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We present an approach for the quantification of
directional relations in multiple time series exhibiting
significant zero-lag interactions. To overcome the
limitations of the traditional multivariate autoregres-
sive (MVAR) modelling of multiple series, we
introduce an extended MVAR (eMVAR) framework
allowing either exclusive consideration of time-lagged
effects according to the classic notion of Granger
causality, or consideration of combined instantaneous
and lagged effects according to an extended causality
definition. The spectral representation of the eMVAR
model is exploited to derive novel frequency domain
causality measures that generalize to the case of
instantaneous effects the known directed coherence
(DC) and partial DC measures. The new measures
are illustrated in theoretical examples showing that
they reduce to the known measures in the absence of
instantaneous causality, and describe peculiar aspects
of directional interaction among multiple series when
instantaneous causality is non-negligible. Then, the
issue of estimating eMVAR models from time-series
data is faced, proposing two approaches for model
identification and discussing problems related to the
underlying model assumptions. Finally, applications
of the framework on cardiovascular variability series
and multichannel EEG recordings are presented,
showing how it allows one to highlight patterns
of frequency domain causality consistent with well-
interpretable physiological interaction mechanisms.
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1. Introduction
The assessment of causality, i.e. the presence of directional interactions among a set of
measured variables, is becoming of paramount importance in the study of physiological
systems. Application of methods aimed at detecting causality from the analysis of experimental
multivariate (MV) time series, indeed, ranges from neurophysiology [1] to cardiovascular
physiology [2]. While a universally accepted definition of causality is still lacking, a very popular
and practically useful notion is that first proposed by Wiener [3] and then formalized by
Granger [4] in the context of linear regression modelling of MV stochastic processes. Wiener–
Granger causality is based on the principles that the cause occurs in time before the effect, and that
the causing process contains information about the caused process that is unique, i.e. not present
in any other relevant process. While its original definition was set in the time domain [4], the
interest in applying this concept to physiological processes that exhibit important and meaningful
oscillatory content has fostered the development of methods operating in the frequency domain.
A pioneering approach was that proposed by Akaike [5], who introduced a causality measure
based on spectral decomposition, the so-called noise contribution ratio, which was named
directed coherence (DC) by Saito & Harashima [6] for bivariate time series, and was used in the
context of MV time series later on [7]. As a further step, partial directed coherence (PDC) was
introduced by Baccala & Sameshima [8,9] as a straightforward frequency domain descriptor of
Granger causality. DC and PDC are derived as factors in the decomposition of ordinary coherence
and partial coherence and, as such, are able to elicit information on directionality from the spectral
representation of multiple time series [10]. While, in bivariate systems, DC and PDC provide
essentially the same information, their behaviour differs when MV series are considered: PDC
exclusively detects direct interactions between two series in the MV representation; DC captures
both direct and indirect effects (i.e. effects mediated by one or more other series) [10].

The computation of DC and PDC is based on fitting the observed set of time series with a
parametric model, interpreting the model coefficients as causal effects, and finally elaborating
the coefficients in the spectral domain to get frequency-dependent information on causality. Such
an interpretation presupposes that the developed model is able to capture the whole interaction
structure of the observed time series; if this is not the case, the causal interpretation provided by
the model coefficients may not be justified and, ultimately, then DC/PDC may yield misleading
frequency domain patterns of causality. The model underlying the definition of DC and PDC is
a strictly causal MV autoregressive (MVAR) model that describes, for each time series, the linear
causal effects coming from its own past and from the past of all other time series. Strict causality
of the model means that only lagged effects are modelled, whereas instantaneous (i.e. not lagged)
effects are not described by any model coefficient. Therefore, a strictly causal MVAR model can
fully describe a set of multiple time series, and thus yield unambiguous causal information
based on its coefficients in either time or frequency domains, only when instantaneous effects
are negligible. Despite this basic requirement, strictly causal MVAR models are ubiquitously
used in the experimental frequency domain causality analysis without verifying the absence
of instantaneous effects among the modelled time series [11–16]. It might be questioned that
instantaneous causality is not a practical issue as zero-lag causal effects are unattainable in real-
world physical systems where interactions take time to occur. Actually, instantaneous causality
shows up in practical time-series modelling whenever the time resolution of the measurements
is lower than the time scale of the lagged causal influences occurring among the processes under
analysis. In the study of experimental time series, instantaneous causality may reflect either fast
(within-sample) physiologically meaningful interactions or non-physiological effects (e.g. due to
unobserved confounders).

The adverse impact of instantaneous effects on MVAR-based causality analysis has been made
explicit in recent studies [17,18], which have provided theoretical arguments showing that the
omission of zero-lag correlations from the model can change quite drastically the values of the
time-lagged coefficients, and thus of the frequency domain causality measures. As a possible
solution, these studies proposed the utilization of an extended MVAR (eMVAR) model accounting
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for both instantaneous and time-lagged effects in such a way that the whole data covariance
could be explained in terms of the model coefficients. In this study, we build on this idea,
presenting a complete framework for the analysis of causality in the frequency domain based
on eMVAR models. After providing a thorough categorization of the various forms of causality
that may be defined for an MV process, we particularize them to eMVAR processes and derive
frequency domain measures that generalize the known DC and PDC. The correspondence of
these novel measures with the time domain causality definitions is illustrated in theoretical
examples. Moreover, we elaborate on the practical estimation of eMVAR processes on time-series
data. In fact, while strictly causal MVAR identification is easily performed by classic regression
methods, the inclusion of instantaneous effects in the model makes eMVAR identification much
less straightforward. We show that the problem can only be solved using more information
than that provided by the data covariance alone, and propose two alternative identification
procedures based on imposing the direction of the instantaneous transfer paths, or on assuming
non-Gaussianity of the model innovations. Finally, we present an application of the framework to
two datasets of physiological time series that entail utilization of the two identification procedures
and investigation of different aspects of causal information transfer based on DC and PDC,
i.e. cardiovascular variability series and multichannel electroencephalography (EEG) recordings.

We distribute a MATLAB toolbox for the identification of eMVAR processes and estimation
of related frequency domain causality measures; the toolbox is available online at http://www.
science.unitn.it/biophysicslab/research/sigpro/eMVAR.html.

2. Causality in linear multivariate processes

(a) Definitions of causality in the time domain
According to the framework first introduced by Granger [4], the concept of causality is defined in
terms of prediction improvement, i.e. reduction of the variance of the prediction error resulting
from modifying the information set on which the prediction model is conditioned. Let us
consider the MV vector stochastic process Y composed of M scalar processes of zero mean,
Y = [y1, . . . , yM]T. To introduce the notation with regard to the mth scalar process, m = 1, . . . , M, we
let ym(n) denote the current value of ym, Ym = {ym(n − 1), . . . , ym(n − p)} the set of the p past values
of ym, and Ým = {ym(n), Ym} the set of the p past values enlarged with the current value. Moreover,
Z is an information set consisting of an ensemble of values properly chosen from the process,
and σ 2(ym|Z) is the prediction error variance of the optimal linear predictor of ym(n) based on
Z. Given this notation, different definitions of causality from the process yj to the process yi
(i, j = 1, . . . , M; i �= j) are formally provided in table 1 and are interpreted as follows. Instantaneous
causality from yj to yi exists if the knowledge of yj(n) improves the prediction of yi(n); lagged
direct causality from yj to yi, yj → yi, exists if the knowledge of Yj improves the prediction of yi(n);
extended direct causality from yj to yi, yj →̇ yi, exists if the knowledge of Ýj improves the prediction
of yi(n); lagged causality from yj to yi, yj ⇒ yi, exists if a cascade of L direct causality relations occurs
such that yj → ym · · · → yi; extended causality from yj to yi, yj ⇒̇ yi, exists if a cascade of L extended
direct causality relations occurs such that yj →̇ ym · · · →̇ yi.

