
Università degli Studi di Palermo

SCUOLA POLITECNICA
Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali

Dottorato in Ingegneria Civile, Ambientale e dei Materiali
Ingegneria Strutturale e Geotecnica

ciclo XXX
Coordinatore.: Prof. Ing. Antonina Pirrotta

PH.D. THESIS

On the moving loads problem in discontinuous
homogeneous beams

and layered beams with interlayer slip

Candidato:
Ing. Salvatore Di Lorenzo

Relatori:
Ch.mo Prof. Antonina Pirrotta

Ch.mo Prof. Christoph Adam
(University of Innsbruck)

S.S.D. ICAR/08



On the moving loads problem in
discontinuous homogeneous beams and

layered beams with interlayer slip

Ph.D thesis submitted to the University of Palermo

by

Salvatore Di Lorenzo

Dipartimento di Ing. Civile, Ambientale, Aerospaziale, dei Materiali
Università degli Studi di Palermo

Scuola Politecnica
Viale delle Scienze, Ed. 8 - 90128 Palermo



SALVATORE DI LORENZO
Palermo, December 2017
e-mail:salvatore.dilorenzo@unipa.it

Thesis of the Ph.D. course in Structural Engineering
Dipartimento di Ingegneria Civile Ambientale, Aerospaziale, dei Materiali
Università degli Studi di Palermo
Scuola Politecnica
Viale delle Scienze, Ed.8 - 90128 Palermo, ITALY

Written in LATEX
Examples and figures made with Wolfram Mathematica©







Contents

Preface xv

Introduction xvii

Notation xix

1 On the moving load problem in continuous Euler-Bernoulli beams 1
1.1 Preliminary remarks . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Equation of motion for beams under moving load . . . . . . . . 2
1.3 Beam modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Eigenvalue problem . . . . . . . . . . . . . . . . . . . . . 3
1.4 Beam response to moving load . . . . . . . . . . . . . . . . . . . 5
1.5 Numerical Application . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Novel approach to the moving load problem in discontinuous Euler-
Bernoulli beams 11
2.1 Preliminary remarks . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Equation of motion for discontinuous beam under moving load 14
2.3 Beam complex modes . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Eigenvalue problem . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Orthogonality conditions . . . . . . . . . . . . . . . . . . 22

2.4 Beam response to moving loads . . . . . . . . . . . . . . . . . . . 23
2.5 Numerical Applications . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Example A . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.2 Example B . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 35

v



vi CONTENTS

3 Extension of the proposed approach to the moving load problem in
discontinuous Euler-Bernoulli beams with tuned mass dampers 37
3.1 Preliminary remarks . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Equation of motion for discontinuous beam equipped with Kelvin-

Voigt viscoelastic tuned mass dampers under moving loads . . 38
3.3 Beam complex modes . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Eigenvalue problem . . . . . . . . . . . . . . . . . . . . . 40
3.4 Beam response to moving loads . . . . . . . . . . . . . . . . . . . 41
3.5 Numerical Applications . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.1 Example A: Beam subjected to a single moving load . . . 43
3.5.2 Example B: Beam subjected to a series of moving loads . 50

3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 On the moving multi-loads problem in beam structures with inter-
layer slip 53
4.1 Preliminary remarks . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Equation of motion for layered beams under moving loads . . . 54
4.3 Beam modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Eigenvalue problem . . . . . . . . . . . . . . . . . . . . . 60
4.4 Beam response to moving loads . . . . . . . . . . . . . . . . . . . 65
4.5 Numerical Applications . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.1 Example A . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.2 Example B . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Novel approach to the moving multi-loads problem in discontinuous
beam structures with interlayer slip 75
5.1 Preliminary remarks . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Equation of motion for discontinuous layered beam under mov-

ing multi-loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 Beam modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Eigenvalue problem . . . . . . . . . . . . . . . . . . . . . 82
5.4 Beam response to moving loads . . . . . . . . . . . . . . . . . . . 90
5.5 Numerical Applications . . . . . . . . . . . . . . . . . . . . . . . 91

5.5.1 Example A . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5.2 Example B . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5.3 Example C . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5.4 Example D . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



CONTENTS vii

5.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 106

Summary and conclusions 107



viii CONTENTS



List of Figures

1.1 Euler-Bernoulli beam under moving load with constant veloc-
ity. Positive sign conventions are shown . . . . . . . . . . . . . . 2

1.2 Simply-supported beam . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Mode 1 eigenfunctions of beam in Fig.1.2: (a) deflection; (b)

rotation; (c) bending moment; (d) shear force . . . . . . . . . . . 8
1.4 Mid-span deflection of beam in Fig.1.2 under a moving force

with different velocities v0 . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Deflection profile of beam in Fig.1.2 at different time instants,

under a moving force with different velocities v0 . . . . . . . . . 10

2.1 Euler-Bernoulli beam with translational supports and rotational
joints under moving load with constant velocity. Positive sign
conventions are shown. . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Simply-supported three-span beam with Kelvin-Voigt viscoelas-
tic supports and joints. . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Mode 1 eigenfunctions of beam in Fig.2.2: (a) deflection; (b)
rotation; (c) bending moment; (d) shear force. Left column: real
part. Right column: imaginary part. Exact proposed solution
(black line); exact classical solution (black circle). . . . . . . . . . 27

2.4 Mid-span deflection of beam in Fig.2.2 under a moving force
with different velocities v0: proposed solution with M = 3
modes (black line); FE solution with 4 (red triangle) and 16
(black circle) elements. . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Mid-span deflection of beam in Fig.2.2 under a moving force
with different velocities v0: proposed solution with M = 1
(gray line), M = 2 (dashed line) and M = 3 (black line) modes;
FE solution with 16 elements (black circle). . . . . . . . . . . . . 29

ix



x LIST OF FIGURES

2.6 Deflection profile of beam in Fig.2.2 at different time instants,
under a moving force with different velocities v0: proposed so-
lution with M = 3 modes (black line); FE solution with 16 ele-
ments (black circle). . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Three-span beam with Kelvin-Voigt viscoelastic supports and
end dampers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Mode 1 eigenfunctions of beam in Fig.2.7: (a) deflection; (b)
rotation; (c) bending moment; (d) shear force. Left column: real
part. Right column: imaginary part. Exact proposed solution
(black line); exact classical solution (black circle). . . . . . . . . . 32

