∞∑
j=0

zj

Γ(𝛽j + 𝜙) (28)

Notice that the one parameter Mittag-Leffler function of Eq. (17) is a
particular case of Eq. (28) in which 𝜙 = 1.

Fig. 5. Viscoelastic cube for the creep test (a) and relaxation
test (b).
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Fig. 7. Comparison between analytical and FEM responses for creep test of the cube in Fig. 5.

Fig. 8. Comparison between analytical and FEM responses for relaxation test of the cube in Fig. 5b.

Fig. 7 shows the comparison between the FEM result and the analyt-
ical solution; red dashed lines are responses evaluated with FEM with a
constant time step of 0.1 s, while black continuous lines represent the
analytical solutions. From this figure it is possible to appreciate that the
solutions are identical.

6.2. Relaxation test with FSLS1 model

In the relaxation test in Fig. 5b all but one of the faces of the cube
are prevented form displacing in the normal direction. The mechanical
parameters are the same of the creep test of previous section. A dis-
placement of 1 mm is applied on the face opposite to the constrained
one, that corresponds to a strain 𝜀xx = 𝜀0 = 0.01 = 1% (see Fig. 6);
the displacement was applied with a linear ramp of 1 s and then held
for other 9 s as it is shown in Fig. 6. With the boundary conditions

described above 𝜀yy(t) = 𝜀zz(t) = 0 and all the direct components of
stress are different from zero. The history of the superimposed strain
can be written as follows:

𝜀xx(t) = 𝜀0
[
t (U(t) − U(t − t0)) + U(t − t0)

]
(29)

The relaxation function of the FSLS1 model are deducted from Table 1
and are reported here for clarity

KR(t) =
K1

K1 + K2

[
K1E𝛽

(
−K1 + K2

K𝛽
t𝛽
)
+ K2

]
(30a)

GR(t) =
G1

G1 + G2

[
G1E𝛼

(
−G1 + G2

G𝛼
t𝛼
)
+ G2

]
(30b)

Then by inserting Eqs. (30a), (30b) and (29) in the first of Eqs. (2a) and
(2b) the analytical solution is easily obtained as

𝜎xx(t) = 𝜀0 (L3(t) − L3(t − t0)) (31a)

Fig. 9. Comparison between analytical and FEM responses for relaxation test of the cube in Fig. 5b with fixed value of 𝛼 and different values of 𝛽.
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Fig. 10. Comparison between analytical and FEM responses for relaxation test of the cube in Fig. 5b with fixed value of 𝛽 and different values of 𝛼.

Fig. 11. 2D plain strain model of the Euler-Bernoulli vis-
coelastic beam.

𝜎yy(t) = 𝜎zz(t) = 𝜀0 (L4(t) − L4(t − t0)) (31b)

where

L3(t) = U(t)
(
(I1KR)(t) +

4
3
(I1GR)(t)

)
(32a)

L4(t) = U(t)
(
(I1KR)I(t) −

2
3
(I1GR)(t)

)
(32b)

and (I1KR)(t) and (I1GR)(t) are the first integrals of Eqs. (30a) and (30b)
and are analogous to Eqs. (27a) and (27b) The analytical solution is
compared with the computer simulation in Fig. 8, demonstrating that
the computational result accurately reproduces the analytical solution.

Simulation of the relaxation test has been performed also for the
case 𝛼 ≠ 𝛽. Fig. 9 shows the comparison between analytical and FE
solution for 𝛼 = 0.5 and varying 𝛽 = 0, 0.25, 0.5, 0.75, 1 for both lon-
gitudinal and transverse stress. Fig. 10 shows comparison in the case
of 𝛽 = 0.5 and 𝛼 = 0, 0.25, 0.5, 0.75, 1. Both figures show the accu-
racy of the FE solutions, furthermore it is possible to appreciate that
varying the values of the parameters 𝛼 and 𝛽 leads to very different
responses. In particular it is possible to note that when 𝛽 ≠ 𝛼 the lon-
gitudinal stress is only slightly affected, while the transverse stress can
change radically; when 𝛼 > 𝛽 the behaviour of the transverse stress can
be even opposite to what one can expect intuitively: indeed in Fig. 9
the transverse stress increases instead of descreasing for 𝛽 = 0 (or for

values of 𝛽 close to 0); in Fig. 10 instead, for 𝛼 = 1 the transverse stress
is even non-monotonic. This suggests that a very wide range of threed-
imensional behaviour by using different combinations of the fractional
models and different values of the mechanical parameters, in particu-
lar by varying the orders 𝛼 and 𝛽 a very wide range of time varying
Poisson’s ratios can be obtained [1,32,39].

