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Abstract. Recently, a large class of quantum non-Markovian piecewise dynamics for an
open quantum system obeying closed evolution equations has been introduced [1]. These
dynamics have been defined in terms of a waiting-time distribution between quantum
jumps, along with quantum maps describing the effect of jumps and the system evolu-
tion between them. Here, we present a quantum collision model with memory, whose re-
duced dynamics in the continuous-time limit reproduces the above class of non-Markovian
piecewise dynamics, thus providing an explicit microscopic realization.

Keywords: Open quantum system; collision model; Lindblad equation; non-Markovian
dynamics.

1. Introduction

Prompted by the growing impact of quantum technologies, the study of non-
Markovian (NM) quantum dynamics is currently a topical field [2 – 5]. Be-
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sides the goal of defining, witnessing and even quantifying on a rigorous basis
the degree of quantum “non-Markovianity” of an open system dynamics, ef-
forts are under way to advance the longstanding quest for the non-Markovian
counterpart of the celebrated Gorini-Kossakowski-Lindblad-Sudarshan mas-
ter equation (ME) [6, 7]. As a pivotal requisite, which may be easily violated
[8, 9], a well-defined NM ME must entail a completely positive and trace-
preserving (CPT) dynamics for an arbitrary initial state and for suitably
large classes of operators and parameters appearing in its expression. While
the set of known NM dynamics described by well-behaved MEs (in the above
sense) is still relatively small, remarkable progress was made in the last few
years.

A relatively new approach to quantum NM dynamics is based on quantum
collision models (CMs) [10 – 18]. A CM is a simple microscopic framework
for describing the open dynamics of a system S in contact with a bath, where
the latter is assumed to consist of a large number of elementary subsystems,
the “ancillas”. The open dynamics of S results from its successive pairwise
collisions with the bath ancillas, each collision being typically described by
a bipartite unitary on S and the involved ancilla.

In the continuous-time limit, a CM leads to a Lindblad ME with no
need to resort to the Born-Markov approximation [19]. Such appealing prop-
erty prompted NM generalizations of the simplest memoryless CM, whose
continuous-time-limit dynamics is ensured by construction to be CPT. A sig-
nificant instance is the CM in [13, 20], recently extended in [16], which pro-
duced a new NM memory-kernel ME. The peculiar structure of this memory-
kernel ME and the corresponding dynamical map inspired further investiga-
tions [21–23,1,24] from different viewpoints, which allowed to further enlarge
the class of known NM dynamics governed by well-defined MEs.

One of these viewpoints builds on the well-known quantum-jumps picture
of the Lindblad ME [25 – 28] to devise a far larger, NM class of piecewise dy-
namics characterized by a waiting time distribution, a CPT map describing
the effect of jumps and a collection of CPT maps accounting for the evolution
between jumps [21, 22, 1]. This class of piecewise dynamics obeys a memory-
kernel ME [1]. Given that this general ME encompasses the reduced ME
of the CM in [16] only as a special case, it is natural to wonder whether a
generalized CM can be constructed giving rise to the piecewise-dynamics ME
with no restrictions. In this work, we prove that such a CM indeed exists and
show that it can be defined as a non-trivial generalization of [16] where colli-
sions occur in the form of probabilistic SWAP operations. Among its major
distinctive features are the doubling of each ancilla into a pair of subancillas,
which allows to introduce the jump map that was fully absent in [16], and
the introduction of time-step-dependent swap probabilities, which allows to
reproduce waiting time distributions of arbitrary shape unlike [16] that was
restricted to exponential ones. This extension is of particular importance
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to comply with possible experimental implementations as well as encompass
all the different features of the interaction dynamics that might give rise to
non-Markovianity.

This paper is organized as follows. In Sect. 2, we review the class of
NM quantum dynamics introduced in [21, 22, 1]. As anticipated, the main
purpose of this work is demonstrating the existence of a quantum CM with
memory, which in the continuous-time limit reproduces the above class of
NM dynamics. Since this CM is an extension of the one in [16], the latter
is reviewed in Sect. 3 and a brief introduction to quantum CMs is provided.
These introductory sections, in particular, allow us to introduce most of
the notation and formalism that we use later in Sect. 4, where the main
results of this work are presented. Owing to its central importance, Sect. 4 is
structured in a number of subsections so as to better highlight the different
essential aspects of the proposed CM: the initial state, the way system-ancilla
collisions are modelled, the discrete dynamics, its continuous-time limit and,
at last, the reduced dynamics of the open system. Our conclusions along
with some comments and outlook are given in Sect. 5. Some technical proofs
are presented in Appendix A.

