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Abstract

The growing interest in personalized medicine requires making inferences from descriptive

indexes estimated from individual recordings of physiological signals, with statistical analyses

focused on individual differences between/within subjects, rather than comparing supposedly

homogeneous cohorts. To this end, methods to compute confidence limits of individual esti-

mates of descriptive indexes are needed. This study introduces numerical methods to com-

pute such confidence limits and perform statistical comparisons between indexes derived

from autoregressive (AR) modeling of individual time series. Analytical approaches are gen-

erally not viable, because the indexes are usually nonlinear functions of the AR parameters.

We exploit Monte Carlo (MC) and Bootstrap (BS) methods to reproduce the sampling distri-

bution of the AR parameters and indexes computed from them. Here, these methods are

implemented for spectral and information-theoretic indexes of heart-rate variability (HRV)

estimated from AR models of heart-period time series. First, the MS and BC methods are

tested in a wide range of synthetic HRV time series, showing good agreement with a gold-

standard approach (i.e. multiple realizations of the "true" process driving the simulation).

Then, real HRV time series measured from volunteers performing cognitive tasks are consid-

ered, documenting (i) the strong variability of confidence limits’ width across recordings,

(ii) the diversity of individual responses to the same task, and (iii) frequent disagreement

between the cohort-average response and that of many individuals. We conclude that MC

and BS methods are robust in estimating confidence limits of these AR-based indexes and

thus recommended for short-term HRV analysis. Moreover, the strong inter-individual differ-

ences in the response to tasks shown by AR-based indexes evidence the need of individual-

by-individual assessments of HRV features. Given their generality, MC and BS methods are

promising for applications in biomedical signal processing and beyond, providing a powerful

new tool for assessing the confidence limits of indexes estimated from individual recordings.
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Introduction

Spectral analysis is a ubiquitous tool for the quantitative analysis of time-series. One example

in biomedical applications is the analysis of heart-rate variability (HRV), i.e. the change in

intervals between successive heart-beats (heart-period, usually measured as the interval

between R waves in the electrocardiogram—thus referred to as R-R intervals). HRV time series

typically show a main spectral peak around 0.1 Hz (due to the so-called Mayer waves) and

another at a frequency corresponding to the average respiratory rate (due to the so-called

respiratory sinus arrhythmia) [1, 2]. From the HRV spectrum, several quantitative indexes can

be derived, such as: the total power in the high frequency band (HF, typically 0.15–0.4 Hz),

usually associated with parasympathetic (vagal) drive; the power in the low frequencies (LF,

typically 0.04–0. 15 Hz), which has been linked (though not exclusively) with sympathetic

activity; the ratio between the two, which has been proposed as a marker of sympathovagal bal-

ance [3, 4]. Indexes based on information theory, such as entropy or information storage [5,

6], are used to quantify the dynamics of HRV time series [7].

The most common approach in the quantitative assessment of indexes derived from HRV

(or other biomedical time series) is to perform statistical analysis to test for significant differ-

ences between tasks/treatments/pathological conditions for cohorts of subjects. In this analy-

sis, the focus is on the average behaviour of the cohort rather than that of the individual

subjects: the deviation of each individual from the sample average is considered a random

effect, and primarily a nuisance, rather than a source of potentially important information.

However, in clinical practice, the focus should be on the individual patient being treated/evalu-

ated. With the growing interest in personalized medicine, it is becoming increasingly necessary

to be able to reliably assess differences and changes at an individual-by-individual level, not

just across a cohort [8, 9]. This requires assessing the accuracy (confidence limits) of the con-

sidered descriptive indexes, because their computation suffers from estimation errors due to

the random nature of most biomedical time series. The accuracy of estimates may vary across

time from measurement to measurement, and also depends on factors such as the length of the

series that could be acquired and the (patho)physiological state of the subject. Without some

indication of confidence limits/error bounds on estimates, clinical decisions made on individ-

ual patients might reflect errors in estimates of otherwise valid indexes, rather than provide a

robust assessment of the patient’s underlying condition. The most intuitive choice for finding

confidence limits of an index is to repeat the assessment/estimation several times and then to

compute the average and dispersion, following a so-called “repeated measures” approach.

However this option is not viable in many practical clinical and experimental situations, for

reasons that include length of experiment/examination, nonstationarity of the subjects’

response, carryover effects, or irreproducibility of the testing conditions. In these cases, if the

single estimated value (point estimate) of the index is above a threshold that separates normal-

ity from abnormality, one might wonder if this merely reflects an estimation error or some

clinically important dysfunction. Furthermore, if the estimated value for an index changes

between two measurements (e.g. after drug administration, or some experimental procedure),

can we presume that such a change is statistically/clinically significant, and not just a random

effect?

The aim of this paper is to introduce a general framework for the estimation of confidence

limits of indexes for individual estimates from single recordings of data. This is a fundamen-

tally different approach compared to the “conventional” one followed in most studies of pop-

ulations, whereby confidence limits are based on the variability between individuals (i.e., are

drawn from the set of values of the index calculated from a cohort of subjects). The frame-

work proposed here is based on a parametric numerical approach. Parametric methods–
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especially those based on autoregressive (AR) models–have gained ground for spectral analy-

sis as they can provide more robust estimates on short data segments compared to conven-

tional non-parametric methods [10, 11]. Descriptive indexes (e.g., spectral indexes) can then

be calculated from the identified model parameters. In this context, when the index of inter-

est can be computed as a linear combination of the model parameters, well-established ana-

lytical methods exist to compute its confidence limits (based on the parameters´ estimated

values and covariance matrix, both computed as part of the identification process, assuming

that their sampling distribution is a multivariate Gaussian distribution) [12]. However, since

many indexes are strongly nonlinear functions of the model parameters (e.g., spectral power

or entropy), this analytical derivation of the confidence limits is usually mathematically

intractable. To overcome this, in this paper we propose and test numerical methods, Monte

Carlo (MC) simulations and Bootstrap (BS) surrogate data analysis, which provide powerful

and simple means of estimating sampling distributions (see for example [13]) and can be

applied to almost any index derived from the estimated model parameters. We show exam-

ples of how confidence limits and statistical significance tests can be computed for a given

index on an individual-by-individual basis (i.e. based on single time series). We test the effec-

tiveness of the methods on both simulated and recorded time series, and investigate their

potential pitfalls. While this paper focuses on a set of indexes typically used in HRV analysis,

the general principle can be applied to a much broader range of indexes and to time series

beyond the biomedical field.