A first differentiation among the definitions provided above may be made on the basis of
the role played by instantaneous effects, i.e. effects from one series to another occurring within
the same time lag. These effects are the basis of instantaneous causality, and are excluded from
the definitions of direct causality and causality, which consider only time-lagged effects. On the
contrary, instantaneous effects are explicitly accounted for in the extended causality definitions. In
the absence of instantaneous causality, extended direct causality reduces to lagged direct causality,
and extended causality reduces to lagged causality. Another distinction among the proposed
causality definitions involves the comparison between direct and indirect effects. In fact, lagged
causality and extended causality may be viewed as generalizations of lagged direct causality and
extended direct causality, respectively, which consider the indirect effects between two processes

http://www.science.unitn.it/biophysicslab/research/sigpro/eMVAR.html
http://www.science.unitn.it/biophysicslab/research/sigpro/eMVAR.html
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Table 1. Causality definitions and conditions for their existence. Ym = {ym(n − 1), . . . , ym(n − p)}; Ým = {ym(n), Ym};
U = {Y1, . . . , YM}; and Ú = {Ý1, . . . , ÝM}.
definition time domain frequency domain

instantaneous causality σ 2(yi|Yi , Ú/Ýi})< σ 2(yi|Yi , Yj , Ú/{Ýi , Ýj})
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lagged direct causality yj → yi σ 2(yi|U)< σ 2(yi|U/Yj) nPDC, π̃ij(f ) �= 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

extended direct causality yj →̇ yi σ 2(yi|Yi , Ú/Ýi})< σ 2(yi|Yi , Ú/{Ýi , Ýj}) ePDC,χij(f ) �= 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lagged causality yj ⇒ yi yml−1 → yml , l = 1, . . . , L;m0 = j,mL = i nDC, γ̃ij(f ) �= 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

extended causality yj ⇒̇ yi yml−1 →̇ yml , l = 1, . . . , L;m0 = j,mL = i eDC, ξij(f ) �= 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(i.e. effects mediated by one or more other processes), in addition to the direct effects. Note that
for a bivariate process (M = 2) lagged causality reduces to lagged direct causality and extended
causality reduces to extended direct causality. Note also that the original definition of causality
provided by Granger [4] corresponds to our definition of lagged direct causality stated for
bivariate processes. For MV processes (M ≥ 3), our lagged direct causality definition agrees with
the notion of prima facie cause introduced later on [19], whereas our lagged causality definition
may be viewed as a generalization incorporating indirect effects. As to the extended definitions,
they may be viewed as further generalizations that combine instantaneous effects with the lagged
effects traditionally studied for the estimation of causality, in accordance with recently proposed
ideas [17,18].

(b) Extended multivariate autoregressive processes
The causality definitions provided above may be expressed in a parametric form describing the
considered process by means of an eMVAR model:

Y(n) =
p∑

k=0

B(k)Y(n − k) + W(n), (2.1)

where Y(n) = [y1(n), . . . , yM(n)]T is the vector variable obtained by sampling the stochastic process
Y at time instant n, B(k) are M × M coefficient matrices in which the element bij(k) describes
the dependence of yi(n) on yj(n − k) (i, j = 1, . . . , M; k = 0, 1, . . . , p), and W = [w1, . . . , wM]T is an
innovation process formed by white and independent scalar processes with diagonal covariance
matrix Λ = diag(λ2

i ). Note that the formulation in (2.1) represents an extension of classic strictly
causal modelling where present observations are linearly predicted from past ones [20]. The
difference with respect to the strictly causal representation (see also §3a) consists of the fact that
the extended model describes explicitly instantaneous effects from one scalar process to another
in the form of the matrix B(0). As a consequence, the extended representation in (2.1) allows us
to express all the definitions of causality provided above in terms of the off-diagonal elements
of the coefficient matrices B(k). Specifically, instantaneous causality, lagged direct causality and
extended direct causality occur from yj to yi when bij(0) �= 0, bij(k) �= 0 for at least one k ≥ 1, and
bij(k) �= 0 for at least one k ≥ 0, respectively. Correspondingly, causality and extended causality are
detected when non-zero coefficients are present, for at least one relevant lag k, in the positions of
B(k) that identify each direct connection of the cascade linking yj to yi.

(c) Measures of causality in the frequency domain
The spectral representation of an eMVAR process is obtained taking the Fourier transform (FT)
of (2.1) to yield the equation Y(f ) = B(f )Y(f ) + W(f ), where Y(f ) and W(f ) are the FTs of Y(n) and
W(n), and the M × M frequency domain coefficient matrix B(f ) results as B(f ) = ∑p

k=0 B(k)e−j2π fk.
If we want to consider the transfer function from W(n) to Y(n), then the spectral representation
may be rewritten as Y(f ) = G(f )W(f ), where G(f ) = [I − B(f )]−1 = B̄(f )−1 is the M × M transfer
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matrix in the frequency domain. The elements of the coefficient and transfer matrices may be
suitably combined to define the extended directed coherence (eDC)

ξij(f ) = λjGij(f )√∑M
m=1 λ2

m|Gim(f )|2
(2.2)

and the extended partial directed coherence (ePDC)

χij(f ) = (1/λi)B̄ij(f )√∑M
m=1(1/λ2

m)|B̄mj(f )|2
. (2.3)

The functions defined in (2.2) and (2.3) constitute directional frequency domain measures of
connectivity between the processes yi and yj, because ξij(f ) and χij(f ) quantify the influence of
yj on yi at frequency f , as opposed to ξji(f ) and χji(f ), which quantify the influence in the opposite
direction from yi to yj. eDC and ePDC constitute an extension of the well-known DC and PDC
functions [6–9], the extension being in the fact that they are derived from the extended model
(2.1), which describes instantaneous effects in addition to the commonly studied lagged effects.

When we use the extended measures (2.2) and (2.3), the information that flows from one
process to another is both lagged (k > 0) and instantaneous (k = 0), because it is measured in the
frequency domain by the function B̄(f ) = I − B(f ), which incorporates both B(0) and B(k) with
k > 0, and by its inverse G(f ). If we want to explore lagged causality in the presence of zero-
lag interactions, we have to exclude the coefficients related to the instantaneous effects from the
desired spectral causality measure. Hence, we set

B̃(f ) = B̄(f ) + B(0) = I −
∑p

k=1
B(k)e−j2π f k, G̃(f ) = B̃(f )−1, (2.4)

and then we define the normalized lagged directed coherence (nDC)

γ̃ij(f ) = λjG̃ij(f )√∑M
m=1 λ2

m|G̃im(f )|2
(2.5)

and the normalized lagged partial directed coherence (nPDC)

π̃ij(f ) = (1/λi)B̃ij(f )√∑M
m=1(1/λ2

m)|B̃mj(f )|2
. (2.6)

nDC and nPDC constitute a variant of the known DC and PDC functions [6–9], the variation
being in the fact that they are derived from the MVAR model (2.1), including instantaneous
effects, rather than from a classic strictly causal MVAR model. It can be shown that, because,
in the absence of instantaneous causality, the eMVAR model reduces to a strictly causal model
(see §3a), in this case, eDC and nDC amount to the DC, whereas ePDC and nPDC amount to the
PDC.

