
 

Sustainability 2017, 9, 373; doi:10.3390/su9030373 www.mdpi.com/journal/sustainability 

Article 

Composite Building Materials: Thermal and 
Mechanical Performances of Samples Realized with 
Hay and Natural Resins 
Maria La Gennusa 1,*, Pere Llorach-Massana 2, Juan Ignacio Montero 3, Francisco Javier Peña 4, 
Joan Rieradevall 2,5, Patrizia Ferrante 1, Gianluca Scaccianoce 1 and Giancarlo Sorrentino 1 

1 Dipartimento di Energia, Ingegneria dell’Informazione e modelli Matematici (DEIM), Università degli Studi 
di Palermo, Viale delle Scienze, 90128 Palermo, Italy; patrizia.ferrante@unipa.it (P.F.); 
gianluca.scaccianoce@unipa.it (G.S.); giancarlo.sorrentino@unipa.it (G.S.) 

2 Sostenipra Research Group (SGR 01412), Institute of Environmental Sciences and Technology (ICTA; 
Unidad de excelencia «María de Maeztu» (MDM-2015-0552)), Z Building, Universitat Autònoma de 
Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain; pere.llorach@uab.cat (P.L.-M.); 
joan.rieradevall@uab.cat (J.R.I.P.) 

3 Institute of Food and Agricultural Research (IRTA), Carretera de Cabrils, km 2, 08348 Barcelona, Spain; 
juanignacio.montero@irta.cat 

4 ELISAVA Barcelona School of Design and Engineering, La Rambla 30-32, 08002 Barcelona, Spain; 
jpenya@elisava.net 

5 Department of Chemical Engineering, Biological and Environmental, School of Engineering, Building Q, 
Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain 

* Correspondence: maria.lagennusa@unipa.it; Tel.: +39-091-2386-1949 

Academic Editors: Francesco Asdrubali and Pietro Buzzini 
Received: 31 October 2016; Accepted: 27 February 2017; Published: 3 March 2017 

Abstract: Recent years have seen an increasing public interest in issues related to energy saving 
and environmental pollution reduction in the building sector. As a result, many directives have 
been issued, the most important being the Directive 2010/31/EU (EPBD Recast) on the energy 
performance of buildings, which requires that “Member States shall ensure that by 31 December 
2020 all new buildings are nearly zero-energy buildings”. This goal can be obtained not only by 
reducing energy demand for heating and cooling, but also, for example, by improving building 
envelope performances. In this work, a first analysis of the thermal and structural behaviour of a 
biocomposite material, constituted by a natural resin (rosin) and vegetal fibres (hay), has been 
performed, with particular attention to the share of fibres and the granulometry in the mixture. The 
biocomposite has shown both good insulation properties and mechanical resistance. However, the 
results show that further analyses should be performed on the optimisation of the samples’ 
preparation process. 
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1. Introduction 

Recent years have seen an increasing public interest in issues related to energy saving and 
environmental pollution reduction in the building sector. As a result, many directives have been 
issued, the most important being the Directive 2010/31/EU (EPBD Recast) [1] on the energy 
performance of buildings, which requires that “Member States shall ensure that by 31 December 
2020 all new buildings are nearly zero-energy buildings”. This goal can be obtained not only by 
reducing energy demand for heating and cooling, but also, for example, by improving building 
envelope performances. Thermal insulation is a major contributor as the first practical and logical 
step towards achieving energy efficiency, especially in envelope-load-dominated buildings located 
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in sites with harsh climatic conditions. The new approach to energy-efficient design also includes 
development and use of natural and local building materials—and bio-based composites among 
them—with the main aim of reducing the global impact of buildings in a life cycle perspective. 

Recently, there has been a rapid growth in research and innovation in the natural fibre 
composite (NFC) area. Interest is warranted due to the advantages of these materials compared to 
others—such as synthetic fibre composites—including low environmental impact and low cost, 
which supports their potential across a wide range of applications. 

