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Abstract

This study proposes an integrated approach, framed in the emerging fields of
network physiology and information dynamics, for the quantitative analysis of
brain—heart interaction networks during sleep. With this approach, the time
series of cardiac vagal autonomic activity and brain wave activities measured
respectively as the normalized high frequency component of heart rate varia-
bility and the EEG power in the 6, 0, a, o, and f bands, are considered as
realizations of the stochastic processes describing the dynamics of the heart
system and of different brain sub-systems. Entropy-based measures are exploited
to quantify the predictive information carried by each (sub)system, and to dissect
this information into a part actively stored in the system and a part transferred to
it from the other connected systems. The application of this approach to poly-
somnographic recordings of ten healthy subjects led us to identify a structured
network of sleep brain—brain and brain—heart interactions, with the node
described by the  EEG power acting as a hub which conveys the largest amount
of information flowing between the heart and brain nodes. This network was
found to be sustained mostly by the transitions across different sleep stages, as
the information transfer was weaker during specific stages than during the whole
night, and vanished progressively when moving from light sleep to deep sleep
and to REM sleep.
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1. Introduction

Physiological systems under neural regulation, such as the cerebral, cardiac, circulatory, and
respiratory systems, exhibit degrees of activity and interactivity which transiently change over
time under different physiological states. A condition in which the interplay between different
physiological systems is particularly evident is sleep. Indeed, it is well known that sleep
modulates the activity of a variety of physiological systems, including the motor, cardiac,
vascular, respiratory, and cerebral ones [1-6]. This is clearly shown by the physiological
changes in motor control, blood pressure, heart rate, respiratory activity and EEG activity
documented during sleep in healthy subjects. Stage organization of sleep also reflects
modulations of the activity of the autonomic nervous system (ANS), with non-rapid eye
movement (NREM) sleep associated with reduced sympathetic ANS activity and enhanced
parasympathetic ANS activity, and REM sleep associated with irregular activation and
deactivation of these functions [1]. Moreover, a strong interaction between autonomic cardiac
activity and delta wave activity in the EEG has been documented [3, 7, 8].

Physiological interactions are commonly probed noninvasively by extracting information
from the analyzed systems in the form of time series data, and then applying time series analysis
methods in an attempt to elucidate the underlying mechanisms. Many studies in the literature
provide strong evidence for the existence of a relation between the properties of biomedical
time series and physiological function, although such evidence comes mostly from the analysis
of dynamics within a single system (e.g. variability of the heart rate, activity and connectivity
within the brain [9, 10]) or at most between two systems (e.g. cardiovascular, cardiorespiratory
or brain—heart interactions [3, 11]). More recently, a system-wide integrative approach to the
analysis of multiple time series measured from diverse systems has been introduced, paving the
road to the development of the novel field of network physiology [12, 13]. With this approach,
new information that could not be obtained from the study of individual systems was uncovered
from the study of networks of the physiological systems [12]. Moreover, since each
physiological system is itself composed of many interacting subsystems, the framework can be
extended to the analysis of physiologic networks [13]. Overall, this view emphasizes the
importance of looking at physiological interactions by considering each physiological system
not only as an isolated network of regulatory subsystems, but also as a part of a broader network
where diverse systems are closely connected with each other.

Nevertheless, identifying networks comprised of different interacting physiological
systems, each with its own internal dynamics, is a considerable challenge that requires the
development of methodological approaches that are able to tackle the complexity of the
involved systems and to describe the different aspects of network activity and connectivity. For
this reason, traditional time and frequency domain methods for time series analysis, though
widely used, e.g. in the study of brain connectivity or cardiovascular interactions [10, 14], may
not suffice to fully describe the time- and state-dependent changes in the architecture of
complex physiological networks. The present study introduces a novel information domain
approach for the description of physiological networks, framed in the emerging field of
information dynamics [15]. Through the computation of entropy-based measures, the approach
allows the decomposition of the information content of each studied system into amounts of
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information actively stored in the system, and transferred to it from the other systems in the
network. The method is applied to the analysis of physiological networks describing sleep-
related oscillations of the cardiac parasympathetic activity and the amplitude of several brain
waves, performed on whole-night polysomnographic recordings acquired from healthy subjects.
We show that the approach detects significant amounts of information stored in the heart and
brain systems, as well as information transferred among these systems, and identifies a
structured network of brain—brain and brain—heart interactions that is peculiar to the transitions
across light sleep, deep sleep, and REM sleep.

2. Methods

2.1. Subjects and experimental protocol

Ten healthy young males (18-23 years old), with no current or previous somatic, psychiatric or
sleep pathologies, and reporting a regular sleep—wake schedule, were considered for the study.
Each subject stayed in the sleep unit and the first night was free of monitoring to allow adaption
to the sleep unit. Full polysomnography was performed during the second night to exclude sleep
pathologies and allow further adaptation. Then, monitoring was performed for two further
consecutive nights without measurement of respiratory and leg movements, in order to not
disturb sleep. Subjects were not allowed to sleep during the day, were asked to retire around
23:00, and were allowed to wake spontaneously in the morning.

