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Remnants of Anderson localization in prethermalization induced by white noise
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We study the nonequilibrium evolution of a one-dimensional quantum Ising chain with spatially disordered,
time-dependent, transverse fields characterized by white noise correlation dynamics. We establish prethermaliza-
tion in this model, showing that the quench dynamics of the on-site transverse magnetization first approaches a
metastable state unaffected by noise fluctuations, and then relaxes exponentially fast toward an infinite temperature
state as a result of the noise. We also consider energy transport in the model, starting from an inhomogeneous state
with two domain walls which separate regions characterized by spins with opposite transverse magnetization.
We observe at intermediate timescales a phenomenology akin to Anderson localization: energy remains localized
within the two domain walls, until the Markovian noise destroys coherence and, accordingly, disorder-induced
localization, allowing the system to relax toward the late stages of its nonequilibrium dynamics. We compare our
results with the simpler case of a noisy quantum Ising chain without disorder, and we find that the prethermal
plateau is a generic property of spin chains with weak noise, while the phenomenon of prethermal Anderson
localization is a specific feature arising from the competition of noise and disorder in the real-time transport

properties of the system.

DOLI: 10.1103/PhysRevB.98.054302

I. INTRODUCTION

Modern experimental advances in control of cold atoms [1]
have revived the interest in nonequilibrium physics [2] and
in real-time dynamics occurring in isolated quantum systems
[3,4]. Besides fundamental questions regarding eventual ther-
malization of closed interacting systems, the current interest in
out-of-equilibrium physics stands mainly in the possibility to
engineer novel phases of matter or in realizing phenomena that
do not have a counterpart in traditional statistical mechanics,
arising when a quantum many-body system is driven far
away from equilibrium for significantly long times. Noticeable
examples range from Floquet topological insulators [5,6] to
time crystals [7,8], encompassing prethermalization [9-11]
and dynamical phase transitions [12].

Another prominent example of a nonergodic phase of
matter, nowadays accessible with cold gases experiments
[13-15], is provided by the inhibition of transport in low-
dimensional disordered systems [16,17]—a feature persisting
even in the presence of many-body interactions [18-20]. While
the primary setup to study localization effects in condensed
matter platforms are isolated quantum systems, in any practical
implementation, coupling to the environment is unavoidable,
and understanding the interplay of a strongly localized sys-
tem with an external equilibrium (or nonequilibrium) bath
is of paramount importance, both for experiments, as well
as to understand the robustness of Anderson (and many-
body) localization to ergodic perturbations. In this respect, the
natural expectation that a bath can facilitate hopping in an
otherwise localized system, has been confirmed by theoretical
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studies [21-31] and by a recent cold atoms experiment, where
controlled dissipation originates from environmental photons
[32]. Despite suggesting the expected fragility of localized
systems to bath-induced decoherence, these works have also
demonstrated that the interplay of localization and dissipation
can imprint interesting signatures on the evolution of physical
observables before the eventual onset of relaxation.

In this paper, we aim at showing how the characteristic fea-
tures of an Anderson insulator—the inhibition of energy trans-
port across the system—can persist at intermediate timescales
in a simple, archetypical, disordered quantum spin system
perturbed by Markovian noise, by inspecting observables
sensitive to transport properties. The dynamics arising after
a quantum quench of isolated, disordered spin models does
not tend toward a steady state in the long time limit [33,34],
while a quatum Ising model coupled to a Markovian bath
via its transverse field thermalizes efficiently with correlations
spreading in a light-cone fashion [35,36] (see, for instance,
Ref. [37] for further recent developments in this direction).
Here we merge together these two scenarios, considering the
quantum quench dynamics of a disordered quantum Ising chain
in one dimension (equivalent to a quadratic model of spinless
fermions on a lattice), driven by time-dependent noisy trans-
verse fields, and benefiting from these two previously studied
cases [33-36] as a benchmark for our results. Despite the fact
that the localized phase of noninteracting fermions on a lattice
is destroyed by the coupling to a heat bath [23,24,32,38,39],
our findings show that, on intermediate timescales, transport
can still be impeded by disorder, and only at longer times
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quantum coherence is wiped out by the noise, thermalization is
established, and energy is free to redistribute across the system.