2.9 Mid-span deflection of beam in Fig.2.7 under a moving force
with different velocities v0: proposed solution with M = 3
modes (black line); FE solution with 4 (red triangle) and 16
(black circle) elements. . . . . . . . . . . . . . . . . . . . . . . . . 33

2.10 Mid-span deflection of beam in Fig.2.7 under a moving force
with different velocities v0: proposed solution with M = 1
(gray line), M=2 (dashed line) and M = 3 (black line) modes;
FE solution with 16 elements (black circle). . . . . . . . . . . . . 34

2.11 Deflection profile of beam in Fig.2.7 at different time instants,
under a moving force with different velocities v0: proposed so-
lution with M = 3 modes (black line); FE solution with 16 ele-
ments (black circle). . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Euler-Bernoulli beam with TMDs, translational supports and
rotational joints under moving load with constant velocity V0. . 39

3.2 Simply-supported beam with Kelvin-Voigt viscoelastic supports
and joints and one viscoelastic TMD (first configuration) or three
viscoelastic TMDs (second configuration) attached. . . . . . . . 45

3.3 Mode 1 eigenfunctions of the beam (i) without TMDs (red line),
(ii) with one TMD (blue line) and (iii) with three TMDs (black
line) shown in Fig.3.2: (a) deflection; (b) rotation; (c) bending
moment; (d) shear force. Left column: real part. Right column:
imaginary part. Solution based on the proposed method (solid
line) and on the classical procedure (black markers). . . . . . . . 48



LIST OF FIGURES xi

3.4 Deflection profile at time τ = 0.219, subjected to moving con-
centrated force with speed v0: Proposed solution for the beam
(i) without TMDs (red line), (ii) with one TMD (blue dashed
line), (iii) with three TMDs (black line); corresponding FE solu-
tion (black markers). . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Deflection at x = 0.6 of the beam with three TMDs subjected
to moving concentrated force with speed v0. Proposed solution
with one mode (gray line), two modes (dashed blue line), three
modes (red line), four modes (black thick line) and five modes
(triangle markers) approximation; corresponding FE solution
(black markers). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Beam deflection at x = 0.6 subjected to moving concentrated
force with speed v0: proposed solution for the beam (i) without
TMDs (red line), (ii) with one TMD (blue line), (iii) with three
TMDs (black line). . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7 Idealization of the train loads (modified from [1]). . . . . . . . . 51

3.8 Beam deflection at x = 0.5 subjected to a series of moving con-
centrated forces with critical speed v0 : proposed solution for
the beam (i) without TMDs (red line), (ii) with one TMD (blue
line), (iii) with three TMDs (black line). . . . . . . . . . . . . . . 52

4.1 Two-layered elastically bonded beam under moving loads . . . 55

4.2 Infinitesimal two-layered beam element (according to [2]) . . . . 56

4.3 Deformed two-layered beam (according to [2]) . . . . . . . . . . 57

4.4 Simply-supported two-layered beam under multi-moving loads
[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Beam in Fig.4.4: mode 1 eigenfunctions for the elastically bonded
beam (black dashed line) and for the rigidly bonded beam (black
solid line): (a) deflection, (b) rotation, (c) total bending moment,
(d) axial force in the upper layer, (e) shear force, (f) interlaminar
shear force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Time history of the mid-span deflection of the two-layered elas-
tically bonded beam shown in Fig.4.4 (black dashed line) and
for the rigidly bonded beam (black solid line) . . . . . . . . . . . 69



xii LIST OF FIGURES

4.7 Deflection over span of the the two-layered elastically bonded
beam shown in Fig.4.4. Black dashed lines: multi-mode re-
sponse at six time instants specified in Fig.4.6 (t1 = 3.93 s,
t2 = 4.20 s, t3 = 4.49 s, t4 = 4.75 s, t5 = 5.04 s, t6 = 6.15 s).
Red solid line: first mode response at time instant t5. Red solid
line: first mode response at time instant t5 . . . . . . . . . . . . . 70

4.8 Time history of the mid-span deflection of the two-layered elas-
tically bonded viscous beam shown in Fig.4.4 . . . . . . . . . . . 71

4.9 Clamped-clamped two-layered elastically bonded beam [1] . . . 71
4.10 Beam in Fig.4.9: mode 1 eigenfunctions for the elastically bonded

beam: (a) deflection, (b) rotation, (c) total bending moment, (d)
axial force in the upper layer, (e) shear force, (f) interlaminar
shear force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.11 Time history of the mid-span deflection of the two-layered elas-
tically bonded beam shown in Fig.4.9 . . . . . . . . . . . . . . . 73

4.12 Time history of the mid-span deflection of the two-layered elas-
tically bonded viscous beam shown in Fig.4.9 . . . . . . . . . . . 74

5.1 Discontinuous two-layered elastically bonded beam . . . . . . 77
5.2 Simply-supported discontinuous two-layered beam under multi-

moving loads (modified from [1])) . . . . . . . . . . . . . . . . . 92
5.3 Beam in Fig.5.2: mode 1 eigenfunctions for the elastically bonded

beam (black dashed line) and for the rigidly bonded beam (black
solid line): (a) deflection, (b) rotation, (c) total bending moment,
(d) axial force in the upper layer, (e) shear force, (f) interlaminar
shear force. Solution based on the proposed method and on the
classical procedure (black markers) . . . . . . . . . . . . . . . . . 94

5.4 Time history of the mid-span deflection of the discontinuous
two-layered elastically bonded beam shown in Fig.5.2 (black
dashed line) and for the rigidly bonded beam (black solid line) . 95

5.5 Deflection over span of the the discontinuous two-layered elas-
tically bonded beam shown in Fig.5.2. Black dashed lines: multi-
mode response at six time instants specified in Fig.4.6 (t1 =
1.383 s, t2 = 1.611 s, t3 = 1.84 s, t4 = 2.076 s t5 = 1.73 s,
t6 = 1.96 s). Red solid line: first mode response at time instant
t3. Red solid line: first mode response at time instant t3 . . . . . 95

5.6 Time history of the mid-span deflection of the two-layered elas-
tically bonded viscous beam shown in Fig.5.2 . . . . . . . . . . . 96



LIST OF FIGURES xiii

5.7 Cracked beam bridge subjected to a series of concentrated forces 97
5.8 Beam in Fig.5.7: mode 1 eigenfunctions for the elastically bonded

cracked beam (black dashed line): (a) deflection, (b) rotation,
(c) total bending moment, (d) axial force in the upper layer, (e)
shear force, (f) interlaminar shear force. Solution based on the
proposed method and on the classical procedure (black markers) 98