2. Review of Non-Markovian Piecewise Quantum Dynamics

The prototypical Markovian dynamics of an open quantum system S is
described by the Gorini-Kossakowski-Lindblad-Sudarshan ME [6, 7], which
reads

ρ̇ = −i[Ĥ, ρ] +
∑

k

γk

(
L̂kρL̂

†
k −

1

2
{L̂†kL̂k, ρ}

)
, (2.1)

where ρ(t) is the S density operator, { · , · } stands for the anticommutator,

Ĥ is a Hermitian operator, {γk} are positive rates, and where {L̂k} are jump
operators. By introducing the maps

Rt[ρ] = eR̂tρ eR̂
†t , J [ρ] =

∑

k

γk L̂kρL̂
†
k , (2.2)

where we defined the non-Hermitian operator R̂ = −iĤ − 1
2

∑
k γkL̂

†
kL̂k, the

solution of the Lindblad ME (2.1) can be written as the Dyson series [26]

ρt = Rt[ρ0] +

∞∑

j=1

t∫

0

dtj . . .

t2∫

0

dt1 . . .Rt−tjJ . . .JRt2−t1JRt1 [ρ0] (2.3)

with 0 ≤ t1 ≤ t2 ≤ . . . ≤ t. Equation (2.3) shows that the time evolution
of S can be viewed as an underlying dynamics described by the evolution
map Rt interrupted by jumps each transforming the system state according
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to the jump map J . Index j in (2.3) indeed represents the number of jumps
occurred up to time t at instants {t1, t2, . . . , tj} such that 0 ≤ t1 ≤ t2 ≤ . . . ≤
tj ≤ t. Note that the maps (2.2) are not trace-preserving.

Both the Lindblad ME (2.1) and the representation (2.3) for its exact so-
lution have been taken as a starting point for possible generalizations leading
to well-defined dynamics to be described by means of memory kernel MEs,
which can describe memory effects in the time evolution. Starting from the
seminal work in [29], different approaches have been devised along this line
[30 – 34]. One of us recently extended these results investigating a NM gener-
alization of (2.3) [21, 22, 1], which in its most general form can be expressed
as [1]

ρt = g(t)Ēt[ρ0] +

∞∑

j=1

t∫

0

dtj . . .

t2∫

0

dt1 (2.4)

× f(t− tj) . . . f(t2 − t1)g(t1)Et−tjZ . . .ZEt2−t1ZĒt1 [ρ0] .

Compared to (2.3), the jump map J (see (2.2)) is turned into the CPT map
Z, while Rt is replaced by the CPT evolution map Ēt before any jump has
occurred and by the CPT evolution map Et after the first jump (if any) has
taken place. Maps Z, Ēt and Et are fully unspecified, but for the requirement
of being CPT. Importantly, while in (2.3) the statistical weight of each possi-
ble trajectory is determined by the non-trace-preserving maps Rt, J and the
initial state [22], in (2.4) these statistical weights are assigned independently
of the maps Ēt, Et, Z and the initial state. Indeed, the functions f(t) and g(t),
appearing in (2.4), stand for an arbitrarily chosen waiting time distribution,
namely the probability density for the distribution in time of the jumps, and
its associated survival probability g(t)=1−

∫ t
0 dt′f(t′), that is the probability

that no jump has taken place up to time t. The waiting time distribution
and the associated survival probability can always be expressed in the form

g(t) = exp
[
−

t∫

0

ds φ(s)
]
, f(t) = φ(t) exp

[
−

t∫

0

ds φ(s)
]
, (2.5)

where the positive function

φ(t) =
f(t)

g(t)
(2.6)

is known as hazard rate function or simply hazard function [35]. The meaning
of this is that φ(t)dt provides the probability for a jump to take place in the
time interval (t, t + dt], given that no jump has taken place up to time t.
Accordingly, the time-dependent coefficient f(t−tj) . . . f(t2−t1)g(t1) in (2.4)

1740011-4

O
pe

n 
Sy

st
. I

nf
. D

yn
. 2

01
7.

