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The most common approach to assess the dynamical complexity of a time series across multiple temporal scales makes use of
the multiscale entropy (MSE) and refined MSE (RMSE) measures. In spite of their popularity, MSE and RMSE lack an analytical
framework allowing their calculation for known dynamic processes and cannot be reliably computed over short time series. To
overcome these limitations, we propose a method to assess RMSE for autoregressive (AR) stochastic processes. The method makes
use of linear state-space (SS) models to provide the multiscale parametric representation of an AR process observed at different
time scales and exploits the SS parameters to quantify analytically the complexity of the process. The resulting linear MSE (LMSE)
measure is first tested in simulations, both theoretically to relate the multiscale complexity of AR processes to their dynamical
properties and over short process realizations to assess its computational reliability in comparison with RMSE. Then, it is applied
to the time series of heart period, arterial pressure, and respiration measured for healthy subjects monitored in resting conditions
and during physiological stress. This application to short-term cardiovascular variability documents that LMSE can describe better
than RMSE the activity of physiological mechanisms producing biological oscillations at different temporal scales.

1. Introduction able to connect the complexity of a dynamic oscillation to its
temporal scale. The research in this context has been driven
by the work of Costa et al. [5], who introduced multiscale
entropy (MSE) as a measure of the complexity of a time series

evaluated as a function of the time scale at which the series is

An intrinsic feature of almost all physiological systems, which
is clearly visible in the time course of the variables measured
from these systems, is their dynamical complexity. It is indeed

widely acknowledged that physiological systems such as the
brain, the cardiovascular system, and the muscular system
produce output signals that exhibit highly complex dynamics,
resulting from the combined activity of several mechanisms
of physiological regulation which are coupled with each other
through structural and functional pathways [1-4]. Since these
multiple and simultaneously active mechanisms typically
operate across multiple temporal scales, a surge of interest has
emerged in the last two decades in computational methods

observed. Since its introduction, MSE has been successfully
employed in several fields of science [6], becoming a prevail-
ing method to quantify the complexity of biomedical time
series [7, 8] and gaining particular popularity in the analysis
of brain [9, 10] and cardiovascular variability [11, 12] signals.

In spite of its acknowledged usefulness, MSE has been
shown to present some shortcomings which have led many
authors to propose improvements and modifications of the
original algorithm [6]. The main problems identified in the
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original MSE formulation are related to both its defining
algorithmic steps, the rescaling procedure that changes the
temporal scale of the observed series progressively filtering
out the shorter scales and keeping the longer ones, and the
computation of the entropy rate of the rescaled time series
performed by means of the sample entropy (SampEn) metric
[13]. Specifically, it has been reported [11, 14] that the rescaling
procedure makes use of a suboptimal low-pass filter (i.e., an
averaging filter) which cannot prevent aliasing and that the
progressive application of SampEn employs a badly designed
coarse-graining step which makes MSE artificially decrease as
a function of the time scale. These problems were overcome
by the introduction of the so-called refined MSE (RMSE)
[11], which exploits well-designed procedures for low-pass
filtering and coarse graining.

Even though RMSE and other refinements and extensions
[6] have improved the performance and widened the appli-
cability of this methodology, some limitations still remain
which hamper a full exploitation of the concept underlying
MSE. The main limitation is in the fact that MSE requires long
time series to be reliably computed: as any nonparametric
entropy estimator, the SampEn is highly data-demanding,
and the issue is exacerbated at increasing time scales where
the rescaled signals get progressively shorter. This issue is
only partly addressed by versions of MSE that intensify the
number of patterns over which SampEn is calculated [15, 16],
because the problem ultimately stands in the lower number
of cycles of the slowest oscillations that are available for
a given data length. Another limitation is in the fact that
the length of the temporal scales which can be explored is
usually expressed in number of samples and is restricted to
integer values, thus limiting the possibility of fine-tuning the
elimination of the fast temporal scales. These issues strongly
limit the applicability of MSE or RMSE to short biomedical
time series, such as those typically considered in short-term
cardiovascular variability, where the dynamics of interest are
deployed over a few minutes (~300 samples) [17]. Moreover,
in this applicative context fine-tuning of the filtering process
is fundamental to elicit changes in complexity related to the
oscillatory rhythms typically observed in cardiovascular vari-
ability, that is, low-frequency (LE from 0.04 Hz to 0.15Hz)
and high-frequency (HE from 0.15Hz to 0.5 Hz) oscillations
(18, 19]. A further issue with existing MSE techniques is the
lack of theoretical procedures to derive exact values of the
multiscale complexity for known dynamical processes which
one can study analytically and can fully control; though being
theoretical, this issue has practical implications as analytical
methods would allow one to assess the estimation bias of
existing MSE measures.