The Matlab1 code implementing the MC and BS algorithms used in this study is freely

available for download in the Supporting Information section of this article (S1 File). Sample

data used in this study is also made available (S2 File).

Methods

Quantitative description of autoregressive processes

Let us consider a stationary stochastic process X with zero mean and variance SX. Its autore-

gressive (AR) representation is defined as

xðnÞ ¼
Xp

k¼1

akxðn � kÞ þ wðnÞ ð1Þ

where x(n) is the random variable obtained sampling the process at time tn = nT (T is the sam-

pling period), p is the order of the process, ak (k = 1, . . ., p) are linear regression coefficients

describing the interactions between the process variables as a function of the lag k, and w(n) is

generated by an innovation process W with variance SW. We consider that the process X is

fully described by the AR model (1), when the innovation process W is formed by independent

variables (white noise) which are usually Gaussian. The AR process (1) is then uniquely identi-

fied by the parameter set Θ = {A,SW}, where A = [a1���ap]T. These parameters can then be used

to estimate quantitative indexes describing the process, as outlined below, and will be collec-

tively denoted as F = f(Θ).

The variance of the process (SX) and of the innovations (SW) can be used to derive an

information-theoretic description of the statistical structure of the process [5]. For example

the information storage SX quantifies the amount of information carried by x(n) which can be

explained by [x(n-1), . . ., x(n-p)] (i.e. how much of x(n) can be predicted by its past), and can
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be computed for an AR process as [5]

SX ¼
1

2
ln

SX

SW
; ð2Þ

In the frequency domain, the power spectral density of the AR process is computed from its

coefficients as [14]

Pðf Þ ¼ SW=jAðzÞjz¼ej2pfT j
2
; ð3Þ

where AðzÞ ¼ 1 � S
p
k¼1akz

� k. In this work, we used a spectral decomposition method to split

P(f) into k components reflecting the oscillatory structure of the process [15], each associated

with a central frequency fk and a power Pk computed from the roots of the polynomial A(z)

[15]. An example of spectral decomposition is shown in Fig 1.

Among all the possible spectral and information indexes available in the literature based on

the AR model, for the sake of simplicity and clarity in this study we only consider an illustra-

tive subset, which is related to HRV analysis: a) the central frequency of the low frequencies

peak (fLF, the frequency of the Mayer’s waves [2]), computed as the frequency of the spectral

peak nearest to 0.1Hz according to spectral decomposition; b) the LF/HF power ratio (PLFHF,

associated in several studies with sympathovagal balance [1]) computed as the ratio between

the spectral power in the LF band and HF band according to spectral decomposition; c) the

information storage SX (inversely related to the complexity of the HRV time series [16]), com-

puted according to Eq (2).

Estimated sampling distribution for the AR indexes

This section describes how to compute confidence limits for indexes estimated from an AR

model of an observed process, such as those presented in the previous section. The computa-

tion uses either a Monte Carlo (MC) or Bootstrap (BS) resampling approach to estimate the

sampling distribution and hence the confidence limits of the indexes. A schematic description

of the procedure is reported in Fig 2.

Fig 1. Theoretical spectral profile of the simulated fifth-order AR process and it spectral

decomposition. Theoretical spectral profile of a simulated fifth-order AR process of a R-R time series,

showing the power spectral density (PSD, thick line) and its decomposition into VLF (very-low frequency), LF

and HF spectral components (shaded areas).

https://doi.org/10.1371/journal.pone.0183230.g001
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The indexes calculated from the AR representation of the process X are estimated from

one recording, i.e. from N samples of one realization of the AR process {x(1), . . ., x(N)}. The

most common estimator follows a least squares approach whereby Eq (1) is evaluated for

n = p+1, . . ., N and represented in compact form as X = Z�A+W, where X = [x(p+1)� � �x(N)]T,

W = [w(p+1)� � �w(N)]T, A = [a1� � �ap]T, and Z = [Z1� � �Zp] (with Zi = [x(p-i+1)� � �x(N-i)]T);

then, the coefficients are estimated through the well known least squares formula,

Â ¼ ½ZTZ�� 1ZTX; ð4Þ

and the innovation variance is estimated as

ŜW ¼ ðN � pÞ� 1
XN

n¼pþ1
ŵðnÞ2; ð5Þ

with innovations estimated from the residual time series Ŵ¼X � ZÂ.

Assuming that the structure and order of the AR model correspond to those of the process

generating x(n), and the estimated innovation is stationary random noise, then the estimated

model parameters Ŷ ¼ fÂ;ŜWg are characterized by a multivariate Gaussian distribution,

with mean values given by Ŷ and variance-covariance matrix for A (model coefficients) esti-

mated as [17]

ŜA ¼ ŜW ½Z
TZ�� 1

; ð6Þ

and variance for SW (innovation variance) estimated as

ŜSW
¼

2

N
ŜW

2: ð7Þ

Specifically, the use of a multivariate Gaussian distribution is motivated from the sampling

distribution of the model parameters, which is usually taken to be a t-distribution, as used in

the usual significance tests for regression parameters [18]. When dealing with relatively large

sample numbers (say N>100), the t-distribution can be approximated by the Gaussian distri-

bution. According to the central limit theorem, the estimated variance of the innovations is

also deemed to follow a Gaussian sampling distribution.

The analytical computation of the distribution (and confidence limits) of derived indexes

(F̂) is straightforward if these are obtained from a linear combination of AR model parameters

(Ŷ). However, this is not possible when the indexes of interest are strongly nonlinear functions

of the estimated model parameters Ŷ (e.g., spectral power, entropy, frequency of a spectral

Fig 2. Flow chart of procedure proposed for the estimation of confidence limits. Flow chart of procedure proposed for the

estimation of confidence limits of autoregressive indexes descriptive of time series data.

https://doi.org/10.1371/journal.pone.0183230.g002
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peak). We therefore propose to use numerical rather than analytical means, obtaining the

empirical distribution of Ŷ through MC or BS methods, and hence estimating the empirical

distribution (and confidence limits) of the index of interest. It is worth nothing that the pro-

posed approach shares with the analytical approach the same assumptions about the distribu-

tion of Ŷ.and validity of AR parameter estimation, and being based on a single realization of

the AR process.

The MC approach consists in generating M realizations of multivariate Gaussian noise,

with mean values given by Ŷ and variance-covariance given by Eqs (6) and (7), based on AR

model parameter estimates obtained from one recorded data set. The results are M surrogate

sets of the model parameters Ŷ, fŶ�
1
; . . . ; Ŷ�

Mg, and each of these is used to compute a "repli-

cation" for each derived index fF̂�
1
; . . . ; F̂�Mg (the indexes considered in this study are the

information storage SX, the spectral peak frequency fLF and the LF/HF power ratio). These M

replications form the estimated sampling distribution of the index, which can then be used for

computing its confidence limits (see next section).

