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Abstract: Glycopeptides (GPAs) are an important class of antibiotics, with vancomycin and
teicoplanin being used in the last 40 years as drugs of last resort to treat infections caused by
Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus. A few new GPAs
have since reached the market. One of them is dalbavancin, a derivative of A40926 produced by
the actinomycete Nonomuraea sp. ATCC 39727, recently classified as N. gerenzanensis. This review
summarizes what we currently know on the multilevel regulatory processes governing production
of the glycopeptide A40926 and the different approaches used to increase antibiotic yields. Some
nutrients, e.g., valine, L-glutamine and maltodextrin, and some endogenous proteins, e.g., Dbv3,
Dbv4 and RpoBR, have a positive role on A40926 biosynthesis, while other factors, e.g., phosphate,
ammonium and Dbv23, have a negative effect. Overall, the results available so far point to a complex
regulatory network controlling A40926 in the native producing strain.

Keywords: glycopeptide antibiotics; dbv cluster; regulatory genes; StrR; LAL; LuxR solo;
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1. The Glycopeptides

The glycopeptides are a class of antibiotics with a complex chemical structure and relatively
high molecular weight. Since 1953, about 50 glycopeptide antibiotics (GPA) have been isolated [1],
and several of these have been approved for clinical use. These include vancomycin, produced by
Amycolatopsis orientalis and marketed in 1958, and teicoplanin, produced by Actinoplanes teichomyceticus
and marketed in 1987. The second-generation glycopeptides telavancin, derived from vancomycin,
dalbavancin, derived from A40926, and oritavancin, derived from choloroeremomycin, were
introduced onto the market in 2009, 2014 and 2015, respectively. All glycopeptides are used to
treat persistent infections by Gram-positive multi-resistant pathogens [2]. The second-generation
glycopeptides are nearly 4- to 8-fold more effective than vancomycin against Gram-positive pathogens,
and are also active against vancomycin-intermediate or vancomycin-resistant strains of Staphylococcus
and Enterococcus spp. [3]. While dalbavancin impedes the late steps of cell wall biosynthesis principally
by blocking transglycosylase activity, oritavancin and telavancin bind to the bacterial membrane by the
lipophilic side chain linked to their disaccharide moiety, disturbing membrane integrity and leading to
bacteriolysis [3].

Chemically, glycopeptides are a class of molecules constituted by a heptapeptide core consisting of
both proteinogenic and non-proteinogenic amino acids, such as 3,5-dihydroxyphenylglycine (Dpg) and
4-hydroxyphenylglycine (Hpg). A heptapeptide is produced by a non-ribosomal peptide synthetase
(NRPS) and, while tethered to the large multi-functional enzyme, the peptide scaffold is made rigid
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through oxidative cross-linking of the electron-rich aromatic side chains by P450s and chlorinated [4–6].
Further tailoring steps may include one or more glycosylations, methylation, sulfation and modification
of the added sugar(s) by acylation and acetylation.

Glycopeptide producers are widespread among distantly related genera of actinomycetes [1]:
vancomycin, balhymicin and ristocetin were isolated from distinct species of the genus Amycolatopsis,
belonging to the family Pseudonocardiaceae; teicoplanin and UK-68597 are produced by members
of the genus Actinoplanes, family Micromonosporaceae; A40926 is from the genus Nonomuraea,
family Streptosporangiaceae; and pekiskomycin and A47394 are from the genus Streptomyces, family
Streptomycetaceae [7]. Thus, production of GPAs is widespread among actinomycetes, as shown by the
relatively high frequency at which glycopeptide producers can be detected in environmental samples
after applying appropriate selection procedures [8].

The medical interest and importance of these molecules has prompted the analysis of the genes
required for their synthesis. Different glycopeptide biosynthetic gene clusters have been reported [9];
combining the information obtained from these clusters, a function has been assigned to most genes
involved in glycopeptide formation by in vivo gene disruption in the producing strain(s) and by
biochemical studies of the overproduced enzymes. While these results have analyzed different
pathways, the emerging overall picture has contributed to deciphering most of the biosynthetic steps
and the timing of the events in the biosynthesis of all GPAs [4–6,8,10].