During the analyzed night, polysomnography was recorded through a digital
polygraph (Brainnet, Medatec, Brussels) acquiring electro-oculograms, submental electromyo-
gram, three EEG channels (Fz-Ax, Cz-Ax, Oz-Ax, with Ax mastoid reference), and ECG
activity. Signals were amplified, filtered, rectified and integrated to obtain an appropriate
voltage, in accordance with the requirements of sleep stage determination, spectral analysis and
heart rate variability measurement. For subsequent analysis, the EEG was stored at 100 Hz and
the ECG at 200 Hz. A detailed description of the polysomnography protocol is reported in [3].

2.2. Data analysis and time series measurement

Sleep stage determination was performed in accordance with traditional classification criteria
[16]. Each 20s epoch of the Cz-Ax EEG derivation was visually scored as wake stage, sleep
stage 1, 2, 3, or 4, or REM sleep. Stages 1-4 were classified as NREM sleep (1-2: light sleep;
3—4: deep sleep). EEG analysis was performed in the frequency domain by applying a fast
Fourier transform to each consecutive 5s window of the Cz-Ax signal. The spectrum power
was evaluated inside the five conventional frequency bands (6: 0.5-3 Hz; 6: 3-8 Hz; a: 8—12 Hz;
0. 12-16 Hz; p: 16-25Hz) and then averaged every 60s. The time series obtained from the
brain system were the EEG power components expressed in normalized units (i.e. obtained as
the ratio between the power value in each specific band and the full night mean power value in
that band [17]).

The measurement of heart rate variability was performed according to a previously
validated procedure [3]. Briefly, after upsampling the ECG to 400 Hz to improve the detection
accuracy of the R peak, QRS complexes were automatically detected and RR intervals were
measured as the time differences between consecutive R peaks. After the detection and
correction of artifacts and ectopic beats, the RR interval series were interpolated and resampled
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Figure 1. Example of brain and heart time series synchronously measured every 60 s
during whole night polysmnography. (a) Sleep stage classification, evidencing periods
of NREM sleep (light sleep: green; deep sleep: blue) and REM sleep (red); sleep
arousals are not shown because their duration was always lower than the 60 s time scale.
(b) Descriptive time series for the heart system X, quantifying the evolution over time of
the normalized HF power of the cardiac RR interval. (c) Descriptive time series for the
brain system Y, quantifying the evolution over time of the normalized EEG power
within the J, 8, a, o and f bands. The six time series are synchronously measured every
60 s. Portions relevant to the different sleep stages are color coded according to (a).

regularly at 8 Hz; then, power spectral analysis was performed according to validated
recommendations [9]. Spectral analysis was performed on consecutive windows of 120s,
overlapped by half. The time series obtained from the heart system was the power of the RR
interval spectrum computed inside the high-frequency band (HF, 0.15-0.4 Hz), normalized to
the total power in the range 0.04-0.4 Hz [3, 9]. An example of the heart and brain time series
measured for a representative subject is shown in figure 1.

2.3. Information domain analysis

The proposed time series analysis approach is based on the consideration of the physiological
time series measured for each subject as realizations of stochastic processes descriptive of the
behavior of a composite dynamical system. Specifically, we consider the overall observed
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physiological system S={X, Y}, composed of the heart system X and the brain system Y. The
states visited over time by system X are described by the stochastic process X, measuring the
normalized HF variability of the cardiac RR interval. System Y is thought of as being composed
of five subsystems described by the set of processes Y={Y;, k=1,...,5}, with each constituent
process Y, measuring the normalized amplitude of a specific EEG wave (respectively 6, 0, a, o,
and ). Moreover, we denote X,, and Y, as the scalar random variables obtained by sampling
the processes at the present time n, and X,, =[X,_; X,,—> -] and Y, =[Yx -1 Y& n— -] as the
(infinite dimensional) vector variables describing the whole past of each system. In accordance
with this representation, in the following we present an information—theoretic approach for the
study of the dynamical dependencies of interacting processes in the brain—heart network.

Following the general analysis framework proposed in [18], the global dynamical
information carried by the composite system S can be characterized by means of the multi-
information measure Mg = Px+ Py, where Px and Py quantify the predictive information about
the heart system and the brain system, respectively. The system predictive information
quantifies the amount of information carried by the variable describing the present state of each
system (X, or Y} ,) that is explained by the set of the past states of the overall system (described
by the vector variable S, =[X,, @Y, ], with Y, =[Y{,®---®Y5,]; & denotes vector concatena-
tion). The predictive information about X and Y is defined as

Pe=H(X,) - H(X,| X, ® Yy)
=X X, ®Y,;)

K= ZZ:lPYk’

