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ABSTRACT

The S100 gene family is the largest subfamily of calcium binding proteins of EF-
hand type, expressed in tissue and cell-specific manner, acting both as intracellular 
regulators and extracellular mediators. There is a growing interest in the S100 
proteins and their relationships with different cancers because of their involvement in 
a variety of biological events closely related to tumorigenesis and cancer progression. 
However, the collective role and the possible coordination of this group of proteins, 
as well as the functional implications of their expression in breast cancer (BC) is still 
poorly known. We previously reported a large-scale proteomic investigation performed 
on BC patients for the screening of multiple forms of S100 proteins. Present study 
was aimed to assess the functional correlation between protein and gene expression 
patterns and the prognostic values of the S100 family members in BC. By using data 
mining, we showed that S100 members were collectively deregulated in BC, and their 
elevated expression levels were correlated with shorter survival and more aggressive 
phenotypes of BC (basal like, HER2 enriched, ER-negative and high grading). Moreover 
a multi-omics functional network analysis highlighted the regulatory effects of S100 
members on several cellular pathways associated with cancer and cancer progression, 
expecially immune response and inflammation. Interestingly, for the first time, a 
pathway analysis was successfully applied on different omics data (transcriptomics 
and proteomics) revealing a good convergence between pathways affected by S100 
in BC. Our data confirm S100 members as a promising panel of biomarkers for BC 
prognosis.

INTRODUCTION

Breast cancer is the most diagnosed and potentially 
aggressive form of cancer in women [1]. Although 
genetic alterations in proto-oncogenes, tumor suppressor 
genes, cell cycle regulators and cell growth factors have 
been implicated in the process of carcinogenesis, the 
progression toward full malignancy is extremely complex 
at molecular level [2]. Different protein factors can 
be over/under expressed simultaneously and activate/

deactivate different cell functions. Breast cancer is a 
multifaceted disease of distinct biological subtypes with 
different clinical, pathological, molecular features and 
proteomic differences [3–9]. The molecular classification 
of breast cancer, based on the expression of estrogen/
progesterone receptor (ER/PR) and epidermal growth 
factor receptor 2 (HER2), provides different prognostic/
predictive implications and therapeutic informations. 
Despite these advances, breast cancer remains one of 
the most enigmatic and poorly predictable cancer in its 
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evolution due to the elevated biological heterogeneity 
consistent with observed varied responses to therapies 
across patients [6]. Thus novel biomarkers useful in 
clinical setting and/or for breast cancer management are 
coming up to explore.

One class of protein with emerging roles in 
breast cancer is the S100 family, a multigenic family of 
Ca2+ binding proteins of the EF-hand type, comprising 
at least 20 members [10]. The majority of them 
(S100A1-S100A16) are coded by genes that clustered 
at chromosome locus 1q21 (known as epidermal 
differentiation complex), while the others (S100B, S100G, 
S100P and S100Z) are located in other chromosome loci, 
21q22, Xp22, 4p16 and 5q14, respectively [11]. It is well 
documented that S100 proteins have a broad range of 
intracellular and extracellular functions, and are implicated 
in multiple biological functions, including cell division, 
motility, secretion, protein synthesis, and membrane 
permeability [12]. In addition, recent studies have 
reported the association between S100 family members 
and breast cancer development and progression [13–15]. 
Despite the promising potential of the S100 family as a 
biomarker panel, there are few studies that have addressed 
the family-wide expression of S100 protein isoforms in 
clinical samples [16–20]. We recently reported a large 
proteomic screening for S100 protein expression on breast 
cancer patients [21]. The results showed that some protein 
members are ubiquitously expressed in almost all patients, 
while others appeared more sporadic within the same 
group, and most of the detected S100 members appeared 
reciprocally correlated. More interestingly, patients which 

developed distant metastases showed a general tendency 
of higher S100 protein expression, compared to the 
disease-free group.

However, the mode of action of S100 proteins 
in breast cancer as well as the functional implications 
of alteration of gene expression levels remain to be 
elucidated.