24
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 E
N

G
L

A
N

D
 o

n 
12

/1
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.
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gives the probability density that j jumps take place at times {t1, t2, . . . , tj},
while the pre-factor of the first term on the rhs is the probability that no
jumps occurred up to time t (this pre-factor indeed multiplies the jump-free
evolution map Ēt). The jumps are thus distributed in time according to a
renewal process, which in particular entails that after each jump the process
starts anew. Note that, in fact by construction, the dynamical map defined
by (2.4) is ensured to be CPT. Importantly, it can be shown [1] that it obeys
the memory-kernel ME

ρ̇ =

t∫

0

dt′W(t− t′)[ρ(t′)] + I(t)[ρ0] , (2.7)

where

W(t) =
d

dt
[f(t)Et]Z + δ(t)f(0)E0Z , I(t) =

d

dt

[
g(t)Ēt

]
. (2.8)

The corresponding open dynamics, at variance with the Lindbladian case,
see (2.1) and (2.3), is in general NM [21].

3. Collision Models with Memory

A quantum CM [36, 37, 38] is a simple microscopic model for describing the
open dynamics of a system S in contact with a bath B. In its prototypical
version, a CM assumes that B comprises a huge number of elementary, iden-
tical and non-interacting ancillas all initialized in the same state η. The S-B
interaction process occurs via successive pairwise “collisions” between S and
the ancillas, each of these collisions being described by a bipartite unitary
operation Ûn. By hypothesis, S can collide with each ancilla only once. Af-
ter n collisions, the state of S is given by ρn=Φn[ρ0], where the CPT map

Φ is defined as Φ[ρ] = Trn{Ûn(ρ ⊗ ηn)Û †n}. Note that, despite the apparent
dependance on n (see e.g. the partial trace over the nth ancilla), the map Φ
does not depend on n since the bath initial state and system-ancilla inter-
action Hamiltonian are fully homogeneous. It can be shown [19] that in the
continuous-time limit the dynamics of such a simple CM is described by a
Lindblad ME of the form (2.1), a result which can be expected based on the
discrete semigroup property enjoyed by the collision map, Φn+m = ΦnΦm.
The open dynamics of S corresponding to such a paradigmatic CM is thereby
fully Markovian.

There are several ways to endow the basic CM just described with memory
so as to give rise to a NM dynamics [10,13–15,17,18]. The one of concern to
us, given the goals of this paper, is the CM with memory of [16], which can
be regarded as a generalization of a model first put forward in [13, 20]. The
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Fig. 1: (a) Sketch of the considered CMs: the system undergoing collisions
with the bath ancillas is bipartite, comprising the very open system S and the
memory M , with the latter having the same dimension as each bath ancilla.
Only M is directly involved in collisions with ancillas. Each collision swaps
the states of M and the nth ancilla in a probabilistic way by means of the
transformation Ŝ acting on M and n. (b) Sketch of the generalized CM with
memory of Sect. 4: ancillas are now bipartite, the nth of which comprising a
subancilla n1 (n2) having the same dimension as S (M). Now both S and M
are directly involved in collisions with ancillas. At each collision with some
probability the states of M and n2 are swapped, and at the same time the
bipartite unitary V̂ is applied on S and n1.

general structure of the CM in [16] is in many respects analogous to the basic
memoryless CM described in the previous paragraph except that the system
undergoing collisions with the bath ancillas is now bipartite, comprising the
very open system under study S plus an auxiliary system M , the “memory”,
whose Hilbert space dimension is the same as each ancilla’s one. A sketch
of the CM is given in Fig. 1(a). Systems S and M interact all the time
according to the pairwise unitary evolution map

Uτ [σ] = e−iĤSMτσ eiĤSMτ , (3.1)

where ĤSM is the joint S-M Hamiltonian. Here and throughout this paper,
σ stands for a joint state of the S-M system and all the bath ancillas.

By hypothesis, only M is in direct contact with the bath (see Fig. 1(a)).
This interaction takes place through successive collisions, each being de-
scribed by the pairwise non-unitary quantum map

Sn[σ] = p σ+(1−p)ŜMnσ ŜMn , (3.2)

where ŜMn is the swap unitary operator exchanging the states of M and the
nth ancilla. The CPT map (3.2), which depends parametrically on the proba-
bility p, can be interpreted as a probabilistic partial SWAP gate: the memory
and ancilla states are either swapped or left unchanged with probability p.