Bo=H (%) = H( Yin

X~ @ Yn‘)
=1(Yin X, ® Y), 1)

where H(-) and H(-l-) denote respectively entropy and conditional entropy, and I(-;-) denotes
mutual information. The quantities in (1) can be conveniently decomposed, exploiting the chain
rule for conditional entropy [19], into a sum of contributions that put in evidence the
physiologically relevant elements of information dynamics. In particular, predictive information
about the heart system can be expressed as

Pe=H(X,) - H(X,| X7) + H(X.| X))
—H(X,| X; @ Y;) = Sx + Ty-x, 2)

where Sy=1(X,;;X,,) is a measure of the information storage [20, 21] in the heart system, and
Ty_x=1(X,;Y, |IX,) quantifies the information transfer [22] from the brain system to the heart
system. The overall brain-to-heart information transfer 7y_x can be further expanded, with
reference to the specific brain rhythm identified by the process Y;, as

Ty-x=H(X,| X;) - H(X.| X; ® Y ,)
+H (X, X7 ® Y ,) — H(X,| X, © Y;)

=Ty»x + Tynvy—xve 3)
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where Ty _, x =1(X,,;Y; ,X,;) measures the information transfer from the kth brain subsystem to
the heart system, and Tyy_ X% =1(X,;Y,\Y.\X,, ®Y,,) quantifies the contribution to
the predictive information of the heart system brought by all of the remaining brain subsystems
(\ denotes subtraction from a set). In a similar way, the predictive information about the kth
brain subsystem can be expressed as

Bo=H(%,) - H( %,

Yia)+ H( %

Yia)

—H ( Vi X, @Y,

Xy @ Yi,)+ H( Y
—H ( Yiu| X7 @ Y;)
= Sy, + Tx—y, + Ty\i- v x “4)

where Sy, =1(Yy ,;;Yy,,) measures the information stored in the kth brain subsystem, Tx_y, =1
(Yin:X, 1Yy,,) measures the information transfer from the heart system to the kth brain
subsystem, and Ty\y, .y, |x =1(Y}. ;Y \Yi ol X, @Y ,,) reflects the brain internal dynamics towards
the kth subsystem (i.e. the transfer to the kth subsystem from all other subsystems).

While the decompositions in (2, 3) and in (4) are useful to explain how the system
predictive information is expressed in terms of contributions from the constituents of the overall
system, they do not put in evidence the direct transfer of information between pairs of
subsystems within the observed network, i.e. the transfer not mediated by any of the remaining
subsystems. The direct transfer is useful to infer the structure of the network of interacting
processes. It is computed between two processes S; and S;, taken as descriptives of single
components of the overall system S={S;,....S¢} ={X, Yy,...,Ys}, by means of the partial
transfer entropy measure [23]

s,)

S \ST), (5)

S\ST,) = H(Sjn

Ds,s, = Tsiasj‘S\{S,-,sj} = H( Sjn

=1(Sjm ST

i,n

In the network representation, we identify links of the so-called brain—brain subnetwork
when D is computed between two elements of the brain system Y (i.e. Dyl._,y,,, i, j=1,....5, i#)),
and links of the so-called brain—heart subnetwork when D is computed involving the heart
system X (i.e. Dx_y, or Dy_x, k=1,...,5).

2.4. Estimation approach

All of the measures of information dynamics presented in the previous subsection can be
expressed as the difference between entropy terms or, equivalently, as (conditional) mutual
information terms. Hence, the practical application of the proposed analysis framework
presupposes the adoption of reliable estimates of conditional mutual information. While non-
parametric methods may be recommended in the presence of relevant nonlinear effects [24-26],
these methods are difficult to implement in practice. Especially in this study, the necessity to
estimate entropies of high-dimensional vector variables starting from short data sets might make
the utilization of model-free approaches unfeasible. For this reason, and for the sake of
computational load, in this work we exploited the close connection between information theory
and predictability, whereby conditional entropy is related to the error probability of a regression
model [19, 27], and conditional mutual information—being the difference between two
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conditional entropies—is related to the ratio between the error probabilities of two regression
models. In particular, the mutual information between the generic scalar variable Z and the
vector variable V conditioned to the vector variable W can be expressed as

Z(Z|W)

1(Z; VIW) =05In ——= "2
SZIVe W)

(6)

where X(ZIW) and 2(ZIV@W) are the variances of the prediction errors resulting from a
regression of Z on W and on V@W, respectively. Therefore, the predictive information, as well
as each information storage or transfer term, can be computed as in (6) letting Z be the variable
associated to the present state of the observed system (i.e. X,, or Y} ,,, k=1,...,5), and letting V
and W be the vector variables associated to the considered past system states (i.e. a proper
combination of X,, and Y ,); in the computation of predictive information and information
storage where the first entropy term is not conditioned, W is the empty vector so that (6) reduces
to the mutual information /(Z;V), with 2(Z) denoting the variance of Z.