Therefore, the demand of ecological building materials is rapidly growing in the market, 
particularly regarding insulating materials from renewable resources. Many researchers have 
approached the study of such natural materials, especially investigating their thermal insulating and 
mechanical properties. The most studied materials are jute [2–4], cork [5], corncob [6,7], hay [8], 
sugarcane [8,9], wood wool and rock wool [10], cellulose loose-fill [11], flax [2,12–15], straw bales [16–18], 
coconut [19–22], and hemp [2,13–15,23–32]. Much effort has gone into increasing their mechanical 
performance to extend the capabilities and applications of this group of materials. Mechanical 
performances of some natural fibre composites are summarised in Table 1. 

Table 1. Mix of natural fibres and resin and their mechanical characteristics. 

Fibre Orientation Matrix 
Fibre 

Content 
(%) 

Tensile 
Strength 

(MPa) 

Young’s 
Modulus 

(GPa) 

Flexural 
Strength 

(MPa) 

Flexural 
Modulus 

(GPa) 
Reference 

Hay random Rosin 50/70 6/13 0.4/1 6 
 

[This 
study] 

Alfa aligned UP 48 149 12 [33] 
Cellulose continuous Bio-Epoxy 92 9 727 27 [34] 

Cordenka a - PA 30 120 6 [35] 
Cordenka a - PP 42 90 4 [36] 
Cordenka a - PLA 25 108 4 [36] 

Flax - PP 30 74 b [37] 
Flax - PP 30 52 5 60 5 [38] 
Flax aligned Epoxy 46/54 280/279 35/39 223 [39] 
Flax aligned Epoxy 37 132 15 [40] 
Flax aligned PP 50 40 7 [41] 
Flax aligned PP 39 212 23 [42] 
Flax random UP 39 61 6 91 5 [43] 
Flax random PLA 30 100 8 [44] 
Flax random PLLA 30 99 9 [44] 
Flax short-nonwoven Shellac 49 109 10 [45] 
Flax woven Epoxy 50 104 10 [46] 

Flax hackled aligned Epoxy 28 182 20 [47] 
Flax sliver aligned UP 58 304 30 [48] 
Flax sliver aligned PP 44 146 15 [49] 
Flax sliver biaxial/major axis Epoxy 46 200 17 194 13 [50] 
Flax yarn aligned Epoxy 45 311 25 [51] 
Flax yarn aligned Epoxy 31 160 15 190 15 [47] 
Flax yarn aligned Epoxy 45 133 28 218 18 [51] 
Flax yarn aligned VE 24 248 24 [47] 
Flax yarn aligned UP 34 143 14 198 17 [47] 
Flax yarn aligned PP 72 321 29 [52] 
Flax yarn aligned PP 30 89/70 7/6 [53] 
Flax yarn woven VE 35 111 10 128 10 [47] 
Harakeke aligned Epoxy 50/55 223 17 14 [54] 
Harakeke aligned Epoxy 52 211 15 [55] 
Harakeke DSF Epoxy 45 136 11 155 10 [56] 
Harakeke DSF PLA 30 102 8 [56] 
Harakeke random Epoxy 45 188 9 [57] 

Hemp - PP 40 52 4 86 4 [58] 
Hemp aligned Epoxy 65 165 17 180 9 [59] 
Hemp aligned PP 46 127 11 [49] 
Hemp aligned PLA 30 77 10 101 7 [60] 
Hemp biaxial PLA 45 62 7 124 9 [61] 
Hemp carded PLA 30 83 11 143 7 [62] 
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Hemp DSF Epoxy 50 105 9 126 8 [56] 
Hemp DSF Epoxy 65 113 18 145 10 [59] 
Hemp DSF PLA 25 87 9 [56] 
Hemp random PLA 47 55 9 113 [63] 

Jute - PP 60 74 11 112 12 [64] 
Jute woven UP 35 50 8 103 7 [43] 