Here, we performed a deep in silico analysis on 
the transcriptional profiles of 20 S100 family members 
(S100A1-S100A16, S100B, S100G, S100P and S100Z) 
between cancer and normal tissues. Moreover, S100 
gene expression levels were correlated to the clinic-
pathological features (Molecular subtypes, ER status, 
Grading) and survival data, evaluated as Overall Survival 
(OS), Distant Metastasis Free Survival (DMFS), and 
Relapse Free Survival (RFS). Finally, by using three 
cross platforms (GOBO, ONCOMINE and STRING 
databases) and our previous proteomic data, we explored 
the S100-regulated networks and pathways. Our results 
revealed that S100 genes were de-regulated in BC 
patients compared with normal tissues and collectively 
were over-expressed in HER2 enriched and Basal-like 
subtypes. In survival analysis, high transcriptional 
levels of S100 genes were associated with worse 
prognosis, probably because S100 expression affects 
immune response and inflammatory pathways. This 
study represents the first multi-omics attempt capable of 
revealing an integrated view of biological mechanisms 
regulated by S100 protein family and meaningful the 
important involvement of S100 family in breast cancer 
progression.

Figure 1: Gene expression analysis of S100 family members between normal and cancer tissues. The mRNA expression 
differences between tumors and normal tissues were analyzed for each S100 gene in ONCOMINE database using the following thresholds: 
p-value: 1E-4; fold change: 2; gene rank: top 10%; data type: mRNA; sample type: clinical specimens. The number in the colored box 
represents the number of analyses meeting these thresholds. The color depth was determined by the gene rank. The red boxes indicate that 
the mRNA levels of target genes are higher in tumor tissues than in normal tissues, while blue boxes indicate that the mRNA levels of target 
genes are lower in tumor tissues than in normal tissues.
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RESULTS

Gene expression analysis of S100 family 
members between normal and cancer tissues

The transcription levels of the S100 family members 
between tumor and normal tissues in multiple cancers was 
compared by using ONCOMINE database [22]. As shown 
in Figure 1, the database performed a total of 6037 unique 
analyses for all the S100 genes across a wide variety 

of datasets in different cancer types and 840 showed a 
significant statistical difference for mRNA expression. 
In particular, S100 family members were found up-
regulated in 429 analyses, and down-regulated in 411 
cancer versus normal analyses. These results suggest that 
S100 family members might play important roles during 
carcinogenesis in different cancer types, acting both as 
oncogenes or suppressor genes. In particular, for breast 
cancer, ONCOMINE analysis revealed that collectively 
S100 mRNA expression was higher in tumoral than 

Figure 2: Genetic alterations of S100 genes in breast cancer. The percentage of alterations in S100 genes was extracted by using 
the OncoPrint tool of cBioportal containing sequencing data of 2509 patients. Red and blue represent amplification and deep deletion, 
respectively.

Figure 3: Association between S100s gene expression and clinical parameters. Box Plot of the mRNA expression of S100 
family members. Patients were stratified according ER status, tumor grading and HU subtypes applying the gene Set Analysis (GSA) of 
GOBO database.