In this study we used linear prediction models, so that the generic prediction error variance
2(ZIW) is the variance of a linear regression of Z on W. This allowed us to compute the
prediction error variance exclusively in terms of variances and covariance matrices as [28]

S(Z|W)=2X(Z) - Z(Z, WZ(W) 'zzZ, w)T, (7)

where 2(2), 2(W) and X(Z, W) denote the variance of Z, the covariance matrix of W and the
cross-covariance matrix between Z and W, respectively. For practical computation, the infinite
dimensional vectors descriptive of the past system states were truncated at dimension p. When
X is the observed system, this means that a linear regression of X,, on a proper concatenation of
X5 =[X-1-X,—p] and Y, = Yin1"Yinpl was performed to compute the conditional entropy.
When the observed system is one of the Y, the regression was performed using Yy, as the
predictee, and a concatenation of Y%, =[Yy 1Yk »—p] and X5, =[X,;--X,,_,+1] as predictors; in
this case a zero-lag effect from the present state of the heart system to the present state of any
brain system was allowed to account for the longer memory of the RR interval HF power
compared to the EEG band powers imposed by the adopted measurement convention (i.e. the
information represented by X, was collected over 120s, overlapped only for the second half
with the 60 s used for the computation of Y; ,). The maximum lag p was selected according to
the Bayesian Information Criterion (BIC) [29] applied separately to each performed linear
regression.

Exploiting the analogy between entropy and predictability also has the advantage that it
allows the solid evaluation of the significance of each estimated measure of information
dynamics, based on the utilization of F-statistics. Indeed, assessing the statistical significance of
any mutual information I(Z;VIW) expressed as in (6) can be conceived as being equivalent to
comparing two regressions: a so-called unrestricted regression, where Z is predicted using the
full set of predictors contained in VW, and a restricted regression, where Z is predicted using
only the reduced set of predictors contained in W. Accordingly, statistical significance is
assessed by a parametric test performed over the residual sums of squares of the restricted
model (RSSr) and of the unrestricted model (RSSu). The test statistic is F'= ((RSSr-RSSu)/nr)/
(RSSu/(N-ncoeff)), where N is the number of predicted points, nr is the number of restrictions,
and ncoeff is the total number of coefficients for the unrestricted model. Then, the tested
measure is taken as significantly larger than zero if F is larger than the critical value of the
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Figure 2. Information decomposition for the heart system during full night
polysomnography (sleep stages 1-5). The predictive information of the heart system,
Py (mean over 10 subjects, proportional to the area of the pie chart), is expanded as the
sum of the information stored in the heart system, S, and the information transferred to
X from the brain system, Ty_ x. The information transfer is further decomposed into the
transfer from the kth brain rhythm, 7y _.x, and transfer from the remaining brain
rhythms, Ty —x|%o according to all five possibilities (k=1,...,5). The number of

statistically significant values (out of the ten subjects) is reported for each measure.

Fisher distribution with (nr, N-ncoeff) degrees of freedom computed for some prescribed
significance level a (in this study, a=0.01).

In the practical computation, the analysis of information dynamics was performed twice:
first on the whole time series encompassing all sleep stages; and then considering only the light
sleep state (stages 1-2), the deep sleep state (stages 3—4) or the REM state (periods of
wakefulness corresponding to sleep arousals were ignored because their duration was too short
when compared with the 1 min time scale of the analysis). State-specific analysis was executed
by performing restricted and unrestricted linear regressions after pooling together the portions
of the time series measured during the sleep epochs classified as belonging to each specific state
(different colors in figure 1). Care was taken to prevent any realization of the predictee and of its
corresponding set of predictors from encompassing different epochs; this means that in the
computation of each scalar element of the covariance matrices used in (7), every covariance
sample drawn from blocks of data identifying two different epochs was excluded from the
estimation sum.

3. Results

The mean duration of NREM sleep was 338 +24 min (light sleep: 221 +27 min; deep sleep:
118 £31 min) and that of REM sleep was 106 + 24 min (24% of total sleep time). These values
were in line with previously reported results in healthy subjects [3, 30].

According to the F-test performed for the brain and heart time series, the predictive
information was statistically significant in all subjects, both when computed for the full time
series and for each single sleep stage. This indicates the existence of structured dynamics during
sleep both for the RR interval HF component and for the amplitude of all EEG waves. The
sources of information that determine these structured dynamics were investigated through the
proposed decomposition strategies, resulting in the information dynamical quantities depicted in
figures 2, 3 for the full night analysis, and in figures 5, 6 for the sleep stage analysis. Moreover,
the direct transfer of information between pairs of constituent systems of the whole observed
brain—heart physiological network was assessed by computing partial transfer entropies,
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Figure 3. Information decomposition for the brain system during full night
polysomnography (sleep stages 1-5). The predictive information of each brain
subsystem, B, (k=1,...,5, mean over ten subjects, proportional to the area of the pie

chart), is expanded as the sum of the information stored in the subsystem, Sy, the
information transferred to the subsystem from the heart system, Tx_y, and the
information transferred from the other brain subsystems, Ty\yk_,yk| x. The number of
statistically significant values (out of ten subjects) is reported for each measure.