The initial state of the overall system (S, M and the bath ancillas) is
assumed to be

σ0 = (ρ0 ⊗ η̄M )⊗ η1 ⊗ η2 ⊗ · · · (3.3)
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where in particular ρ0 (η̄M ) is the initial state of S (M). Throughout this
paper, tensor product symbols will be omitted whenever possible to avoid
using too cumbersome notation.

By calling σn the overall state at step n, the dynamics proceeds according
to

σn = Sn Uτ Sn−1 Uτ . . .S2 Uτ S1 Uτ [σ0] , (3.4)

namely an S-M unitary dynamics goes on all the time, being interrupted
at each fixed time step τ by a collision between M and a “fresh” ancilla
(i.e. one still in the initial state η) described by the non-unitary map (3.2).
Equivalently, one can view each Uτ itself as embodying the effect of a unitary
collision that is however internal to the joint S-M system in such a way
that the overall CM dynamics results from subsequent M -ancilla collisions
interspersed with internal ones that involve S and M only [16].

Like for any CM, the dynamics just defined is discrete. One can, however,
define a continuous-time limit by assuming that the duration of each time
step τ becomes very small while the step number n gets very large in such
a way that nτ → t, where t is a continuous time variable. The assumption
of a very large number of steps demands an additional prescription for the
continuous-time limit of the probability p entering (3.2) since (3.4) clearly
features p’s powers {pk} for all positive integers k ≤ n. This task is carried
out by first defining a rate Γ that allows to express p as

p = e−Γτ (3.5)

(which is always possible) and assuming next that Γτ ≪ 1 in such a way that
p ≃ 1. This ensures that pk, for any k smaller than n and yet large enough
so that kτ → t′ < t is finite, be not washed out in the continuous-time limit.
Indeed, this yields

pk = (p
1
τ )kτ −→ e−Γt

′
. (3.6)

By finally noting that, consistently with the hypothesis Γτ ≪ 1, 1 − p =
1− e−Γτ ≃ Γτ (cf. (3.2)) and that since the CM is well defined for any choice
of η, η̄ and Ut it is possible to describe the reduced evolution of S by the
following CPT map

ρt = e−ΓtĒt[ρ0] +
∞∑

j=1

Γje−Γt
t∫

0

dtj . . .

t2∫

0

dt1Et−tj . . . Et2−t1 Ēt1 [ρ0] , (3.7)

which is a special case of (2.4) for

Ētρ = TrM {Ut[ρ η̄M ]} , Etρ = TrM {Ut[ρ ηM ]} , Z = I ,

f(t) = Γe−Γt, g(t) = e−Γt, φ(t) = Γ . (3.8)
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In fact it can be shown [16] that the map (3.7) obeys a memory-kernel ME
of the form (2.7).

Yet, the CM in fact lacks the jump map Z and is, in addition, apparently
constrained to a purely exponential waiting time distribution f(t) = Γe−Γt

(the corresponding hazard function φ(t) being thus constant).
In the next section, we show how to construct a CM with memory whose

continuous-time limit yields ME (2.7) in the most general case, including in
particular an arbitrary jump map Z and an arbitrary waiting time distribu-
tion f(t).

4. A Generalized Collision Model with Memory

The CM to be defined here is a non-trivial generalization of the CM of [16]
reviewed in the last section. Just like in [16], the system undergoing collisions
with the bath ancillas comprises S and a memory M that are subject to a
coherent mutual coupling giving rise to the unitary evolution map (3.1).
At variance with [16], however, now each bath ancilla is bipartite as well,
consisting of a pair of “subancillas”: one subancilla has the same Hilbert
space dimension as S, while the other subancilla has the same dimension as
M . A sketch of this generalized CM with memory is displayed in Fig. 1(b).

4.1. Initial state

The initial joint state reads

σ0 = (ρ0 ⊗ η̄M )⊗ (ξ1 ⊗ η1)⊗ (ξ2 ⊗ η2)⊗ . . . , (4.1)

where ξ (η) is the initial state of the subancilla having the same dimension
as S (M). In full analogy with (3.3), ρ0 (η̄M ) is the initial state of S (M).