6.3. Euler-Bernoulli beam with FKV model

In this section a benchmark problem with a fractional viscoelastic
Euler-Bernoulli beam is shown; the material model is the FKV. The
Euler Bernoulli beam model has been choosen because analytical solu-
tion [21] can be evaluated for the creep test. A 2D plain strain model of
a viscoelastic Euler-Bernoulli beam under a uniformly distributed load
which is ramped up to a constant value of 100 N/m over 1 s is shown
in Fig. 11. The beam is 5 m long, has a rectangular cross section with
base 10 cm and height 20 cm. The material has the following mechani-
cal properties: K𝛽 = 5 × 108 Pa s𝛽 , K = 109 Pa, G𝛼 = 3.75 × 108 Pa s𝛼 ,
G = 7.5 × 108 Pa, where K and G are the long term bulk and shear
moduli, respectively, while K𝛽 and G𝛼 are the viscoelastic bulk and
shear coefficients, respectively; different values of 𝛼 = 𝛽 have been
considered: 0, 0.25, 0.5, 0.75, 1; the beam is modelled as simply sup-
ported. Fig. 11 shows the FE model of the beam, which consist of 100
(10 × 10 cm square) finite elements. Points lying in the same vertical
plane have been constrained to have the same vertical (y-direction) dis-

Fig. 12. Comparison between analytical and FEM results for displacements of two points of the beam.
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Fig. 13. Contour plot of longitudinal normal stress in the
deformed configuration of the beam. Values of stress in Pa.

placements, in order to avoid vertical strain in the FE model that are
not included in the analytical model. Displacements of the beam were
monitored at 1 m (A) and 2 m (B) from the left end of the beam. FEM
results are compared with analytical results evaluated using the same
approach as described in Ref. [21] in Fig. 12; the analytical solution is
evaluated as described in the following.

Using concepts highlighted in Ref. [21], namely the correspondence
principle [40] proved to be valid also for fractional viscoelasticity, it
can be stated that the shape of the deformed configuration of the beam
is the same as that for an elastic material and it only scales with time.
Analytically, this corresponds to writing the time evolution of displace-
ments of the beam simply by multiplying displacements given by the
elastic solution by a time varying function, corresponding to the creep
function of the mechanical model adopted, in this case a fractional
Kelvin-Voigt model. The deformed configuration of a simply supported
elastic Euler-Bernoulli beam with x axis along its length and subjected
to a uniform load q in the y direction is

ve(x) =
q

EIz

(
x4

24
− Lx3

12
+ L3x

24

)
(33)

where L is the length of the beam, Iz is the second moment of area about
the z axis and E is the Young’s modulus. Then considering that the creep
function of the fractional Kelvin-Voigt model reported in Table 2 the
displacement at any point of the beam and at any time can be evaluated

Fig. 14. Model of a plate with a hole. The red point has been used to generate Fig. 16.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the Web version of this article.)

Fig. 15. Countour plot of 𝜎xx stress. Values of stresses in Pa.

as:

v(x, t) = ve(x) (L5(t) − L5(t − t0)) (34)

where

L5(t) = tU(t)
[
1 − E𝛽,2

(
− E

C𝛽
t𝛽
)]

(35)

is the first integral of the creep function of the FKV model. As in the
test of the cube, analytical and FEM results are in very good agreement;
a contour plot of 𝜎11 (stress in x-direction) is plotted in the deformed
configuration in Fig. 13. The tests described above have been repeated
for all of the models and also for oscillating and linear input (as done
in one dimensional conditions in Section 5), both in quasi-static and in
dynamic conditions. The structural models used are very simple and it
has been possible to evaluate the analytical solutions for comparison.
However, the importance of the routines presented in this work become
more clear if models with complex geometry are analyzed. In the fol-
lowing section we show numerical results related to a plate with a hole
made of a viscoelastic material whose behaviour is modelled through a
range of fractional viscoelastic material models discussed in Section 4.