The BS method takes a different approach and consists of estimating the sampling distri-

bution of the estimates of Ŷ by first generating M replications of the time series, as described

for example in [19], from which M sets of the model parameters ŶfŶ�
1
; . . . ; Ŷ�

Mg are

obtained through AR model estimation and M replications of the indexes fF̂�
1
; . . . ; F̂�Mg are

computed. Specifically, the BS replications of the time-series are generated by resampling,

with replacement, of the model residuals Ŵ ¼ ½ŵðpþ 1Þ; . . . ; ŵðNÞ�, which are sampled

with replacement to get a bootstrap sample V ¼ ½vðpþ 1Þ; . . . ; vðNÞ�, where v(i) is any of the

ŵðiÞ (i, j = p+1, . . ., N). It is important to highlight that bootstrapping has to be applied to the

residuals rather than the original time series, since the random resampling will generate

white noise, which is appropriate for the residual, but not for the recorded time series. The

resampled residuals are then used to generate a new realization of the observed time series,

using the equation

~X ¼ ZÂ þ V; ð8Þ

where Â are the original estimates of the model parameters. From the BS realization a new

estimation of model parameters is obtained following the same least-squares approach as in

the original estimate

~A ¼ ½~ZT~Z�� 1 ~ZT ~X

~SW ¼ ðN � pÞ� 1
XN

n¼pþ1
~wðnÞ2

; ð9Þ

where the innovations ŵðnÞ are estimated as ~W ¼ ~X � ~Z ~A ¼ V̂. This procedure is repeated

M times, resulting in M replications of Ŷ, fŶ�
1
; . . . ; Ŷ�

Mg which are then used to compute

confidence limits for spectral, information theory, and other indexes in the same way

described for the MC method above.

Comparison and statistical testing of difference between two individual

estimates

The MC or the BC procedure outlined in the previous section generates an estimate of the

sampling distribution of the index, which will be denominated as the empirical distribution.

This can be used to compute confidence limits for the estimate, based on the appropriate per-

centiles of this distribution. Throughout the paper, confidence limits for the estimates of these
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indexes are computed and shown as the 25th-75th (interquartile) or 5th-95th percentile intervals

of the distribution.

In addition, the estimated empirical distributions can be used to test for the existence of a

statistically significant difference between estimates (say S1 and S2) of a given AR-derived

index on an individual-by-individual basis. This allows using the MC or BC procedure for

hypothesis testing in order to assess, for example, the difference between two subjects, or

between two treatments or tasks in the same subject, based on single pairs of recordings. In

this work, we propose one possible approach for such tests. First, the empirical distribution of

the difference S2-S1 is computed by subtracting the M sample estimates of S1 from the M sam-

ple estimates of S2 (M = 1000 in this study), with both obtained using either the BS or the MC

method. The order in which the M samples are chosen should be random; we did not perform

the subtraction of all possible MxM samples combinations, because the resulting empirical dis-

tribution would not have been of independent samples and computational load excessive.

Then the null hypothesis that the difference between S1 and S2 is zero is rejected with a signifi-

cant level α, if zero is outside the interval between the 100�α/2 percentile and the 100�(1-α/2)

percentile (for a two-sided test) of the empirical distribution of S2-S1. Note that the test relies

on the key assumptions that the data follows a stationary AR model, and the model order is

appropriate—the same assumption as made in most statistical analyses of AR models. Exam-

ples will be presented below to illustrate these tests. In this work, all tests are deemed signifi-

cant at α = 0.05.

Assessment of methods using simulated data

While the basic principles of the MC and BS methods are firmly established in the literature,

they have not, to the best of our knowledge, been applied and tested in the assessment of HRV

indexes, or similar measures derived from AR spectral estimates in other applications. There-

fore, in this section we will test them first in well-controlled simulated time series. The simula-

tion study is conceived to explore the estimation of confidence limits of AR-derived indexes in

a situation in which: (i) the theoretical values of the AR model parameters are known a priori;
and (ii) the “true” empirical distribution and confidence limits for any index can be derived

empirically through multiple realizations of the known AR process. These values can then be

compared to those obtained from an individual realization using the MC and BS methods, to

confirm that the latter provide robust estimates of the former. The performance of the BC and

MS methods was assessed by varying the length of the time series, spectral content of the AR

process, and assumed model order. Then, it was further tested under some conditions of non-

stationarity and nonlinearity of the HRV dynamics, simulated respectively by superimposing

sinusoidal trends to the AR time series and introducing nonlinear or regime-switching proper-

ties in the model equations. While such simulations cannot be comprehensive and don’t allow

generalization to all possible cases, they can provide an indication of the sensitivity of the

results to the assumption of stationarity.

Simulation design

The simulation was aimed at reproducing the oscillatory activity typically observed in short-

term R-R time series, including LF, HF, and very low frequency (VLF, 0–0.04 Hz) components

[10]. Specifically, we considered a fifth order AR process with model parameters set to repro-

duce a typical HRV spectral profile with peaks at LF (~0.1 Hz) and HF (~0.25 Hz) superim-

posed on very slow fluctuations with a spectrum slowly decreasing with frequency, thus

emulating R-R time series with an average heart period of 1s. To this end, the model parame-

ters were chosen in order to obtain a transfer function with two complex-conjugate poles with
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modulus ρLF = 0.8 and phases ±2πfLF (fLF = 0.1), two other complex-conjugate poles with

modulus ρHF = 0.92 and phases ±2πfHF (fHF = 0.25), and a real pole with modulus ρVLF = 0.65

(fVLF = 0). The corresponding AR parameters are: a1 = 1.944, a2 = -2.238, a3 = 2.062, a4 =

1.254, a5 = 0.352. Gaussian innovations were set to variance SW = 1. The theoretical spectral

profile of the simulated process is shown in Fig 1. Given this representative setting for the AR

parameters, the simulation study was designed to generate realizations of the AR process (by

feeding the AR model with realizations of white noise with zero mean and variance SW) con-

sisting of 300 samples (where not indicated otherwise), which match those typically used in

R-R time series, where 5 minutes of data are recommended [10]. For each realization, we esti-

mated the indexes fLF, PLFHF, SX, their empirical distribution through the BS and MC

approach, and the confidence limits of the estimates using the methods described in details in

the “Methods” section. Moreover, these confidence limits were compared with the confidence

limits of the "true" empirical distribution of each index obtained from computing the index

from multiple realizations (1000 in this study) of the AR process. This distribution, which is

considered here as a "gold standard" for the comparison, can only be obtained in simulations

where the true values of the model parameters are known and can be used to replicate the

process.