4.2. System-ancilla collisions

A further distinctive feature of the generalized CM with memory is that the
collisions with the ancillas now involve S as well. By definition, the collision
between S-M and the nth bipartite ancilla is described by the non-unitary
four-partite CPT map

Sn[σ] = pnσ + (1− pn) V̂Sn1 ŜMn2σŜ
†
Mn2

V̂ †Sn1
, (4.2)

where n1 and n2 are the two n’s subancillas that are isodimensional to S and
M , respectively, while V̂Sn1 is a unitary operator acting on S and subancilla
n1. Map (4.2) therefore swaps the states of M and n2 and, at the same

time, applies the unitary V̂Sn1 on S and n1, or leaves unchanged the state
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Quantum Non-Markovian Piecewise Dynamics from Collision Models

of S, M , n1 and n2 with probability pn. Note that, unlike the CM of the
previous Section (cf. (3.2)), now we allow the probability pn to be in general
step-dependent. The reason for this will become clear later on.

Based on (4.2) and the ancilla’s initial state (cf. (4.1)), it is convenient to
define a bipartite CPT map on S and M as

Z̃ [ρSM ] = Trn1n2

{
V̂Sn1ŜMn2 (ρSM ⊗ ξn1 ⊗ ηn2) Ŝ†Mn2

V̂ †Sn1

}

= Z[TrM{ρSM}] ⊗ ηM , (4.3)

where Z is the CPT map on S defined by

Z[ρ] = Trn1

{
V̂Sn1ρ⊗ ξn1 V̂

†
Sn1

}
. (4.4)

The proof of the last step in (4.3) is given in Appendix A.
Equations (4.3) and (4.4) entail that the collision with the nth ancilla

(see (4.2)) changes the reduced state of S and M , ρ
SM , according to

Trn1n2 {Sn(ρSM ξn1 ηn2)} = pn ρSM + (1− pn) Z̃ [ρSM ] (4.5)

= pn ρSM + (1− pn)Z[TrM{ρSM}] ⊗ ηM .

The essential effect of the collision, thereby, is to either leave with probability
pn the S-M state unchanged or, with probability 1 − pn, to apply the CPT
map Z on S by simultaneously resetting the M ’s state to η.

4.3. Discrete dynamics

Similarly to the CM in [16] (see previous section), the initial state (4.1)
evolves through an underlying S-M unitary dynamics that is interrupted
at each fixed time step τ by a collision described by (4.2) involving a fresh
bipartite ancilla that is still in state ξ ⊗ η. Accordingly, the overall state at
the nth step is given by σn = Sn Uτ Sn−1 Uτ . . .S2 Uτ S1 Uτ [σ0].

Starting from ρ
(0)
SM = ρ0 ⊗ η̄M (see (4.1)), at the end of the first step the

reduced S-M state is turned into

ρ
(1)
SM = Uτ [ρ

(0)
SM ] . (4.6)

Next, the collision with ancilla 1 described by map S1 (see (4.2)) takes place
followed by another application of the S-M unitary. At the end of the second
step, the S-M state thus reads

ρ
(2)
SM = Tr1112

{
UτS1

[
ρ
(1)
SM ξ11η12

]}
= Tr1112

{(
p1Uτ+q1Uτ Z̃

) [
ρ
(1)
SM ξ11η12

]}

= p1 Uτ
[
ρ
(1)
SM

]
+q1 Uτ Z̃

[
ρ
(1)
SM

]
, (4.7)
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S. Lorenzo, F. Ciccarello, G. M. Palma, and B. Vacchini

where the trace is taken over the nth ancilla for n = 1 and to simplify the
notation we set qn = 1−pn. By replacing in the last identity the state at the
end of the first step (4.6), (4.7) can be expressed as a function of the initial
S-M state only as

ρ
(2)
SM = p1U2

τ︸ ︷︷ ︸
0 jumps

[ρ
(0)
SM ] + q1Uτ Z̃Uτ︸ ︷︷ ︸

1 jump

[ρ
(0)
SM ]. (4.8)

Since the elapsed time of the process is an integer multiple of the time step
τ and given that a jump (if any) occurs at the end of each time step τ , at
the second step either 0 or 1 jumps have taken place. The former and latter
cases correspond to the terms featuring zero or one Z̃ in (4.8) as highlighted
by the captions. At the end of the 3rd step, after the application of maps S2
and Uτ , an analogous calculation leads to