This phenomenon bears analogies with prethermalization
in weakly nonintegrable systems [11,40,41], where dynamics
is first dominated by features of the perturbed integrable
Hamiltonian and only at later times—when inelastic collisions
induced by integrability breaking channels become effective,
the system is capable to relax and dynamics are attracted by
a thermal state. Using a similar logic, we first establish the
existence of an analogous intermediate regime in our model
studying the dynamics of simple observables, as the on-site
transverse magnetization, and then we show that remnants
of Anderson localization can persist at intermediate times,
focusing on specific features of energy transport which become
manifest when the Ising chain is prepared in a spatially
inhomogeneous spin state.

II. A QUANTUM ISING CHAIN WITH
NOISE AND DISORDER

We consider the real-time dynamics of the transverse field
quantum Ising chain in one dimension [42]

n
Hy ==Y (0}0},, +ho}). (1

j=1
where o7 7"* are Pauli matrices acting on the site j of the chain,
and & is a uniform transverse magnetic field. This model is
characterized by two mutually dual-gapped phases separated
by a continuous quantum phase transition at 4 = 1;itis exactly
solvable by a Jordan-Wigner transformation mapping it onto
a system of free fermions, which is then diagonalized by a
Bogoliubov rotation [42]. This makes the Ising chain in Eq. (1)
equivalent to a collection of free fermions, y;, with momenta

kj = £ /n(2j + 1) where j =0,...,5 — 1.

We will be interested in studying the dynamics of an Ising
chain subject to an inhomogeneous time-dependent noise. For
this sake, at + = 0 we switch on a space and time-dependent
Gaussian white noise, n;(t), superimposed to the uniform
transverse field, A, on each site j of the chain, as described
by the operator

V)= njt)o;. (®)

j=1

The Gaussian field n;(¢) is chosen with zero average (n;(t)) =
0, and is characterized by the two-point function,

(ni()n; () =T8;;8(t —1'). 3

At a fixed time #, n;(¢) describes an inhomogeneous configu-
ration of transverse fields along the quantum Ising chain, from
site j = 1 to j = n, drawn from a Gaussian distribution of
variance I'; the memoryless nature of 7;(¢) ensures that these
spatial disorder configurations are generated in an uncorrelated
fashion at every time .

We are therefore considering the nonequilibrium dynamics
of the model

H = Hy+ V(1), “)

describing a quantum Ising chain with competing time-
dependent noise and spatial disorder along the direction of
the transverse field. Equivalently, Eq. (4) describes disordered,
noninteracting fermions on a one dimensional lattice and
driven by a time-dependent Markovian noise.

The evolution of the density matrix of the system, f(¢), is
ruled by the equation of motion:

d
Eﬁ(t) = —i[H + V@), p(0)]. &)

Following a standard procedure (see, for instance,
Refs. [43-45] and the Appendix), it is possible to derive a
local-in-time master equation for the dynamics of the density
matrix, p(t), averaged over different realizations of the noise
field, p(7) = (ps(1)),

d n
PO =—ilH, p1=T* 3 [oF, [0, p)]],  (©)

j=1

which we solve numerically starting from different initial
nonequilibrium conditions to extract dynamics of observables
of interest in this work. In the following, we will consider
both quantum quenches of the transverse field—the system is
prepared in the ground state of the Hamiltonian (1) with a given
value of /1y and evolved at later times under the influence of the
noise and at a different value of the average transverse field —as
well as the dynamics starting from spatially inhomogeneous
spin states.

Before discussing the results, we recall that the impact of a
spatially homogeneous Markovian noise, 1(¢), on the quench
dynamics of the quantum Ising chain has been previously stud-
ied by two of us in Refs. [35,36], using Keldysh diagrammatics
methods. As in the presence of an inhomogeneous field ; (),
an analog master equation for p(¢) can be derived for the
homogeneous case, V,(t) o (1) 23;1 af, and reads

d n
TPW0=—ilH, p1=T* 3 [oF, [o5, p@)]]. - (D)

JJ'=1

The numerical solution of Eq. (7), and the analytical results
of Refs. [35,36], will be used in the following to benchmark
our findings with the nonequilibrium dynamics of the model
Eq. (4) and its master Eq. (6).