B e
S; — n=4-6
I
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Figure 4. Dynamical interactions in the brain-heart physiological network during full
night polysomnography. The six network nodes represent the cardiac HF dynamics
(process X) and five different brain dynamics (processes Yi,...,Ys related to the 6, 0, a,
o, ff brain waves). Connecting arrows depict the direct information transfer, assessed by
the measure D of equation (5). The values of D (mean over 10 subjects) are color-coded
for the brain—brain subnetwork (blue color grades) and for the brain—heart subnetwork
(red color grades); the arrow thickness is proportional to the number n of subjects for
which D was detected as statistically significant; this number is also reported beside
each arrow.

resulting in the network representations depicted in figure 4 (full night) and figure 7 (sleep
stages).

The decomposition of the predictive information about the heart system (figure 2)
evidences significant amounts of information storage within the system, as well as information
transfer from the brain system (Sy and Ty_x are statistically significant in all subjects). The
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Table 1. Incoming and outgoing connections for the nodes of the brain—brain subnet-
work. For each node of the brain—brain subnetwork (system Y;, k=1,...5), values are
the number of subjects for which a statistically significant direct information transfer
was detected for the incoming connections (Dy_y,, i#k) and for the outgoing con-

nections (Dy,—y,, i#k).

k rhythm in out ratio
1 6 18 11 1.64
2 0 21 10 2.10
3 «a 21 11 191
4 o 8 18 044
5 p 8 23 035

decomposition of the information transfer evidences the brain system associated to the f rhythm
as the one transferring the largest amount of information to the heart system, with values of
Ty, x that were statistically significant in nine out of ten subjects. On the contrary, the transfer
was low or negligible for the 6, 6, a and o thythms (T . x, k=1, 2, 3, 4, was significant in O, 1,
2, and 3 subjects).

The predictive information about the brain subsystems (figure 3) was higher for the 6
rhythm, and lower for the f rhythm, than for the 6, @ and ¢ rhythms. Nevertheless, the
predictive information A, and the information storage Sy, were statistically significant in all
subjects and for all rthythms. The information transfer from the heart system was substantial
towards all brain subsystems (Tx_,y, was significant in 9, 9, 8, and 10 subjects for k=1, 2, 3, 5
respectively) but not for the ¢ rhythm (Tx_ y, was significant in only 3 subjects). The transfer of
information within the brain system, quantified by the measure Ty\y,.y,|x, was considerable for
the 9, 6, and a rhythms (significant in 10, 10, and 9 subjects respectively) while it was lower for
the ¢ rhythm and especially for the f rhythm (significant in 5 and 3 subjects respectively).

The above results were confirmed in terms of direct information transfer computed
between each pair of subsystems and depicted in the network representation of figure 4. While
directed interactions originating from the heart system were detected toward each brain
subsystem, the largest direct information transfer was identified toward the # node (Dy_,y, is of
higher modulus and significant in nine out of ten subjects). For the opposite direction, from
brain to heart, the direct transfer originates almost exclusively from the S node (Dyx_y, is
significant in 0, O, 1, 3, 8 subjects for k=1, 2, 3, 4, 5 respectively). As regards to the brain—brain
subnetwork, it appears fully connected but with some features differentiating the different brain
rhythms in terms of outgoing and incoming connections relevant to the corresponding network
nodes (table 1). Indeed, nodes corresponding to the slower EEG waves (0, 6, and @) receive
more information than those sent out towards the other nodes, as documented by values >1 of
the ratio between the number of incoming connections and that of outgoing connections. On the
contrary, nodes describing ¢ and f activity are characterized by a small number of incoming
links and a large number of outgoing links (ratio <0.5).

Computing the information theoretical measures on the portion of the time series measured
during the different sleep stages led us to the results depicted in figures 5 and 6 for the
information decomposition analysis, and in figure 7 for the network structure analysis. While
the overall predictive information and the information storage relevant to each subsystem were

10
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Figure 5. Information decomposition for the heart system during different sleep stages:
light sleep (a), deep sleep (b), and REM sleep (c). Symbols and colors are as in figure 2.

significant in all subjects at each sleep stage, the transfer of information across the system
underwent significant modifications when computed during specific sleep stages compared with
the full night analysis. Figure 5 shows that the brain-to-heart information transfer, though being
on average larger during the single sleep stages than for the full-night recordings, progressively
lost significance going from light sleep to deep sleep and REM sleep (Ty_.x was statistically
significant in 7, 5 and 2 subjects for stages 1-2, 3—4, and REM, respectively); this decreased
significance was mirrored by the lower number of subjects showing significant transfer from the
B EEG wave to the cardiac time series. As seen in figure 6, the transfer from the heart system to
each brain subsystem was also less significant during single stages compared to the full night
analysis, with a drop of statistical significance that was particularly evident during REM sleep.
Figure 6 also documents that the information transfer internal to the brain—brain network went
through a similar reduction in statistical significance, in particular during REM sleep. These
findings were supported by the direct transfers depicted in figure 7, indicating a progressive
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Figure 6. Information decomposition for the brain system during different sleep stages:
light sleep (a), deep sleep (b), and REM sleep (c). Symbols and colors are as in figure 3.

decrease in strength and the number of network connections while moving from light sleep to
deep sleep, and from deep sleep to REM sleep. Compared with the full night condition, during
light sleep the brain—heart subnetwork was at least partly preserved (e.g. properties of the direct
link from cardiac HF power to f wave power were substantially unchanged), while the
brain—brain subnetwork showed more sparse and less strong connections. The consistency and
strength of the direct information transfers were dampened further during deep sleep, and were
almost totally lost during REM sleep.