Oncotarget29067www.oncotarget.com

Table 1: Correlation of S100s with survival outcomes in breast cancer patients

Gene ID Affimetrix ID Survival 
outcome

Number of 
cases Cut-off Expression range 

of the probe HR LogrankP

S100A1 205334-at RFS 3955 262 4-14584 0.87 0.016

DMFS 1746 274 4-14584 0.92 0.38

OS 1402 233 4-10656 0.74 0.006

S100A2 204268-at RFS 3955 269 3-72629 0.95 0.31

DMFS 1746 284 7-33668 0.97 0.74

OS 1402 308 6-72629 0.98 0.85

S100A3 206027-at RFS 3955 68 3-7734 0.94 0.26

DMFS 1746 68 4-1799 1.07 0.48

OS 1402 80 3-1799 0.95 0.64

S100A4 203186-s-at RFS 3955 2626 37-33152 1.12 0.044

DMFS 1746 2597 122-27019 1.1 0.33

OS 1402 2840 122-27019 0.97 0.77

S100A5 207763-at RFS 3955 14 1-314 0.87 0.012

DMFS 1746 14 2-314 0.97 0.76

OS 1402 16 2-291 1 0.98

S100A6 217728-at RFS 3955 5323 418-52048 1.07 0.2

DMFS 1746 5293 739-49544 1.02 0.81

OS 1402 5824 419-50535 0.81 0.049

S100A7 205916-at RFS 3955 39 1-55811 1.17 0.0038

DMFS 1746 46 2-52684 1.26 0.0019

OS 1402 79 2-55811 1.23 0.062

S100A8 202917-s-at RFS 3955 514 3-128800 1.45 2.60E-11

DMFS 1746 545 2-55811 1.38 0.0012

OS 1402 700 3-128800 1.4 0.0021

S100A9 203535-at RFS 3955 341 5-94557 1.41 5.50E-10

DMFS 1746 331 5-43408 1.41 0.00047

OS 1402 430 13-94557 1.38 0.0031

S100A10 200872-at RFS 3955 6750 522-38772 1.35 8.00E-08

DMFS 1746 6626 522-28029 1.43 0.00031

OS 1402 6383 522-38778 1.26 0.037

S100A11 200660-at RFS 3955 8844 162-57630 1.45 3.10E-11

DMFS 1746 8468 302-57630 1.41 0.00052

OS 1402 8844 241-33276 1.28 0.022

S100A12 205863-at RFS 3955 83 1-3261 0.78 1.20E-05

DMFS 1746 83 3-1850 1.2 0.068

OS 1402 93 2-2811 1.15 0.2

(Continued )
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Gene ID Affimetrix ID Survival 
outcome

Number of 
cases Cut-off Expression range 

of the probe HR LogrankP

S100A13 202598-at RFS 3955 2672 286-20048 0.94 0.25

DMFS 1746 2743 475-20048 0.83 0.059

OS 1402 2607 475-15774 0.89 0.27

S100A14 218677-at RFS 3955 1611 17-13313 1.05 0.37

DMFS 1746 1720 76-12605 1.01 0.89

OS 1402 1556 54-12605 0.99 0.9

S100A7A 232170-at RFS 3955 21 11-11406 0.91 0.21

DMFS 1746 31 1-11406 1.31 0.1

OS 1402 28 1-11406 0.89 0.45

S100A16 227998-at RFS 3955 4529 239-18268 1.23 0.008

DMFS 1746 4829 683-16912 1.15 0.4

OS 1402 4102 290-14364 1.27 0.13

S100B 209686-at RFS 3955 26 1-16122 1.03 0.59

DMFS 1746 28 1-3366 0.89 0.22

OS 1402 26 1-8014 0.87 0.21

S100G 207885-at RFS 3955 15 1-18316 0.77 4.20E-06

DMFS 1746 15 1-13476 0.92 0.42

OS 1402 14 1-12435 0.93 0.48

S100P 204351-at RFS 3955 1117 3-46947 1.5 2.60E-13

DMFS 1746 1113 6-29328 1.36 0.0019

OS 1402 1113 5-44788 1.63 7.20E-16

S100Z 1554876-a-at-at RFS 3955 25 1-398 0.72 4.80E-05

DMFS 1746 23 1-139 0.7 0.03

OS 1402 22 1-139 0.88 0.44

The prognostic value of individual S100 members evaluated in KM plotter database. For each S100 (identified with an 
Affimetrix ID) survival outcome was evaluated as Relapse Free Survival (RSF), Distant Metastasis Free Survival (DMFS) 
and Overall Survival (OS). Patients were splitted by median. Significant associations with prognosis are underlined in bold.

normal samples (55 analyses with up-regulation versus 
27 analyses with down-regulation) and only S100A3 and 
S100A5 did not show differences between the analyzed 
dataset.