Kenaf aligned PLA 40 82 8 126 7 [65] 
Kenaf aligned PHB 40 70 6 101 7 [65] 
Kenaf random PP 30 46 5 58 4 [66] 
Kenaf aligned PLA 80 223 23 254 22 [67] 
Kraft - PP 40 52 3 90 4 [58] 

Lyocella carded PLA 30 89 9 148 6 [65] 
Lyocella carded PHB 30 66 5 105 5 [65] 

Newsprint - PP 40 53 3 94 4 [58] 
PALF random UP 30 53 2 80 3 [68] 
Sisal aligned Epoxy 73 410 6 320 27 [69] 
Sisal aligned Epoxy 77 330 10 290 22 [69] 
Sisal aligned Epoxy 48 211 20 [40] 
Sisal aligned Epoxy 37 183 15 [40] 

Wood BKP - PP 40 50 3 78 3 [70] 
a Lyocell/Cordenka = regenerated cellulose fibre; b High molecular weight MAPP; BKP: Bleached  
kraft pulp; CSM: Chopped strand mat; DSF: Dynamic sheet forming; MAPP: Maleic 
anhydride-polypropylene; PA: Polyamide; PALF: Pineapple leaf fibres; PHB: Polyhydroxybutyrate; 
PLA: Polylactic acid; PLLA: L-Polylactic acid; PP: Polypropylene; UP: Unsaturated polyester; VE: 
Epoxy vinyl este. 

At the University of Palermo, the group of the Laboratory for Indoor Environments and 
Sustainable Technologies has long been carrying out an extensive series of experiments, mostly on 
the use of vegetable fibres—some of them from agricultural wastes—as components of products for 
the building envelope. In this work, a first analysis of the thermal and structural behaviour of a 
biocomposite material, constituted by a natural resin (rosin) with the addition of vegetal fibres (hay), 
has been performed, with particular attention to the share of fibres and their granulometry in the 
mixture. 

This research is jointly conducted by the Università degli Studi di Palermo and the Universitat 
Autònoma de Barcelona. 

2. Raw Materials 

Among the different natural fibres, hay has been selected to be used in this work because of its 
widespread presence throughout Europe and in Italy especially, where it is regularly cultivated. As 
far as the binder is concerned, the choice has fallen on a natural resin. In particular, the most 
common natural resin is rosin, which is extracted from conifers that are also largely widespread 
throughout Europe and Italy. Therefore, the components of the biocomposite realised are two 
natural materials that can be easily found on the local market, are cheap, and that have an added 
value by means of a an additional use as insulating material in the building sector. 

2.1. Hay 

Hay is grass or herbaceous plant that have been cut and dried. In this paper, Hedysarum 
coronarium (commonly named sulla), an autochthon spontaneous plant widely spread in Italy, has 
been used. Sulla is a leguminous perennial plant, with a life span of 2 years. It is very heat- and 
drought-resistant. It has stems from 0.8 m to 1.5 m tall. Its thermal conductivity is equal to 0.052 
W/mK [71]. 

2.2. Rosin 

Rosin, also called colophony or Greek pitch, owes its name to ancient town of Colofone, 
between Izmir and Efes, in Asia Minor. It is a vegetal resin, yellow, vitreous, very fragile, and easy to 
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pulverise. It is obtained from terpene, which is a liquid resin pouring from incisions performed on 
conifer trunks. 

By distilling terpene, two different fractions can be obtained: a volatile, liquid fraction, 
turpentine (20%), and a solid fraction, rosin (80%). Rosin chemically consists of 10% inert material 
and 90% resin acids: in particular, 90% abietic acid (C19H29COOH) and 10% a mix of dihydroabietic 
acid (C19H31COOH) and dehydroabietic acid (C19H27COOH). 

Table 2 summarises the main physical and chemical characteristics of rosin. 

Table 2. Physical and chemical characteristics of rosin [72]. 