(d) Interpretation of frequency domain causality measures
A straightforward interpretation of the four causality measures defined in §2c may be obtained
considering that they reflect in the frequency domain the different time domain definitions of
causality given in §2a. First, we note that the numerator terms of (2.3) and (2.6) are non-zero,
with i �= j, when bij(k) �= 0 for at least one k ≥ 0 and at least one k ≥ 1, respectively. Therefore, ePDC
and nPDC measure in the frequency domain the concepts of extended direct causality and lagged
direct causality, respectively. As to the eDC and nDC, one can show that, expanding the numerator
terms of (2.2) or (2.5) as a geometric series, a sum of terms is obtained in which each term contains
the FT of the model coefficients describing one of the (direct or indirect) pathways that connect
yj to yi [21]. Therefore, eDC and nDC measure in the frequency domain the concepts of extended
causality and lagged causality, respectively. The correspondence between time domain definitions
and frequency domain measures is summarized in table 1.
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Because the causality measures defined in §2c are complex-valued, the squared modulus
of nPDC, ePDC, nDC and eDC is commonly used to quantify directional interactions in
the frequency domain. Thus, |π̃ij(f )|2, |χij(f )|2, |γ̃ij(f )|2 and |ξij(f )|2 are computed to quantify,
respectively, lagged direct causality, extended direct causality, lagged causality and extended
causality as a function of frequency. All these squared measures are normalized, so that they
take values between 0, representing absence of causal coupling, and 1, representing full causal
coupling from the process yj to the process yi at the frequency f . The concept of ‘causal coupling’
takes different meanings depending on the specific causality definition to which it is associated.
In fact, it is well known that DC and PDC constitute terms into which the coherence and
partial coherence functions may be decomposed [8,18], and that they may be related to the
decomposition of diagonal elements of the spectral density matrix of the MV process and of its
inverse, respectively [10]. As a consequence, the squared modulus of eDC (or nDC) from yj to yi
quantifies the causal coupling intended as the fraction of the power spectrum of yi (or of its part
excluding instantaneous effects) that is due to yj at each given frequency. The interpretation of the
squared ePDC and nPDC functions is less meaningful, because they are related to functions of
the inverse spectral domain, which does not provide clear physical interpretation of the measured
quantities. On the other hand, the measures of (lagged or extended) direct causality determine the
frequency domain connectivity structure of the considered MV process, in the sense that showing
the presence of significant non-zero values for the squared nPDC or ePDC at a given frequency
may be taken as an indication that a direct connection exists between two of the processes. From
this point of view, nDC and eDC are less straightforward because they measure the ‘total’ (direct
and indirect) effects from one process to another, so that the structural information cannot be
elicited simply by checking whether nDC or eDC are non-zero.

3. Practical analysis of multivariate autoregressive processes

(a) Model identification
The practical application of the theoretical concepts described in §2 on a set of M time series
of N samples, ym(n), m = 1, . . . , M, n = 1, . . . , N, measured from a physical system, is based
on considering the series as a finite length realization of the MV process Y = [y1, . . . , yM]T,
which describes the evolution of the system over time. Thus, the descriptive equation (2.1) is
seen as a model of how the observed data have been generated, and a model identification
procedure is applied to provide estimates of the coefficients and innovation variances to be used
in equations (2.2)–(2.6) for computing the various frequency domain causality functions. The
procedure for identification of the eMVAR model (2.1) is based on the prior identification of the
corresponding strictly causal model,

Y(n) =
p∑

k=1

A(k)Y(n − k) + U(n), (3.1)

where U(n) = [u1(n), . . . , uM(n)]T is a vector of white innovations with covariance matrix Σ = {σ 2
ij },

and the coefficients of A(k) describe lagged interactions among the observed time series. The
model (3.1) is traditionally used for the parametric frequency domain analysis of MV time
series [20]. The basic difference from the extended model (2.1) is in the fact that the lag variable
k starts from 1, so that possible instantaneous interactions among the yi are not accounted for by
the model coefficients. As a consequence, instantaneous interactions among the yi, when present,
result in a correlation among the innovations ui such that the covariance Σ is not diagonal. In
order to evaluate the relation between the two model representations, we note that, defining
the matrix L = I − B(0)−1, (2.1) can be rewritten as Y(n) = ∑p

k=1 LB(k)Y(n − k) + LW(n), which,
compared with (3.1), leads to

U(n) = LW(n), A(k) = LB(k) for each k ≥ 1. (3.2)
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Hence, provided that an estimate of L (or equivalent of B(0)) is known, the identification of the
extended model follows intuitively from the identification of the strictly causal model. Therefore,
we propose the following identification algorithm:

— estimate A(k), U(n) and Σ for the strictly causal MVAR model (3.1);
— solve the instantaneous model U(n) = LW(n) to estimate B(0) = I − L−1 and W(n);
— exploit (3.2) to estimate coefficients and innovation covariance of the extended model as

B(k) = L−1A(k) (k ≥ 1) and Λ = L−1Σ(L−1)T.

The first step is easy to perform by means of classic regression methods (in the appendix,
we describe the standard least-squares identification). As to model order selection, in this study,
the order p was set at the value yielding the minimum of the Akaike figure of merit, AIC(p) =
N log(det(Σ)) + 2M2p [22]. The second identification step is less straightforward, because the
instantaneous model may suffer from lack of identifiability, being related to the zero-lag
covariance structure of the observed data, which is, per se, non-directional. In other words, using
only the covariance information, one may find several combinations of L and W(n) that result in
the same U(n), and thus describe the observed data Y(n) equally well. We propose two approaches
to solve the instantaneous model, both based on using more information than the covariance
information alone. The additional information consists of imposing a priori the structure of
instantaneous causality for the first approach, and in exploiting the non-Gaussian distribution of
the model innovations for the second approach. Accordingly, the overall identification procedures
will be denoted, respectively, as eMVARis and eMVARng, to indicate that identification is
performed assuming knowledge of instantaneous structure or non-Gaussianity of the innovation
process W. The two approaches are described briefly in the following, and with more details in
the appendix.

The eMVAR is approach for estimation of the instantaneous model U(n) = LW(n) is based on
setting a priori the direction (though not the strength) of the instantaneous effects among the
observed scalar processes [18]. This is achieved by imposing a causal ordering for the observed
time series ym, m = 1, . . . , M, denoted as κ = [κ(1), . . . , κ(M)], such that no later series causes
instantaneously any earlier series. The identification proceeds by: (i) permuting the estimated
strictly causal residuals U(n) and their covariance Σ according to the imposed causal order;
(ii) applying the Cholesky decomposition to estimate the permuted version of the extended
innovation process W(n) and of the diagonal covariance Λ; and (iii) applying inverse permutation
to get estimates of W(n) and of the instantaneous effects B(0). The eMVARng identification
approach exploits the non-Gaussian structure of the observed data to overcome the identifiability
problem of the instantaneous model [17]. It makes use of an algorithm recently proposed for
the identification of instantaneous models [23], which is based on departing from the hypothesis
of Gaussianity commonly assumed for the distribution of the independent processes W(n). The
identification proceeds in two steps: first, independent component analysis (ICA) is performed
on the estimated strictly causal innovations U(n), finding a mixing matrix M that represents an
unordered and non-normalized version of L; second, appropriate row permutation followed by
normalization is applied to M−1 to get an estimate of L−1, and thus of B(0) = I − L−1.