The present study introduces a new approach for the
evaluation of multiscale complexity that is explicitly designed
to address the limitations of existing MSE methods described
above. The approach builds on recent theoretical advances
providing exact techniques for the analytical computation of
information-theoretic measures, including entropy rates, for
linear autoregressive (AR) stochastic processes [20-23]. The
key steps of the derivation of the new measure of multiscale
complexity, which we denote as linear MSE (LMSE), are the
closed-form representation of filtered and downsampled AR
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processes as state-space (SS) processes and the analytical
quantification of complexity from SS parameters. Following
these steps, we devise a procedure which allows an exact com-
putation of the refined version of MSE for linear processes,
starting from their AR parameters and from the desired scale
factor. Additionally, a technique to set the scale factor at any
rational number instead of an integer number is devised, thus
allowing the fine-tuning of the filtering step of MSE com-
putation. The proposed approach is tested on simulations of
linear stochastic processes, first in a theoretical analysis aimed
at relating multiscale complexity to the dynamical properties
of the process without the unavoidable errors connected
with estimation procedures and then in realizations of these
simulated processes generated to assess the computational
reliability of the LMSE compared with the traditional RMSE
estimator. Moreover, the comparative ability of LMSE and
RMSE in assessing the multiscale complexity of short-term
cardiovascular variability is assessed on the beat-to-beat time
series of the heart period, arterial pressure, and respiration
measured in a large group of healthy subjects resting in a
relaxed state and during two commonly studied conditions of
physiological stress, that is, postural stress and mental stress.

2. Approaches to Multiscale Entropy Analysis

2.1. Multiscale Entropy. Multiscale entropy (MSE), originally
proposed by Costa et al. [5], is a measure assessing the
complexity of a process across multiple temporal scales. Its
computation relies first on rescaling the observed process
(i.e., focusing on a specific range of temporal scales) and then
on assessing the dynamical complexity of the rescaled process
through the computation of its rate of entropy production.
Specifically, let us consider a discrete-time, stationary
stochastic process x with zero mean and variance o>. Let
us further define x(n) as the variable obtained sampling
the process at the discrete time n and set an integer scale
factor 7. The rescaling step is aimed at eliminating the fast
temporal scales and is performed applying the following
transformation to the original process x, which averages 7
consecutive samples to yield the rescaled process x,;:
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the rescaled process is denoted here as x; because it is a
downsampled version of the original process x; in fact, in (1)
one sample of the process x, is obtained by taking one sample
every T values of the averaged version of x, where averaging
is performed over 7 consecutive samples. The second part of
the procedure is implemented by calculating the conditional
entropy of the present state of the rescaled process, x;(n),
given its past states, x;(n) = [x (n - 1),x4(n - 2),...]. In
MSE, this is accomplished approximating the past history of
the rescaled process with the finite-length pattern xJ}'(n) =
[x;(n —1),...,x4(n — m)] and then on estimating the con-
ditional entropy by means of the Sample Entropy (SampEn)
metric [13]. SampEn is an estimate of the probability that
patterns which are detected as similar in the m-dimensional
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space remain similar also in the (m + 1)-dimensional space
when they are incremented with their future values, that
is, the probability that x/j*'(n, + 1) and x*'(n, + 1) are
similar given that x7}'(n,) and x/} (n,) are similar; similarity is
assessed through a coarse-graining procedure which applies
the Heaviside step function with parameter r on the distance
between patterns (i.e., 7 is a threshold such that x7}'(n,) and
x7}(n,) are similar if their distance in the m-dimensional
space is lower than r, where the distance is assessed using the
maximum norm).

The MSE measure resulting from the above procedure,
which we denote as C,(7), quantifies the dynamical com-
plexity of the original process x observed at scale 7. The free
parameters of the MSE estimator are the length m of the
patterns used to approximate the past of the process and the
threshold r that sets the similarity between patterns. In the
application of MSE, the pattern length is limited to a few
samples (typically, m = 2), while the threshold distance is
a fraction of the standard deviation of the original process
(typically, r = 0.2 - 0,).

2.2. Refined Multiscale Entropy. The original MSE formula-
tion suffers from two main limitations: the suboptimal proce-
dure for elimination of the fast temporal scales implemented
by (1), which tends to introduce spurious oscillations in the
rescaled time series, and the fact that the threshold parameter
of the coarse graining is kept at a constant value for all time
scales, which brings about an artificial reduction of the MSE
values with increasing scales. Valencia et al. [11] proposed a
refined MSE (RMSE) measure that is aimed at overcoming
these limitations. The solution to the first limitation is based
on the rationale that the rescaling procedure actually consists
of two steps: a filtering step which eliminates the fast temporal
scales from the original process and a downsampling step
that eliminates the redundancy introduced by the first step.
Accordingly, the filtering step was designed to limit as much
as possible the aliasing that can occur with the following
downsampling step.

In fact, the change of scale of a process x is performed first
applying a low-pass filter to obtain the filtered process x ;(n)
and then reducing the sampling rate of the filtered process
to obtain the rescaled (downsampled) process x,(1). The two
steps yield, respectively, the processes

q r
xpm) =Y b xmn-i)= Y c(j)xs(n=7),  (2a)
i=0 j=1

xg(n) = xg (n1), (2b)

where b(i) and c(j) are the filter coefficients and g and r
are the filter orders. As it averages T consecutive samples,
the original MSE formulation [5] implicitly applies a finite
impulse response (FIR) low-pass filter [24] of orders g = 7-1
and r = 0 (the filter is nonrecursive) and with coeflicients
b(i) = 1/t foreachi = 0,1,...,q = 7-1; the cutoff frequency
of the filter is constrained to the value f, = 1/(27). To
improve elimination of the fast temporal scales and satisfy
the Shannon theorem in the subsequent downsampling

step, the RMSE approach implements an infinite impulse
response (IIR) avoiding ripples in the stop band; specifically,
a Butterworth filter [24] of order g (with r = g — 1) is
implemented in which the coefficients b(i) and c(j) are set
to realize a low-pass implementation with cutoff frequency
f- [11]. This choice brings also the advantage that since the
cutoft frequency f, can take any real value, in RMSE the scale
factor T = 1/(2f,) is not constrained to integer numbers as
in MSE; this allows filtering out the oscillatory components of
the original process with a better resolution before computing
the complexity of the rescaled process.