5.9 Time history beam response at mid-span to moving multi-loads
at critical speed V0 = 36.13m/s. Beam without local damage
(black dashed thick line) and with local damage (red dashed line) 99

5.10 Time history of the mid-span deflection of the two-layered elas-
tically bonded viscous beam shown in Fig.5.7 . . . . . . . . . . . 99

5.11 Clamped-Clamped discontinuous two-layered elastically bonded
beam subjected to a series of concentrated forces . . . . . . . . . 100

5.12 Beam in Fig.5.11: mode 1 eigenfunctions for the elastically bonded
cracked beam (black dashed line): (a) deflection, (b) rotation,
(c) total bending moment, (d) axial force in the upper layer, (e)
shear force, (f) interlaminar shear force. Solution based on the
proposed method and on the classical procedure (black markers) 101

5.13 Time history beam response to moving multi-loads at critical
speed V0 = 113.22m/s at: a) X = L/2 b) X = 3L/2. Solution
based on the proposed method and on the classical procedure
(black markers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.14 Time history of the two-layered elastically bonded viscous beam
shown in Fig.5.11 at: a) X = L/2 b) X = 3L/2. Solution
based on the proposed method and on the classical procedure
(black markers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.15 Two-layered elastically bonded beam with elastic translational
and rotational supports at the ends, subjected to a series of con-
centrated forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.16 Beam in Fig.5.15: mode 1 eigenfunctions for the elastically bonded
cracked beam (black dashed line): (a) deflection, (b) rotation,
(c) total bending moment, (d) axial force in the upper layer, (e)
shear force, (f) interlaminar shear force . . . . . . . . . . . . . . . 105

5.17 Time history mid-span beam response to moving multi-loads
at critical speed V0 = 65.97m/s: a) deflection of the discontin-
uous two-layered elastically bonded beam b) deflection of the
discontinuous two-layered elastically bonded viscous beam . . 106





Preface

This manuscript contains the main part of my research performed in this last
triennium at the Department of Civil, Environmental, Aerospace and Ma-
terials Engineering, University of Palermo, and at the Department of Basic
Sciences in Engineering Sciences (Unit of Applied Mechanics), University of
Innsbruck, Austria.

The research adheres to a common procedure of solving a scientistic prob-
lem. That is, introduction to the problem, selection of the mathematical and
physical tools to model the problem, proposed solution, and numerical vali-
dation.

The thesis proposes a novel modal superposition approach to the moving
loads problem on discontinuous homogeneous beam and layered beam with
interlayer slip, carrying an arbitrary number of translational supports, rota-
tional joints and alternatively tuned mass dampers (TMDs). The beams are
referred to as discontinuous for the discontinuities of response variables at the
application points of supports/joints/TMDs. Supports and TMDs are taken
as representative of external devices while the rotational joints may model
rotational dampers or connections with flexibility and damping arising from
imperfections or damage.

Based on the theory of generalized functions to handle the discontinuities
of response variables due to supports/joints/TMDs, exact beam modes are
obtained regardless of the number of discontinuities. On using pertinent or-
thogonality condition for the de deflection modes, the dynamic response of
the beam under moving loads is derived in time domain. All response vari-
ables are presented in a closed analytical form by using the relationship equa-
tions of the beam. Several numerical applications illustrate the efficiency of
the proposed method.

Salvatore Di Lorenzo
Palermo, December 2017
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Introduction

The main purpose of this thesis is to provide a novel modal superposition ap-
proach to the moving multi-loads problem in beam structures with external
translational supports, internal rotational joints and alternatively tuned mass
dampers (TMDs). The beams are referred to as discontinuous for the disconti-
nuities of response variables at the application points of supports/joints and
TMDs.

The reason for this kind of problem relates to the fact that, in recent years,
lighter and more slender structures are being designed while vehicle speed
progressively increases. In this contexts, investigations of dynamic effects
have become crucial, stimulating a considerable interest in accurate and effi-
cient solutions for the moving multi-loads problem on discontinuous beams.

In general, studies have adopted either a modal superposition or a finite
element (FE) approach, but some inherent limitations still exist. Modal super-
position methods generally use exact or approximate modes of the undamped
beam and, for this reason, proportional damping is assumed or no damping
is considered. Also the FE methods have some drawbacks: they generally
require numerical integration, accuracy may depend on the grid mesh, and
nodes must be inserted at any location of external translational/rotational
supports, internal rotational joints, and dampers. This may be a significant
disadvantage, especially in the early stages of design, when different solu-
tions have to be built and compared at various locations of supports, joints or
dampers.

To overcome these limitations, this thesis introduces a novel modal super-
position approach to the moving multi-load problem in discontinuous beams.
Exact modes are derived by the theory of generalised functions, along with
pertinent orthogonality conditions. Based on the exact modes, the analytical
expressions of the response under moving loads, by simple integration rules
of generalised functions, are obtained. Analytical solutions for all response

xvii
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variables and for any number of supports/joints/TMDs along the beam are
built under moving loads with constant velocity.

In particular, in this thesis, the novel modal superposition approach is ap-
plied to two kind of beams: homogeneous beams and two-layered elastically
bonded beams.
This thesis comprises five Chapters.

Chapter 1 concerns the vibration response of continuous Euler-Bernoulli
beams under moving load. This Chapter is devoted to the introduction of the
topic of the present thesis; i.e. moving loads on discontinuous Euler-Bernoulli
beams.

Chapter 2 introduces a novel and efficient approach for studying the dy-
namic behavior under moving loads of discontinuous Euler-Bernoulli beams.

In Chapter 3 the aforementioned original and efficient approach is gener-
alised to beams equipped with Kelvin-Voigt viscoelastic tuned mass dampers
(TMDs).

Chapter 4 presents the moving multi-loads problem for two-layered elas-
tically bonded beams.

Finally, Chapter 5 addresses the dynamic flexural behavior of the two-
layered elastically bonded beams carrying an arbitrary number of elastic trans-
lational supports and rotational joints, under moving multi-loads.



Notation

In order to make reading of this manuscript easier, below the mainly used
symbols and acronyms are summarised (in order of appearance).