(b) Model validation
Model validation refers to the use of a range of diagnostic tools that are available to check
the adequacy of the estimated structure. The basic assumptions that need to be satisfied for
the extended model (2.1) regard whiteness of the innovation process W and independence of its
scalar components. These assumptions entail, respectively, that the stochastic variables wi(n − l)
and wj(n − m) are independent for each i, j = 1, . . . , M and for each m �= l, and that the stochastic
variables wi(n) and wj(n) are independent for each i �= j. Note that whiteness of the extended
innovations in W always corresponds to whiteness of the strictly causal innovations in U,
because W and U differ only in the instantaneous structure. On the contrary, independence of
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W corresponds to independence of U only in the absence of instantaneous causality; in fact,
violation of the assumption of independence of the strictly causal innovations is the reason
leading to the introduction of the extended model in place of the strictly causal one. When the
causal innovations are not strictly independent, the conditions underlying identifiability of the
instantaneous model U = LW have to be verified in addition to the basic assumptions. These
conditions consist of checking the adequacy of the imposed instantaneous structure, or testing
non-Gaussianity of the extended innovations in W, respectively, when the eMVARis approach or
the eMVARng approach is followed to identify the instantaneous model.

To perform model validation in practical applications, we propose the use of standard
statistical tests, which are reviewed in Lutkepohl [20]. Whiteness of the model residuals
representing estimates of the innovations U and W was tested using the Ljung–Box portmanteau
test, which checks for the overall significance of groups of residual correlations. Independence
of strictly causal or extended model residuals was tested by means of Spearman’s rho test for
independence; in particular, rejection of the test for the U residuals was taken as an indication
of the significance of instantaneous effects among the observed series. If this was the case and if
the eMVARng approach was used to estimate the instantaneous model, then non-Gaussianity of
the extended residuals was tested by means of the Jarque–Bera test for non-normality of a vector
stochastic process.

4. Numerical example

(a) Theoretical formulation
In order to describe the four frequency domain causality measures defined in this study, and
to illustrate their relationship with the different causality definitions, let us consider the MVAR
process of order p = 2, composed by M = 4 scalar processes, generated by the equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y1(n) = 0.8
√

2y1(n − 1) − 0.64y1(n − 2) + 0.7y3(n − 2) + w1(n),

y2(n) = y1(n − δ) − 0.5y1(n − 2) − 0.64y2(n − 2) + w2(n),

y3(n) = 0.5y2(n − δ) + w3(n),

y4(n) = 0.5y2(n − δ) + w4(n),

(4.1)

where the innovations wi are independent white noises of unit variance (Λ = I). The diagonal
elements of the coefficient matrix B(k) (i.e. b11(1) = 0.8

√
2, b11(2) = −0.64, b22(2) = −0.64) generate

complex conjugate poles (with modulus 0.8 and phases ±π/4 and ±π/2) for the processes y1
and y2, determining autonomous oscillations at 0.125 and 0.25 Hz, respectively. The off-diagonal
elements of B(k) determine direct causal effects from one process to another, which are set
according to the value of the parameter δ.

We consider the conditions δ = 1 and δ = 0, entailing the absence and presence of instantaneous
causality, respectively. The corresponding causality patterns occurring among the processes in
the two conditions are shown in figures 1a,b and 2a,b. When δ = 1, all the imposed effects
from one process to another are lagged. In this case, lagged direct causality is set over the
directions y1 → y2 (b21(1) = 1, b21(2) = −0.5), y2 → y3 (b32(1) = 0.5), y2 → y4 (b42(1) = 0.5) and y3 →
y1 (b13(2) = 0.7) (figure 1a). The corresponding lagged causality relations are y1 ⇒ y2, y2 ⇒ y3,
y2 ⇒ y4, y3 ⇒ y1 (direct effects), and y1 ⇒ y3, y1 ⇒ y4, y2 ⇒ y1, y3 ⇒ y2, y3 ⇒ y4 (indirect effects)
(figure 1b). Because instantaneous causality is absent, extended direct causality is equivalent
to lagged direct causality (figure 1a), and extended causality is equivalent to lagged causality
(figure 1b). When δ = 0, the imposed causal effects are exclusively instantaneous from y2 to
y3 and to y4 (b32(0) = b42(0) = 0.5), exclusively lagged from y3 to y1 (b13(2) = 0.7), and mixed
instantaneous and lagged from y1 to y2 (b21(0) = 1, b21(2) = −0.5). The resulting causality relations
are illustrated in figure 2a,b; note that, owing to the presence of instantaneous causality, extended
direct causality differs from lagged direct causality (figure 2a), and extended causality differs from
lagged causality (figure 2b).
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of equation (4.1) with parameter δ = 1. (a, b) Graphicalmodels of the sets of lagged direct causality (yj → yi), extended direct
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extended MVAR representation of the process. (Online version in colour.)

y3

(a)

(c)

(b)

(d)

y1 y2

y4

y3

y1 y2

y4

y3

y1 y2

y4

y3

y1 y2

y4

j=1 j=2 j=3 j=4 j=1 j=2 j=3 j=4

f0 0.5 f0 0.5 f0 0.5 f0 0.5 f0 0.5 f0 0.5 f0 0.5 f0 0.5

i=
4

i=
3

i=
2

i=
1

0
1

0
1

0
1

1

i=
4

i=
3

i=
2

i=
1

0
1

0
1

0
1

1

|p~ij( f )|2

|cij( f )|2

|g~ ij( f )|2

|xij( f )|2

Figure 2. Time domain causality patterns and corresponding frequency domain causalitymeasures for the theoretical example
of equation (4.1) with parameter δ = 0. Plots and symbols are as in figure 1. (Online version in colour.)



10

rsta.royalsocietypublishing.org
PhilTransRSocA371:20110618

......................................................

The theoretical profiles of the four squared causality measures computed from the coefficient
values according to equations (2.2), (2.3), (2.5) and (2.6) are depicted in figures 1c,d and 2c,d.
Results show the close correspondence between each time domain causality definition and the
associated frequency domain causality measure. Specifically, comparing (a) with (c) and (b) with
(d) in figures 1 and 2, we note that, with i �= j, |π̃ij(f )|2 �= 0 if and only if yj → yi, |χij(f )|2 �= 0 if
and only if yj →̇ yi, |γ̃ij(f )|2 �= 0 if and only if yj ⇒ yi, and |ξij(f )|2 �= 0 if and only if yj ⇒̇ yi. In the
absence of instantaneous causality (δ = 1), the extended measures provide the same quantitative
information as the lagged measures, as seen in figure 1c, where ePDC overlaps with nPDC, and
in figure 1d, where eDC overlaps with nDC. When instantaneous causality is significant (δ = 0),
lagged measures differ from extended ones, the former reflecting exclusively lagged causal effects
and the latter reflecting either instantaneous and/or lagged effects (figure 2c,d). We see that the
only non-zero nPDC profiles outside the diagonal of the matrix layout plot of figure 2c are |π̃21(f )|2
and |π̃13(f )|2, reflecting the two lagged direct causality relations y1 → y2 and y3 → y1 shown in
figure 2a; the larger number of extended direct relations is reflected by the non-zero squared
ePDCs |χ21(f )|2, |χ13(f )|2, |χ32(f )|2 and |χ42(f )|2. Besides the two direct causal effects, indirect
lagged causality occurs also from y3 to y2 (figure 2b) and is reflected by the non-zero profile of
the nDC |γ̃23(f )|2 (figure 2d); finally, the squared eDC is non-zero in a large number of connections
(figure 2d), reflecting the broad nature (direct and/or indirect, instantaneous and/or lagged) of
directional interactions described by this measure of extended causality.