Genomic alterations of S100 family members in 
breast cancer

The OncoPrint tool of cBioPortal database [23] 
was used to query for alterations in S100 genes in breast 
cancer. As shown in Figure 2, the percentage of alterations 
spans from 0.3% to 19% for individual genes. In particular, 
the predominant pattern of amplification occurred in 
19%, 18% and 17% of the S100 genes clustering into 1p 
chromosome, while a low percentage of alterations that 

include both gene amplifications and gene deletions were 
recorded for the other S100 genes.

S100s gene expression is associated with clinical 
parameters

We then used GOBO database, containing 1881 
patient’s data [23], to investigate the correlation between 
S100s gene expression and clinical parameters, including 
ER expression, tumor grade and molecular subtypes. We 
found significantly higher S100 expression levels (Figure 
3) in ER negative tumors, in higher grade tumors and in 
basal-like and HER2 tumors (p<0.0001 according to one-
way ANOVA), while lower S100 expression levels were 
found in Luminal A and Luminal B tumors.
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Prognostic significance of S100 family members

We also investigated the prognostic value of S100 
family members in breast cancer using survival data, 
evaluated as Overall Survival (OS), Distant Metastasis 
Free Survival (DMFS) and Relapse Free Survival 
(RFS), of 5143 breast patients from Kaplan-Meier 
plotter database [24]. Firstly, the survival analysis was 
performed for each S100 gene, using a single Affimetrix 
ID probe. Results shown in Table 1, clearly indicate the 
association between the higher S100s expression with a 
worse prognosis (highlighted in red) or better prognosis 
(highlighted in black), pointed about the specific roles 
of single members as oncogenes or tumor suppressor 
genes. No association with survival data was recorded 
for S100A2, S100A3, S100A13, S100A14, S100A7A 
and S100B.

Interestingly, when the survival analysis was 
performed including all the S100s members, higher 
expression levels of S100s members, were significantly 
correlated with a shorter RSF, with HR = 1.83 (1.56–
2.14), p = 3.5E-14, DMFS with HR = 1.45 (1.04–2), p = 
0.026 and OS with HR = 1.68 (1.23–2.31), p = 0.0011 
(Figure 4). These results revealed that collectively S100 
family members have a greater prognostic value than the 
individual genes.

Survival analyses were carried out on the subgroup 
of patients that in GOBO analysis showed significant 
S100 up-regulation. Intriguingly, up-regulated S100s 
were all significantly associated with worse RFS in the 
ER- and basal-like tumors (Figure 5), but not in HER2-
enriched group or in high grading, where the no statistical 
difference were recorded (p>0.05).

Interaction network and pathway analysis of 
S100 family members

We then analyzed the possible interactions between 
S100 family members with other genes via computational 
analysis by using three cross-platforms (STRING, 
GOBO and ONCOMINE), in order to reveal networks 
and pathways able to predict the underlying molecular 
mechanisms of S100-mediated roles in breast cancer. The 
predicted associations and the co-expressed genes for each 
S100 were queried to STRING, GOBO and ONCOMINE 
database, respectively, by using a combined score of ≥ 
0.4. The associations in STRING include direct (physical) 
interactions, as well as indirect (functional) interactions, 
as long as both are specific and biologically meaningful. 
The co-expressed genes in GOBO and in ONCOMINE 
databases are calculated by Pearson correlation method. For 
each S100, the databases returned the predicted functional 
associations and the co-expressed genes, as reported in 
the pie chart of Figure 6. The lists of the S100-interactors 
from STRING, and the co-expressed genes from GOBO 
and ONCOMINE (Supplementary Tables 1-3) (containing 
547, 289 and 1261 unique proteins) were used to found 
functional enrichments in the S100-networks and clusterized 
through GO classification and KEGG pathways by using the 
String Analysis tool (Figure 6). Although each S100 was 
significantly associated with different genes in different 
databases, they are implicated in the same biological 
functions: infact, collectively, S100 affect inflammatory and 
immune response pathways, probably acting extracellularly, 
through the Toll-like and RAGE signaling.