Then, we assessed how the estimates of the indexes fLF, PLFHF, SX are affected by changes in

parameters such as the time series length (120, 300, 600 samples), the modulus and frequency

of the pole associated with the LF oscillation (0.6, 0.7, 08, 0.9 a.u. and 0.05, 0.1, 015 Hz, respec-

tively), and the model order used for the AR parameters estimation (3, 5, 7, 9, while the model

order was always 5 for all simulations). Also, we investigated the effects of deviations from the

assumption of a linear stationary time series by simulating nonstationary and nonlinear behav-

iours as follows. Nonstationarities were induced by adding to the original time series a sine

wave of period T and amplitude M. Specifically, we studied the dependence on the period and

on the amplitude of the sinusoidal trend respectively by varying T in the range (0, 300, 600,

1200 sec) with M =
ffiffiffiffiffiffi
SX

p
, and then by varying M in the range (0%, 50%, 100%, 150%) of

ffiffiffiffiffiffi
SX

p

with T = 600. Furthermore, nonlinearities were introduced in two different ways. Squared

nonlinear dynamics were obtained modifying Eq (1) with the addition of quadratic terms:

xðnÞ ¼
X5

k¼1
akxðn � kÞ þ bðx2ðn � 1Þ � x2ðn � 2ÞÞ þ wðnÞ; ð10Þ

where an increasing importance of squared nonlinearities was obtained varying β in the range

(0, 0.02, 0.04, 0.06). Alternatively, threshold AR processes were simulated switching between

two linear regimes, as:

xðnÞ ¼

X5

k¼1

akxðn � kÞ þ wðnÞ if xðn � 1Þ � g

X5

k¼1

bkxðn � kÞ þ wðnÞ if xðn � 1Þ > g

8
>>>><

>>>>:

; ð11Þ

where ak are the same used in the other simulations, and bk were chosen to obtain a more

irregular and slow LF spectral component (ρLF = 0.4 and fLF = 0.07, resulting in b1 = 1.363,

b2 = -1.470, b3 = 1.257, b4 = -0.528, b5 = 0.088). An increasing presence of the second regime

was obtained decreasing γ in the range (300%, 180%, 140%, 100%) of SX.

Confidence limits for indexes derived from AR models of time series: Methods and application to HRV

PLOS ONE | https://doi.org/10.1371/journal.pone.0183230 October 2, 2017 8 / 22

https://doi.org/10.1371/journal.pone.0183230


Statistical analysis

For each combination of parameters considered, we simulated 100 realizations of the AR pro-

cess. Then, for each realization, we computed the confidence limits of each index using the BS

and MC methods, and the statistical test described at the end of the “Methods” section was

applied to assess whether fLF, PLFHF, and SX changed significantly when a parameter was varied.

Then, the number of times (out of 100) for which such test detected a statistically significant

change was recorded. The average BS and MC confidence limits (i.e. average 5th, 25th, 75th,

95th percentiles) were compared with those yielded by the “gold standard” approach of gener-

ating 100 realizations of the original process.

Results

Fig 3 illustrates the results of the analysis performed on a representative example of the model

parameters. For this configuration, the computational times relevant to the calculation of the

confidence limits of the AR parameters on a single realization of the simulation were equal to

~1 millisecond using the MC method, and to ~2.15 seconds using the BS method, respectively,

when running a Matlab1 script on an off-the-shelf computer (Intel Core Duo CPU, 2.66 GHz)

under Windows1. Fig 3a reports the sampling distribution of the spectral profiles obtained by

generating multiple realizations of the original process with the chosen model parameters. The

sampling distribution over multiple realizations, taken here as “gold standard”, is centred

around the true spectral density (shown as black solid line), though with some small bias due

to the fact that the estimated spectra are nonlinear functions of the estimated coefficients. Fig

3b and 3c report the sampling distributions of the spectral functions estimated from one (ran-

dom) realization of the original process (spectrum shown as a dashed line), followed by the BS

and MC approaches. Again there is some bias in the BS and MC estimates (the dashed and the

white line do not fully agree), but they are well within the confidence limits. A more evident

bias is the deviation of the estimated spectrum and its associated MC and BS simulations from

the true profile (i.e. the difference between the dashed and solid black lines), which is expected

and unavoidable, since the former is an estimate of the latter, using one realization of the pro-

cess. Notwithstanding this, the true value is always found within the 25–75% confidence limits

of the estimated value. Similar results and interpretations are found for the assessment of the

sampling distributions of the indexes derived from the AR model (i.e., fLF, PLFHF, and SX, Fig

3d, 3e and 3f): the values obtained from multiple realizations are distributed around the true

value, and the values obtained from BS or MC are distributed around the estimated value. An

important observation is that the confidence limits obtained through the three approaches

exhibit comparable widths for all indexes.

Figs 4 and 5 report the assessment of methods when varying the model/simulation parame-

ters or introducing nonlinearities and nonsationarities, showing how such changes resulted in

alterations in the true and estimated values of each index, and in the width of the confidence

limits. Overall, the two figures show that the confidence limits obtained with the three methods

(multiple realizations, MC and BS) are very similar in almost all cases. Their width changes in

agreement with each other between simulations, in accordance with what might be expected.

The dependence on the time series length is illustrated in Fig 4a. As expected, the confi-

dence limits reduced in size with increasing length (p<0.02 when performing a Student t-test

comparing the confidence limits size between N = 120 and N = 600, for all indexes) while the

bias remained well within interquartile range in all cases. Also, the chance of detecting a signif-

icant change in the parameters from a single acquisition only by increasing the length of the

time series was below 10 times out of 100 simulations, which is within the expected range

when there is no change in mean value (as one would expect in this case). With the false
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positive rate of 5% used in this work, in 100 simulations one would expect (with α = 0.95) up

to 9 false positives (according to the binomial distribution with p = 0.05 and 100 trials).

Fig 4b illustrates the dependence of the indexes on the radius of the pole identifying the LF

oscillation. Increasing the radius results in larger LF oscillation (higher PLFHF) without changes

in its central frequency (no change in fLF); as the signal becomes more strongly oscillatory at

LF, it is also characterized by “simpler” overall dynamics (higher SX). The likelihood of detect-

ing a significant difference from single time series was high (i.e. above 50%) only when com-

paring the highest radius value considered (0.9) with the others.