Besides the type of filter, another crucial difference exists
between the original and refined formulations of MSE.
Whereas in MSE the parameter r is constant for all scale
factors, as it is set at a fraction of the standard deviation of the
original process (e.g., ¥ = 0.2 - 0,.), in RMSE this parameter
is set at a fraction of the standard deviation of the rescaled
process (e.g., r = 0.2 - 0, ). This choice is meant to reduce
the dependence of the estimated conditional entropy on the
decrease of variance due to filtering. As a consequence of this
refinement, RMSE does not exhibit a tendency to decline with
the time scale as a consequence of the inherent reduction of
the variance of the filtered process: for example, for a white
noise process MSE decreases with the time scale while RMSE
is constant.

2.3. Linear Multiscale Entropy. In this section we present a
method to assess the multiscale complexity of linear Gaussian
stochastic processes. The method is based on the fact that
if the variables obtained sampling the considered process
x have a joint Gaussian distribution, all the variability that
defines the entropy rate of the process is fully captured by
a linear autoregressive (AR) model [25]. Accordingly, let
us consider the linear AR representation of the process x,
defined as

p
x(n)=Y a(k)x(n-k)+e(n), 3)
k=1
where p is the order of the process, a(k), k = 1,...,p,
are linear regression coefficients describing the interactions
between the process variables as a function of the lag k, and
e(n) is an innovation process with variance o7. The process x
is fully described by the AR model (3) when the innovation
process e is formed by uncorrelated Gaussian variables.
Given the AR representation, the variance of the process
and of the innovations can be used to derive an information-
theoretic description of the statistical structure of the process
[26]. Specifically, the entropy of the process is related to its
variance by [27]
H.

1
= 3 In Zneoi, (4)

and the entropy rate of the process, that is, the conditional
entropy of the present x(n) given the past x™(n) = [x(n —
1), x(n — 2),...], is related to the variance of the innovations
by [28]

H

1
M = 3 In 27‘[60'62. (5)



Then, (4) and (5) can be combined to provide a version
of the conditional entropy which quantifies the dynamical
complexity of the normalized process as

1 1 A
C,=H,--H.+ > In 27re = > 1n27rea—;; (6)
X

X

note that applying (6) corresponds to computing the condi-
tional entropy of the original process after normalizing it to
unit variance.

Now we turn to show how to compute analytically the
variance of the AR innovations after rescaling the original
process, in a way such that this variance can be used as in
(6) to assess multiscale complexity. First, we perform a virtual
upsampling of the original process x, by setting an integer
upsampling factor s and by defining the process

PS
x,(n) =) a,(k)x, (n-k) +e, (), (7)
k=1

where p, = p - s is the order of the upsampled process and
the coeflicients a,, are set to be a zero-padded version of the
original AR coeflicients; that is, we set a,,(Is) = a(l) for each
I=1,...,panda,(k) =0foreachk =1,..., p,, k # Is. Note
that the innovations for the original and upsampled processes
are formally the same, that is, afu = 0. Then, we filter the
upsampled process using a linear FIR filter, that is, a filter
implemented as in (2a) with ¢(j) = 0 for each j; with some
algebraic manipulation we find that, substituting (7) in (2a)
applied with » = 0 and with x,, in place of x, the filtered
representation of the upsampled process takes the form

Ps q
xp(m)=Y a,(k)x;(n—k)+ Y b(ie, (n—i). (8)
k=1 i=0

Equation (8) shows that the filtering step introduces a
moving average (MA) component in the original AR process,
transforming it into an ARMA process [21]. Then, we exploit
the connection between ARMA processes and state-space
(SS) processes [29] to evidence that the ARMA process (8)
can be expressed in an SS form as

xf(n):Cf'Zf(n)+ef(n),

where Zf(n) = [xf(n— 1)- -‘xf(n—ps)u(n— 1)- -~u(n—q)]T

is a (p; + q)-dimensional state process, e;(n) is the scalar
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SS innovation process defined as e f(n) = b(0)e, (n), and the
vectors C ¥ and K ¥ and the matrix A ¢ are defined as

Af
uu(l) : au(ps_l) uu(Ps) b(l) b(q_l) b(q)-
1 0 0 0 -~ 0 0
0 1 0 0 0 0
| oo 0 0 0 0 0
0 0 0 1 0 0
0 - 0 :
0 0 0 0 1 0
17 (10)
0
« 0
NPT
0
L o
Cy

=[a, () - a,(ps-1) a,(p) b(D) -~ b(q-1) b(q)].

Such a connection between ARMA and SS models allows
finding, through (10) and the relation aff = b(O)zafu, the
parameters of the SS process descriptive of the process x .
Such a process is a filtered version of the upsampled process
x,,, obtained passing x,, through a FIR low-pass filter with
cutoft frequency equal to f, = 1/(21); therefore, since the
sampling frequency of the upsampled process x,, is s times
higher than that of the original process x, the cutoft frequency
of the low-pass filter applied to x for obtaining x ; becomes
fTS =s/(27).