Taking advantage of our previous proteomic data [8, 
20, 21], we performed a correlation analysis of the relative 
expression levels of each S100 protein spot identified 
in the proteomic maps (15 protein spots), with the global 

Figure 4: Survival analyses of S100 family members in breast cancer obtained from the Kaplan-Meier Plotter database. 
Survival was evaluated as RFS (relapse free survival), DMFS (distant metastasis free survival) and OS (overall survival). Patients were 
splitted into two groups by using the best cut-off of probe expression.
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Figure 5: Survival analyses of S100 family members in breast cancer subgroups from the Kaplan-Meier Plotter 
database. Survival was evaluated as RFS (relapse free survival). Patients were splitted into two groups by using the best cut-off of probe 
expression.
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Figure 6: S100-associated genes analyzed with STRING (A), GOBO (B) and ONCOMINE (C) databases. Graphs represent 
the number of associated genes (STRING) and co-expressed genes (GOBO and ONCOMINE) for each S100. The tables represent the 5 top 
significantly biological processes, molecular functions, cellular components and key pathways evaluated by using the String Analysis tool.
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Figure 7: Proteomic correlations with S100 proteins. (A) Prototype of a breast cancer tissue. Red asterisks indicate the 453 
protein spots identified by MALDI-TOF mass spectrometry. The S100-protein spots are highlighted and the different isoforms labeled 
with alphabetical letters starting from the more acidic one. (B) Pie-chart showing for each S100 protein the percentage of the correlated 
proteins, among the 453 identified. (C) Pie-chart showing the number of protein spots correlated with single or multiple S100 proteins. 

protein complement (453 protein spots identified by mass 
spectrometry) by using a pearson correlation statistical 
test. Figure 7A shows a proteomic map representative of 
breast cancer surgical tissue, where the 453 protein spots 
identified are marked with red asterisks and S100-protein 
spots are highlighted. Different S100-isoforms (S100A6 two 
isoforms, S100A7 two isoforms, S100A11 three isoforms, 
S100A13 two isoforms) are labeled by alphabetical letters 
starting from the more acidic one. As reported in Figure 
7B, each S100 protein and isoform was correlated with a 
different set of proteins, suggesting distinctive roles for S100 

proteins and isoforms. Specifically, among the 453 protein 
spots identified in our proteomic maps (corresponding to 
271 genes), 236 protein spots (corresponding to 52% of the 
total proteins), were significantly correlated with at least 
a S100 protein spot. Figure 7C shows, in particular, the 
number of protein spots correlated with single or multiple 
S100 proteins. To give greater strength to the results we 
have chosen to carried out the functional classification of 
S100-correlated proteins with the protein spots, showing 
significant correlation with at least five S100-protein spots, 
listed in Figure 7D. Functional enrichments in the S100-
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Figure 7 (Continued ): (D) Histogram of 64 unique proteins showing significant correlation with at least five S100-protein spots. Black 
boxes represent the correlated proteins. (E) Interactome derived from the proteins listed in histogram 7D by using String database.
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Figure 7 (Continued ): (F) Tables reporting the 5 top significantly biological processes, molecular functions, cellular 
components and key pathways evaluated by using the String Analysis tool.

correlated proteins were analyzed by using the String 
Analysis tool and clusterized through GO classification and 
KEGG pathways. Interestingly, the interactome analysis 
(Figure 7E) showed that the S100-correlated proteins 
contained more interactions among themselves than what 
would be expected for a random set of proteins of similar 
size, (number of edges: 285, expected number of edges: 111; 
PPI enrichment p-value:< 1.0e-16) indicating they were at 
least partially biologically connected. Again, the biological 
connection concerned the implication of the immune 
response, probably through the RAGE receptors signaling. 
Moreover, S100- correlated proteins affect NAD metabolic 
and apoptotic processes (Figure 7F).