Fig 4c illustrates the effect of changes in the LF central frequency (fLF). These changes in fLF

were reliably detected by all methods (successful detection of change in 84 simulations or

more out of 100). Furthermore the decrease in PLFHF and SX was expected by the fact that the

central band was moving from the lower limit to beyond the upper limit of the LF range. The

difference in PLFHF between fLF = 0.05Hz and 0.1Hz is a typical example of poor detection of a

Fig 3. Confidence limits estimation of spectral and information indexes for the simulated AR process.

Representative example of the estimation of confidence limits of spectral and information indexes for the

simulated AR process (typical parameter setting) using the multiple realizations ("gold standard"), or a single

realization with the BS or MC. Upper plots show the sampling distribution of power spectral density assessed

from: (a) “gold standard”; (b) one realization using BS; (c) one realization using MC; darker area 5–95%

interval, lighter area 25–75% interval, white line median, dashed black line estimate, solid black line true value

(based on known AR model parameters). Lower plots show confidence limits of (d) LF/HF power ratio (PLFHF),

(e) frequency of the LF component (fLF), (f) and information storage (SX), obtained using the “gold standard”

(white box plot), a single realization with BS (dark gray) and a single realization with MC (light gray). In the

confidence limits plots, the box represents the 25–75% range (the horizontal line in the middle is the median)

and the vertical lines the 5–95% range; for each index, the plots report also the true value as obtained from the

selected AR parameters (solid horizontal line) and the value estimated for the single realization used to

assess both BS and MC confidence limits (dotted horizontal line). Note that the MC and BS methods simulate

one random realization rather than the original process (which is not available when using these methods), so

one should not expect the mean of the distributions to agree, but they should be within the confidence limits.

Note that the widths of the error bars are similar in all cases.

https://doi.org/10.1371/journal.pone.0183230.g003
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significant difference from single time series (successful detection in 11 simulation or less out

of 100), when average difference is considerable but confidence limits are wide.

Fig 4d shows the analysis performed by varying the order of the AR model used for identifi-

cation, while using the same 5th order model for the simulations. While “overfitting” (i.e. using

a model order larger than the true value) did not greatly affect the estimated parameters and

their confidence limits, identifying a model order below the true value (i.e. 3 in this case) gen-

erated very discrepant results: fLF and PLFHF and their confidence limits could not be com-

puted, because the spectral decomposition produced only one component located in the HF

Fig 4. Assessment of methods for confidence limits estimation at varying simulation parameters. Assessment of methods at varying

simulation parameters: (a) time series length; (b) radius of the pole of the LF oscillation; (c) frequency of the LF oscillation; (d) order of AR

model used for estimation. Plots depict average confidence limits (mean over 100 simulation runs of the values of 5th, 25th, 50th, 75th, 95th

percentiles) of the LF/HF power ratio (PLFHF), frequency of the LF component (fLF) and information storage (SX) of R-R intervals assessed

from multiple realizations (white, the “gold standard”), from a single realization using BS (dark grey), and from a single realization using MC

(light grey). In the confidence limits plot the box represents the 25–75% range (the horizontal line in the middle is the median) and the vertical

lines the 5–95% range; for each index, the plots report also the true value (solid horizontal line) and the average value estimated for the

single realization used to assess BS and MC confidence limits (dotted horizontal line). The numbers in the coloured boxes represent in how

many cases out of 100 a significant change between consecutive value of the parameters was detected using the test described at the end

of the “Methods” section, considering either the MC (dark grey box) or BS (light grey box) approach.

https://doi.org/10.1371/journal.pone.0183230.g004
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band; SX was significantly lower (i.e. differences between random pairs of recordings with dif-

ferent estimation model orders were detected in 100% of cases).

Fig 5a and 5b show that the presence of mild nonlinearities (i.e. β = 0.02 in Fig 5a or

γ = 300% if Fig 5b) does not greatly affect the appearance and reliability of the confidence lim-

its. Expectedly, as nonlinearities become more pronounced, the simulated process is progres-

sively less comparable to the "original" linear AR process, and consequently the estimated

values tend to shift away from the values obtained for the purely linear process. Notably, this

effect is found not only for MC and BS, but also for the "gold standard" approach (multiple

realizations), indicating that nonlinearities would alter the value of each index also in the ideal

condition of having infinite realizations of the process. In addition, we found that pronounced

nonlinearities not necessarily result in larger confidence limits, as in most cases their width

Fig 5. Assessment of methods for confidence limits estimation in presence of nonlinearity or nonstationarity. Nonlinearities were

introduced as: (a) Squared nonlinear dynamics of increasing magnitude, see Eq (10); (b) switching between two nonlinear regimes with

increasing recurrence, see Eq (11). Nonstationarities were introduced as: (c) a sinusoidal trend with increasing amplitude; (d) a sinusoidal

trend with increasing period. Confidence limits, colours, and symbols are the same used in Fig 4.

https://doi.org/10.1371/journal.pone.0183230.g005
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was comparable (or even smaller) when increasing the degree of nonlinearity. Furthermore,

the statistical tests shown in the figures suggest that moderate increase/decrease of the magni-

tude of nonlinearities are unlikely to result in the detection of a significant change in the

indexes considered. Similar considerations can be made regarding the results shown in Fig 5c

and 5d about nonstationarities. Superimposed trends of small magnitude (50% of the AR pro-

cess standard deviation., Fig 5c) do not affect substantially the estimated values, but as the

magnitude increases, the indexes shift away from the values obtained for the purely linear pro-

cess, apparently independently of the periodicity of such trends (Fig 5d). Again, the result is

quite expected since the simulated process become progressively less compatible with the orig-

inal linear AR process as the degree of nonstationarity increases. It may again be noted that in

almost all cases the confidence limits for all three methods (MC, BS and the “gold standard”

using multiple realizations) are similar, for all indexes and simulations.

Assessment of methods using data recorded from human

volunteers

Experimental protocol

In the experimental dataset considered for this study, described in details elsewhere [20], 25

subjects (mean age (SD) 26.5 (4.0), 12 women) undertook, among others, the following tasks:

baseline rest—relaxed and without talking; math silent—performing a series of subtractions

(repeatedly subtracting seven from three-digit random numbers) presented on sheets on

which also the answers had to be written; math aloud—same as math silent, but having to read

all the questions and answers aloud. The tasks each had 5 minutes duration and were separated

by rest periods of 5–7 minutes. ECG was monitored continuously with a sampling frequency

of 1000 Hz, and the R-R time series was extracted from the ECG using an automated algorithm

followed by manual editing [20].