The next step of the procedure is to provide a representa-
tion for the downsampled process x,;, where downsampling
is applied to the filtered process x (. To this end, we exploit
recent theoretical findings leading to an analytical derivation
of the parameters of the SS model which describes the down-
sampled process [20, 21, 30]. According to these findings, the
downsampled process x,;(n) = x f(m’) can be represented in
SS form involving a vector state process Y as

Yn+1)=A,;-Y(n)+W(n)

(11)
xy(n)=Cy-Y(n)+v(n),

where the parameters of the SS model (11) are the matrix A,
the vector C, the variance of the scalar noise process v(n),
of, the covariance matrix of the vector state noise process
W (n), 2}y, and the cross-covariance between v(r) and W (n),
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X, These parameters can be computed at scale 7, in terms
of parameters previously obtained, as follows [20, 30]:

Ag=(Af)"
Cd = Cf’
o’ = o*

v €f

- (12)
ZWV = (Af)T ' Kf(fezf

Zy (1) = AgZy (T - 1)AfT + affoKfT, T>2
Sy (1) = aeszfoT, T=1.

Then, the SS model (11) can be transformed in a form similar
to that of (9) which evidences the innovations:

13
xy(n)=Cy-Zyn) +ey(n),

by solving a so-called discrete algebraic Riccati equation [20,
30]

P = APAT + 3, — (A,PC, + Zy,) (C,PCT +02)
(14)
-(C,PAL +34,)

applied to the parameters of the SS model (11), to complete
the derivation of the parameters of (13) as

0l =CPCy +0,
. APCE 43y, (15)

d 2

GV

Finally, the variance of the downsampled process can be com-
puted analytically solving a discrete-time Lyapunov equation
[20] as

Q=A,0A" + 6’K K]
2 T, 2 (16)
o, = CaQC, + 0.

The derivations above allow computing analytically all
the parameters of the state-space process (see (13)) which
describes the filtered (see (9)) and downsampled (see (13))
versions of the upsampled process (see (7)), which in turn
can be analytically described starting from the original AR
process x given by (3). Among these parameters, the relevant
ones for our purpose are the variance of the downsampled
process x,; and that of the relevant innovations e, which are
used to compute the complexity of x; in analogy to (6), thus
obtaining our MSE measure:

2

- _1 €

C,(r,)=C, = -In2me—=. 17)
x \F’s Xy 2 2
Xq

Note that MSE measure defined in (17), which we denote
as linear MSE (LMSE), is relevant to a time scale given
by the rational number 7, = 7/s, obtained setting integer
values for the scale factor 7 and the upsampling factor s. As
this corresponds to applying to the original process a low-
pass filter with cutoff frequency f, = 1/(27,), such cutoft
frequency can be arranged according to the value of 7, in
order to provide fine-tuning of the filtering process. Moreover
we stress that since we filter the original process with a FIR
filter that prevents aliasing and we compute at each time the
complexity of the normalized process, our state-space MSE
measure follows the philosophy of the RMSE method rather
than that of the original MSE.

2.4. Practical Implementation and Applicability of LMSE and
RMSE. The proposed approach for multiscale complexity
analysis is implemented in the LMSE MATLAB® toolbox,
which includes the algorithms for computing LMSE and
RMSE for the simulated processes and exemplificative real-
izations of the cardiovascular data studied in this paper. The
toolbox is uploaded as supplementary material to this article
and is freely available for download from http://www.lucafaes
.net/LMSE.html. The codes allow also nonexpert users to
implement multiscale complexity analysis without the need
to go deep into the mathematical details presented in the
previous subsections. Complexity is assessed at a given time
scale, after removing the faster temporal scales through
low-pass filtering, as the unpredictability of future values
of the time series given past observations. Unpredictability
is quantified either using a model-free estimation of the
conditional entropy (RMSE) or using a linear model (LMSE).
As we will see in the next two sections, the analytical
expressions underlying the computation of LMSE make this
measure much more reliable than RMSE in the presence of
short time series and long temporal scales. On the other hand,
one should bear in mind that the context of application for
LMSE is that of time series which are adequately represented
by linear stationary stochastic processes. Linear stochastic
processes are nondeterministic dynamic processes for which
the relation between samples can be described by linear
equations. The range of applicability of this simple generative
model for time series data is very broad, including time series
collected from many physical, biological, and social systems.
Nevertheless, if the observed system is supposed to generate
time series with strong nonlinear dynamics or significant
departures from the null hypothesis of Gaussianity of the
distribution are proven, the LMSE measure may capture
only partly the complexity of these time series; in such
a case the RMSE measure is a more appropriate choice.
Furthermore, the hypothesis of stationarity implies that the
statistical properties of the observed process (e.g., mean and
variance) do not vary across time. For time series with evident
nonstationary behaviors, the potential applicability of the
method here proposed to short time series allows its easy
adaptation to time-varying formulations.

3. Simulation Study

To investigate the theoretical profiles of the dynamical com-
plexity of a stochastic process as a function of the parameters
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determining its dynamics, as well as to assess the computa-
tional reliability of the proposed estimator of the refined MSE,
in this section we consider a set of linear processes simulated
with varying oscillatory components, for which we compute
exact values of MSE and compare LMSE and RMSE estimates
obtained from short process realizations.