X coordinate in direction of the longitudinal axis

Z coordinate in direction of the transverse axis

L length of the beam

mL mass per unit length

EI flexural rigidity

E Young’s modulus

I moment of inertia of the cross section with respect to the Z-axis

W(X, t) flexural deflection

Θ(X, t) bending rotation of the cross section

Q(X, t) shear force

M(X, t) bending moment

t time instant

F moving load

V0 velocity of the moving load

δ Dirac’s Delta function

xix



xx Notation

σ(Z, X, t) stress

ε (Z, X, t) strain

x dimensionless longitudinal axis

f dimensionless moving load

v0 dimensionless velocity of the moving load

τ dimensionless time instant

T period of oscillator

w(x, τ) dimensionless flexural deflection

θ(x, τ) dimensionless bending rotation of the cross section

m(X, τ) dimensionless bending moment

q∗(X, τ) dimensionless shear force

ψ(x) dimensionless eigenfunction of deflection

ϑ(x) dimensionless eigenfunction of rotation

µ(x) dimensionless eigenfunction of bending moment

χ(x) dimensionless eigenfunction of shear force

σ dimensionless eigenvalue

ω eigenvalue

i imaginary unit

Y (x) vector collecting the dimensionless eigenfunctions

c vector of integration constants

Ω (x) matrix containing all the terms of the dimensionless

eigenfunction of the bare beam
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B matrix given by the response variables Y (x)

computed at the end of the beam

det determinant

δjk Kronecker delta

M number of modes

N number of discontinuities

Xj position of the discontinuities

KW,j spring stiffness of the viscoelastic support

CW,j damping coefficient of the viscoelastic support

K∆Θ,j spring stiffness of the viscoelastic joint

C∆Θ,j damping coefficient of the viscoelastic joint

R(X, t) generalised function

Pj(t) reaction force of the j-th support

∆Θj (t) relative rotation at the j-th joint

r(x, τ) dimensionless generalised function

pj(τ) dimensionless reaction force of the j-th support

xj dimensionless position of the discontinuities

∆θj (τ) dimensionless relative rotation at the j-th joint

δ(k) k-th formal derivative of the Dirac’s delta

kw,j dimensionless spring stiffness of the viscoelastic support

cw,j dimensionless damping coefficient of the viscoelastic support

k∆θ,j dimensionless spring stiffness of the viscoelastic joint

c∆θ,j dimensionless damping coefficient of the viscoelastic joint
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ρ (σ) dimensionless generalised function in the

eigenfunction domain

ϕj (σ) dimensionless reaction force of the jth support in the

eigenfunction domain

∆ϑj (σ) dimensionless relative rotation at the jth joint in the

eigenfunction domain

Λj vector of the dimensionless reaction forces

and the dimensionless relative rotation in the
eigenfunction domain

J
(
x, xj

)
particular solutions associated with Λj

Fii moving multi loads

NL number of moving multi loads

t0
ii time instants of departure of the moving loads

tE
ii time instants of arrival of the moving loads

H Heaviside function

Sii initial location of the moving loads

sii dimensionless initial location of the moving loads

fii dimensionless moving multi loads

τ0
ii dimensionless time instants of departure of the moving loads

τE
ii dimensionless time instants of arrival of the moving loads

KTMD,j stiffness of the tuned mass damper

CTMD,j damping coefficient of the tuned mass damper

MTMD,j mass of the tuned mass damper

kTMD,j dimensionless stiffness of the tuned mass damper



xxiii

cTMD,j dimensionless damping coefficient of the tuned mass damper

mTMD,j dimensionless mass of the tuned mass damper

β frequency ratio of the tuned mass damper

ζ damping ratio of the tuned mass damper

σTMD natural frequency of the tuned mass damper

α mass ratio

m̄ dimensionless first modal mass of the beam

N(X, t) axial force

T(X, t) elastic interlaminar shear force

Q1(X, t) shear force in the upper layer

Q2(X, t) shear force in the lower layer

M1(X, t) bending moment in the upper layer

M2(X, t) bending moment in the lower layer

N1(X, t) axial force in the upper layer

N2(X, t) axial force in the lower layer

ρi mass densities of the single layers

Ai cross sectional areas of the single layers

ri distances between the centroids of the

single layers and the interlayer

U1(X, t) longitudinal displacements at the centroid of the upper layer

U2(X, t) longitudinal displacements at the centroid of the lower layer

∆U (X, t) interlaminar slip

EI0 bending stiffness corresponding to non-composite action
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EI∞ bending stiffness corresponding to a rigid interlayer connection

EA0 longitudinal stiffness for non-composite action

Φ (X) eigenfunction of deflection

O (X) eigenfunction of rotation

Υ (X) eigenfunction of bending moment

Γ (X) eigenfunction of shear force

Σ (X) eigenfunction of the axial force in the upper layer

Ψ (X) eigenfunction of the elastic interlaminar shear force

ζm m-th proportional viscous damping coefficient

ωdm damped m-th natural frequency



Chapter 1

On the moving load problem in
continuous Euler-Bernoulli
beams

This chapter concerns the vibration response of Euler-Bernoulli beams under
moving load. Based on pertinent orthogonality conditions for the deflection
modes, the response under a moving load is built in time domain by modal
superposition.

1.1 Preliminary remarks

Vibration analysis of beam-like structures under moving loads is a classical
topic in structural dynamics, with relevant applications in many engineering
fields such as, for instance, railway or highway bridges acted upon by travel-
ling loads [1, 3–5]. In light of the fact that, in recent years, lighter and more
slender structures are being designed while vehicle speed progressively in-
creases, investigations of dynamic effects have become crucial, stimulating a
considerable interest in accurate and efficient solutions for the moving load
problem on beams [1, 3–6].

In the context of moving load analysis, this chapter serves as a foundation
for the subsequent chapters, since it contains the well-known classical formu-
lation of the moving load problem in Euler-Bernoulli beams. The modal su-
perposition approach based on the exact modes is considered and analytical
solutions for all response variables are built in time domain.

1
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1.2 Equation of motion for beams under moving load

Consider the beam in Fig.1.1 where X is the longitudinal axis, Z the transverse
axis, L the length, mL the mass per unit length, EI the flexural rigidity, with
E representing the Young’s modulus and I the moment of inertia of the cross
section with respect to the Z-axis; symbols W(X, t), Θ(X, t) denote flexural
deflection and bending rotation of the cross section; Q(X, t) and M(X, t) are
shear force and bending moment, with t denoting the time instant. Positive
sign conventions are shown in Fig.1.1.