S100 expression in laser captured 
microdissection (LCM) microarray data set

In order to verify if S100s are expressed by 
epithelial cells, stromal cells or both, we analyzed the 
public microarray data set from GEO (GSE10797), 
containing the expression data from epithelial and stromal 
cells that were laser captured from invasive breast cancer 
(n=28) [25]. For each S100 probe, the expression values 
were analyzed by GEO2R tool. As reported in the Figure 

8, no significant differences were observed between the 
epithelial and stromal compartments. As evident from high 
values of standard deviation, S100 expression levels are 
more variable between different tumors.

DISCUSSION

Accumulating evidences have demonstrated that S100 
family members play a critical role in cancer development. 
Several reports deal with the correlation or the involvement 
of individual S100 members in cancer [26–35], but their 
possible coordination and collective role, as well as the 
functional implications of their expression are still poorly 
known. In this study, we used a systematic multiomics 
approach to assess the role of S100 family members in BC. 
In comparison to normal tissues, the transcriptional levels of 
S100 members are robustly upregulated although in some 
cases a down regulation was found, indicating that S100 
could act both as oncogenes or tumor suppressor genes, 
and exert both pro- and anti- tumorigenic actions depending 
on the tumor type. For example, the over-expression of 
S100A2, S100A3, S100A6, S100A8/A9, S100A11 and 
S100A14 have been documented in several cancer types. 
Conversely, under-expression of these proteins has been 
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found in other cancer types [36]. Moreover, has been 
demonstrated that S100A2 expression is suppressed early 
during lung carcinogenesis [37].

By using cBioPortal database we verified if the 
deregulated expression of S100 family members in breast 
cancer could be caused by genetic alterations. Interestingly, 
the results showed that the predominant pattern of 
amplification (about 18%) occurred in the S100 genes 
clustering into 1p chromosome, while a low percentage of 
alterations that include both gene amplifications and gene 
deletions were recorded for the other S100 genes. Recently, 
it was reported that chromosome 1q21.3 amplification is a 
trackable biomarker and actionable target for breast cancer 
recurrence [38], so it is possible to explain these evidences 
also in consideration of the deregulated S100 expression.

We also investigated the prognostic value of S100 
family members in BC by using KM plotter. Among them, 
14 members were significantly associated with prognosis, 
evaluated as different survival, and only S100A2, S100A3, 
S100A13, S100A14, S100A7A and S100B were not 
associated with prognosis. These results are in agreement 
with the results obtained by Zhang et al., [35] about the 
prognostic values of S100 with the Overall Survival, and 
add new information about the individual S100 protein 
prognostic significance evaluated as Relapse Free Survival 
and Distant Metastasis Free Survival. Moreover, when 
the survival analysis was performed including all the 
S100 members, higher expression levels of S100s were 
significantly correlated with a shorter survival, indicating 
that S100 family members have collectively a greater 
prognostic value than the individual genes. Although 

the functions of S100 proteins have been extensively 
studied and the functional modes of S100 proteins can 
be intracellular, extracellular, or a combination of both 
[39], the molecular mechanisms by which S100 proteins 
contribute to cancer progression are not fully understood. 
The pathway and network-based analysis using data mining 
and a new correlation analysis with our previous proteomic 
data revealed that collectively S100-associated proteins 
are involved in relevant biological pathways correlated 
to immune response and inflammation. Our results are in 
agreement with many studies showing that, during infection, 
certain S100 proteins act as damage-associated molecular 
patterns (DAMPs) and interact with pattern recognition 
receptors to modulate inflammatory responses, [40, 41]. 
In addition, these inflammatory S100 proteins have potent 
antimicrobial properties and are essential components of the 
immune response against invading pathogens. Moreover, 
the creation of a pre-metastatic environment depends on the 
activation of inflammatory pathways [42] in the surrounding 
tissue, increasing the “mobility” of cells and thus facilitating 
the development of distant metastases or modulation of cell 
growth and differentiation [43]. So far, for several S100 
members (i.e S100A7, S100A8, S100A9, and S100A12) 
a role in innate immunity has been demonstrated [44–46], 
while for S100A15, which is highly homologous to S100A7 
(93% identity), a role in innate immunity is proposed as well 
[47]. Moreover, the association of S100 with autoimmune 
diseases has been known since long time in different 
inflammatory conditions. For example, S100A4 is involved 
in autoimmune pancreatitis [48], S100A11, S100A8 and 
S100A9 in rheumatoid arthritis [49, 50], S100A1 in hypoxia-