(b) Implementation on simulations
The feasibility of the two model identification approaches presented in §3 (i.e. eMVARis
and eMVARng) was tested on practical realizations of the eMVAR process illustrated in §4a.
Realizations of (4.1) lasting N = 500 points were obtained by generating realizations of the
extended innovations W(n), estimating the corresponding strictly causal innovations as U(n) =
[I − B(0)]−1W(n), and finally feeding a strictly causal model in the form of (3.1) with the
estimated U(n) to get the series Y(n), n = 1, . . . , N. The innovations, wm(n), m = 1, . . . , M, were
generated as independent Gaussian white noises for testing the eMVARis identification approach,
and as independent non-Gaussian white noises for testing the eMVARng approach. In the
second case, non-Gaussianity was achieved by first generating zm(n) as independent Gaussian
white noises and then applying the nonlinear transformation wm(n) = sign(zm(n))|zm(n)|q, with
exponent q chosen in the range [0.5, 0.8] or [1.2, 2.0] to yield, respectively, a sub-Gaussian or
super-Gaussian distribution for wi. For each of the two identification approaches, the analysis
was performed under three different scenarios: (i) absence of instantaneous effects (δ = 1 in (4.1));
(ii) presence of instantaneous effects (δ = 0) with satisfied model assumptions; and (iii) presence
of instantaneous effects (δ = 0) with non-satisfied model assumptions. Scenarios (i) and (ii)
were designed to test the ability of the two identification approaches to estimate frequency
domain causality when instantaneous effects are missing and significant, respectively, whereas
scenario (iii) was conceived to investigate the effects of wrong model assumptions on the various
causality measures. Wrong assumptions were simulated in scenario (iii) by imposing, in eMVARis
identification, an incorrect causal ordering for the observed series, i.e. any ordering different
from the two correct orderings set in (4.1) for instantaneous causal effects (κ = [1, 2, 3, 4] and
κ = [1, 2, 4, 3]), and imposing, in eMVARng identification, a Gaussian distribution for the extended
innovations W.

Figures 3 and 4 depict simulation results obtained for 100 realizations of the MVAR process
(4.1) using the two identification approaches under the three scenarios presented above. In the
two figures, the top two rows show representative trends of expected and estimated frequency
domain causality functions (one selected eDC and ePDC in figure 3, and one selected nDC and
nPDC in figure 4); the third row shows the percentage of rejection of the four performed validation
tests (whiteness and independence of U and W residuals, and Gaussianity of W residuals); and
the fourth row shows the distribution of the error, estimated as the mean absolute value of the
difference between estimated and true causal coupling, computed for each measure (eDC, nDC,
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Figure 3. Results of eMVARis identification for 100 realizations of the process (4.1) with parameter δ = 1 (a), with δ = 0 and
correct prior setting of instantaneous causality (b) and with δ = 0 and incorrect prior setting of instantaneous causality (c).
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(Online version in colour.)

ePDC and nPDC) and averaged over the full frequency range. When instantaneous effects were
not present in the simulations (δ = 1 in (4.1); figures 3a and 4a), both eMVARis and eMVARng
identification approaches estimated correctly the imposed causal relations, as documented by
the close adherence of theoretical and estimated measures and by the low error values. In this
case, the assumptions of whiteness and independence of the residuals, and of non-Gaussianity
of the extended residuals for the eMVARng approach, were satisfied in almost all simulations. In
the presence of significant instantaneous effects (δ = 0 in (4.1); figures 3b,c and 4b,c), the strictly
causal residuals U were never independent, indicating the necessity of moving to the extended
representation. When the additional assumptions required for identification of the instantaneous
model (i.e. correct imposition of the direction of instantaneous effects for the eMVARis approach,
and presence of non-Gaussian innovations for the eMVARng approach) were set, the estimation
was successful, as demonstrated respectively in figures 3b and 4b showing low estimation errors
and fulfilment of the validation tests. On the contrary, the identification was unsuccessful when
the additional assumptions were not met, resulting in estimated frequency domain causality
measures that markedly deviated from the expected profiles and in substantial estimation errors
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(figures 3c and 4c). In the case of eMVARng identification, the presence of Gaussian innovations
led to failure of validation tests performed on the extended residuals (iW is high and g is very
low in figure 4c). In the case of eMVARis identification, the imposition of the wrong direction
for the instantaneous effects was not associated with unfulfilment of the validation tests (iW
and g are near zero in figure 3c). This result is due to the fact that the models estimated with
different instantaneous causal orderings are equally admissible, in terms of description of the data
structure, as the considered one, and thus pass the validation tests. In such a case, selection of the
model to be used should rely on prior knowledge of which is the most appropriate instantaneous
structure, for example, on the basis of physical considerations.

5. Real data applications
This section describes two applications of the proposed framework for estimation of frequency
domain causality in the presence of instantaneous causality, considering cardiovascular and
neurophysiological MV time series, respectively. In the first application, the analysis is devoted to
investigate the source mechanisms underlying cardiovascular oscillations, whereas the second
application deals with determining the propagation directions of the alpha EEG rhythm.



13

rsta.royalsocietypublishing.org
PhilTransRSocA371:20110618

......................................................

j=1
y1

y2

y3

y3(n+1)

y2(n+1)y2(n–1)

y1(n–1) y1(n) y1(n+1)

y2(n)

y3(n)

y3(n–1)

i=
1

i=
2

i=
3

f f f0300200100 (beats)1
1 s –2

2
105

155
500

730(b) (c)(a)

(m
s)

(m
m

H
g)

(n
.u

.)

1
0

0
1

1

0.5 0 00.5 0.5

j=2 j=3

Figure 5. Analysis of causality in the frequency domain for the cardiovascular time series of a representative subject.
(a) Measurement of heart period (HP, y1), systolic arterial pressure (SAP, y2) and respiratory flow (RF, y3) time series from ECG,
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These two applications are chosen because their different goals entail utilization of different
identification procedures and causality measures.

(a) Cardiovascular variability signals
Short-term cardiovascular and cardiorespiratory variability analysis was performed on 15 young
healthy subjects (25 ± 3 years old) standing in the 60◦ upright position after passive head-up
tilt [24]. All subjects were in sinus rhythm and breathing spontaneously. The surface ECG, the
finger photopletismographic arterial pressure signal and the respiratory nasal flow signal were
acquired simultaneously and digitized with 1 kHz sampling rate and 12-bit resolution. Starting
from these signals, the beat-to-beat variability series of heart period (HP, y1), systolic arterial
pressure (SAP, y2) and respiratory flow (RF, y3) were measured as follows (M = 3): the nth HP
value, y1(n), was taken as the time interval between the nth and the (n + 1)th R peaks of the ECG;
the nth SAP value, y2(n), was taken as the local maximum of the arterial pressure signal measured
inside y1(n); the nth RF value, y3(n), was taken as the value of the nasal flow signal sampled at the
onset of y1(n) (i.e. at the nth R peak). A representative example is reported in figure 5a. According
to these measurement settings, instantaneous effects may occur from RF to HP and to SAP, as well
as from SAP to HP, but not over the reverse directions (see also Porta et al. [25], for the setting of
instantaneous causality in cardiovascular variability analysis). This prior information about zero-
lag effects was exploited to set the order κ = [3, 2, 1] for instantaneous causality, thus allowing
utilization of the eMVARis approach for model identification.