(X,t)

(X,t)
(X,t)

(X,t)Q

Figure 1.1: Euler-Bernoulli beam under moving load with constant velocity. Positive
sign conventions are shown

The dynamic equilibrium equation for vibrations W(X, t), in the Z-direction
of the length dX of the beam, under a moving load F with constant velocity V0
[7], is readily obtained by equating the inertial force to the sum of the forces
exerted by the other parts of the beam and the external forces:

∂2M (X, t)
∂X2 = mL

∂2W (X, t)
∂t2 − Fδ (X−V0t) (1.1)

where δ
(
X− Xj

)
is the Dirac’s delta.

In virtue of the Euler- Bernoulli hypothesis, that is neglecting rotary in-
ertia and shear deformation, the kinematic and the mechanical relations read
respectively [8]:

ε (Z, X, t) = −Z
∂2W (X, t)

∂X2 (1.2)
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σ (Z, X, t) =
M (X, t)

I
Z (1.3)

Making use of Hooke’s law, σ (Z, X, t) = E ε (Z, X, t) which relates stress
σ (Z, X, t) to the axial strain ε (Z, X, t), and substituting Eq. (1.2) and Eq. (1.3)
into this relationship, the following relation for bending moment M(X, t) is
found [8]:

M (X, t) = −EI
∂2W (X, t)

∂X2 (1.4)

At this point, introducing Eq. (1.4) into Eq. (1.1) the equation of motion of
the beam under a moving load F with constant velocity V0 is [8]:

EI
∂4W (X, t)

∂X4 + mL
∂2W (X, t)

∂t2 = Fδ (X−V0t) (1.5)

In dimensionless form, Eq. (1.5), reverts to:

∂4w (x, τ)

∂x4 +
∂2w (x, τ)

∂τ2 = f δ (x− v0τ) (1.6)

In Eq. (1.6), x = X/L, f = FL2/EI, v0 = V0T/L, and τ = t/T , with

T =
√

mLL4
/

EI and δ
(
X− Xj

)
= δ

(
x− xj

)
/L. Also, the following symbols

denote the dimensionless beam response variables: w = W/L , θ = Θ , m =
ML/EI, q∗ = QL2/EI .

1.3 Beam modes

The free vibration problem of the beam in Fig.1.1 is reported here.

1.3.1 Eigenvalue problem

Based on the standard separate variables approach, let w (x, τ) = ψ (x) eiστ,
θ (x, τ) = ϑ (x) eiστ, m (x, τ) = µ (x) eiστ, q∗(x, τ) = χ (x) eiστ, where ψ (x),
ϑ (x), µ (x), χ (x) are the dimensionless eigenfunctions of deflection, rota-
tion, bending moment and shear force, respectively; σ is the dimensionless
eigenvalue, with σ2 = ω2mLL4/EI where ω the dimensional eigenvalue and
i =
√
−1 is the imaginary unit. The free-vibration equation of the beam in

Fig.1.1 reads:



4 1. On the moving load problem in continuous Euler-Bernoulli beams

d̄4ψ (x)
dx4 − σ2ψ (x) = 0 (1.7)

The eigenfunctions ψ (x), ϑ (x), µ (x), χ (x) are related by the beam equa-
tions:

dχ (x)
dx

+ σ2ψ (x) = 0 (1.8)

dµ (x)
dx

= χ (x) (1.9)

dϑ (x)
dx

= −µ (x) (1.10)

dψ (x)
dx

= ϑ (x) (1.11)

Next, let Y (x) =
[

ψ (x) ϑ (x) µ (x) χ (x)
]T be the vector collecting

the eigenfunctions of the response variables. From Eq. (1.7), Y (x) can be cast
in the following form:

Y (x) = Ω (x) c (1.12)

where

Ω (x) =


Ωψ1 Ωψ2 Ωψ3 Ωψ4
Ωϑ1 Ωϑ2 Ωϑ3 Ωϑ4
Ωµ1 Ωµ2 Ωµ3 Ωµ4
Ωχ1 Ωχ2 Ωχ3 Ωχ4

 (1.13)

and c =
[

c1 c2 c3 c4
] T 4× 1 vector of integration constants.

The above terms in Eq. (1.13) can be written in a simple analytical form:
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Ωψ1 (x) = e−σx; Ωψ2 (x) = eσx

Ωϑ1 (x) = −σe−σx; Ωϑ2 (x) = σeσx

Ωµ1 (x) = −σ2e−σx; Ωµ2 (x) = −σ2eσx

Ωχ1 (x) = σ3e−σx; Ωχ2 (x) = −σ3eσx

Ωψ3 (x) = cos (σx) ; Ωψ4 (x) = sin (σx)
Ωϑ3 (x) = −σ sin (σx) ; Ωϑ4 (x) = σ cos (σx)
Ωµ3 (x) = σ2 cos (σx) ; Ωµ4 (x) = σ2 sin (σx)

Ωχ3 (x) = −σ3 sin (σx) ; Ωχ4 (x) = σ3 cos (σx)

(1.14)

The 4× 1 vector of integration constants c in Eq. (1.12) can be computed by
enforcing the boundary condition (B.C.) of the beam. This leads to four equa-
tions with the general form:

Bc = 0 (1.15)

Terms in matrix B are given by the response variables Y (x) computed at
x = 0, x = 1 using Eq. (1.12). From Eq. (1.15), the characteristic equation can
be built as determinant of the 4× 4 matrix B, i.e.

det B = 0 (1.16)

Then, upon deriving the dimensionless eigenvalue σ from Eq. (1.16), and
the vector of integration constants c from Eq. (1.15), the vector of eigenfunc-
tions Y (x) is obtained, using Eq. (1.12).