Property Values
Density 1.04–1.10 g/cm3 

Thermal conductivity λ 0.128 W/mK 
Acid number >150 

Softening point 70 °C–80 °C 
Melting point 60–135 °C 

Dropping point 80–95 °C 
Ashes <0.031% 

Saponification number 170–185 
Insaponifiable matter 3%–8% 

Rosin is insoluble in water; proper solvents are instead alcohol, benzene, ether, chloroform, 
glacial acetic acid, oils, and carbon disulphide, while by using weak solvents, like turpentine, a small 
amount (<0.5%) of insoluble matter can be obtained. Finally, rosin can be melted by heating it. 

3. Experimental Procedure 

In this work, three different mixes were chosen to be investigated, that is, hay with a 
granulometry of 8 mm and 50%, 60%, and 70% in weight of rosin. For each of the mixes, both a 
parallelepiped sample (160 × 140 × 40 mm) and a cylinder sample (102 mm diameter, 166 mm height) 
were prepared respectively for thermal and mechanical tests (Figure 1). 

 
(a) (b)

Figure 1. Hay samples (60%) removed from the moulds: (a) parallelepiped sample; (b) cylindrical 
sample. 

During the screening phase, a higher fibre content in the mix was tested. The increase of fibres 
led to the impossibility of mixing the material and to a non-homogeneous mix with many voids, so 
70% hay should be considered the upper limit of the mix. 

As far as the rosin is concerned, tested solvents, like turpentine, did not allow the mix to 
solidify, so it was melted by means of a burner. 

During the preparation of the samples, larger than the ones prepared during the screening 
phase, some other problems arose. 

One of the problems was homogeneously filling the mould with the mix, as the sudden 
solidification of the rosin let many voids in the mould (Figure 2). To overcome this problem, the steel 
moulds were preheated on a burner and, during the preparation of the samples, a heat gun was used 
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to minimize the difference of temperature between the mould and the mix and prevent the sudden 
solidification of the mix. To minimise the voids in the mix, instead, a weight was put on the upper 
surface of sample, applying an overpressure equal to 7.9 kPa. 

 
(a) (b)

Figure 2. Samples removed from the moulds with many visible voids: (a) parallelepiped sample;  
(b) cylindrical sample. 

Another problem has been to safely remove the samples from the moulds after the drying 
process. To overcome this problem, the inner surface of the mould was covered with Teflon, which is 
one of several commercial denominations of polytetrafluoroethylene (PTFE). PTFE is a thermoplastic 
polymer, with one of the lowest known coefficients of friction and a high melting point, often used to 
cover surfaces exposed to high temperatures without adhering or reacting. Others tested methods 
proved unsatisfactory, including covering the inner surface of the mould with kraft paper (the mix 
adhered to the paper) or directly filling the mould with the mix without covering the inner surface 
(the mix perfectly adhered to the surface and crushed when trying to remove it from the mould). 

In Tables 3 and 4, the physical properties of the prepared samples are shown. An alphanumeric 
code has been assigned to each sample (e.g., “F50P”) where: 

• the first letter, F, stands for hay (fieno in Italian); 
• the number stands for the percentage in weight of hay; 
• the final letter stands for parallelepiped (P) or cylinder (C). 

Table 3. Physical characteristics of the parallelepiped samples. 

Sample ID % Hay 
Hay 

Granulometry 
(mm) 

Dimensions 
(L × P × H) 

(mm × mm × mm) 

Weight 
(g) 

Volume 
(cm3) 

Bulk 
Density 
(kg/m3) 

F50P 50 8 159 × 139 × 28 612.3 619 989 
F60P 60 8 160 × 139 × 29 613.0 656 934 
F70P 70 8 158 × 140 × 29 511.5 647 791 

Table 4. Physical characteristics of the cylindrical samples. 