For each subject, synchronous stationary windows of the three time series, of length N = 300
beats, were selected for the analysis. An example is reported in figure 5b; in this case, the optimal
model order, selected with the Akaike criterion, was p = 7. In model identification, whiteness of
the model residuals was verified by means of the Ljung–Box test; independence (Spearman’s rho
test) was not satisfied between the strictly causal residuals of SAP and RF (u2 and u3), indicating
the significance of instantaneous effects. Utilization of the extended model led to independence
between all pairs of extended residuals w1, w2 and w3. After validation, frequency domain
analysis was performed computing the eDC and nDC from the model coefficients as in (2.2) and
(2.5). The results in figure 5c also report the power spectral density function of each single time
series (diagonal plots), which can be simply computed from the coefficients as the denominator
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Figure 6. Results of frequency domain analysis of causality performed for the cardiovascular variability series (a) in the LF and
(b) in the HF frequency bands. Relations of extended causality (yj ⇒̇ yi) and lagged causality (yj ⇒ yi) are measured in the
frequency domain respectively by the squared eDC (|ξij|2) and squared nDC (|γ̃ij|2) for the heart period (y1), systolic pressure
(y2) and respiratory flow (y3) series. Values in (a) and (b) represent the squared functions averaged in the LF and HF bands,
expressed as mean+ s.e. over 15 subjects. ∗p< 0.01 eDC versus nDC (Student’s t-test for paired data).

of the squared eDC. The RF power spectrum (panel with i, j = 3, 3) shows a clear peak at the
frequency of respiration (0.27 Hz for this subject); this activity is reflected by synchronous small
peaks in the so-called high-frequency band (HF, ±0.04 Hz around respiration frequency) of the
spectrum of HP (i, j = 1, 1) and SAP (i, j = 2, 2) series, which present also a prominent peak in
the low-frequency band (LF, from 0.04 to 0.15 Hz) related to the so-called Mayer waves [26].
According to this scenario, we observe that lagged and extended causality are set from respiration
to the cardiovascular variables in a unidirectional way, as the eDC and nDC evaluated in the HF
band are substantial from RF to HP (i, j = 1, 3) and to SAP (i, j = 2, 3), and negligible over the
opposite directions from HP to RF (i, j = 3, 1) and from SAP to RF (i, j = 2, 3). In the LF band, the
analysis of causality shows a bidirectional interaction between SAP and HP, with eDC comparable
to nDC from RR to SAP (i, j = 2, 1), and eDC higher than nDC from SAP to RR (i, j = 1, 2).

Figure 6 summarizes the results of the analysis extended to the 15 considered subjects,
which display well-interpretable patterns of causality related to the generation of cardiovascular
and cardiorespiratory oscillations. Because the RF time series does not present any meaningful
oscillation within the LF band, only the analysis relevant to the interactions between HP and
SAP are reported for this frequency band (figure 6a). The results suggest the existence of a
closed-loop interaction between RR and SAP, as both the squared eDC and the squared nDC
are non-negligible along the two pathways of the loop between y1 and y2. This finding agrees
with the known coexistence of regulatory mechanisms such as the so-called baroreflex operating
from SAP to HP and the mechanical interaction exerted from HP to SAP [27,28]. The analysis
performed in the HF band (figure 6b) evidences the key role of respiration in generating the
oscillations observed in the two cardiovascular variables within this frequency range. Indeed, a
strong unidirectional causal coupling is detected from RF to SAP and from RF to HP, whereas very
low values are observed—both for the squared eDC and for the squared nDC—along all other
possible directions of interaction. This finding is probably reflecting known phenomena, such as
respiratory sinus arrhythmia and respiratory arterial pressure variability, which occur through the
(direct or indirect) driving of respiration onto cardiovascular variability [29]. Our analysis further
shows that instantaneous causality might play a role in determining the regulatory mechanisms
observed in both frequency bands, as the squared eDC results are significantly higher, according
to a paired Student’s t-test, than the squared nDC when evaluated from SAP to HP at LF, and from
RF to SAP and to HP at HF. As a consequence, we suggest the utilization of extended causality
measures such as the eDC for the frequency domain analysis of cardiovascular interactions, to
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Figure 7. Analysis of direct causality in the frequency domain for representative EEG time series. (a) Schema of 10–20 EEG
electrode placement, with localization of the subsets of electrodes defined forMVAR analysis. (b) Pre-processed signals used for
MVAR analysis of the subset {y1, y2, y3} = {Pz, Cz, Fz}. (c) Power spectral density of yi (diagonal plots) and squared modulus
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version in colour.)

account for non-negligible zero-lag effects, which are representative of fast, likely of vagal origin,
cardiovascular and cardiorespiratory mechanisms.

(b) Electroencephalography signals
Analysis of neurophysiological signals was performed on 25 young healthy subjects (25 ± 3
years old) lying with eyes closed in the relaxed awake state [30]. Multichannel EEG recordings
were acquired through the standard 10–20 system (Fpz common reference) at 256 Hz sampling
rate, then truncated to artefact-free synchronous stationary windows of 8 s and digitally filtered
(0.3–40 Hz, zero phase-shift FFT band-pass filter). To reduce redundancy and favour MVAR
model identifiability, the pre-processed signals were downsampled to 128 Hz and divided into
five subsets describing front-to-back directions in the scalp (left-lateral: electrodes O1, T5, T3, F7;
left-central: P3, C3, F3, Fp1; central: Pz, Cz, Fz; right-central: P4, C4, F4, Fp2; right-lateral: O2, T6,
T4, F8) (figure 7a). For reducing the effects of reference electrode location, a modified common
reference averaging procedure was applied for each subset, consisting of subtracting from each
signal of the considered subset the average of all signals from the other subsets. An example of
pre-processed signals is shown in figure 7b for the subset {Pz,Cz,Fz} of a representative subject.
We used the convention of assigning suffix number to signals according to back-to-front scalp
locations (i.e. yi is measured at a more anterior location than yj when i > j).

In this application, eMVAR model identification was performed according to the eMVARng
approach, because no prior information about the direction of instantaneous effects can be
inferred from synchronously sampled EEG signals. Hence, validation checked whiteness,
independence and non-Gaussianity of the model residuals for each identified model. For each
subject, we proceeded with frequency domain analysis only for the subsets for which all
validation tests were passed. As the aim of this application was to infer the preferential directions
of propagation for the alpha rhythm, we focused the analysis on computation of the direct
causality spectral functions, which are useful for structure determination. Specifically, ePDC
and nPDC were computed as in (2.3) and (2.6) from the eMVAR coefficients estimated from
a given subset. Then, statistical significance inside the alpha band of the frequency spectrum
(8–13 Hz) was assessed for each estimated function (squared modulus) through comparison with
its corresponding significance threshold derived by means of the so-called causal FT surrogate
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(a) Percentage of extended direct causality relations measured over back-to-front directions (b →̇ f ) and over front-to-back
directions (f →̇ b) by means of the squared ePDC (black), and percentage of lagged direct causality relations measured over
back-to-front directions (b→ f ) and over front-to-back directions (f → b) by means of the squared nPDC (white), which
resulted as statistically significant according to surrogate data analysis. Student’s t-test for paired data: ∗p< 0.001, ePDC versus
nPDC; #p< 0.01 back-to-front versus front-to-back. (b) Number of subjects, out of 25, inwhom the number of significant back-
to-front connections was higher than the number of significant front-to-back connections, using either the ePDC (left) or the
nPDC (right) in associationwith surrogatedata analysis. Thegreypart of thebars represents thenumberof subjects forwhomthe
prevalence of back-to-front connections was detected using both the ePDC and the nPDC. McNemar test for paired proportions:
§p< 0.05.