Figure 8: S100s expression values between epithelial and stromal cells. Expression levels of S100 proteins derived from the 
available microarray data set (GSE10797) in GEO Dataset and analyzed by GEO2R tool.
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induced inflammatory response in cardiomyocytes [51], 
S100A12 in Crohn’s disease [52], S100A7 and S100A7A 
in psoriasis [53], S100A8, S100A9 and S100A12 in 
systemic lupus erythematosus [54]. Nevertheless, the exact 
mechanism leading to S100-induced inflammatory reactions 
has not been identified. Probably, the binding to specific 
receptors, RAGEs (receptor for advanced glycation end 
products) and Toll-like receptors (TLR4 and TLR2) mediates 
the proinflammatory axis. Infact, upon stimulation with 
proinflammatory cytokines S100 proteins have been shown 
to be strongly upregulated, and in turn, S100 upregulation 
determines the overproduction of cytokines and interleukins 
[54–56]. This proinflammatory microenvironment promotes 
the secretion of various cytokines and growth factors into 
the tumor microenvironment. Recently growing evidence 
suggests that the tumor microenvironment plays a central 
role in the promotion of tumor metastasis [57]. S100 
proteins, infact, can be considered as inducer of a cytokine 
network enabling tumor cells to engage angiogenic and 
migratory pathways [55], modulating the ECM molecules 
and the ECM dinamycs. For example, extracellular S100A4 
stimulates invasive growth of mouse endothelial cells 
and modulates MMP-2, MMP-9 and MMP-13 matrix 
metalloproteinase activity [58, 59], while S100A7 modulates 
MMP-9 expression [60]; S100A14 protein is involved in 
cell invasion by affecting the expression and the function 
of matrix metalloproteinase MMP-2 [61]. Interestingly, 
by using the expression data from LCM between cancer 
epithelial and stromal cells we verified that S100 proteins 
are expressed in both cancer and stromal cells. Elucidation 
of these mechanisms would have a significant impact on 
understanding the pathogenesis of inflammation-associated 
tumors and in particular of breast cancer, and could aid 
progress in the development of more effective cancer 
therapies.

MATERIALS AND METHODS

ONCOMINE database analysis

ONCOMINE (http://www.oncomine.org), is an 
online microarray database, able to analyze the mRNA 
expression differences between tumor and normal tissues 
in common human cancers. For each cancer and gene, the 
thresholds were set as follows: p-value: 0.01; fold change: 
2; gene rank: 10%; analysis type: cancer vs. normal 
analysis; data type: mRNA.

GOBO database analysis

GOBO database (http://co.bmc.lu.se/gobo), 
allow a rapid assessment of gene expression levels, 
identification of co-expressed genes and association with 
outcome for single genes, gene sets or gene signatures 
in an 1881-sample breast cancer data set, generated on 
Affymetrix U133A microarrays [55].

Kaplan-Meier Plotter database analysis

The KM Plotter database (http://kmplot.com/
analysis/), able to assess the effect of 54,675 genes on 
survival using 10,461 cancer samples, including 5,143 
breast, was applied to evaluate the prognostic values of 
S100 family members in breast cancer [24]. The desired 
probes ID were entered into the database by using the 
multigene classifier. Patients were splitted into high and 
low expression group by the median values of mRNA 
expression or by the best cut-off, as indicated.

cBioPortal database analysis

The cBioPortal (http://www.cbioportal.org) for 
Cancer Genomics provides visualization, analysis and 
download of large-scale cancer genomics data sets [56].