3.1. Simulation Design. Simulations are designed considering
AR processes described by [ pairs of complex-conjugate poles
with assigned modulus p; and phase ¢; = 2nf;,i = 1,...,1
(the order of the process is p = 2I). Type 1 simulations are
designed with one pair of complex-conjugate poles (I = 1,
p = 2) according to two configurations: (a) fixing the pole
phase to ¢, = 7/5 (frequency f; = 0.1 Hz) and varying the
modulus in the range p; = {0,0.5,0.8,0.9}; (b) fixing the pole
modulus to p; = 0.8 and varying the frequency in the range
f1 =1{0.1,0.2,0.3,0.4}. Type 2 simulations are designed with
two pairs of complex-conjugate poles (I = 2, p = 4) according
to two configurations both with a fixed low-frequency pole
obtained setting p; = 0.8 and f; = 0.1; (c) fixing the phase
of the second pole to ¢, = /2 (frequency f, = 0.25 Hz) and
varying the modulus in the range p, = {0,0.3,0.6,0.8}; (d)
fixing the modulus of the second pole to p, = 0.8 and varying
the frequency in the range f, = {0.15,0.25,0.3}. Type 1 sim-
ulations (configurations (a, b)) are set to study how the com-
plexity of a process with a single stochastic oscillatory com-
ponent varies with the amplitude and the frequency of such
component. Type 2 simulations (configurations (c, d)) are set
to study how the complexity of a process with two stochastic
oscillatory components varies with the mismatch in the
amplitude and in the frequency of these two components.

Given the configurations described above, first we
determine the theoretical values of the MSE using the
procedure described in Section 2.3. To this end, the
exact values of the AR coefficients are determined as the
coeflicients of the polynomial with roots given by the poles
set in the complex plane as z; = p; - (cos¢; * jsin ¢;); these
coefficients, together with the innovation variance o7 = 1,
are set as parameters of the AR model of (3). From these
parameters, MSE values are computed for specific values of
the upsampling factor s and the scale factor 7, that is, (s, 7) =
{(1,1),(8,9), (4,5), (7,10), (3,5), (5,9), (1, 2), (8, 18), (2, 5),
(7,20), (3,10),(1,4),(1,5), (3, 20), (1, 10), (1, 20)}, chosen in
order to yield an approximately uniform range of values for
the cutoff frequency of the rescaling low-pass filter, that is,
fTs = s/(21) = {0.5, 0.444, 0.4, 0.35, 0.3, 0.278, 0.25, 0.222,
0.2, 0.175, 0.15, 0.125, 0.1, 0.075, 0.05, 0.025}; the filter order
isset to g = 48.

After theoretical analysis, practical estimation of MSE
was performed choosing two representative cases of the
parameter setting for Type 1 simulation (p; = 0.8, f; = 0.1)
and Type 2 simulation (p; = 0.8, f; = 0.1; p, = 0.8, f, = 0.2),
generating for each case 100 realizations of the simulation
by feeding the model of (3) with realizations of 300 white
noise samples taken from the Gaussian distribution with zero
mean and unit variance and computing LMSE and RMSE
estimates. For each realization, LMSE was obtained through
the procedure described in Section 2.3, identifying an AR
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model through the standard least squares method, setting the
model order according to the Bayesian Information Criterion
[31], and using a FIR low-pass filter of order g = 48 [24];
RMSE was obtained through the procedure described in
Section 2.2 and using the parameters of [11], that is, filtering
the data with a Butterworth low-pass filter of order g = 6
[24] and calculating SampEn with embedding and tolerance
parameters m = 2and r = 0.2 - 6., (0, is the variance of the
downsampled signal).

3.2. Theoretical Analysis. Results of the theoretical analysis
are reported in Figure 1. As a general result, the complexity
of the simulated AR processes tends to increase at increasing
the time scale 7, = 7/s (i.e,, at decreasing the cutoff frequency
of the low-pass filter applied to the original process, f, =
1/(27,) = s/(27)). This result is expected, because filter-
ing removes the oscillatory components that bring regular
dynamics to the signal, in a way such that when all stochastic
oscillations are removed the signal is left with no regular
dynamics and the maximum complexity level is achieved (i.e.,
C, = 0.51n2me, corresponding to uncorrelated white noise).

Figures 1(a) and 1(b) report the exact values of MSE
computed for simulated stochastic processes featuring a
single oscillatory component. Generating oscillations with
fixed frequency and varying amplitude (Figure 1(a)), the MSE
of the process increases at decreasing the pole modulus,
documenting the higher complexity of stochastic oscillations
associated with poles with higher distance from the unit
circle in the complex plane [32]. Looking at the multiscale
behavior, MSE reaches its maximum value when the regular
component, oscillating at f; = 0.1 Hz in this example, is
completely removed by the filtering procedure; the slope
of the rise in complexity decreases with the pole modulus,
becoming zero for p, = 0 when the process is a Gaussian
white noise without regular dynamics. The behavior of MSE
for oscillations with fixed amplitude (p; = 0.8) and varying
frequency is more complicated (Figure 1(b)). At scale one
(f;, = 0.5), the MSE is the same if the frequency of the
oscillatory dynamics, f;, has the same distance from half
the Nyquist frequency of 0.25Hz and decreases with such
a distance; the same symmetric behavior, with maximum
complexity at half the Nyquist frequency, was observed in
[33]. Then, the multiscale behavior of the complexity measure
is related to the frequency of the stochastic oscillation in a
way such that faster oscillations are removed more easily than
slower oscillations, and thus MSE reaches its higher values for
higher values of f, (see the trends of f; = 0.4 versus f; = 0.1
and f; = 0.3 versus f; = 0.2, in Figure 1(b)).