Sample ID % Hay 
Hay 

Granulometry 
(mm) 

Dimensions 
(D/H) 

(mm/mm) 

Weight 
(g) 

Volume 
(cm3) 

Bulk 
Density 
(kg/m3) 

F50C 50 8 100/157 1239.5 120 1005 
F60C 60 8 100/130 996 102 976 
F70C 70 8 100/112 707 90 804 

4. Thermal Properties 

Thermal tests have been performed on the prepared parallelepiped samples to investigate their 
thermal conductivity. A heat flow meter (LaserComp Fox 314) has been used for the tests in 
compliance with the UNI EN 12667 [73]. 
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A ring of polystyrene has been put along the lateral side of the samples to adapt them to the 
heat flow meter size, minimising non-orthogonal flux between the plates. The upper and lower 
surfaces of the samples have been carefully smoothed by means of an orbital sander and sandpaper 
in order to ensure good contact with the plates, preventing any air gap. 

In Table 5, the main test results are reported. 

Table 5. Thermal test results. 

Sample ID Mass 
(g) 

Volume 
(cm3) 

Bulk Density 
(kg/m3) 

Thermal 
Conductivity λ 

(W/mK) 
F50P 612.3 619 989 0.1079 
F60P 613.0 656 934 0.1029 
F70P 511.5 647 791 0.0938 

As Table 5 shows, the higher the amount of fibres in the mix, the lower the bulk density and the 
thermal conductivity, as expected. 

5. Mechanical Properties 

The compressive and flexural tests on the mix have been performed at the Dipartimento di 
Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali (DICAM) of the Università degli Studi di 
Palermo. 

5.1. Compressive Tests 

The compressive test consists of compressing a cylindrical sample, whose diameter/height ratio 
is 1/1, between two plane surfaces with an increasing load. After cutting the samples to the required 
dimension, they were tested by means of a Zwick/Roell universal testing machine (Figure 3). The 
tests were performed with an upper crossbar speed of 2 mm/min. 

The test ends when the sample crushes, resulting coupled values, compressive strength 
(N)/displacement (mm). Dividing the compressive strength by the area of the samples, the stress σ 
(N/mm2 or MPa) was obtained, while dividing the displacement by the initial height of the sample, 
the strain ε (%) was obtained. Finally, the stress–strain curve σ–ε has been reported for each sample. 

 
(a) (b)

Figure 3. Compressive test performed on F70C sample: (a) before test; (b) after test. 

Sample F70C, even though visible damage occurred to the base, did not crush. The ultimate 
strength was equal to 5.82 MPa, while the Young modulus E, which is the slope of the σ–ε curve in 
the elastic field, was equal to 413 MPa. 

Sample F60C showed a considerable resistance, as it did not crush, remaining intact and 
compact. The ultimate strength was equal to 10.53 MPa, while the Young modulus E was equal to 
959.1 MPa. 
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Finally, sample F50C also showed a considerable resistance, remaining compact, with only 
some little fractures on the lateral surface. The ultimate strength was equal to 12.91 MPa, while the 
Young modulus E was equal to 1003 MPa. 

In Table 6, the results of the compressive test are reported. 

Table 6. Physical characteristics of the cylindrical samples. 

Sample ID 
Dimension 

(D/H) 
(mm/mm) 

Mass 
(g) 

Volume 
(cm3) 

Bulk Density 
(kg/m3) 

Young 
Modulus E 

(MPa) 

Ultimate 
Strength 

(MPa) 
F70C 100/100 635 785 809 413 5.82 
F60C 100/100 755 785 962 959.1 10.53 
F50C 100/100 765 785 974 1003 12.91 

From Table 6, it can be observed that the higher the amount of fibres in the mix, the lower the 
bulk density, ultimate strength, and Young modulus. 

In Figure 4 the stress-strain curve σ–ε of the three samples tested are reported for comparison. 

 
Figure 4. Stress–strain curve σ–ε of the tested samples. 