III. PRETHERMALIZATION INDUCED
BY MARKOVIAN NOISE

We first show that after a quantum quench ho — A, the
effect of a homogeneous, 7(¢), and an inhomogeneous, 7;(?),
noisy transverse field have a qualitative, similar impact on the
dynamics of single-site observables. In particular, we consider
the local transverse magnetization, of , at a given site j, and
we calculate numerically the evolution of its expectation value,
averaging over the density matrix p(¢). Figure 1 shows that
(o; (1)) reaches, after a first relaxation process, a plateau with
an expectation value close to the one acquired after a quantum
quench of the Ising chain without noise (if I' <« |h — 1], as in
the homogeneous case [35,36]). This behavior is akin to the
phenomenon of prethermalization in isolated systems, since
it precedes the decay of (of(t)) toward its actual equilibrium
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FIG. 1. Expectation value of the local transverse magnetization,
(a]‘-’ (1)), as a function of time, ¢, after a quench from hy =4 to h =
2 of the transverse field of the quantum Ising model Eq. (1); here
n = 256. The green line corresponds to dynamics without noise, and
sets the value of the prethermal plateau attained under influence of
homogeneous (blue line) or inhomogeneous (red line) noise along
the transverse field direction (I" = 0.1). As discussed in the main text
and shown in the figure, relaxation toward the asymptotic equilibrium
value occurs faster in the latter case. The inset displays the early stages
of the magnetization dynamics.

value, which is set by the infinite temperature state—since the
Markovian noise, 1;(t), can heat the system indefinitely.

The runaway of (0}7 (1)) from the prethermal state (toward
the asymptotic, infinite temperature one) is exponential in
time, (of(t)) o e~ ¥, with the rate of decay ¥ o< I' (as one
can easily check from the numerics), in the presence of the
inhomogeneous field n;(¢), while, when the Markovian noise
is homogeneous, (oj(t)) drops algebraically as ~ 1/4/t for
t > 1/T (Fig. 1); this latter result was already found in
Refs. [35,36], and we have confirmed its validity from the
numerical solution of the Lindblad dynamics given by Eq. (7).

The different relaxational laws in the two cases are due to
the role played by the two modes k = 0, 7, which are slow
when the Ising chain is driven by an homogeneous noise field
and can significantly affect late-time dynamics.

For time-dependent perturbations proportional to the total
transverse magnetization like V,(t), the occupation number of
the two Bogolyubov modes close to the band edges, k* = 0
and k* = 7, are conserved quantities [ng-, Hy + V,(1)] =0,
withn; = y,j k. This commutator vanishes continuously when
the limits k — 0, or k — m, are taken, implying that the
relaxation rates, Yy, of the modes close to the band edges
vanish continuously as well, Y} k2, see also Ref. [36],
and determining a slow, algebraic relaxation of one-point
functions (as the on-site transverse magnetization (of(t))),
which can be expressed as bilinears of Bogolyubov operators,
and whose dynamics is accordingly determined by the expec-
tation values (yky,j (t))—after coherences, (ykT yjk(t)), have
been suppressed by noise-induced dephasing. In contrast, for
inhomogeneous time-dependent fields as in Eq. (2), there are no
soft modes slowing down quantum evolution, and dissipation
quickly drives the system toward the asymptotic steady state of
dynamics. The two panels of Fig. 2 show a three-dimensional

plot of (yky,j ) as a function of time, 7, and momentum, k,
respectively, for homogeneous (left panel) and inhomogeneous
(right panel) noisy transverse fields. According to the above
discussion on quasiparticle relaxation rates, the figure shows
that (yx y,j ) relaxes uniformly for all momenta k in the presence
of competing noise and disorder, while in the presence of
global noise, the modes with wave vectors close to k* = 0, &
approach slowly their asymptotic equilibrium value.

IV. PRETHERMAL ANDERSON LOCALIZATION

‘We now extend our study to the energy transport properties
of the noisy chain Eq. (4). First of all, we consider as initial
state |), an inhomogeneous spin texture (without performing
a quench of the transverse field, 7y = h), preparing a region of
spins polarized along the positive Z direction at the center of
the chain,

Vo) = | d1d2 o dnpomm—1Ta2=m Tnj2—m+1
o Tn/2+n1\l/n/2+m+l cee »lrn—len); (8)
the block of size 2m + 1 < n in the state Eq. (8) is delimited
by two domain walls, separating regions with different spin

polarizations. We let evolve the system under the Lindblad
dynamics Eq. (6), and study the flow of local energy,

h(0) = ~otoy — 5 (07 +07,), ©
governed by the equation

(he(0)) = (o) = jen1 (1) + e (1)), (10)
where Jje(t) = h(o] o} —0] o)), and (1) =

41"2(05C 0y.1), and where the average over the state
p(t) has been taken. The term X,(¢r) changes into
T¢(t) = 4T'* (0} 0, —0] 0,,) when the noise perturbation
is homogeneous, V,(¢). Equation (10) is straightforwardly
derived, evolving the local energy Eq. (9) with the Lindbladian
dynamics encoded in Eq. (6).