data approach (the threshold was taken as the 95th percentile of the distribution of each squared
ePDC or nPDC computed over 100 surrogate sets with absence of direct causality over the
investigated causal direction; see Faes et al. [31] for details). An example of the analysis is reported
in figure 7c, showing that the power spectral densities (diagonal plots) highlight the presence of
dominant alpha activity at each channel, and how ePDC and nPDC analyses (off-diagonal plots)
help in eliciting propagation patterns for this activity. In particular, the squared nPDC (figure 7c,
dashed line) exceeds its significance threshold, inside the alpha band, over all three back-to-front
directions of propagation (i.e. for i, j = 2, 1, i, j = 3, 1, and i, j = 3, 1), and only over one front-to-
back direction (i, j = 2, 3). On the contrary, the extended direct causality relations resulting as
statistically significant in the alpha band according to the squared ePDC (figure 7c, solid line)
are in this case y2 →̇ y1 and y1 →̇ y3.

In the overall analysis involving all subsets passing model validation and all subjects, results
were collected counting the number of back-to-front connections and front-to-back connections
for which the squared ePDC and nPDC resulted as statistically significant within the alpha band.
As shown in figure 8a, the percentage of significant direct connections was balanced over the
back-to-front and front-to-back directions when assessed by ePDC, and was prevalent over
the back-to-front direction when assessed by nPDC. Furthermore, a significantly lower percentage
of active front-to-back connections was detected using the nPDC (statistical analysis was assessed
by means of the paired Student’s t-test). Moreover, a prevalence of back-to front over front-to back
active connections was observed in 19 of 25 subjects using the nPDC, and in only 12 of 25 subjects
using the ePDC; the difference between the two paired proportions was found to be statistically
significant according to the McNemar test. These results suggest that instantaneous causality,
which in this application is likely to be related in major part to non-physiological phenomena such
as volume conduction [32], may mask the detection of the direction of propagation of the alpha
EEG waves. Indeed, a preferential direction of propagation in the alpha band, and specifically that
going from the posterior towards the anterior scalp regions, could be evidenced only by looking
at the patterns of lagged direct causality measured by the nPDC. The detection of a preferential
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back-to-front direction for the alpha EEG activity is in agreement with previous findings, and is
explained by the occipital nature of the alpha oscillations, which are supposed to originate in the
posterior visual cortex and then spread towards the central and frontal regions in the brain [13,31].

6. Discussion and conclusions
The framework for the assessment of frequency domain causality proposed in this study has
been devised to deal with the adverse effects that instantaneous correlations among multiple time
series may have on the estimation of time-lagged causal effects performed by means of the very
popular MVAR approach. The impact of zero-lag correlations on the classic, strictly causal MVAR
representation of multiple series has been recognized for a long time [4,20]. Recent studies have
shown that neglecting instantaneous causality when it is non-trivial can lead to a misleading
interpretation of causal effects, performed either in terms of the model coefficients [17], or in
terms of their frequency domain representation [18]. The proposed solution consisted of moving
to the eMVAR representation in which instantaneous effects are included in the model as zero-lag
coefficients. This combination of a standard MVAR approach representing time-lagged influences
with a structural equation modelling approach representing instantaneous influences allows
one to describe simultaneously both the temporal precedence among variables that is actually
detected as lagged in time, and the one that is hidden in the zero-lag correlations. Here, we
have shown that explicit consideration of instantaneous causality leads to a distinction between
the concepts of lagged causality and extended causality. Within the proposed framework, these
two concepts are reflected in the frequency domain respectively by the nDC/nPDC functions
measuring exclusive lagged effects, and by the eDC/ePDC functions measuring combined
instantaneous and lagged effects. The reported analytical formulations and theoretical examples
demonstrate that there exists a one-to-one correspondence between non-zero coefficients of the
time-lagged causal effects and non-zero spectral profiles of the nPDC. As a generalization of this
correspondence, the presence of extended causality (i.e. non-zero coefficients of instantaneous
and/or lagged effects) entails non-zero spectral profiles for the ePDC. In a similar way, the nDC
and eDC measure exclusive lagged effects and extended (instantaneous and/or lagged) effects,
respectively, but accounting for both the direct pathway and all possible indirect pathways from
one series to another in the MV representation. We note also that these functions reduce to the
well-known DC and PDC functions [7,8], so that the proposed eMVAR framework reduces to the
classic strictly causal MVAR framework in the absence of instantaneous correlations among the
considered time series.

A major problem with the eMVAR approach, which has so far limited its utilization in
practical time-series analysis, is that concerning model identification. In fact, unambiguous
estimation of the coefficients describing instantaneous effects is a daunting task that cannot
be solved by relying on the data covariance alone [20,23]. This issue is highly relevant for
causality analysis, as taking instantaneous effects into account changes the estimation procedure
for all autoregressive matrices. Therefore, any ambiguity in the estimation of the instantaneous
model determines a lack of identifiability even for the time-lagged portion of the eMVAR
model. The only way to guarantee identifiability is to incorporate in the identification procedure
additional information with respect to the data covariance, so that uniqueness of the solution
is guaranteed by exploiting such information. Note that closed form estimation methods such
as the ordinary least squares, though recently proposed for eMVAR identification [33], are not
feasible because they force identification of the instantaneous model to an arbitrary solution.
In this study, we considered two possible approaches to deal with the identifiability problem:
the eMVARis procedure exploits prior knowledge about the direction of instantaneous effects
and makes use of the Cholesky decomposition [34]; and the eMVARng procedure exploits non-
Gaussianity of the model innovations and makes use of ICA [23]. Whereas the first procedure is
straightforward but does not solve the arbitrariness issue when the direction of instantaneous
transfer paths cannot be deduced from the observed measurements, the second procedure is
more objective but adds the requirement of non-Gaussian innovations. The feasibility of the two
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procedures was tested on realizations of the proposed theoretical examples, showing that, when
the relevant additional identification assumptions are met, they reproduce to good approximation
the expected frequency domain connectivity patterns.

As practical applications of the proposed framework, we considered biological MV time
series where the autonomic nervous system is involved in signal interactions. The chosen
applications reflect spheres of applicability for which the two presented eMVAR identification
procedures are eligible. In cardiovascular time-series analysis, prior determination of the direction
of instantaneous effects may be in agreement with physiological considerations: SAP might
determine HP changes within the same cardiac beat as an effect of the fast vagal arm of the
baroreflex (i.e. SAP(n) → HP(n)); RF might produce modifications of the intrathoracic pressure
that can be transferred within the same beat to SAP (i.e. RF(n) → SAP(n)); respiratory centres are
rapidly linked to vagal outflow, which, in turn, affects HP within the same beat (i.e. RF(n) →
HP(n)). On the contrary, in EEG analysis, where no prior information about instantaneous
causality may be exploited, the eMVARng procedure is recommended. Moreover, these two
different applications suggested the use of different causality estimators. In cardiovascular
analysis, where the interest was focused on determining the source of a given oscillation (LF or
HF rhythm), we exploited the nDC/eDC measures that provide information on the full (i.e. over
both direct and indirect pathways) information transferred as a function of frequency. In EEG
analysis, where the focus was on determining the preferential propagation direction of the alpha
waves, we used the nPDC/ePDC measures that are most indicated for determining the interaction
structure within networks. Finally, the reported results suggest a different usefulness of lagged
versus extended causality measures in the two applications. In cardiovascular analysis, where
instantaneous causality is expected to be physiologically meaningful [29], the results were more
interpretable, according to the known physiology, using the eDC than using the nDC. In EEG
analysis, instantaneous causality is probably including confounding, non-physiological effects
such as the signal cross-talk induced by volume conduction [32]; in this application, the detection
of a propagation direction for the alpha waves was possible using the nPDC but not using the
ePDC.