Figures 1(c) and 1(d) show the exact values of MSE com-
puted for simulated stochastic processes featuring two oscil-
latory components. Simulating the rise of a high-frequency
component in the presence of a stable low-frequency stochas-
tic oscillation (Figure 1(c), where p, = 0.8, f; = 0.1, and p,
increases with fixed f, = 0.25) determines an increase of MSE
that is revealed across multiple temporal scales. Simulating
the progressive separation of stochastic oscillations within
a process (Figure 1(d), where p, = 0.8, f; = 0.1, and f,
increases with fixed p, = 0.8) determines again an increase
of MSE across multiple scales. These results suggest that the
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FIGURE 1: Theoretical profiles of the multiscale entropy (MSE) computed applying the proposed approach to the true parameters of simulated
AR processes. Plots depict the exact values of MSE (C,(7,)) computed as a function of the cutoff frequency of the low-pass filter used to
eliminate the fast temporal scales of the process (f; ) for different values of the modulus p, (a) and of the frequency f; (b) of the pole set
in Type 1 simulations, and for different values of the modulus p, (c) and frequency f, (d) of the second pole set in Type 2 simulations. The
multiscale complexity of AR processes increases with decreasing the amplitude (a) or moving the frequency of a single stochastic oscillation
closer to half the Nyquist frequency (b), as well as adding a second stochastic oscillation with increasing amplitude (c) or with increasing

frequency mismatch compared to the first one (d).

simultaneous presence of multiple oscillatory mechanisms
tends to produce more complex dynamics than in the case of
single mechanisms, with a complexity degree that increases
with the strength of the stochastic oscillations and with the
mismatch of their frequency. These findings are supported by
the results of recent studies [32, 33] and are observed over a
range of time scales that comprises the characteristic periods
of all oscillations.

3.3. Estimation Performance. Figure 2 reports the results of
the practical estimation of complexity over short realizations

of the simulations, performed using the refined approach
and the linear approach to MSE computation. For both
the parameter settings chosen to simulate an individual
stochastic oscillation (Figures 2(a) and 2(b); p, = 0.8, f; =
0.1) and a pair of stochastic oscillations (Figures 2(c) and
2(d); pp = 08, f; = 0.1; p, = 08, f, = 0.2), it is evident
that the LMSE estimator proposed in this study outperforms
the RMSE estimator. In fact, LMSE estimates are substantially
unbiased, since the median estimated profile of multiscale
complexity overlaps with the true profile, and exhibit a
low variability around their median value, particularly at
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FIGURE 2: Estimation of multiscale entropy (MSE) over finite-length realizations of simulated AR processes. Plots depict the exact values (red
lines) and the distributions (median and 10th-90th percentiles) of the MSE estimates (C,.(z,)) computed as a function of the cutoff frequency
of the low-pass filter used to eliminate the fast temporal scales of the process (f, ) for representative parameter settings of Type 1 simulation
(a, b) and of Type 2 simulation (c, d). Estimates are obtained using the linear MSE (LMSE) method proposed in this study (a, ¢) and using the
refined MSE (RMSE) method proposed in [11] (b, d). In simulated AR processes, RMSE estimates exhibit high bias and a variance increasing
with the time scale, while LMSE estimates display high computational reliability at all time scales.

high time scales where they converge to the expected value
0.51In27me (Figures 2(a) and 2(c)). On the contrary, RMSE
estimates are strongly biased at all time scales and also exhibit
a substantial variance that increases dramatically with the
time scale (Figures 2(b) and 2(d)); note that RMSE could
not be computed at the higher time scales (f, = 0.05,
fr = 0.025) due to the limited number of data points. The
poor performance of RMSE confirms the known difficulty of
yielding accurate model-free complexity estimates using the
SampEn estimator applied to short time series [33, 34].

4. Application to Short-Term Cardiovascular
Variability Series

To illustrate the application of the proposed approach for the
computation of MSE over short biomedical time series, this
section reports the analysis of cardiovascular and respiratory
variability series. Specifically, we compare the abilities of
LMSE and RMSE in detecting the multiscale complexity
of heart period (HP), systolic arterial pressure (SAP), and
respiration (RESP) time series measured from a large group of
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healthy subjects in a resting state condition as well as during
two types of physiological stress, that is, postural stress and
mental stress [35].

4.1. Experimental Protocol and Data Analysis. The analyzed
time series belong to a database collected to assess the
dynamics of HP, SAP, and RESP during two types of physio-
logical stress commonly studied in cardiovascular variability,
that is, postural stress induced by head-up tilt (HUT) and
mental stress induced by mental arithmetics (MA); we refer
to [35, 36] for a detailed description of the population and
the experimental setup. Briefly, a group of 61 young healthy
subjects (37 females, 17.5 + 2.4 years old) were monitored
in a relaxed state in the resting supine position (SU), in the
upright position during HUT, and in the supine position dur-
ing MA, measuring the surface electrocardiogram (ECG), the
finger arterial blood pressure collected noninvasively by the
photoplethysmographic method, and the respiration signal
measured through respiratory inductive plethysmography.
From these signals, the beat-to-beat time series of HP, SAP,
and RESP were measured, respectively, as the sequences of
the temporal distances between consecutive R peaks of the
ECG, the maximum values of the arterial pressure waveform
measured inside the consecutively detected heart periods,
and the values of the respiratory signal sampled at the onset
of the consecutively detected heart periods.