7. A plate with a hole with different fractional viscoelastic
models

Here we analyze a 3D model of a plate with a hole shown in Fig. 14.
This numerical example is useful in order to test the capability and
the efficiency of the user subroutines to model the response of a large
FE model. Furthermore, it is possible to compare results obtained by
using different fractional viscoelastic models. The plate has dimensions
10 × 5 × 1 cm, the hole is centered in the intersection between the diag-
onals of the 10 × 5 cm faces and has a diameter of 1 cm. A constant nor-
mal stress of 2 MPa has been applied to one face of the plate as shown in
Fig. 14. The stress is held constant for 10 s, while the opposite face has
been restrained in the normal direction. The model consists of 30648
3D brick linear elements with 8 nodes and 8 integration points. The
material properties used for these analyses are reported in Section 6.1
for the FSLS1 model and in Section 6.2 for the Kelvin-Voigt, Maxwell
and springpot model. In the springpot model the elastic moduli K and
G are equal to zero. For each model we assume that 𝛼 = 𝛽 = 0.3. The
constant time increment has been chosen as Δt = 0.1 s. The analysis
with a fractional Maxwell model was used to provide some information
about:(1) the RAM memory usage during the analysis which was about
4 GBs and (2) the results file (.odb), which contains all the stress and

Fig. 16. Time evolution of 𝜀xx for the red point in Fig. 14 and for different models.
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strain history for each integration point and all displacements at each
node, which is about 1.2 GBs. The computational time is about 12 min
on a single processor workstation.

We now compare the results for the different fractional viscoelastic
models. First of all, we observe that, as expected, the distribution and
the values of stresses obtained are the same for all models. This is due
to the fact that the loading and boundary conditions are the same and
equilibrium is satisfied by the same equations for all the models. A
contour plot of 𝜎xx is reported in Fig. 15 and is valid for all four models
of Table 1. Furthermore, the distribution of strains within the plate
is the same for all the constitutive models and it is analogous to the
elastic case. Obviously, the evolution of the strains pattern with time
is different for each of the viscoelastic models used. A comparison of
𝜀xx for the red point in Fig. 14 for the different viscoelastic models is
reported in Fig. 16. These two observations are in agreement with the
correspondence principles ([40]). From Fig. 16 it can be observed that
we can produce different time-dependent responses of the component
(plate with the hole) by using the range of fractional viscoelastic models
shown in Table 1. The choice of the appropriate material model needs
to be guided by analyzing the data from creep or relaxation tests at the
material level.

8. Conclusions

In this paper the implementation of a range of isotropic 3D frac-
tional viscoelastic constitutive laws in a finite element context has been
presented. We have implemented a series of 3D fractional viscoelas-
tic models as user material subroutines in the FE commercial software
Abaqus 6.14. The routines are suitable for both implicit and explicit
integration schemes. We have shown that these models can be success-
fully implemented in finite element software by using the discretized
version of the fractional derivative provided by Grünwald-Letnikov.
We have also suggested a procedure to access the stress/strain history
during the calculation process which is an essential requirement for
implementing this class of models. The need to store the history of all
strain and/or stress components can potentially lead to large amount
of memory during the simulation; this problem has been investigated
and two possible strategies have been discussed. Finally, a number of
benchmark problems, for which the analytical solution is known, have
been analyzed and the accuracy of the routines have been proved to
very satisfying. The work presented here shows that it is possible to
implement, in an easy and efficient manner, 3D fractional viscoelastic
models into finite element software; it is shown that the implementa-
tion is straightforward also for researchers not familiar with fractional
viscoelasticity and fractional calculus. The routines presented here are
essential in order to model and study the behaviour of complex com-
ponents made of fractional viscoelastic materials. The use of fractional
viscoelasticity in conjunction with FE software extends the possibility
to study, test and design viscoelastic components.
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