ρ
(3)
SM = p2 Uτ [ρ

(2)
SM ] + q2 Uτ Z̃[ρ

(2)
SM ] (4.9)

= p2p1U3
τ︸ ︷︷ ︸

0 jumps

[ρ
(0)
SM ] + (p2q1U2

τ Z̃Uτ + q2p1Uτ Z̃U2
τ )︸ ︷︷ ︸

1 jump

[ρ
(0)
SM ]

+ q2q1Uτ Z̃Uτ Z̃Uτ︸ ︷︷ ︸
2 jumps

[ρ
(0)
SM ] ,

showing that, as expected, 0, 1 or 2 jumps are possible in this case corre-
sponding to as many applications of the map Z̃. In a similar fashion, at the
4th step we get

ρ
(4)
SM = p3 Uτ [ρ

(3)
SM ] + q3 Uτ Z̃[ρ

(3)
SM ] (4.10)

= p3p2p1U4
τ︸ ︷︷ ︸

0 jumps

[ρ
(0)
SM ]

+ (p3p2q1U3
τ Z̃Uτ +p3q2p1U2

τ Z̃U2
τ +q3q2p1Uτ Z̃U3

τ )︸ ︷︷ ︸
1 jump

[ρ
(0)
SM ]

+ (p3q2q1U2
τ Z̃Uτ Z̃Uτ +q3p2q1Uτ Z̃U2

τ Z̃Uτ +q3q2p1Uτ Z̃Uτ Z̃U2
τ )︸ ︷︷ ︸

2 jumps

[ρ
(0)
SM ]

+ q3q2q1Uτ Z̃Uτ Z̃Uτ Z̃Uτ︸ ︷︷ ︸
3 jumps

[ρ
(0)
SM ] .

In order to write down the n-step state in a compact form, having in mind
the structure of (2.4), we first note that based on (3.1) any k-th power of the
map Uτ is given by Uk

τ = Ukτ (in the following we will further set Uk ≡ Ukτ
to simplify the notation).
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Quantum Non-Markovian Piecewise Dynamics from Collision Models

By induction, the n-step state for arbitrary n ≥ 2 is given by

ρ
(n)
SM =

( n−1∏

ℓ=1

pℓ

)
Un[ρ

(0)
SM ] +

n−1∑

j=1

n−1∑

kj=1

kj−1∑

kj−1=1

. . .

k2−1∑

k1=1

π(kj , . . . , k1)

Un−kj Z̃ Ukj−kj−1
Z̃ . . . Z̃ Uk2−k1 Z̃ Uk1 [ρ

(0)
SM ] , (4.11)

where π(kj , . . . , k1) stands for the probability to perform exactly j jumps at
specific steps {kj , . . . , k1} and reads

π(kj , . . . , k1) =
( n−1∏

ℓ=kj+1

pℓ

)
qkj

( kj−1∏

ℓ=kj−1+1

pℓ

)
qkj−1 . . . qk2

( k2−1∏

ℓ=k1+1

pℓ

)
qk1

( k1−1∏

ℓ=1

pℓ

)
.

(4.12)

4.4. Continuous-time limit

In order to perform the continuous-time limit, in analogy with (3.5) we in-
troduce the quantities

p(tk − tk−1) = e−
∫ tk−tk−1
0 dsφ(s), q(tk − tk−1) = 1− e−

∫ tk−tk−1
0 dsφ(s),

corresponding respectively to the probability of no jump or one jump to take
place in each small time interval tk−tk−1, which in the case of constant hazard
function φ(s) reduces to a Poisson distribution for the jumps. According to
the definition of a renewal process, the jump probabilities thereby depend
only on the elapsed time. In this representation, the various contributions
appearing in (4.12), in the limit of a large number of short steps such that
the time intervals between steps become increasingly small, can be written
as

( j∏

ℓ=k+1

pℓ

)
qk =

j∏

ℓ=k+1

e−
∫ tl−tl−1
0 dsφ(s)

(
1− e−

∫ tk−tk−1
0 dsφ(s)

)

≈ e−
∫ tj−tk
0 dsφ(s) − e−

∫ tj−tk−1
0 dsφ(s)

≈ φ(tj − tk−1) e−
∫ tj−tk−1
0 dsφ(s)(tk − tk−1) .