As shown in Figure 4, the σ–ε curve trend for sample F70C is initially pseudo-horizontal, due to 
the opposition of the sample versus the external load, followed by an elastic branch and then by a 
sudden yielding of the material, representing the beginning of the plastic field, continuing until the 
material crushes. After the yielding point, the curve shows a monotonic weak decrease due to the 
ductile behaviour of the material, which can further displace in the post-elastic field. 

Sample F60C and F50C show similar behaviour. The σ–ε curve trend is initially 
pseudo-horizontal, followed by a linear branch in the plastic field until crushing. The curve is typical 
of brittle materials, lacking a plastic phase after the yielding point. 

Sample F70C reaches high stress values, showing a high strain capacity after the elastic phase, 
with an increase in strain under constant stress. This characteristic of hay fibres that is conferred to 
the mix is particularly important, because it can contribute to the dissipation of energy in a building 
designed in a seismic zone. 

Samples with a lower amount of fibre have shown to be more resistant than sample F70C, but, 
conversely, have brittle behaviour without a plastic field. 

The pseudo-horizontal tract of the σ–ε curve is longer in samples with a higher fibre content, 
denoting a greater initial cohesion that hay fibres give once stressed. 

Finally, the slope of the σ–ε curve in the elastic field, which is tied to the stiffness of the material, 
is higher for samples with a lower fibre content. 
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5.2. Three-Point Flexural Test 

The three-point flexural test was performed with the universal testing machine on the 
parallelepiped samples, previously used for thermal tests, after they have been cut into three stripes 
(Figure 5). These samples have been named with the same alphanumeric code of the starting sample, 
adding a letter (A, B, or C) to distinguish them. Samples were put in the machine on the two 
supporting pins, taking care that the two extremities were symmetrically placed, as loading 
geometry and strain rate strongly influence the test. Furthermore, before the test started, a low 
preload was given to the sample by means of a rotating three-lever system placed at the base of the 
machine. Figure 6 shows some samples crushed after the flexural test. 

 
Figure 5. Three-point flexural test performed on a sample. 

 
(a) (b) (c) 

Figure 6. Samples crushed after the flexural test: (a) F50P samples; (b) F60P samples; (c) F70P 
samples. 

In Table 7, ultimate load and ultimate strength values, calculated by means of the well-known 
Navier equation, are reported. For each mix, an average ultimate strength value is also reported. 

Table 7. Flexural test results. 

Sample 
ID 

Dimensions  
(L × P × H) 

(mm × mm × mm) 

Mass 
(g) 

Volume
(cm3) 

Bulk 
Density 
(kg/m3) 

Ultimate 
Load 
(kg) 

Ultimate 
Strength 

(MPa) 

Average 
Ultimate 
Strength 

(MPa) 
F50P.A 159 × 41 × 28 180 182 986 84.0 6.11 

6.00 F50P.B 159 × 41 × 28 180 182 986 72.5 5.28 
F50P.C 159 × 41 × 28 180 182 986 91.0 6.62 
F60P.A 160 × 40 × 29 180 186 969 87.0 6.09 

6.04 F60P.B 160 × 40 × 29 180 186 969 89.0 6.23 
F60P.C 160 × 40 × 29 180 186 969 83.0 5.81 
F70P.A 158 × 41 × 29 150 189 790 80.0 5.28 

6.11 F70P.B 158 × 40 × 29 145 185 783 104.0 7.04 
F70P.C 158 × 41 × 29 150 189 790 91.0 6.01 

From Table 7, it is clear that the ultimate strength is directly proportional to the ultimate load. 
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All hay–rosin samples showed a high cohesion during the flexural tests, a failure being 
indicated by a slight concave profile and the presence of more or less bended fractures near the 
tensile zone of the middle section of the sample. 

6. Discussions 

In this section, the performances of the biocomposite analysed in this work is compared with 
other work present in literature, from both a thermal and mechanical point of view. 