1.4 Beam response to moving load

The modes, built as explained in section 1.3, serve as a basis to predict the
beam response to the moving load. Then, taking into account the orthogonal-
ity condition that is:

1∫
0

ψj (x)ψk (x) dx = δjk (1.17)

where δjk is the Kronecker delta defined as:
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δjk =

{
1 if j = k
0 if j 6= k (1.18)

and considering the moving load f (x, τ) = δ (x− v0τ) in Eq. (1.6), the beam
deflection can be cast in the following form:

w (x, τ) =
∞

∑
k=1

ψk (x)
∫ τ

0
eiσk(τ−τ′)gk

(
τ′
)

dτ′ (1.19)

In Eq. (1.19), ψk (x) is the kth deflection eigenfunction, and gk (·) is given as:

gk
(
τ′
)
= (iσkΞk)

−1ηk
(
τ′
)

(1.20)

where

ηk
(
τ′
)
=
∫ 1

0
ψk (x) δ

(
x− v0τ′

)
dx = ψk

(
v0τ′

)
(1.21)

Ξk = 2
∫ 1

0
ψ2

k (x) dx (1.22)

In practical applications, a few M modes in the modal superposition Eq. (1.19)
will be sufficient to accurately represent the response.
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1.5 Numerical Application

Consider the simply supported beam in Fig.1.2

1

Figure 1.2: Simply-supported beam

Table 1.1: Dimensionless frequencies of beam in Fig.1.2

Mode Frequency

1 9.8696
2 39.4784
3 88.8264
4 157.914
5 246.740

Table 1.2 reports the dimensionless eigenvalues of the first five modes
while in Fig.1.3 the eigenfunctions of mode 1 are shown, for all response vari-
ables.
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b)

c) d)

a)

Figure 1.3: Mode 1 eigenfunctions of beam in Fig.1.2: (a) deflection; (b) rotation; (c)
bending moment; (d) shear force

Next, the dynamic response to a moving force f = 1 is investigated.
Fig.1.4 shows the mid-span deflection of the beam for various velocities of
the moving force, as computed by Eq. (1.19) with M=3 modes. No significant
changes are found when considering M > 3 modes.
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Figure 1.4: Mid-span deflection of beam in Fig.1.2 under a moving force with differ-
ent velocities v0

Finally, Fig.1.5 shows the beam deflection over the whole axis at certain
time instants, for two load velocities, as computed by Eq. (1.19) with M = 3
modes.
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τ = 2.5

τ = 1
τ = 4

τ = 0.5

τ = 0.2 τ = 0.8

Figure 1.5: Deflection profile of beam in Fig.1.2 at different time instants, under a
moving force with different velocities v0

1.6 Concluding remarks

The vibration response of a beam under moving loads has been presented. To
show the procedure used in the subsequent chapters, based on pertinent or-
thogonality conditions for the deflection modes, the response under a moving
load is built in time domain by modal superposition.



Chapter 2

Novel approach to the moving
load problem in discontinuous
Euler-Bernoulli beams

This chapter concerns the vibration response under moving load of Euler-
Bernoulli beams with translational supports and rotational joints, featuring
Kelvin-Voigt viscoelastic behaviour. The beams are referred to as discontin-
uous for the discontinuities of response variables at the application points
of supports/joints. Using the theory of generalised functions to handle the
discontinuities of the response variables at the support/joint locations, exact
beam modes are obtained from a characteristic equation built as the determi-
nant of a 4 × 4 matrix, for any number of supports/joints. Based on perti-
nent orthogonality conditions for the deflection modes, the response under
moving load is built in time domain by modal superposition. Remarkably,
all response variables are built in a closed analytical form, regardless of the
number of supports/joints.

2.1 Preliminary remarks

In the context of moving load problem analysis, much effort has been devoted
to developing analytical or numerical methods that are capable of handling
loads travelling on multi-span beams, beams with in-span external transla-
tional or rotational supports, beams with internal rotational joints modelling
flexible connections or cracks, and beams with dampers. The dynamics of

11
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such beams under moving loads has been investigated in several studies, and
any review can hardly be exhaustive. In general, studies have adopted either
a modal superposition [9–23] or a finite element (FE) approach [24–27], most
of which focus on Euler-Bernoulli beam models [9–27].

Among modal superposition methods, some have addressed beams based
on exact modes [9–14]. Specifically, for stepped [9] or uniform [10] beams with
along-axis elastic translational/rotational supports [9, 10], and stepped beams
with along-axis fixed translational supports [11], Johansson et al. [9], Zhu and
Law [10], Chan and Ashebo [11], used exact modes built by the classical proce-
dure, which requires representing the free vibration response of every beam
segment with uniform cross-section properties, or between two consecutive
translational/rotational supports, in a trigonometric-hyperbolic form with 4
integration constants, totalling 4× k constants for k segments, to be computed
by matching conditions between responses over contiguous segments. By
this approach, exact beam natural frequencies and modes are derived from a
characteristic equation built as determinant of a (4× k)× (4× k) matrix. For
non-prismatic [12] or stepped [13] beams with along-axis fixed translational
supports [12, 13], Dugush and Eisenberger [12], Henchi et al.[13] used exact
modes derived from a global dynamic stiffness matrix obtained by assem-
bling the dynamic stiffness matrix of every span. For a uniform beam with
end rotational dampers, Greco and Santini [14] used exact complex modes
with pertinent orthogonality conditions. Notice that, in ref.[9–14] using ex-
act modes, uncoupled equations of motion were always derived for the beam
under moving load.

Among modal superposition methods for beams, a significant number of
papers involving approximate modes also exists [15–23]. For instance, for
non-prismatic beams with along-axis fixed translational supports, Martinez-
Castro et al. [15] used modes from a FE discretisation of the beam, Zheng et
al. [16] used modified vibration modes built as linear combination of the stan-
dard vibration modes of a uniform prismatic beam without along-axis sup-
ports, but featuring the same boundary conditions (B.C.) of the non-prismatic
beam, and cubic splines fulfilling the in-span zero deflections at the rigid
translational supports. Again for non-prismatic beams with along-axis fixed
translational supports, De Salvo et al.[17] used a special variant of the com-
ponent mode synthesis method, while Zhu and Law [18] utilized the Ritz
method to build approximate modes as linear combination of exact modes
of uniform beam. For stepped beams with along-axis elastic translational
and rotational supports and internal translational and rotational joints cou-
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pling adjacent spans, Xu and Li [19] applied a modified Fourier series repre-
sentation of the deflection response including a suitable auxiliary polynomial
function in each span to improve accuracy and convergence rate. For a beam
connected to a retrofitted auxiliary beam with translational viscous dampers
[20], a beam carrying a mass-damper with either linear or non-linear constitu-
tive law [21], multi-span beams on fixed translational supports [22], Museros
and Martinez-Rodrigo [20], Samani and Pellicano [21], Lee [22] used the ex-
act modes of the bare beam, i.e. the uniform beam without in-span supports
or attachments, to approximate the vibration modes (in ref. [20], they were
used for both retrofitted and retrofitting beams). For a uniform beam with
an elastic rotational joint modelling a crack, Lee and Ng [23] used a series
of normalized characteristic functions over the two spans connected by the
joint. Note that, in ref. [15–23] using approximate modes, uncoupled [15]
and, more frequently, coupled [16–23] equations of motion were derived for
the beam under moving load.