This shows that the function φ(t) has indeed the role of hazard rate func-
tion (cf. (2.5)), which determines the renewal process describing the time
distribution of jumps. Hence, we can thus finally identify

( j∏

ℓ=k+1

pℓ

)
qk ≈ f(tj − tk−1)dtk−1 . (4.13)
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S. Lorenzo, F. Ciccarello, G. M. Palma, and B. Vacchini

The first term in (4.11) accordingly becomes

k∏

ℓ=1

pl −→ e−
∫ tk
0 φ(s)ds = g(tk) . (4.14)

Therefore, (4.11) in the continuous-time limit reads

ρSM (t) = g(t)Ut[ρSM (0)]

+
∞∑

j=1

t∫

0

dtj . . .

t2∫

0

dt1f(t− tj) . . . f(t2 − t1)g(t1) (4.15)

× Ut−tj Z̃ . . . Z̃ Ut2−t1 Z̃ Ut1 [ρSM (0)] .

4.5. Reduced dynamics

So far, we have focused on the bipartite system S-M , working out its evo-
lution. We now consider the resulting reduced dynamics for the system S,
which embodies the degrees of freedom of the open quantum system of in-
terest. We first recall that ρSM (0) = ρ0 ⊗ η̄M (see (4.1)), which ensures
the existence of the reduced dynamical map of S. When this expression is
replaced in (4.15) upon taking the trace over M we get

ρ(t) = g(t)TrM{Ut[ρ0 ⊗ η̄M ]}

+

∞∑

j=1

t∫

0

dtj . . .

t2∫

0

dt1f(t− tj) . . . f(t2 − t1)g(t1) (4.16)

× TrM

{
Ut−tj Z̃ . . . Z̃ Ut2−t1 Z̃ Ut1 [ρ0 ⊗ η̄M ]

}
.

By next introducing, according to (3.8), the CPT maps Et and Ēt, whose
definition is thus identical to the model in [16], and recalling (4.3) and (4.4),
we get

ρ(t) = g(t)Ēt[ρ0] +

∞∑

j=1

t∫

0

dtj . . .

t2∫

0

dt1(t− tj) . . . f(t2 − t1)g(t1)

× TrM

{
Ut−tj Z̃ . . . Z̃ Ut2−t1 [Z[Ēt[ρ0]]⊗ ηM ]

}
. (4.17)

The argument of the partial trace can be expressed by iteration according to

Ut−tj Z̃ . . . Z̃ Ut2−t1
[
Z
[
Ēt [ρ0]

]
⊗ ηM

]

= Ut−tj Z̃ . . .
[
Z
[
Et2−t1

[
Z
[
Ēt [ρ0]

]]]
⊗ ηM

]
,
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Quantum Non-Markovian Piecewise Dynamics from Collision Models

which finally leads to the expression

TrM

{
Ut−tj Z̃ . . . Z̃ Ut2−t1

[
Z
[
Ēt[ρ0]

]
⊗ ηM

]}
= Et−tjZ . . .ZEt2−t1ZĒt[ρ0] ,

where for the sake of simplicity we have removed the nested square brackets
in the last expression. When this result is replaced in (4.17), we end up with
(2.4). Accordingly, the reduced dynamics of S in the continuous-time limit
necessarily obeys ME (2.7) with no restrictions.

We can therefore conclude that the generalized collision model with mem-
ory constructed here is indeed able to reproduce altogether the piecewise NM
dynamics with jumps considered in [1].

5. Conclusions and Outlook

The Gorini-Kossakowski-Lindblad-Sudarshan ME has been for over 40 years
the workhorse of open quantum systems theory. It embodies the basic ref-
erence for open dynamics that lack memory effects. Clearly, though, in the
case of strong coupling and/or structured reservoirs a memoryless Markovian
description fails to faithfully capture the relevant features of the dynamics.
Many non-trivial challenges follow, in particular the need for more general
evolution equations that ensure a well-defined (i.e., CPT) dynamics and, at
the same time, effectively describe memory effects. On top of this, it is highly
desirable that these theoretical descriptions be associated with correspond-
ing environmental models thus providing an underlying microscopic inter-
pretation and, possibly, a controlled implementation of such non-Markovian
dynamics.