The thermal conductivity values have been compared with the ones of another biocomposite, in 
which the vegetal fibres are hay, while the binder is lime (a mix of hydrated and hydraulic lime with 
a ratio of 4:1). The amount of fibre in the mix ranges from 16.6% to 33%, with a granulometry from 4 
mm to 8 mm, and the bulk density of the samples ranges from 417 kg/m3 to 718 kg/m3, while the 
thermal conductivity ranges from 0.09179 W/mK to 0.1534 W/mK [71] (Figures 7 and 8). 

From the comparison of the two materials, it is evident that the biocomposite hay/rosin, the 
object of the present work, presents higher bulk density and lower thermal conductivity values. This 
is probably due to the use of rosin as binder instead of lime, thus making it possible to increase the 
amount of fibres in the mix up to 70%. On the other hand, when using lime, 40% fibre seems to be an 
upper limit, as the samples are very brittle and a further increase of fibres does not allow for the 
preparation of homogeneous mixes. 

 
Figure 7. Comparison of the bulk density/amount of fibres (%) trend for hay/rosin and hay/lime 
biocomposites. 

 

Figure 8. Comparison of the thermal conductivity/amount of fibres (%) trend for hay/rosin and 
hay/lime biocomposites. 
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In Figure 9, the thermal conductivity/bulk density trend of the hay/rosin biocomposite is 
reported. 

 

Figure 9. Thermal conductivity/bulk density trend of the hay/rosin biocomposite. 

From Figure 9, the decrease of the thermal conductivity of the biocomposite is proportional to 
the decrease of its bulk density, the latter depending on the increase of fibres in the mix. However, 
there is physical upper limit to the amount of fibres that can be added to the mix, as, beyond a 
certain value, it is impossible to make it homogeneous. 

With regard to the common insulation materials used in the building sector—like glass mineral 
wool, rock mineral wool, or polystyrene, which have thermal conductivities that range from 0.03 
W/mK to 0.04 W/mK—the analysed mixtures have obviously higher values, but can still be 
considered as good insulation materials. 

As far as the compressive tests are concerned, the maximum ultimate strength value of the 
hay/rosin biocomposite has been compared with the one of a hay/lime biocomposite [71] (16.7% in 
weight of hay, chopped at 8 mm granulometry mixed with hydrated and hydraulic lime in a 1:4 
ratio). The hay/rosin maximum ultimate strength, equal to 12.91 MPa, is considerably higher than 
the hay/lime ultimate strength (equal to 0.25 MPa) showing that the use of rosin as binder, instead of 
lime, strongly increases the compressive strength of the biocomposite (Table 8). 

Table 8. Comparison of the maximum ultimate strength of the two biocomposites with 8 mm 
granulometry. 

Biocomposite Fibres
(%) 

Ultimate Strength
(MPa) 

Hay/Lime 16.6 0.25 
F50C 50.0 12.91 

As far as the flexural strength tests are concerned, the ultimate strength values of the hay/rosin 
biocomposite have been compared both with the ones of the already mentioned hay/lime 
biocomposite and other literature works concerning biocomposite made of natural fibres and resin. 
In particular, the biocomposites compared are the following: 

A. Hay (70% in weight) at 8 mm granulometry, 30% rosin, prepared applying an overpressure 
equal to 7.9 kPa (present work). Ultimate strength equal to 6.00 MPa; 

B. Hay (16.6% in weight) at 8 mm granulometry, 16.7% hydrated lime, 66.7% hydraulic lime [71]. 
Ultimate strength equal to 0.25 MPa [71]; 

C. Flax fibres (34% in weight) at 2 mm granulometry, with acrylated epoxidized soybean oil 
(AESO) mixed with styrene and divinylbenzene in the ratio 100:45:5 by weight; furthermore, 
1.5% in weight of an organic peroxide, USP-245, has been added to the resin. Samples realised 
by means of the resin transfer moulding (RTM) process (i.e., the closed mould containing the 
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fibre mat has been filled with resin at 207 kPa, letting the resin in excess to flow out of the 
mould) [74]. Ultimate strength equal to 64 MPa; 