The indexes fLF, PLFHF, and SX were computed as described in the “Methods” section for

each subject in each task, as well as their average values. Confidence limits were estimated for

each individual recording using the BS and MC methods. The order of the AR model was cho-

sen automatically for each subject/task in the range 5–15 using the Akaike criterion [14].

Statistical analysis

The statistical significance of the change between tasks was assessed for each individual using

the method described at the end of the “Methods” section. The results were compared with

more conventional cohort-based analyses using the Wilcoxon signed rank test, with a signifi-

cance level α = 0.05.

Results

Fig 6 shows, for each subject and each protocol, the estimate of each index, together with their

confidence limits obtained using the MC method. As already expected from the simulation

studies, results using BS were very similar and thus are not reproduced here. It is evident that

different subjects showed different patterns of change between tasks, and that those changes

are significant at an individual level. It was surprisingly rare that individuals showed a similar

pattern of change to that of sample average (“ALL” in Fig 6). For example, for PLFHF, five sub-

jects (7, 8, 13, 17, 21) showed a consistent pattern of increase from rest to math silent to math

aloud, while other subjects showed completely different patterns (e.g. the opposite trend in

subjects 1 and 10). What the estimated confidence limits and statistical tests now show is that

not only is the pattern different, but also that the differences cannot be explained simply by
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random estimation errors. The width of confidence limits also varied considerably between

subjects and tasks; some recordings clearly provide more robust estimates than others. The

width of the confidence limits for fLF showed the most dramatic variations across subjects and

tasks (e.g. subject 9): the very wide confidence limits indicate the absence of a consistent spec-

tral peak in the LF band and thus that the fLF estimates are not reliable in many cases.

Table 1 compares the results of statistically testing the significance of changes between tasks

with a conventional test (Wilcoxon signed-rank test) with the results obtained using our MC

method based on differences in each individual subject (results for BS were very similar, not

shown). The conventional group-wise analysis of the changes across conditions indicates that:

(i) PLFHF is significantly lower in maths silent than the other tasks; (ii) fLF did not change sig-

nificantly across tasks; and (iii) SX is significantly higher at rest than in the other tasks. The

corresponding analysis performed by the MC method confirms that only some individuals fol-

low the group-wise pattern, suggesting that sample-average trends are the combination of het-

erogeneous individual responses rather than the repetition of a coherent response with added

random effects due to parameter estimation errors. For instance, while according to group

wise analysis PLFHF decreases significantly from rest to math silent, according to the MC

method a significant decrease occurred only in 44% of the individual subjects, with the rest

significantly increasing (24% of subjects) or not showing a significant change (32%). The

Fig 6. Individual-by-individual evaluation of changes across conditions based on MC confidence limits for the experimental

dataset. Confidence limits obtained for LF/HF power ratio (PLFHF), frequency of the LF component (fLF), and information storage (SX) of R-R

intervals, are shown for each of the 25 subjects during three tasks (rest, math silent, math aloud, from left to right). Confidence limits for the

whole sample are also shown in grey on the right (ALL). In the confidence limits plots, the box represents the 25–75% range (the horizontal

line in the middle is the median) and the vertical lines the 5–95% range; Symbols indicate statistically significant difference between tasks

(computed as described at the end of the “Methods” section) for individuals estimates 1 to 25 and Wilcoxon sign-rank test for the whole

sample, p<0.05): &, rest vs. math silent; $, rest vs. math aloud; #, math silent vs. math aloud. Note the large diversity between individuals in

the direction and magnitude of response, and in confidence limits width.

https://doi.org/10.1371/journal.pone.0183230.g006
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significant decrease in group-wise median of SX from rest to math silent or math aloud is also

only followed by less than 50% of individuals according to the individual MC analysis, with the

reminder showing no significant change (48% or more) or even an increase (4%). For PLFHF,

on the other hand, the increase between math silent and math aloud is followed by a clear

majority of individuals (72%), and similarly for SX the majority follow the non-significant

change in median value. These results clearly justify the need for the individual confidence

limits and statistical tests, as proposed in this paper, to provide a clearer insight of the behav-

iour of the individual within the context of the cohort he/she belongs to. This is important in

order to avoid the misleading inference that all, or even a majority, necessarily follow group

average behaviour and that random estimation errors can explain deviations of individuals

from group-average behaviour, and can thus be disregarded.

Discussion

We have introduced an empirical/numerical framework to calculate confidence limits of a

descriptive index derived from individual realizations of a stochastic AR process. The frame-

work makes use of the computationally intensive statistical methods of MC and BS, through

which the empirical sampling distribution of the index is built up to extract the confidence

limits and assess statistical significance. In this study, the framework is tested with reference to

AR-derived indexes based on spectral power, spectral frequency and entropy/predictability,

and is validated using both simulated processes and recorded HRV time series measured dur-

ing psychophysiological tasks.

The proposed framework is novel in several respects. First, it provides a unique approach

that could be used to estimate confidence limits of any index which is a function of the AR

coefficients, independently of such function being linear or not. This is a considerable advan-

tage to conventional analytical methods for estimating confidence limits, which require spe-

cific mathematical derivations for each index and make (often unreliable) assumptions about

the shape of its sample distribution (e.g., Gaussianity). Second, while the use of MC and BS

methods for estimating confidence limits is well established [21, 22], we are not aware of

Table 1. Statistical test of changes between experimental tasks.

sample-average approach

(Wilcoxon signed rank)

Individual approach

(Monte Carlo method)

difference (irq) p-value %increase %ns %decrease

PLFHF [ms2/ ms2]

rest!maths -0.47 (6.10) 0.020 24 32 44

rest!matha 0.40 (4.92) 0.288 40 32 28

maths!matha 1.41 (2.76) 0.000 72 20 8

fLF [Hz]

rest!maths 0.03 (0.15) 0.353 32 32 36

rest!matha -0.01 (0.07) 0.493 20 48 32

maths!matha 0.00 (0.11) 0.861 36 48 16

SX [nats]

rest!maths -0.15 (0.34) 0.040 4 52 44

rest!matha -0.12 (0.30) 0.009 4 48 48

maths!matha -0.02 (0.16) 0.619 12 72 16

R: rest; MS: math silent; MA: math aloud; irq: interquartile range; %increase, %decrease, %ns: percentage of the subjects for which a significant increase,

significant decrease, or non-significant change was identified using the MC methods from the single recordings.

https://doi.org/10.1371/journal.pone.0183230.t001
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previous reports formulating and testing their application as proposed in this paper, i.e. deriv-

ing confidence limits of nonlinear functions of parametric model coefficients estimated from

individual time series, for within- and between- individuals statistical comparison, as shown

for example in Fig 6. The software code we provide in the Supporting Information section of

the article will allow researchers to perform the same individual-based analysis proposed in

this paper using any index they might be interested in (as long as it is derived from AR model

coefficients). Third, the proposed framework offers an approach for the estimation of confi-

dence limits of indexes that is different to the conventional approach of repeated measures

[23,24]. In the latter, several realizations of the time series are needed to estimate the index and

then its confidence limits form the estimated mean and dispersion, while in the proposed

approach only one realization is considered. The two approaches are complementary but not

equivalent, and the proposed one is especially relevant when repeated measures are not avail-

able, which is the case in many practical, clinical, and experimental scenarios.