The analysis was performed on segments of 300 consecu-
tive points, free of artifacts and satisfying stationarity require-
ments, extracted from the three time series for each subject
and condition. The preprocessing steps consisted in removing
the linear trend from each sequence and in reducing the series
to zero mean. Then, for each individual time series, a linear
AR model was identified using the standard least squares
method and using the Bayesian Information Criterion to set
the model order within the range {1, 12} [37]. From the
estimated AR parameters, LMSE was computed by means
of the procedure described in Section 2.3, using a low-pass
FIR filter of order g = 48. The computation of RMSE was
performed as described in Section 2.2, using a sixth-order
Butterworth low-pass filter before resampling and computing
SampEn with parameters m = 2 and r equal to 20% of the
variance of the resampled signal. As for simulations, in the
computation of both LMSE and RMSE, the parameters s and
7 determining the time scale were set to obtain the following
values for the cutoff frequency of the resampling filter: f, =
1/(27,) = s/(21) = {0.5,0.444, 0.4, 0.35,0.3,0.278,0.25, 0.222,
0.2, 0.175, 0.15, 0.125, 0.1, 0.075, 0.05, 0.025}.

Statistically significant differences among the MSE pro-
files obtained in the three conditions (i.e., SU, HUT, and MA)
were first assessed by means of the multivariate ANOVA.
Then, if the null hypothesis that the means of MSE computed
across time scales for each condition are the same multivari-
ate vector was rejected, the univariate ANOVA was applied to
the three distributions of MSE obtained during SU, HUT, and
MA at any assigned time scale. Furthermore, if at a given time
scale the null hypothesis that the means of MSE computed
in the three conditions are the same number was rejected,
a post hoc pairwise test (i.e., the Student ¢-test for paired
data) was performed to assess the statistical significance

of the differences between rest and stress conditions (i.e.,
HUT versus. REST, or MA versus. REST). A p value < 0.05
was always assumed as statistically significant; both in the
univariate ANOVA and in the pairwise tests, a Bonferroni-
Holm correction for multiple comparisons was employed.

4.2. Results and Discussion. The results of multiscale com-
plexity analysis of HP, SAP, and RESP are depicted, respec-
tively, in Figures 3, 4, and 5; results are presented as median
and interquartile range of the distributions of LMSE and
RMSE computed for the 61 subjects during the three con-
sidered experimental conditions (SU, HUT, and MA). As a
general result, we find that LMSE estimates exhibit lower
intersubject variability than RMSE estimates, especially when
increasing the scale factor (i.e., when reducing the cutoff
frequency of the low-pass filter). This result holds for all time
series and experimental conditions, likely reflecting the prob-
lems associated with the computation of RMSE for short time
series and at long time scales. On the contrary, the variability
of LMSE estimates decreases when increasing the scale factor,
allowing eliciting statistically significant differences that in
RMSE are masked by the larger intersubject variability.

The analysis of LMSE and RMSE computed for the
HP time series, reported in Figure 3, documents that the
complexity of HP is significantly lower during HUT than
during REST, while no significant differences are observed
between REST and MA. The lower complexity during HUT
is detected up to fT 0.225 Hz using RMSE (Figure 3(b))
and up to f, = 0.1 Hz using LMSE (Figure 3(a)). At scale 1
(fr, = 05 Hz), these results confirm a number of previous
investlgatlons documenting the decreased complexity of
heart rate variability during postural stress and its unaltered
complexity during mental stress [36, 38-40]. Here we extend
these findings showing that during MA the complexity of HP
is left unchanged at any time scale and during HUT it is kept
at lower levels until both the high-frequency (HE >0.15 Hz)
and the low-frequency (LF, ~0.1 Hz) oscillations are removed
by filtering. This latter result, which is documented only using
the LSME estimator, is in agreement with a recent study
showing that the reduction in complexity induced by HUT
is a result of the presence of more regular HP oscillations in
the LF band rather than in the HF band and is thus associated
more to an enriched sympathetic modulation than to a vagal
withdrawal [32].

The MSE analysis performed for the SAP time series,
reported in Figure 4, evidences a clear increase in the MSE
computed during MA. This result, which is again more evi-
dent using LMSE than RMSE, has been previously observed
at scale 1 [36] and is possibly related to complex patterns of
autonomic activation following cognitive load [41, 42]; our
results, showing the persistence of higher MSE values up to
long time scales (f, = 0.15Hz), point to an involvement of
LF oscillations in the generation of higher complexity during
mental stress. The multiscale pattern of complexity induced
by postural stress is more complicated, indicating lower MSE
during HUT than during REST for short time scales (f, =
0.5 Hz), no significant alterations for intermediate time scales

(up to f, = 0.275Hz), and higher MSE during HUT than
during REST for longer time scales ( =, between 0.275 Hz and
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FIGURE 3: Estimation of multiscale entropy (MSE) for the time series of the heart period. Plots depict the distributions (median and 25th-75th
percentiles) of the MSE estimates (C,(7,)) computed as a function of the cutoff frequency of the low-pass filter used to eliminate the fast
temporal scales of the process (f, ) in the resting supine position (SU, diamonds), during postural stress induced by head-up tilt (HUT,
squares), and during mental stress induced by mental arithmetics (MA, circles). While MA does not induce changes, HUT evokes a significant
reduction of the complexity of heart period variability, which is observed using LMSE across a wide range of time scales including both low-
and high-frequency oscillations. *Statistically significant difference, HUT versus SU or MA versus SU.
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FIGURE 4: Estimation of multiscale entropy (MSE) for the time series of the systolic arterial pressure. Plots depict the distributions (median and
25th-75th percentiles) of the MSE estimates (C,(7,)) computed as a function of the cutoft frequency of the low-pass filter used to eliminate the
fast temporal scales of the process (f; ) in the resting supine position (SU, diamonds), during postural stress induced by head-up tilt (HUT,
squares), and during mental stress induced by mental arithmetics (MA, circles). The multiscale complexity of systolic pressure dynamics
increases consistently across multiple time scales during MA and increases for time scales associated with low-frequency oscillations during

HUT. *Statistically significant difference, HUT versus SU or MA versus SU.