FE solutions in ref. [24–27] were generally built by numerical integration
of the motion equations under moving load, and without recurring to modal
truncation. A review may be found in the works by Wu et al. [24] and Rieker
et al. [25]. A spectral FE approach was followed by Sarvestan et al.[26] for
viscoelastic beams with elastic rotational joints modelling cracks, and by Azizi
et al.[27] for multi-span non-uniform beams. An interesting and alternative
approach to modal superposition methods [9–23] and FE solutions [24–27] has
been proposed by Sun [28] for loads travelling on a uniform beam resting on a
Winkler viscoelastic subgrade, by representing the deflection as a generalized
integral which involves the beam Green’s function.

Although modal superposition and FE methods provided effective solu-
tions in all studies described above [9–27], some inherent limitations still ex-
ist. Modal superposition methods generally use exact or approximate modes
of the undamped beam and, for this reason, proportional damping is as-
sumed [9–11, 13] or no damping is considered [12]. For those applications
where damping cannot be taken as proportional, as-in, for instance, cases
where dampers are present, only a few modal superposition methods are
available [14, 20, 21]. An exact solution for a uniform beam with end rotational
dampers is provided in ref.[14], while approximate solutions for translational
viscous dampers coupling retrofitted beams or one attached mass-damper are
reported respectively in ref.[20] and ref.[21]. Also the FE methods have some
drawbacks: they generally require numerical integration, accuracy may de-
pend on the grid mesh, and nodes must be inserted at any location of exter-
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nal translational/rotational supports, internal rotational joints, and dampers.
This may be a significant disadvantage, especially in the early stages of de-
sign, when different solutions have to be built and compared at various loca-
tions of supports, joints or dampers.

Framed in the context above, this chapter introduces a novel modal su-
perposition approach to the moving load problem in Euler-Bernoulli uniform
beams with external translational supports and internal rotational joints, fea-
turing linear elasticity and viscous damping according to a classical Kelvin-
Voigt viscoelastic law. The formulation of the proposed approach has been
published by myself and professors Di Paola, Failla and Pirrotta in an Inter-
national journal ”Acta Mechanica” [29] building upon a previous study [30]
where, for such beams, exact modes were derived by the theory of generalised
functions [31–42], along with pertinent orthogonality conditions. It will show
that a modal superposition approach based on the exact modes provides ana-
lytical expressions of the response under moving loads, by simple integration
rules of generalised functions. In particular, analytical solutions will be built
under moving loads with constant velocity, and will be obtained for all re-
sponse variables, for any number of supports/joints along the beam.

2.2 Equation of motion for discontinuous beam under
moving load

Consider the beam in Fig.2.1 which carries an arbitrary number N of vis-
coelastic translational supports and rotational joints at abscissas Xj along the
axis. In agreement with previous studies [43–48], a Kelvin-Voigt viscoelastic
behaviour is assumed. The spring stiffness and damping coefficients are KW,j
and CW,j for the jth translational support, K∆Θ,j and C∆Θ,j for the jth rotational
joint.

In this study, translational supports are taken as representative of exter-
nal devices such as grounded dampers applied for retrofitting purposes [20],
or in-span supports with flexibility and damping. Likewise, rotational joints
model rotational dampers such as, for instance, those applied at beam-to-
column nodes for vibration control [46], or connections where flexibility and
damping may arise from damage or imperfections [47, 48]. Obviously, purely
elastic supports and joints can be considered in this study, as they are used in
several applications to model in-span supports [9, 10, 17] and cracks [23, 35,
39, 40], respectively.
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(X,t)

(X,t)

(X,t)
(X,t)Q

Figure 2.1: Euler-Bernoulli beam with translational supports and rotational joints un-
der moving load with constant velocity. Positive sign conventions are
shown.

Equations will be written for the most general case of supports and joints
occurring simultaneously at the same location. However, changes will be
straightforward to consider a single support or a single joint at a given lo-
cation. Under this assumption, the theory of generalised functions leads to
the following equation of motion of the beam under a moving load F with
constant velocity V0 [7]:

EI
∂̄4W (X, t)

∂X4 + mL
∂2W (X, t)

∂t2 + R (X, t) = Fδ (X−V0t) (2.1)

Because of the discontinuities at support/joint locations, the fourth order
derivative in Eq. (2.1) is a generalised derivative, as denoted by the over-bar.
Further, R (X, t) is a generalised function given as:

R (X, t) = −
N

∑
j=1

Pj (t) δ
(
X− Xj

)
−

N

∑
j=1

EI ∆Θj (t) δ(2)
(
X− Xj

)
(2.2)

In Eqs. (2.1 and 2.2), δ
(
X− Xj

)
is the Dirac’s delta and δ(k)

(
X− Xj

)
de-

notes its k-th formal derivative; Pj (t) is the reaction force of the j-th support

Pj (t) = KW,jW
(
Xj, t

)
+ CW,j

∂W
(
Xj, t

)
∂t

(2.3)

and ∆Θj (t) = Θ
(

X+
j , t
)
− Θ

(
X−j , t

)
is the relative rotation at the j-th joint

(see Fig.2.1), related to the bending moment at that point of the beam accord-
ing to the following equation:
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Mj (t) = K∆Θ,j∆Θj
(
Xj, t

)
+ C∆Θ,j

∂∆Θj
(
Xj, t

)
∂t

(2.4)

Note that if no support and joint occur at X = Xj, the reaction force Pj and
the relative rotation ∆Θj are equal to zero. Then being R(X, t) = 0, Eq. (2.1)
returns to Eq. (1.5), valid for continuous Euler-Bernoulli beams.

In dimensionless form, Eqs. (2.1 and 2.2), revert to:

∂̄4w (x, τ)

∂x4 +
∂2w (x, τ)

∂τ2 + r (x, τ) = f δ (x− v0τ) (2.5)

r (x, τ) = −
N

∑
j=1

pj (τ) δ
(

x− xj
)
−

N

∑
j=1

∆θj (τ) δ(2)
(
x− xj

)
(2.6)

In Eqs. (2.5) and (2.6), δ(k)
(
X− Xj

)
= δ(k)

(
x− xj

)/
Lk+1, while for the

damper parameters, kw,j = KW,jL3/EI, cw,j = CW,jL
/√

mLEI, k∆θ,j = K∆Θ,jL
/

EI
and c∆θ,j = C∆Θ,j

/
L
√

mLEI.