2. Development of Dalbavancin

Dalbavancin is a second-generation glycopeptide derived from A40926 with an improved
antibacterial activity over teicoplanin, the most closely correlated marketed GPA. The enhanced
pharmaco-dynamic properties of the molecule and lipophilic anchoring to the bacterial cell membrane
confer more potent in vitro and in vivo activity than teicoplanin. The most prominent peculiarity
of dalbavancin is a significantly extended half-life in plasma, which allows once-a-week dosing
by intravenous injection. The drug has been approved for treating complicated acute bacterial
skin and skin structure infections. Its synthesis involves the deacetylation of the final biosynthetic
intermediate A40926 (a process achieved during recovery from the fermentation broth), protection
of the carboxyl group present in the aminosugar, conversion of the C-terminal carboxyl group into
a (3-dimethylamino)-1-propylamide, and final deprotection of the aminosugar carboxyl group [11].
The main components of the A40926 complex differ mainly in the acyl chain attached to the sugar, with
B0 and B1 as the major representatives, characterized respectively by an iso-C12:0 and a n-C12:0 acyl
moiety bound to the aminoglucuronic acid moiety [12]. The structures of A40926 and of dalbavancin
are shown in Figure 1.

Figure 1. Chemical structures of O-acetyl A40926 and of dalbavancin. Only the component B0 is shown
for simplicity. The chemical modification present in dalbavancin is indicated in red type.
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Dalbavancin obtained market authorization in 2014 in the USA and the following year in Europe.
This was a noteworthy success in view of the intricate history related to its development, which started
back in the early 1990s and involved at least six different legal entities, as recently summarized [13].

In this review, we have organized the text into three separate sections: the first concerns the
improvement of antibiotic yield by modifying the media components; the second describes the
biosynthetic gene cluster and its transcriptional organization (Figure 2), along with the biosynthetic
steps (Figure 3); and the last section deals with the cluster specific regulatory genes.

Figure 2. Genetic organization of the dbv cluster. The thin black arrows indicate experimentally
determined operons. Red triangles indicate experimentally determined Dbv4 binding sites, with the
corresponding transcripts as red thick arrows; the thin green arrows represent the transcriptional units
controlled by Dbv3. The dbv genes are grouped by functional category as indicated. See also Table 1.

Table 1. Transcriptional units and biosynthetic roles of the corresponding proteins.

Transcriptional Unit Function(s)

dbv1-dbv2 Hpg biosynthesis
dbv3 Regulation
dbv4 Regulation
dbv5-dbv7 Hpg biosynthesis; regulation; resistance
dbv8-dbv14 N-Acylation; Halogenation; glycosylation; cross-links
dbv15-dbv17 NRPS
dbv18-dbv19 Export
dbv20-dbv21 Mannose addition; N-sugar deacetylation
dbv22-dbv23 Regulation; mannose O-acetylation
dbv24-dbv28 Export; NRPS; Tyr β-hydroxylation
dbv29 N-sugar oxidation
dbv30-dbv35 Dpg biosynthesis
dbv36 NRPS accessory protein
dbv37 Hpg and Dpg biosynthesis
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Figure 3. Simplified model of O-acetyl A40926 biosynthesis. Note that the heptapeptide is drawn right
(N-terminus) to left (C-terminus), consistent with Figure 1. Cross-links are indicated by blue (C–O–C)
or red (C–C) arcs. Sugars are represented as blue hexagons. Refer to Figure 2 and Table 1 for details.

3. Improvement of A40926 Production

Improvement of glycopeptide production has very likely been achieved through several rounds of
mutagenesis and screening, leading to the current industrial strains producing vancomycin, teicoplanin,
chloroeremomycin and A40926. However, most of this work has not surfaced in the scientific literature,
and we will limit ourselves to published reports on the A40926 process.

Initial work established the influence of growth conditions on A40926 production by Nonomuraea
sp. ATCC 39727, recently classified as N. gerenzanensis [14]. In a chemically defined medium, low
initial concentrations of phosphate and ammonium led to increased A40926 production, while glucose
limitation did not (Figure 4). In particular, the level of residual ammonium and phosphate strongly
influenced A40926 production rates and final titers, but not the initiation of production [15]. In a
similar medium, A40926 production was repressed by calcium, but supported when L-glutamine or
L-asparagine were added as nitrogen sources instead of ammonium salts (Figure 4) [16]. Since the
catabolic products of branched chain amino acids represent biosynthetic precursors for the formation
of the branched chain acyl moieties of A40926 [17], studies were undertaken on the influence of valine
supplementation. Addition of 1 to 3 g/L-valine to complex media improved both the relative and
absolute production of the B0 congener with decrease of the B1 component in the A40926 complex [18].
A40926 yields were found to also be controlled by stringent response in both complex and chemically
defined media (Figure 4) [19].