4. Discussion

In this study, the complex network of dynamical brain—heart interactions that subserves human
physiological variability during sleep was investigated, building on two relatively new and as
yet in part unexplored fields, i.e. network physiology [12] and information dynamics [15]. The
exploitation of an integrated analysis approach developed within these fields makes it possible
to deal with the complexity and the diversity of the dynamical activity and connectivity of
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Figure 7. Dynamical interactions in the brain—heart physiological network during
different sleep stages: light sleep (a), deep sleep (b), and REM sleep (c). Symbols and
colors are as in figure 4.

different physiological systems. Indeed, the framework of information dynamics provides a
meaningful way to assess the predictive information carried by each considered physiological
system, and to dissect this information into a part actively stored in the system, and a part
transferred to the system from other physiological (sub)systems connected to it. With this
approach, we documented the existence during sleep of a network of dynamical interactions
between the strength of the cardiac vagal component and the amplitude of the different EEG
waves, taken respectively as the descriptive variables of the heart and brain physiological
systems. Interactions inside this network were described in terms of significant information
transfers both within the brain—brain subnetwork and between this subnetwork and the heart
system. In particular, we identified the EEG f rhythm as the hub of this complex network, i.e.
the node which sends to the heart system the largest part of the information flowing from the
brain-brain subnetwork and, at the same time, conveys to the other brain subsystems the
information arriving from the heart system. Interestingly, the network was found to be sustained
mostly by the transitions across different sleep stages, as the information transfer was weaker
during specific stages than during the whole night, and diminished when moving from light
sleep to deep sleep and to REM sleep.

4.1. Information dynamics approach to the study of sleep brain—heart physiological interactions

The most distinctive features of the information domain analysis presented in this study are that
it is performed according to a fully multivariate perspective, and it allows the investigation of
the sources determining the statistical structure of each observed dynamic process. The
application to sleep data has revealed that all of the dynamic processes describing the activity of
the heart system X and of the different brain subsystems (Y ,...,Y5) carry significant amounts of
information that can be predicted from the knowledge of their own past (information storage),
and from the past of the other processes (information transfer). The storage of information
within a system may originate from internal memory mechanisms associated with the individual
target process, but also from an apparent memory in the process caused by information storage
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lying in another (either observed or unobserved) element which is driving the target process
[21]. In our study, the information storage observed within the heart system (figures 2, 5) may
originate from fluctuations in the autonomic activity causing predictable dynamics in the
overnight course of the HF component of HRV [31, 32]. In the brain system, the conspicuous
information storage observed for all subsystems (figures 3, 6) is likely to result both from the
known sleep-related modulation of individual EEG waves [33, 34], and from their well-
described correlation [35-37]. The existence of a correlation between the time-courses of the
amplitude of slow and fast EEG waves is confirmed by our analysis, and also by looking at the
structure of the brain—brain subnetwork, which appears fully connected (figure 4, blue-coded
arrows). In addition to revealing correlated activities, our analysis also allows the
characterization of the patterns of directional connectivity within the brain—brain subnetwork.
Our results lead to an interpretation of the negative correlation between slow and fast EEG
waves observed in previous studies [35—-37] as the result of directed interactions occurring from
the fast o and f rhythms to the slower @, 6 and 6 rhythms (figure 4, table 1).