Figure 3 shows time evolution of the expectation value of
the rate of energy flow (/,(¢)), at every site [, starting from an
inhomogeneous spin state of the type Eq. (8) withm = 5,ina
chain of length n = 80.

The left side of Fig. 3 corresponds to evolution under the
collective homogeneous noise field, V,(¢), while the right
side shows dynamics driven by the inhomogeneous one. The
difference among the two is noticeable. In the first case, a
linear light-cone propagation rules the transport of the energy,
initially stored in the region of size 2m + 1 at the center
of the chain, toward the borders; this finding is consistent
with the light cone structure of spin correlation functions in
a quantum Ising model driven by global noise, V,(t), found in
Refs. [35,36].

The most striking effect is demonstrated in the second
panel of Fig. 3. The fields n;(z) act equally as spatial disorder
and Markovian noise [see discussion after Eq. (3)], and they
compete in order to determine the transport properties of the
model Eq. (4). Energy transport is inhibited at short times: a
disordered noninteracting model undergoes Anderson local-
ization at any disorder strength in one dimension [16,17] and
this is reflected in the trapping of energy within the region of
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FIG. 2. Population, (yy y,f), of Bogolyubov modes as a function of the momentum, k, and time, ¢, after a quantum quench of the transverse
field, in the presence of spatially homogeneous (left) and inhomogeneous (right) noise. The modes close to the band edge k* = 0, 7 (marked
with red continuous lines) undergo a slower evolution under the effect of uniform noise, while, in the instance reported in the right panel,
populations relax for any momentum k swiftly toward their asymptotic infinite temperature value, (yx y,f)(t — 00) = 1/2. Parameters in the

plots are the same as in Fig. 1: ho =4, h =2, T = 0.1, n = 256.

size 2m + 1 at the center of the Ising chain (confront with right
panel of Fig. 3). However, since disorder-induced localization
originates from quantum interference among wave packets
scattering against disordered lattice centers (represented by the
fields n;(¢) on the sites j), the blockade of energy transport will
persist until decoherence induced by the Markovian becomes
sizable. At that point, quantum coherence is washed out, An-
derson localization disappears, and energy is left free to spread.
However, at comparable times, (hy (1)) will approach the trivial
infinite temperature state, as it occurs in the dynamics of the on-
site transverse magnetization, (o;°(¢)). The effect is prominent
for a disorder variance, I, comparable to the transverse field, /;
for smaller values of I', energy transport would become sizable
again, consistently with previous studies reporting diffusion
in noisy Anderson models [38,39]. However, I" cannot be
excessively large since it also controls the timescales for the
onset of decoherence and, accordingly, for the disappearance
of energy localization effects (from numerics we observe that
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FIG. 3. Rate of energy flow (he(t)) as a function of time, 7,
in a quantum Ising chain of size n = 80, prepared with ten spins
polarized in the positive Z direction at its center (m = 5). The left
panel corresponds to energy transport in the presence of homogeneous
noise along the transverse field, while in the case of inhomogeneous
noisy transverse fields (right panel), ballistic transport is inhibited by
Anderson localization (in the time window 0 < 7 < 2, for the instance
of dynamics realized in the figure). Blockade of energy transport is
ruled out by decoherence after a transient (see right panel again),
with (f,(¢)) approaching eventually the infinite temperature state.
Dynamics of (I:l[ (1)) has been simulated with h =2 and ' = 1.5 in
the figure.

this occurs at times of the order of 1/I"). Therefore, the
inhibition of transport occurring at intermediate times and
reminiscent of Anderson localization requires a variance, I,
sufficiently large to start with a localized state, but at the same
time tuned to make the effect visible for an appreciable time
window.

The phenomenon above can be described as a prethermal
Anderson localization: despite the fact that a disordered system
coupled to an infinite temperature bath cannot display a
localized phase, the confining effect of disorder is active at
intermediate timescales (for the instance of dynamics realized
in the right panel of Fig. 3, this occurs in the time win-
dow 0 < ¢ < 2). This is reminiscent of prethermalization in
nonintegrable closed systems, where features of the weakly
perturbed integrable dynamics can persist at intermediate times
before eventual equilibration (ruled by integrability breaking
perturbations) occurs [11,40,41].