D. Flax, cellulose, or recycled paper with AESO mixed with styrene in 2:1 weight ratio, then added 
with cumyl peroxide (3% in weight) and cobalt naphthenate (0.8% in weight). Resin is infused 
in the fibre mat by means of the vacuum resin transfer moulding (VARTM) process [75]. 
Ultimate strength ranging from 27 MPa to 60 MPa; 

E. Pineapple leaf fibres at 1 mm granulometry (30% in weight), with poly 
(hydroxybutyrate-co-hydroxyvalerate), a biodegradable organic polymer commonly named 
PHBV. A 1 mm thickness laminate has been prepared by sandwiching three layers of fibres 
between four layers of PHBV films. The three fibre layers were arranged in 0°/90°/0° directions 
with 25% of the fibre weight in the top and bottom layers each, and the remaining 50% in the 
middle layer. The mould was then heated at 180 °C and the sample pressed at 140 MPa [76]. 
Ultimate strength equal to 86 MPa; 

F. Manila hemp fibres (70% in weight) with a starch-based emulsion-type biodegradable resin 
containing fine particles of approximately 4.6 μm in diameter, suspended in aqueous solution, 
with a mass content of 40%. Samples have been hot-pressed (130 °C) at 10 MPa for 10 min [77]. 
Ultimate strength equal to 223 MPa. 

From the values above-reported, it is once more evident that the use of a resin as binder in the 
biocomposite, instead of lime, strongly increases its mechanical properties. In particular, the 
hay/rosin biocomposite shows the lowest flexural strength values amongst the other biocomposite 
using resin as binder. However, it has to be pointed out that all these biocomposites have been 
obtained by means of high-pressure values in the preparation processes, ranging from 0.2 MPa to 
140 MPa, while the biocomposite analysed in the present work only received an overpressure equal 
to 7.9 kPa. The increase of the overpressure received by the sample obviously increases its bulk 
density and, thus, its mechanical resistance, at the expense of the thermal conductivity, as shown in 
Figure 9. However, all the cited works only focus on the mechanical properties of the biocomposites, 
while the thermal conductivity has not been measured. 

7. Conclusions 

In this paper, an analysis of the thermal and mechanical properties of a biocomposite has been 
carried out. The choice of the mix has fallen on two natural materials that are cheap and/or 
widespread throughout Europe, hay and rosin, with the percentage of fibres ranging from 50% to 
70% in weight. 

The thermal and mechanical tests performed on the samples have shown very promising 
results. In particular, the thermal tests have shown a thermal conductivity ranging from 0.08535 to 
0.1079 W/mK, values that indicate good thermal insulation properties of the biocomposite. The 
thermal conductivity is clearly dependent on the amount of fibres in the mix, with a greater 
percentage of fibres resulting in lower density and thermal conductivity. 

As far as the mechanical properties are concerned, the tests have shown a maximum ultimate 
strength ranging from 5.82 to 12.91 MPa and a flexural strength nearly constant, equal to 6.00 MPa. 
Samples with a smaller amount of fibres have proven to be more resistant, but, conversely, have a 
more brittle behaviour, as indicated by the lack of a plastic behaviour in the σ–ε curve. 

The mechanical tests performed on the biocomposite, compared with a mix of lime and hay, 
have shown that the substitution of lime with resin as binder strongly increases the mechanical 
properties of the biocomposite. 

Further analyses have to be performed in order to improve both the thermal and mechanical 
properties of the biocomposite. In this regard, an in-depth study on the preparation of the mix is 
currently ongoing. In more detail, the influence of the amount and granulometry of shives in the 
mixture, the pressure applied when filling the mould, and the effects of the duration and modality of 
the drying process on the mechanical properties of the biocomposite are being investigated. 
Moreover, we are planning an experimental campaign in order to evaluate the durability and the 
response to the environmental factors of the biocomposite. 
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