In conclusion, the proposed tool for the assessment of frequency domain causality has been
shown to be useful, both theoretically and in practical analysis, for counteracting the problems
arising from the presence of significant instantaneous effects in multiple interacting time series.
The versatility of the tool has been demonstrated, showing that different identification procedures
and causality measures may be chosen depending on the specific application of interest. We
showed that unambiguous model identification in practical analysis is enabled by additional
assumptions such as knowledge of the instantaneous causal structure or non-Gaussianity of
the model innovations. However, we also showed that failure to satisfy these assumptions may
lead to arbitrary estimates of model coefficients and connectivity patterns. Ongoing research
in machine learning is witnessing several efforts aimed at proposing new methods for the
identification of the instantaneous model that relax, at least partly, the model assumptions
[35,36], as well as new variants that improve estimation accuracy and robustness against near-
Gaussianity, scale invariance and outliers [37]. Because these modified estimators can be easily
incorporated in our framework for eMVAR identification, future developments of this study will
be directed to devising more accurate and general procedures for the estimation of frequency
domain causality in the presence of instantaneous effects.

Appendix A
Here, we formalize the aspects of model identification introduced in §3a. A simple, consistent
and asymptotically efficient estimator for the strictly causal MVAR model (3.1) is the MV
least-squares method. It is based first on representing (3.1) through the compact representation
Y = AZ + U, where A = [A(1) · · · A(p)] is the M × pM matrix of the unknown coefficients,
Y = [Y(p + 1) · · · Y(N)] and U = [U(p + 1) · · · U(N)] are M × (N − p) matrices and Z = [Z1 · · · Zp] is
a pM × (N − p) matrix having Zi = [Y(p − i + 1) · · · Y(N − i)] as ith row block (i = 1, . . . , p). Given
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this representation, the method estimates the coefficient matrices through the well-known least-
squares formula Â = YZT[ZZT]−1, the innovation process as the residual time series Û = Y − ÂZ,
and the innovation covariance as Σ̂ = cov(Û).

Once the strictly causal model is estimated, the second crucial step in the estimation of
the eMVAR model (2.1) consists of the identification of the instantaneous model U = LW. The
eMVARis approach is based on the initial knowledge of a causal ordering of the observed
processes y1, . . . , yM, i.e. of a vector of indices κ = [κ(1), . . . , κ(M)], such that instantaneous
causality is allowed, for each j < i, from yκ(j) to yκ(i) but not from yκ(i) to yκ(j). To identify the
model, first an M × M permutation matrix P is defined such that its elements are equal to one
in the position (m, κ(m)) and are equal to zero elsewhere (m = 1, . . . , M). Second, the strictly
causal residual covariance Σ̂ estimated as indicated above is permuted to obtain Σ̂p = PΣ̂PT.
The permuted covariance is then decomposed in Cholesky factors as Σ̂p = LpΛpLT

p, where the
resulting matrix Lp is lower triangular by construction and represents the permuted version of
the mixing matrix estimate. Returning back to the original ordering of the time series yields
L̂ = PTLpP, from which instantaneous effects and extended residuals are easily estimated as

B̂(0) = I − L̂
−1

and Ŵ = L̂
−1

Û. Note that, because application of the Cholesky decomposition
always leads to a lower triangular matrix, this approach is feasible only as a consequence of
the initial imposition of a causal ordering for the instantaneous effects (so that the permuted
instantaneous effects matrix is lower triangular).

The second considered approach, i.e. the eMVARng approach, identifies the instantaneous
model U = LW according to the algorithm proposed in Shimizu et al. [23]. As a first step,
the algorithm applies ICA on the residuals Û. ICA finds a mixing matrix M and a set of
source processes S such that U = MS. The mixing matrix M can be identified as long as the
distribution of U is a linear, invertible mixture of independent and non-Gaussian components.
In fact, the problem is solved looking for the transformation Q = M−1 that makes the sources
S = QU maximally non-Gaussian, and thus maximally independent. In principle, identification
of the instantaneous model could result directly from ICA, i.e. we could take L̂ = M̂ and Ŵ = Ŝ.
Unfortunately, the order and scaling of the independent components resulting from ICA are
completely arbitrary; this means that the matrices M and Q are found up to permutation and
scaling. Thus, the second step of the algorithm exploits the desired relationship between L and
B(0), i.e. L−1 = I − B(0), to solve the permutation and scaling indeterminacies. Specifically, as B(0)
is expected to have zero diagonal, the estimate of L−1 must have all ones on the main diagonal,
and thus the row permutation of Q = M−1 corresponding to the correct model cannot have a
zero on the diagonal. Hence, the matrix Q resulting from ICA is row-permuted to get a matrix Q̃
with the largest possible elements on the diagonal; each row of Q̃ is then divided by its diagonal
element to get rescaling towards a new matrix Q̄ with all ones on the diagonal. Finally, the model

is solved by taking L̂ = Q̄
−1

(or, equivalently, B̂(0) = I − Q̄), and Ŵ = L̂
−1

Û.
The conditions for identifiability of the instantaneous model are that the variables in W are

mutually independent and, if the eMVARng approach is used, then non-normally distributed. The
assumption of non-normality follows directly from the utilization of ICA, which is known to find
a mixture of independent components, and is successful only when these components have non-
Gaussian distribution. Another condition for the algorithm proposed in Shimizu et al. [23] is that
the matrix of the instantaneous effects B(0) corresponds to a directed acyclic graph, that is, a causal
ordering exists for the variables in W such that no later variable causes any earlier variable. Under
this condition, the row permutation performed on Q is unique, i.e. there is no other admissible
permutation yielding a correct representation of the instantaneous model [23]. If the graph
depicting B(0) is not acyclic, the obtained solution is not improper, but is rather the representation
of one of the (many) admissible models fitting the observed data distribution [17]. In order
to check the ‘degree of acyclicity’ of the estimated instantaneous model, one might proceed as
follows [23]: find the identical row and column permutation of B̂(0) in terms of minimizing the
sum of squares of elements on and above the diagonal, that is

∑
i≤j b̃2

ij(0), where b̃ij are elements

of the permuted matrix; then, take
∑

i≤j b̃2
ij(0)/

∑
b̃2

ij as a score and issue a warning, indicating the
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probability of a non-unique representation of the instantaneous effects, if this score is larger than
a predefined threshold (say, 5%). Note that the assumptions of non-Gaussianity and acyclicity are
not required when the instantaneous model is identified through the eMVARis approach, because
imposition of a causal ordering entails acyclicity of B(0) and avoids the utilization of ICA from
which the requirement of non-Gaussianity stems.
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