It has also been recently reported that a Nonomuraea strain producing high levels of A40926 in
an optimized production medium was isolated after UV mutagenesis. This mutant strain was used
to study the effect of carbon and nitrogen sources and of different ions on antibiotic productivity;
addition of the scarcely assimilated carbon source maltodextrin and the nitrogen source soybean meal
strongly affected A40926 production, which reached 1 g/L in a 10-L fermenter. Furthermore, Cu2+

stimulated A40926 biosynthesis while Co2+ showed an inhibitory effect. As shown for valine, even
L-leucine addition led to an increased production of total A40926 and changed the complex toward the
B0 compound (Figure 4) [20]. While the shift in complex composition after amino acid addition can
be easily rationalized, there are currently no clues as to why certain carbon sources and metal ions
stimulate or inhibit growth and/or A40926 production.
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Figure 4. Nutrients, biosynthetic products and proteins regulating A40926 production in Nonomuraea gerenzanensis.

4. The dbv Gene Cluster: Main Features

The characterization of the gene cluster necessary for A40926 biosynthesis [21] laid the foundation
for understanding the regulatory mechanisms working in the producer strain [22,23]. The dbv gene
cluster is constituted by 37 protein coding sequences involved in antibiotic biosynthesis, regulation,
immunity, and export [21] (Figure 2).

In particular, Dbv1, Dbv2, Dbv5, Dbv30-34 and Dbv37 are involved in biosynthesis of the two
non proteinogenic amino acids Hpg and Dpg, while Dbv16-17 and Dbv25-26 constitute the NRPS that
joins the amino acids Hpg, Tyr, Dpg, Hpg, Hpg, Tyr and Dpg in a ribosome-independent manner.
The A40926 aryl groups are linked by three ether links and one C–C link through the action of
Dbv11-14 P450s, while the single halogenase Dbv10 chlorinates Dpg-3 and Tyr-6. By analogy with
other glycopeptides, halogenation should occur on an NRPS-bound substrate [5], while Tyr beta
hydroxylation [24] might also involve interaction with an NRPS-bound substrate or intermediate.
Additional modifications require the action of: Dbv27, for N-methylation of the terminal Hpg-1 residue;
Dbv9, Dbv21, Dbv8 and Dbv29, for addition of N-acetyl glucosamine, deacetylation and acylation
with long chain fatty acids, and sugar oxidation, respectively [25–27]; and Dbv20 and Dbv23, for
mannosylation of Dpg-7 and its O-acetylation [28]. The different functions are illustrated in Figure 2
and summarized in Table 1, and a simplified model of O-acetyl A40926 biosynthesis is depicted in
Figure 3.

The last biosynthetic step is possibly represented by acetylation at position 6 of the mannose
moiety carried out by Dbv23 [28,29]. A strain deleted in dbv23 produced only glycopeptides lacking
the O-linked acetyl residue. Interestingly, antibiotic production in a complex medium by the mutant
strain occurred at twice the levels of the wild type. The low amount of glycopeptide produced by the
wild-type strain might be dependent upon an inhibitory effect exerted by the acetylated compound,
the final pathway intermediate. Consistently, spiking the production medium with 1 µg/mL of
the acetylated glycopeptide inhibited total glycopeptide production in the mutant strain, while the
deacetylated glycopeptide had no effect [28]. It is thus tempting to speculate that A40926 production
is regulated by its end product, ensuring that A40926 does not occur during growth of the strain.
This might occur through a two-component signal transduction process, in which a specific receptor
could activate a response regulator and repress A40926 biosynthesis. This might be relevant in
industrial processes, in which a seed culture is eventually used to inoculate the production medium.
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Any A40926 produced in the seed culture might be sufficient to inhibit A40926 production when
the strain is inoculated in the production medium. This mechanism might be related to the inherent
sensitivity of the strain to its own product, as described below.