Our analysis of information transfer between the heart and brain systems supported the
findings of several previous studies documenting the existence of an interaction between HRV
and the amplitude of the various EEG waves [3, 4, 6-8, 38-40]. While these studies were
limited, from a methodological point of view, by the fact that they were based on bivariate and
non-causal approaches, the extension towards a multivariate and causal perspective offered by
the present work allowed us to investigate the nature of the observed brain—heart interactions in
more detail. Our results indicate that the overnight physiological coupling between the cardiac
vagal component and the EEG rhythms is bidirectional, as significant amounts of information
transfer were detected along the heart-to-brain direction (X — Y) as well as along the brain-to-
heart direction (Y — X). The analysis particularized to the different brain subsystems (Yy,...,
Y5) allows the investigation of how each brain rhythm contributes to directing the information
transfer to and from the heart system. In particular, both information decomposition and
network structure analysis indicate that the EEG f oscillations play a pivotal role in mediating
the brain—heart information transfer. Such a role is evidenced: (i) by the fact that the transfer
from a single brain subsystem to the heart system is nontrivial only for the # waves (as shown in
figure 2 using the bivariate measure Ty, x, and in figure 4 using the multivariate measure
Dy, x); (i1) by the fact that the  node of the network receives the largest part of predictive
information flow originating from the heart system X (see figure 4) and at the same time has the
maximal outgoing capacity (see table 1). According to this interpretation, we suggest that
brain—heart interactions, as measured by the coupling between EEG wave amplitude and cardiac
vagal activity, occur firstly by means of direct reciprocal influences between the cardiac
component and the EEG power in the § band, and are then extended to the other EEG wave
oscillations through the connections of the brain—brain subnetwork. In addition to this novel
interpretation, the analysis of information transfer also provided confirmation of previously
reported findings. For instance, the unidirectional nature of the link between cardiac vagal
activity and EEG 6 power, observed in [3] measuring a negative cross-spectral phase shift (HF
HRYV precedes 6 EEG), is detected in our study by the substantially absent information transfer
from EEG 6 power to HRV HF power (Ty,_ x is never statistically significant in figure 2) and the
contemporaneous detection of a strong information transfer from HRV HF power to EEG 6
power (Tx_y, is always statistically significant in figure 3). With similar reasoning we also found
that the HRV HF power drives the EEG @ power and the EEG a power in a unidirectional way,
while its link with the EEG ¢ power is weak, and that with the EEG f power is strong and
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bidirectional. These results agree with, and partly explain, the values observed in [3] for the
phase shifts between the cardiac vagal component and the EEG bands (i.e. negative shifts for 6
and a, zero phase shift for o, and phase opposition for f).

In order to elucidate the role played by the different sleep stages in sustaining the observed
brain—heart and brain—brain interactions, the analysis was repeated particularizing the
computation of the information domain measures to light sleep, deep sleep and REM sleep.
Noticeably, while brain—heart and brain—brain information transfers were consistently detected
across subjects when considering the full night recordings (figure 4), the links progressively
lose consistence when moving from light sleep to deep sleep stages, and the interaction network
broke down during REM sleep (figure 7). Thus, although this result may partly reflect a lower
statistical power of the analysis performed on the shorter time series relevant to the specific
sleep stages, it seems that the observed interaction network is peculiar to the dynamical changes
encompassing several sleep cycles. Interestingly, the vanishing information transfer revealed by
the stage-specific analysis was observed together with a preserved information storage at each
node of the physiological network (figures 5, 6). The significant information storage in the heart
and brain systems indicates the presence of structured dynamics that, at the time scales explored
in this study, are probably reflecting the long-range correlations observable when looking at the
temporal evolution of the heartbeat intervals [41] and of the brain waves [42]. Nevertheless,
several important studies demonstrated that the long range fractal correlations of the cardiac
dynamics differ significantly in wakefulness compared to sleep [43], and particularly in NREM
sleep compared to REM sleep [44-46]. Thus, given that changes in the internal dynamics of a
physiological system may alter its coupling with other systems, the modifications occurring in
the long-range correlation structure of the cardiac dynamics with the transition from one sleep
stage to another may contribute to explaining the decoupling of the heart system from the brain
system components which we found during deep sleep and particularly REM sleep.

The essential role played by the sleep stage transitions in the formation of the observed
physiological networks contributes to provide a physiological interpretation for the type of
brain—heart and brain—brain interactions detected in the present study. In fact, it seems evident
that the measured brain and heart dynamics are affected by the depth of sleep and by the
transitions between NREM and REM sleep. On the one hand, the fluctuations in nocturnal
autonomic nerve tone induced by sleep stage transitions are clearly reflected in the HRV
spectrum, with the HF component representing a marker of vagal regulatory activity [9, 31]. On
the other hand, it is well known that the depth of sleep modulates the EEG spectral profile in a
way such that the amplitude of slow 6 and @ waves increases, and the amplitude of faster
rhythms decreases, when moving from lighter to deeper stages of sleep [34]. Therefore, we
hypothesize that the network organization of the nocturnal oscillations of HRV and EEG wave
amplitudes which we found in this study is sustained by the changes in autonomic activity
induced by rhythmic variations of the sleep structure.