Robustness of the computation of confidence limits from single

realization of AR processes

Our results suggest that the proposed framework is robust for the AR analysis of R-R time

series, and thus promising for related applications. This was documented by the good agree-

ment between the MC and BS methods and the “gold standard” of multiple realizations in the

simulations, by the fact that confidence limits get wider as time series become shorter (Fig 4a),

and by other results that agree with the changes in confidence limits that one might expect (see

below).

Our simulation results document that the BS and MC methods applied to single time series

produce similar confidence limits in all cases, and that these limits have a width comparable

to that of the “gold standard” intervals obtained through multiple realizations of the “true”

underlying process. This provides additional confidence that BS and MC give robust results

in this application. Moreover, the statistical tests we performed show that BS and MC can be

used to reliably detect a statistically significant change in the indexes when such a change is

expected (modification of the AR parameters of the process), as well as the absence of signifi-

cant changes when the index is expected to remain stable, based on a single realization of the

process. Clear examples of the agreement between multiple realizations and BS or MC resam-

pling schemes are the increase of PLFHF and SX obtained at increasing the radius of the LF pole

(Fig 4b) or at decreasing the frequency of the LF component (Fig 4c), the invariance of all

indexes across changes in the length of the observed realizations (Fig 4a), and their alteration

induced by mismatches between the order of the simulated and estimated process (Fig 4d).

Also the presence of mild nonstationary or nonlinear behaviors was found not to alter the

width of the confidence limits or the agreement between multiple realizations and MS/BC

(Fig 5). Notably, this agreement stands in most cases also when the confidence limits are

clearly biased. This means that also in the ideal condition of having multiple realizations of the

process (i.e. our "gold standard" approach) the bias would still exists, indicating that it is not

related to the estimation process of the confidence limits, but rather to the discrepancy

between the model used for identification and the true process generating the time series. This

issue is further addressed in the "Limitations" section.

Comparison of MC and BS methods for the computation of confidence

limits

The fact that the MC and BS methods exhibited comparable performance speaks in favour of

the utilization of the MC method, which has significantly lower computational costs. In fact,
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the BS approach requires a least squares estimation of the AR parameters for each of the M

simulated time series, whereas the MC approach only requires generating M sets of the AR

parameters based on a multivariate distribution whose mean and covariance matrix are esti-

mated only once using a least square approach. However, the MC method is based on the

assumption of Gaussianity of the distribution of the AR model coefficients, while the BS is not

(since it is based on resampling the residuals regardless of their amplitude distribution). Such

assumption can be justified based on the central limit theorem and when using fairly large

samples (section 9.6 in [12]). We have tested performance down to 120 samples (120 seconds),

with good results, but would expect performance to degrade for very short segments. In short

samples also the estimates of covariances are expected to become less robust, and with it would

the estimates of confidence limits and significant differences. Hence, the BS method may be

more appropriate in the case of very short recordings or non-Gaussian residuals. The latter

cases have been found useful, for example in the representation of causal interactions in multi-

variate settings [25].

Estimation of confidence limits of AR-based indexes in heart rate

variability analysis

The application of the framework to the HRV time series of the psychophysiological protocol

considered in this study reveals that the variation of HRV indexes during conditions of mental

stress is highly heterogeneous, with different subjects displaying different patterns of change

between conditions. In quite a few cases there is clear disagreement between the average

behaviour of the sample (see ALL in Fig 6), which reflects the way such data is usually looked

at, and that of individuals. Furthermore, the results from our MC and BS simulations show

that in many cases this disagreement cannot be explained by random estimation errors but

presumably reflects genuine differences between individuals (Table 1), or differences which

may reflect the physiological status of that subject during that experiment, which could change

with repeated recordings. For instance, the statistically significant sample average decrease of

PLFHF observed from rest to math silent was found also at an individual level in only 44% of

the subjects by the MC method, while 24% of the subjects showed a significant increase. Simi-

larly, the significant group-wise decrease of SX when moving from rest to math silent or math

aloud could only be detected on an individual basis in less than half of the subjects. The PLFHF

and SX are measures reflecting the neural regulation of HRV, respectively in terms of sym-

patho-vagal balance [1] and dynamic complexity [26]. In agreement with previous studies, our

results suggest that the patterns of alterations in the neuro-autonomic activity induced on

HRV by mental stress are more complex and inter-individually variable than those elicited by

other types of physiological stress, such as orthostatism [6, 27, 28].

On the other hand, sample average and individual-based approaches led to similar results

when assessing the change from math silent to math aloud, indicating an absence of significant

changes of SX, as well as a significant increase of PLFHF (Table 1). The latter finding is in agree-

ment with a previous investigation using the same dataset [20], which showed that tasks

involving speech (e.g. math aloud) elicited an increase of respiratory oscillations within the LF

band, which is expected to induce an increase in LF power of HRV through parasympathetic

neural pathways [29]. More generally, the high inter-individual variability of the descriptive

indexes of HRV observed in the present and other psychophysiological datasets [30, 31] is

likely related to the fact that for the tasks considered (e.g. cognitive/behavioural challenges),

and for real-life situations in general, it is impossible to tightly control the experimental condi-

tions. This can evoke highly erratic responses (including strong respiratory responses) which

are not consistent across subjects [20], and may thus result in wide diversity in HRV changes.
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In situations like this, and in any experiment in which consistent and/or reproducible

responses are not expected, it is therefore strongly recommended to investigate individual

responses rather than merely studying the average behaviour of a group and sample average

trends across different physiological states or experimental conditions.