Glycopeptides bind to the D-Ala-D-Ala portion of lipid II and thus inhibit the transpeptidation
and transglycosylation reactions, thereby blocking peptidoglycan polymerization. The first and
best characterized mechanism for glycopeptide resistance was established in enterococci, where
glycopeptide action is avoided by deploying a modified target through a complex process that requires
at least three biosynthetic genes (vanHAX) and a regulatory circuit (reviewed in [30–32]). Glycopeptide
resistance in actinomycetes can also involve reprogramming of the peptidoglycan precursor by
the action of VanHAX-related enzymes, as, for example, in Amycolatopsis balhimycina [33,34].
Instead, Nonomuraea gerenzanensis lacks the typical vanHAX cassette and the dbv cluster encodes
the carboxypeptidase Dbv7, which has been shown to provide a modest but measurable resistance
effect in the wild-type strain and in a heterologous background [35]. It should be noted that
glycopeptide resistance in actinomycetes is still far from being completely understood, with there
being a subtle interplay between glycopeptide resistance and glycopeptide tolerance [36]. Finally, the
ABC transporters Dbv18, Dbv19, and Dbv24 and ion-dependent transmembrane transporter Dbv35
may contribute to glycopeptide resistance through active export from the cell, as observed for the
Dbv24 homolog in the balhimycin producer [37].

The transcriptional organization of the dbv cluster was elucidated by RT-PCR targeting desired
regions of the gene cluster [22]. The results, illustrated in Figure 2, denote a complex transcriptional
organization, with at least 14 promoters, the two-gene operons dbv1-dbv2, dbv19-dbv18, dbv21-dbv20,
dbv23-dbv22, the larger operons dbv5-dbv7, dbv24-dbv28, and dbv30-dbv35, and the largest operon
dbv17-dbv8. Apparently, dbv3, dbv4, dbv29, dbv36 and dbv37 are transcribed as monocistronic units.
The results are summarized in Table 1, which also lists the functions of the corresponding proteins.
Real-time RT-PCR showed that a promoter is present upstream to dbv14, directing expression of the
dbv14-dbv8 operon through a leaderless transcript. However, a longer operon is likely to be transcribed
from upstream promoter(s), since RT-PCR analysis showed the existence of a transcript spanning
dbv15 and dbv14. Some of the associated regulatory networks controlling A40926 biosynthesis are
described below.

5. Cluster-Specific Regulatory Genes

The dbv cluster contains two regulatory genes, dbv3 and dbv4, and the members of a putative
two-component system, dbv6 and dbv22 [21–23]. Over a decade ago, a comparative analysis of the
then-available five glycopeptide gene clusters—namely, those for chloroeremomycin, balhimycin,
A47934, A40926 and teicoplanin—revealed that a StrR-like protein (i.e., Dbv4) was present in all
clusters [38]. We previously demonstrated cross-binding among StrR-like regulators from glycopeptide
clusters; specifically, Bbr (from the balhimycin cluster) can bind to the dbv30 upstream region, while
Dbv4 binds to the regions upstream of bbr and oxyA in the balhimycin cluster [22]. The target regions of
Bbr and Dbv4 contain the highly conserved palindromic consensus sequence GTCCAR(N)17TTGGAC.
This sequence was considered to be the Dbv4 binding site and was found in two regions of the dbv
cluster and in five regions of the balhimycin cluster [39]. Consistently, this conserved palindrome is
part of a conserved intergenic region present in the five glycopeptide clusters mentioned above [38].

In addition to the common regulation of the oxygenase transcription through a Dbv4-type
regulator, diverse regulatory schemes are apparently used in the other biosynthetic gene clusters.
Actually, in the teicoplanin cluster, Dbv4-like protein also positively regulates the transcription of
the gene operon involved in Dpg biosynthesis and, as a matter of fact, the Dbv4 target sequence was
found upstream of this operon, suggesting a Dbv4-type dependent regulation. In contrast, while Bbr,
through the binding of its upstream region [39], functions as an autoregulatory protein, Dbv4 did
not. Similarly, since the conserved palindrome is apparently missing in the region upstream of the
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corresponding genes in the A47394 and teicoplanin, the Dbv4-like regulator is not expected to control
its own expression in these clusters.