STRING database analysis

STRING (https://string-db.org) is a database 
of known and predicted protein-protein interactions. 
The interactions include direct (physical) and indirect 
(functional) associations; they stem from computational 
prediction, from knowledge transfer between organisms, 
and from interactions aggregated from other (primary) 
databases analysis [57].

Proteomics of breast cancer tissues and 
correlation analysis

Proteomic analysis was performed on 100 breast 
cancer tissues following surgical interventions during 
the years 2003–2007 at the “La Maddalena” Hospital 
of Palermo, as previously described [8]. Briefly, surgical 
samples were homogenated overnight at 4 C with RIPA 
buffer, containing 50 mM Tris pH 7.5, 0.1% Nonidet P-40, 
0.1% deoxycholate, 150 mM NaCl, 4 mM EDTA and a 
mixture of protease and phosphatase inhibitors (0.01% 
aprotinin, 10mM sodium pyrophosphate, 2mM sodium 
orthovanadate, 1mM PMSF). After centrifugation, the 
obtained supernatant was dialyzed against ultrapure distilled 
water, lyophilized and resuspended in ISOT buffer (4% 
CHAPS, 40 mM Trizma base, 65 mM DTE and a trace 
of bromophenol blue in 8 M urea). Aliquots containing 
45 μg of total proteins were rehydrated in rehydratation 
buffer containing 8 M urea, 2% CHAPS, 10 mM DTE 
and 0.5% carrier ampholytes (Resolyte 3.5–10). The first 
electroforetic separation of 2D-IPG was performed on 18 
cm long strips with a pH range 3.0–10. The strips were then 
equilibrated in a solution containing 50 mM Tris-HCl pH 
6.8, 6 M urea, 0.5% SDS, 30% Glycerol, 130 mM DTE and 
135 mM Iodoacetamide and then separated on 9–16% linear 
gradient polyacrylamide gels (SDS-PAGE) with a constant 
current of 20 mA/gel [58, 59]. The gels were silver stained 
and analyzed with the dedicated ImageMaster 2D Platinum 
software. Protein identity was assigned by peptide mass 

http://www.oncomine.org
http://co.bmc.lu.se/gobo
http://kmplot.com/analysis/
http://kmplot.com/analysis/
http://www.cbioportal.org
https://string-db.org
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fingerprinting using the Voyager DE- MALDI-TOF mass 
spectrometer as described [7, 9, 60, 61]. The expression 
level of the protein spots were calculated as the volume of 
the spots (i.e., integration of optical density over the spot 
area), relative to the sum of the volume of all spots on each 
gel (%Vol). Measurements of relative expression levels of 
individual protein spots were normalized in each proteomic 
map for actin content (N%V), as previously reported [20]. 
Correlation analysis with the collective profile of cancer 
patients proteomics was performed using the Pearson 
correlation test. Correlation coefficient ≥0.4 and p <0.05 
was considered significant.

CONCLUSIONS

This study confirmed the prognostic value of mRNA 
expression of the S100 family members in breast cancer 
and pointed to the molecular mechanism through which 
S100 affects cancer progression, probably regulating 
innate immune response and inflammation pathways. The 
extracellular activities of S100 proteins depend on the cell-
specific expression patterns, the specific targets and the local 
microenvironment as well. For the first time, an integrated 
multiomics approach performed on S100 family members, 
allowed to extrapolate new insight regarding the collective 
role of S100 in BC. Interestingly, although is known that 
the correlation between mRNA and protein abundances are 
often poor in the cells, by using large-scale dataset derived 
from transcriptional and proteomic data, we obtained a good 
convergence between S100-regulated pathways. Further 
studies will be necessary to understand the role of epigenetic 
changes and the different protein-isoforms.
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