4.2. Perspectives and limitations

The time scale of the oscillatory activities for which we assessed regularity and connectivity is
longer than the scale investigated in other recent studies performing a joint dynamic analysis of
EEG and HRYV time series [12, 47]. While in [12, 47] the time series samples were obtained
with a one second resolution, our sampling period was of one minute. Moreover, the dynamic
interactions among time series built in the same way as that used in this study were documented
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to occur with a maximal strength between brain and heart oscillations having a period greater
than 15 min [3], while on the contrary several transitions in the strength of physiological
interactions were observed in [12] within epochs of a few minutes. While investigating these
different time scales, both our study and the study of Bashan et al [12] have demonstrated the
existence of structured networks of physiological interactions describing the neuro-autonomic
regulation of cardiac and brain dynamics during sleep. At a shorter time scale, well defined
network topologies were observed for each specific sleep state, with higher network
connectivity during waking and light sleep periods, intermediate connectivity during REM
sleep, and low connectivity during deep sleep [12, 13]. At a longer time scale, we have found in
this study that network connectivity is generally low for each individual sleep stage, with a
strength progressively decreasing from light sleep to deep sleep and to REM. Most importantly,
the observed network of interactions appears to be sustained by the state transitions themselves,
as the analysis encompassing the transitions revealed a much higher connectivity. Overall, the
comparison between our findings and those of previous studies [12, 13] suggests that different
mechanisms of physiological coupling are evoked at different time scales, resulting in
interaction networks which are structurally and topologically different. This observation is
physiologically plausible, as demonstrated in a very recent study [48] in which brain, cardiac
and respiratory interactions were studied across sleep stages employing several analysis tools
and showing that integrated organ systems communicate through multiple mechanisms
operating at different time scales. Thus, our results and those in [12, 13, 48] support the view
that different physiologic systems may exhibit different forms of coupling, coexisting with each
other and acting on different time scales. Future studies should be directed towards the further
integration of quantitative measures into a multiscale, multivariate framework for physiological
interaction analysis during sleep.

In addition to the possibility of exploring different time scales, the approach presented in
this study may also be extended toward the identification of larger networks, either comprising
different physiological systems or increasing the number of analyzed output variables for a
single studied system. Indeed, on the one hand it is well known that systems other than the
cardiac and cerebral are involved in the complex regulation of the human organism: for
instance, circulation, ventilation and cerebral blood flow regulation have been often studied in
terms of cardiovascular, cardiorespiratory and cerebrovascular time series analysis [11, 49-51].
On the other hand, the multivariate analysis of signals measuring the electrical activity of the
brain and of the heart (recorded using multichannel EEG and ECG devices, for example) is
commonly performed when these systems are viewed as spatially distributed systems devoted to
the execution of specific functions (e.g. the processing of neural cognitive tasks or the mechano-
electrical cardiac activity). In this perspective approaches like ours, developed in the framework
of mapping a ‘network of networks’ [13], may be easily extended to provide a deeper
understanding of how communications across integrated organ systems arise from the behavior
of the physiological network describing the whole organism, as well as from the internal
activity of each constituent sub-network.

In the present study, the practical implementation of the information-theoretic tools has
been obtained under a linear approximation of the functional relations underlying the
computation of entropy measures. Equation (6) constitutes an exact expression for conditional
mutual information if the data under analysis are drawn from a joint Gaussian distribution [28].
In this case, it has been shown that the statistical dependencies in the data are fully captured by
linear prediction models like those used in the present study [52, 53]. On the contrary, when the
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data depart from the joint Gaussian distribution, equation (6) becomes an approximate
expression, and in such cases the adopted estimator may not be able to capture information
transfers or structures of dependence originating from nonlinear dynamics. This may constitute
a limitation, since signatures of nonlinear dynamical interdependence of HRV and EEG wave
amplitudes have been revealed during sleep [8]. In the dataset studied in this work the null-
hypothesis of joint Gaussian distribution was rejected (Royston’s multivariate normality test
[54]) in the majority of the considered subjects. However, assessing multivariate normality is
not a trivial issue, inasmuch as the many available testing procedures often lead to opposing
conclusions [55]. Most importantly, deviations from Gaussianity cannot be used to state the
unsuitability of the linear estimation approach, because they do not imply the prevalence of
nonlinear connectivity (e.g. interactions can be entirely linear even for non-Gaussian processes).
The role played by nonlinear dynamics should be more properly assessed, comparing the
information measures based on linear regression with those computed either from the
parameters of the particular multivariate distribution that fits the observed data [56], or from the
utilization of model-free approaches [25, 26, 57-59]. We aim to perform such a comparison in a
future contribution, in order to determine the extent to which nonlinearities contribute to the
generation of predictive information in brain—heart physiological networks during sleep.

5. Conclusion

The present study suggests that the complex network of dynamical interactions between the
strength of the cardiac vagal component of HRV and the amplitude of the different EEG
rhythms observed during sleep may be disentangled through the combined utilization of
network physiology and information dynamics. The analysis of the dynamics of information
within and between the overnight variability of the EEG and HRV power assessed in different
bands contributes to a better understanding of the physiological mechanisms underlying the
complex interaction between sleep and the cardiac autonomic control. In addition to the
physiological insight, elucidation of the mechanisms sustaining brain—heart interaction
networks during sleep may have significant medical and clinical implications. While the
clinical significance of brain—heart interactions depending on the stage organization of sleep has
been proven in specific pathologies like insomnia [40] or sleep apneas [39], the known
profound impact of sleep on both cardiovascular and cerebral regulation mechanisms makes the
system-wide approach proposed in this study eligible for the early diagnostic description of a
variety of cardiovascular disorders.
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