We remark though that the energy flux /;(r) wouldn’t
display any appreciable evolution in a one-dimensional, dis-
ordered, quantum Ising chain without noise, since energy
transport would be inhibited by Anderson localization. This
explains the unusual pre-thermal dynamics of /;(¢), compared,
for instance, to the one in Fig. 1. Specifically, in the spirit of
prethermalization, the dynamics of /;(¢) is first ruled by the
disordered spin chain without noise (displaying accordingly
no significant evolution), while at later times the thermalizing
effect of the noise becomes significant and induces relaxation
to a fully mixed state.

This atypical form of prethermal dynamics, where a first
relaxational process is absent, is therefore a specific feature of
the observable employed to monitor energy spreading in the
Ising chain, and a consequence of lack of transport dynamics
in a one-dimensional Anderson insulator. On the other hand,
the dynamical features displayed in the evolution of one-point
observables, as (o]?)(t) (Fig. 1), would be insufficient to reach
conclusive statements on the presence of Anderson localization
in the first relaxational plateau of a system coupled to a noisy
environment like the one discussed in this work. A possible
extension to demonstrate a cleaner two-step relaxation in the
dynamics of energy transport, could consist in considering
a disordered quantum spin chain supporting a many-body
localization (MBL) transition. Deep in the MBL phase, each
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spin can be expanded on the basis of local integrals of
motion, and will undergo nontrivial dynamics, exhibiting,
in general, a long-time equilibrated expectation value (as
discussed, for instance, in Ref. [46]). Extending a similar
analysis to the study of transport sensitive quantities, like /1, (1),
could further substantiate our claim of remnants of disorder
induced localization effects in a two-step dynamical relaxation
process.

V. PERSPECTIVES

An interesting extension of our result would consist of
studying the robustness of the pre-thermal Anderson phe-
nomenon to integrability breaking perturbations of the Ising
Hamiltonian (1) (e.g., a next-neighbour spin-spin interaction
in the transverse direction, U Zi ofo; +1) in the spirit of
the MBL problem [18-20]. Since the MBL phase shares, at
strong disorder, some features of a genuine Anderson insulator
[47-50], we expect a qualitative similar phenomenon as the one
reported in Fig. 3 to manifest (see Refs. [25,26] for related
studies). We believe, however, that generalising a transient
MBL behavior to more complex spin chains (XXZ spin chain)
or to different microscopic degrees of freedom (disordered
Bose-Hubbard model), has the potential to highlight a richer
phenomenology compared to the one established in this work.
On short/intermediate timescales, where prethermal effects set
in, this kind of extension should be accessible with state-of-art
numerical methods.
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APPENDIX: DERIVATION OF EQ. (6)

We consider the average, over different realizations of the
noise, of the stochastic unitary dynamics [Eq. (5) in the main
text]:

d o
o) =

The result in Ref. [43] gives an exact result for the following
mean values, provided the noise is Gaussian:

—i([H + V(1), p(D]). (AD)

8
(V()p(1)) = Z/ dti xij(t, ) of < A1) >
j(tl)

. sp() \
PV (@) = f dty xij(t, t1)< >0,»”, (A2)
le: 0 ’ dn;(f)
where x;;(t,t') is the two-point correlation function of the
noise resolved in time and space, and where we have used the
hermiticity of V (¢). Substituting the latter results in Eq. (A1),
we find

d
t(P(I))

; ilH, (3()] —iAh; fo dtx (1, 1)

o (5]
x | of, .
"\én (1)

We now need to evaluate the response function §5(¢)/dn;(t)
occurring in Eq. (A3). We assume that at the initial time, the
system and the noises are uncorrelated, and following Ref. [44],
we first formally integrate Eq. (A1) in time, and then take a
functional derivative with respect to ;(#;) and ¢, finding

d 8p(t) Bﬁ(t)}
dt 8n;(1y) nj(t) ]

The variational derivative satisfy the same Liouvillian equation
of the stochastic density matrix, §5(¢), therefore we can write

(A3)

—I[H + V1), (A4)

§p(1) L i
8n;j(t) - _lFG(I’tl)[G,‘:P(H)]G'(t,tl), (A5)
where G(1, 1) = Te ' n ATHHV @)
Rewriting Eq. (AS) as
8p()
e G' A6
st iT[G(t, 1)o;G (1, 1), p(1)], (A6)

and substituting in Eq. (A3) we end up with
d t
Sy = it (o - 12 3 [ anye.n)
— Jo
ij

x[of, (IG (@, 1)o; G, 1), p(D)])].

which, for the kind of delta-correlated Markovian noise con-
sidered in our work, see Eq. (3) in the main text, yields
directly Eq. (6) of the main text, which we use to simulate
the nonequilibrium dynamics of the model.
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