0.15 Hz). The emergence of a significantly higher complexity
of SAP during HUT when HF fluctuations are filtered out is
a novel finding, suggesting that the postural stress decreases
the regularity of LF arterial pressure oscillations, while HF
oscillations display similar or even increased regularity.

The multiscale complexity analysis of respiration variabil-
ity, reported in Figure 5, documents that MSE is significantly
decreased during HUT and significantly increased during
MA. These variations are consistently observed across mul-
tiple scales, going up to f, = 0.3 Hz for the lower LMSE and
RMSE during HUT and up to f, = 0.15Hz for the higher
LMSE during MA. The higher regularity of the respiratory
dynamics during postural stress, which seems to be confined
to the HF band where respiration usually occurs, may be
related to an increased tidal volume during this condition.

On the other hand, the lower regularity of respiration during
mental stress might be explained by the appearance of long
pauses or sighs in the respiration pattern while performing
mental arithmetics [43], making it more erratic and thus
complex. The existence of more erratic patterns, which
likely span a broad band of the frequency spectrum, may
also explain the fact that we observe higher complexity of
respiration up to long time scales, going beyond the common
frequency bands at which respiratory activity is observed.

5. Conclusions and Future Developments

The present study introduces for the first time a multiscale
entropy measure that is based on theoretical rather than
empirical grounds and can thus be analytically computed
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FIGURE 5: Estimation of multiscale entropy (MSE) for the time series of respiration. Plots depict the distributions (median and 25th-75th
percentiles) of the MSE estimates (C,(7,)) computed as a function of the cutoff frequency of the low-pass filter used to eliminate the fast
temporal scales of the process (f, ) in the resting supine position (SU, diamonds), during postural stress induced by head-up tilt (HUT,
squares), and during mental stress induced by mental arithmetics (MA, circles). The multiscale complexity of respiratory dynamics increases
consistently across multiple time scales during MA and decreases for time scales associated with high-frequency oscillations during HUT.

*Statistically significant difference, HUT versus SU or MA versus SU.

from the parametric representation of an observed stochastic
process. As a matter of fact, the proposed LMSE method is
highly data-efficient because it stems from simple linear para-
metric modeling and is thus much more reliable than MSE
or its modifications [6], including RMSE, in assessing the
complexity of short time series at long time scales. Compared
with another recently proposed method to assess multiscale
complexity from short data sequences [32], LMSE shares the
philosophy of being derived for linear AR processes, but
differs in the fact that it is designed closely following the two
algorithmic steps of MSE computation, that is, low-pass filter-
ing and downsampling. The high computational reliability of
LMSE comes from the fact that filtering and downsampling
are not actually implemented on the measured time series,
but result from the analytical quantification of the impact that
they have on the state-space parameters of the observed AR
process.

Our approach can be fruitfully exploited, as done in
the present study, to relate the multiscale complexity of
a stochastic process to the parameters that establish its
dynamical features, or to estimate patterns of multiscale
complexity from short process realizations. In this work,
we have formalized the dependence of the multiscale com-
plexity of an AR process on the amplitude and frequency
of its stochastic oscillatory components and have assessed
multiscale patterns of short-term cardiovascular complexity
which cannot be fully retrieved using standard MSE methods.
Our results emphasize the role of the sympathetic control in
driving the increased regularity of low-frequency heart rate
oscillations and the increased complexity of low-frequency
arterial pressure oscillations during postural stress. LMSE
analysis stresses also the importance of dynamics occurring
within the low-frequency band in determining the increased
complexity of arterial pressure, and even that of respiration,
during mental stress.

The main strength of the proposed approach, that is,
the linear parametric formulation, constitutes also one of

its major limitations. In fact, the computation of LMSE
holds exactly only if the observed process has a Gaussian
distribution; in such a case, the linear AR description fully
captures all of the variability in the process that determines
the measured entropy rates, and model-free formulations as
the one implemented by SampEn have no additional utility
[25]. On the contrary, departures from linearity leading to
non-Gaussian distributions may generate dynamics which
are captured only partially by LMSE, and thus important
features of multiscale complexity may be missed in this case.
The suitability of LMSE for the applicative context of this
study is supported by the fact that linear methods are ubiq-
uitously exploited in short-term cardiovascular variability
studies (e.g., performing parametric spectral analysis [17,
44] or parametric coupling and causality analysis [37, 45]).
Nevertheless, future studies should deepen the comparison
of LMSE with RMSE or other nonparametric MSE techniques
in order to clarify the importance of accounting for nonlinear
dynamics in the multiscale analysis of biomedical time series.
On the other hand, keeping the linear analysis framework, a
desirable extension of the present study would be to integrate
the standard AR representation with fractionally integrated
(FI) innovation modeling [46]; this would allow the com-
putation of multiscale complexity for ARFI processes, thus
incorporating in the approach the ability to describe long-
range correlations phenomena which are typically assessed in
long-term multiscale analyses [47].
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