Limitations: Confidence limits (computed analytically or numerically) are

not a “magic bullet”

A fundamental assumption for the estimation of confidence limits of indexes computed from

AR model parameters is that the measured time series is a realization of a linear stationary

Gaussian process. This assumption must hold for analytical and numerical approaches for

confidence limits estimation; when it is violated, the reliability of inferences based on confi-

dence limits is affected, independently of the method adopted. In this work we explored the

effects of some of such violations, by studying the behaviour of the AR descriptive indexes and

of their confidence limits when nonstationary and nonlinearity are introduced in the pro-

cesses. Our results suggest that the MC and BS methods are robust to mild violations of the

assumption of stationarity and linearity. Indeed, increasing the degree of nonstationary or

nonlinear behaviors imposed in the simulated processes did not alter significantly the width of

the confidence limits, which remained well centered around the estimated value of the descrip-

tive index to which they refer (Fig 5). Nevertheless, as nonstationary or nonlinear behaviors

increase, the bias grows between the estimated indexes and their value obtained from the "orig-

inal" linear AR process, but this is the result of violation of the linearity and stationarity

assumptions, and cannot be “accounted for” by any method (numerical or analytical) of confi-

dence interval estimation based on such assumption. Clearly, a comprehensive analysis of the

magnitude and types of violation of the validity of model identification is impossible. Hence,

in general terms, confidence limits (analytically or numerically computed) are not a “magic

bullet” to compensate or account for poor model identification, and a thorough validation of

the identification process (proper model structure and order selection, testing for randomness

of residuals) is always necessary.

Another fundamental underlying assumption for the confidence limits estimation of an

index is that the estimator used is unbiased. When this assumption is violated, the possibility

arises that, due to the bias, the true value of the index might lie outside the X% confidence

limit in more that 100-X% of cases. This issue is not specific to the BS and MC methods pre-

sented in this work, but is common to all methods of confidence limits estimation (including

analytical), and is recurrent when dealing with spectral indexes. For example, it is trivial to

show that entropy, or the spectral power for a given frequency (or frequency band), estimated

from the coefficients of and AR model, are biased estimators. Hence, it is not surprising that,

for some indexes, the BS and MC methods can result in confidence limits that are different

from those obtained by the “gold standard” (multiple realizations). As exemplified in Fig 3f for

the entropy-based measure, the width of the confidence limits is similar, but the sampling dis-

tribution for BS and MC is centred around the estimate of the parameter, while for the “gold

standard” is centred around the true value of the parameter—which is typically only known

for simulation studies and is not known in most applications where confidence limits are most

needed. This difference of course raises concern regarding the capability of BS and MC to

detect when significant changes in the parameters are present. It is not possible to formally

demonstrate the contrary or to generalize for all conceivable indexes of HRV or other signals,

but in our results the level of this bias was generally quite small compared with the amplitude

of the confidence limits. Nevertheless, the effect of the combination of bias in the estimator

and error in AR coefficients estimation is difficult to quantify, and possibly should be assessed
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for the specific application of interest (i.e. when time series characteristics, model structure,

and index of interest are known).

Future developments and research

First, we expect to extend the MC and BS methods AR models to ARX models (with single or

multiple inputs) and their nonlinear counterparts, in order to broaden the scope of the meth-

ods and to estimate confidence limits of relevant features (e.g. indexes) of transfer functions of

linear models, such as gain and phase for specific frequencies or average values over frequency

bands. Secondly, we will explore possible improvements of the confidence limits estimation,

for example by splitting the time series in smaller windows, compute the confidence limits for

each window, and then average the results (conceptually similar to the Welch’s periodogram

approach), in order to reduce the variability of the average estimate. Thirdly, we expect to

apply our approach to existing databases of HRV time series comparing healthy and pathologic

patients, in order to test the capability of performing objective diagnosis/assessment from indi-

vidual recordings. Finally, we expect to apply the MC and BS methods to other non-biomedi-

cal engineering applications, specifically fault detection of mechanical systems (e.g. bearings),

which can be based on the changes of peaks locations and amplitudes in the vibration spec-

trum of rotating machines [32].

Conclusions

By proposing empirical approaches for detecting confidence limits of quantitative measures

derived from the autoregressive analysis of individual time series, the present study contrib-

utes to laying the groundwork for investigations focused on detecting properties which are

peculiar to individual subjects, rather than a group to which they may belong. The proposed

methods provide a statistical means to disentangle random errors in estimates from individ-

ual recordings from distinctive and significant features in the assessment of the differences

between two measurements. They thus represent an additional statistical tool for the increas-

ing number of studies directed towards achieving “personalized” approaches to medicine

and physiology and phenotyping individuals in health and disease. The proposed tools are

useful to assess inter-individual differences within a cohort otherwise considered “homoge-

neous”, or the subject-by-subject significance of changes of an index between different physi-

ological conditions or stimuli. The great flexibility of the empirical approaches proposed in

this study makes them suitable to the investigation of confidence limits for a broad range of

measures derived from the parametric modelling of time series, and to be extended to mea-

sures derived from modelling univariate or multivariate systems in many biomedical applica-

tions and beyond.

Supporting information

S1 File. ARres—Matlab tool for computing confidence limits of measures derived from

autoregressive modeling of time series. The toolbox provides Matlab functions to compute

several resampled realizations of the AR parameters (first estimated using least squares (idAR.

m)) based on Monte Carlo resampling (idARres.m) or bootstrapping of the AR residuals

(idARboot.m, to be used with the built-in function bootstrp.m), from which Confidence limits

for AR-based indexes can be computed from individual time series. Examples of indexes to

which the procedures are applied are measures of frequency and spectral power obtained from

AR spectral decomposition (asd_ARMASpectDec.m), and measures of information storage or

complexity obtained from information decomposition (its_CElinVAR1.m). The toolbox is
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demonstrated on simulations of a fifth-order AR process resembling the spectral properties of

heart rate variability time series (SimuConfLim.m).

(ZIP)

S2 File. Database of R-R time series of 25 healthy subjects performing three psychophysio-

logical tasks (rest, math silent, math aloud). This data is described and used in the section of

the manuscript "Assessment of Methods using data recorded from human volunteers". The

R-R time series are contained in the Matlab file RR_time_series.mat. The file contains 3 vari-

ables (rest, math_silent, math_aloud), each containing the R-R time series of all 25 subjects of

the cohort for the respective task. Usage example: the R-R time series of subject 5 during the

"math silent" task can be accessed as the 5th element of the cell variable math_silent (e.g.

RR = math_silent{5};).

(ZIP)
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