Both the above aspects were the focus of this paper. Starting from a
recently proposed family of memory-kernel MEs corresponding to a large
class of generally non-Markovian time evolutions, we showed that any such
ME admits a microscopic CM from which it can be obtained as the equation
governing its continuous-time-limit reduced dynamics.

Specifically, the considered time evolutions consist of piecewise dynamics
in which a continuous, generally non-Markovian, time evolution is interrupted
at random times, distributed according to a general waiting time distribution,
by a quantum jump described by a general CPT transformation. These
dynamics obey a closed memory-kernel ME. In this work, we showed that
one such ME can be obtained as the continuous-time limit of a CM where
memory effects are due to auxiliary degrees of freedom (which we indeed
called memory) mediating the action of the environment on the system. As
a distinctive feature of the CM, each bath ancilla is bipartite comprising a
pair of subancillas. Each collision occurs in the form of a map that, with
some probability, swaps the state of the memory and one subancilla, while a
unitary is at the same time applied on the system under study and the other
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subancilla. As a further hallmark of the considered CM, the probability for
such swap-and-unitary operation can depend at will on the time step.

As remarked in the main text, the ancillas’ doubling along with the step-
dependance of the aforementioned probability are the crucial features mark-
ing the difference between the CM in [16] and the one addressed here (which
can thus be viewed as a non-trivial generalization of the former). They allow
to introduce a jump map as well as a waiting time distribution of arbitrary
shape.

It is interesting to note that the term “collisional model” was at times
used in the literature (see e.g. [29]) to denote a quantum dynamics that is
interrupted at random times by “collisions” — that is jumps in fact — just
like in the framework addressed in [1]. In this respect, our work provides a
connection between this definition of CM, based on random-time collisions,
and the one used throughout the paper, where instead collisions occur at
fixed times.

We finally point out that ME (2.7) was obtained in [1] within a general
framework based on the quantization of a family of classical stochastic dy-
namics. Since this quantization involves non-commuting operators, ME (2.7)
arises only as one of two possible cases corresponding to different operator
orderings. The question whether or not a class of underlying CMs can be
devised even for the ME arising in the other case [1] — which is qualitatively
different from ME (2.7) — is under ongoing investigations.

Appendix A

We here provide the proof of the last identity in (4.3). Let us first recall the

starting point, namely the definition of the map Z̃ given in the first line of
(4.3), omitting the tensor product symbol to simplify the notation

Z̃[ρSM ] = Trn1n2

{
V̂Sn1ŜMn2ρSMξn1ηn2 V̂

†
Sn1

Ŝ†Mn2

}
, (A.1)

and consider two orthonormal bases {|µ〉M} and {|ν〉n2} in the Hilbert spaces

of M and n2, respectively. In terms of these vectors, the swap operator ŜMn2

is expressed as

ŜMn2 =
∑

µ,ν

|µ〉〈ν|M ⊗ |ν〉〈µ|n2 .

Using this expression in (A.1) the rhs explicitly reads
∑
µ,ν

µ′,ν′

Trn1n2

{
V̂Sn1 |µ〉〈ν|M ⊗ |ν〉〈µ|n2ρSMξn1ηn2 |ν ′〉〈µ′|M ⊗ |µ′〉〈ν ′|n2 V̂

†
Sn1

}

=
∑
µ,ν

µ′,ν′

Trn1n2

{
V̂Sn1 |µ〉M ⊗ |ν〉n2〈ν|ρSM |ν ′〉M ξn1〈µ|ηn2 |µ′〉n2 M〈µ′| n2〈ν ′|V̂ †Sn1

}
,
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Quantum Non-Markovian Piecewise Dynamics from Collision Models

so that taking the partial trace over n2 we end up with

Z̃[ρSM ] =
∑

µ,µ′

Trn1

{
V̂Sn1 |µ〉M TrM{ρSM}ξn1〈µ|ηn2 |µ′〉n2 M〈µ′| V̂ †Sn1

}
.

By recalling that the state ρ of the reduced system is just the marginal of
ρSM and by noting that the expression in square brackets swaps ηn2 and ηM ,
we finally get

Z̃[ρSM ] = Trn1

{
V̂Sn1ρ ξn1ηM V̂

†
Sn1

}

= Trn1

{
V̂Sn1ρ ξn1V̂

†
Sn1

}
⊗ ηM = Z[ρ]⊗ ηM ,

which according to the definition (4.4) of the map Z concludes the proof.
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