A40926 production is repressed by high initial concentrations of phosphate, and this repression
was demonstrated to occur through Dbv4 [22]: phosphate depletion induces dbv4 transcription in a
defined medium, allowing Dbv4 to enhance expression of the operons dbv14-dbv8 and dbv30-dbv35.
However, phosphate did not influence the expression of most analyzed dbv genes [22]. The biosynthesis
of many diverse secondary metabolites is controlled by phosphate [40]. Phosphate control of
antibiotic biosynthesis in Streptomyces coelicolor and S. lividans is dependent upon the two-component
system PhoR-PhoP [41], and PhoP was found to bind promoters of phosphate-regulated genes in
S. coelicolor [42]. However, we were unable to identify Pho boxes in the region upstream of dbv4 [22],
suggesting divergence in phosphate control of antibiotic biosynthesis in different actinomycetes.

Another regulator from the dbv gene cluster has been experimentally characterized: Dbv3, a
LuxR solo regulator belonging to the large ATP-binding regulators of the LuxR protein family. Dbv3
positively regulates A40926 production, since the ∆dbv3 strain does not produce antibiotic and shows
reduced transcription levels of dbv4 and of many other dbv genes [23]. Thus, both the LuxR- and
StrR-like regulators act as activators of A40926 biosynthesis.

The experimental evidence obtained for different glycopeptide pathways indicates that the
StrR-like regulators Bbr, Tei15 and Dbv4 regulate balhimycin, teicoplanin and A40926 biosynthesis,
respectively [22,39,43], whereas the LuxR-like regulators Dbv3 and Tei16 positively regulate A40926
and teicoplanin biosynthesis, respectively [23,43]. The balhimycin cluster does not encode a LuxR-like
regulator. In A40926 biosynthesis, Dbv3 positively regulates Hpg biosynthesis, heptapeptide
backbone biosynthesis, mannosylation, hexose oxidation and export. In addition, Dbv3 was found
to hierarchically control dbv4 transcription in a cascade-like regulatory mechanism, so that Dpg
biosynthesis and transcription of the dbv14-dbv8 operon are also under indirect control of Dbv3.
In addition, Dbv4 and Dbv3 expression seems to be differently modulated, since transcription of dbv4
and Dbv4 target genes was found to be repressed by phosphate, while the Dbv3 target genes were
not [22]. It should be noted that in teicoplanin biosynthesis, the expression of at least 17 genes is
directly governed by Tei15, the Dbv4-like regulator, which directly controls transcription of tei16, the
luxR-type regulator [43]. The targets of Tei16 have not been reported yet.

Notwithstanding the absence of obvious targets for yield improvements by gene knockouts
(e.g., repressor genes), genetic manipulation of selected dbv genes has led to increased yields of A40926.
Knockout of the acetyltransferase dbv23 (see above) or overexpression of Dbv3 resulted in higher
(2-fold) A40926 production than in the wild type strain in rich medium, providing useful examples of
knowledge-based strain improvement [23,28]. Analysis of the additional regulators encoded by the
dbv cluster, the sensor kinase Dbv22 and the response regulator Dbv6, has established their role in the
regulation of A40926 and provided additional strategies for rational intervention.

6. Future Perspectives

This review summarizes the main achievements in understanding A40926 biosynthesis in
N. gerenzanensis in relation to other glycopeptide producers and model Streptomyces strains. While
many studies have addressed antibiotic production in model streptomycetes, like S. coelicolor, we
continuously learn new mechanisms and pathways as we extend these analyses to industrially relevant
antibiotics and, especially, to actinomycetes other than Streptomyces spp. In this respect, strains
belonging to the genus Nonomuraea represent complex systems, with limited genetic tools available.
Current results suggest an interplay between nutrients, resistance determinants and the end product.
Even if many factors and proteins have been found to control A40926 biosynthesis (Figure 4), further
studies are necessary to fill the many gaps present in our understanding of the strain’s physiology and
of the interplay between A40926 production and resistance before this information can be applied for
A40926 yield improvement.
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The recent availability of the N. gerenzanensis genome sequence [44] and of a large insert library [45]
represent important assets for further work on the complex but intriguing regulatory network of the
A40926-producing strain.
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