2.3 Beam complex modes

An original systematic procedure for the free vibration problem of the beam
in Fig.2.1 is proposed here. In this context, this formulation allows the con-
struction of a characteristic equation featuring all terms in a closed analytical
form.

2.3.1 Eigenvalue problem

Based on the standard separate variables approach, used for the continuous
beam in chapter 1, the free-vibration dimensionless equation of the discontin-
uous Euler-Bernoulli beam in Fig.2.1, reads:

d̄4ψ (x)
dx4 − σ2ψ (x) + ρ (σ) = 0 (2.7)

where ρ(σ) denotes the presence of the supports and joints:
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ρ (σ) = −
N

∑
j=1

ϕj (σ) δ
(

x− xj
)
−

N

∑
j=1

∆ϑj (σ) δ(2)
(
x− xj

)
(2.8)

As said for the continuous beam, the eigenfunctions ψ (x), ϑ (x), µ (x),
χ (x) of the discontinuous beam are related by the beam equations:

d̄χ (x)
dx

+ σ2ψ (x) +
N

∑
j=1

ϕj (σ) δ
(
x− xj

)
= 0 (2.9)

d̄µ (x)
dx

= χ (x) (2.10)

d̄ϑ (x)
dx

= −µ (x) +
N

∑
j=1

∆ϑj (σ) δ
(
x− xj

)
(2.11)

d̄ψ (x)
dx

= ϑ (x) (2.12)

In Eqs. (2.7) and (2.8), ϕj (σ) and ∆ϑj (σ) are the reaction force of the jth sup-
port and the relative rotation at jth joint, respectively. After Fourier-transforming
Eqs. (2.3) and (2.4) written in dimensionless form, become:

ϕj (σ) = −κw,j (σ)ψ
(

xj
)

κw,j (σ) = kw,j + iσcw,j (2.13)

∆ϑj (σ) = −
µ
(
xj
)

κ∆θ,j (σ)
κ∆θ,j (σ) = k∆θ,j + iσc∆θ,j (2.14)

Note that ϕj (σ) and ∆ϑj (σ) in Eqs. (2.7) and (2.8) are all unknown, for

j=1,2,..,N. Next, considering Λj =
[

ϕj ∆ϑj
]T the vector of the unknown

reaction forces ϕj (σ) and the relative rotation ∆ϑj (σ) at x = xj, the vector
Y (x) collecting the eigenfunctions of the response variables, can be cast from
Eqs. (2.7) and (2.8), in the following general form, based on the linear super-
position principle:

Y (x) = Ω (x) c +
N

∑
j=1

J
(
x, xj

)
Λj (2.15)
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That is, Y (x) is built as the sum of the solution to the homogeneous equa-
tion, Ω (x) c , representing the eigenfunctions of the bare beam considered in
chapter 1, Eqs. (1.13) and (1.14), and the particular solutions associated with
the unknowns Λj at x = xj, J

(
x, xj

)
Λj, which account for the discontinuities

at support/joint locations.

In the particular solution:

J
(
x, xj

)
=
[

J(p) J(∆θ)
]

for J(p) =


J(p)
ψ

J(p)
ϑ

J(p)
µ

J(p)
χ

 ; J(∆θ) =


J(∆θ)
ψ

J(∆θ)
ϑ

J(∆θ)
µ

J(∆θ)
χ

 (2.16)

where superscripts (p) , (∆θ) denote respectively the particular integrals asso-
ciated with a unit transverse force p = 1, and a unit relative rotation ∆θ = 1,
applied at x = xj, all terms are available in a simple analytical form. In par-
ticular, the integrals J(p) (x, xj

)
for a point force p = 1 at x = xj are:

J(p)
ψ (x) = 2−1σ−3/2 [sinh

(√
σ
(

x− xj
))
− sin

(√
σ
(
x− xj

))]
H
(
x− xj

)
J(p)
ϑ (x) = 2−1σ−1 [cosh

(√
σ
(

x− xj
))
− cos

(√
σ
(
x− xj

))]
H
(
x− xj

)
J(p)
µ (x) = −2−1σ−1/2 [sinh

(√
σ
(

x− xj
))

+ sin
(√

σ
(
x− xj

))]
H
(
x− xj

)
J(p)
χ (x) = −2−1 [cosh

(√
σ
(

x− xj
))

+ cos
(√

σ
(
x− xj

))]
H
(
x− xj

)
(2.17)

while the particular integrals J(∆θ)
(
x, xj

)
for a relative rotation ∆θ = 1 at x =

xj result to be:

J(∆θ)
ψ (x) = 2−1σ−1/2 [sinh

(√
σ
(

x− xj
))

+ sin
(√

σ
(
x− xj

))]
H
(
x− xj

)
J(∆θ)
ϑ (x) = 2−1 [cosh

(√
σ
(

x− xj
))

+ cos
(√

σ
(
x− xj

))]
H
(
x− xj

)
J(∆θ)
µ (x) = −2−1σ1/2 [sinh

(√
σ
(

x− xj
))
− sin

(√
σ
(
x− xj

))]
H
(
x− xj

)
J(∆θ)
χ (x) = −2−1σ

[
cosh

(√
σ (x− x0)

)
− cos

(√
σ
(
x− xj

))]
H
(
x− xj

)
(2.18)

Using Eq. (2.16) to express ψ
(
xj
)

and µ
(
xj
)

on the r.h.s. of Eqs. (2.13) and
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(2.14), it can be observed that the unit-step functions H
(
x− xj

)
involved in

J
(
x, xj

)
are not equal to zero only when computed at x > xj. This makes it

possible to cast vector Λ1 at the first damper location x1, and vectors Λj at
damper locations xj, for j = 2..., N, as follows:

Λ1 = ΦΩ (x1) c (2.19)

Λj = ΦΩ

(
xj
)

c +
j−1

∑
k=1

ΦJ
(
xj, xk

)
Λk for j = 2, . . . , N (2.20)

where ΦΩ

(
xj
)

is given by:

ΦΩ

(
xj
)
=


−κw,j (σ)

(
Ω
(
xj
))

1

−
(
Ω
(
xj
))

3
κ∆θ,j (σ)

 (2.21)

in which
(
Ω
(

xj
))

i are row vectors coinciding with the ith row of matrix Ω (x).
Further, ΦJ

(
xj, xk

)
, for k < j, is the 4× 2 matrix:

ΦJ
(

xj, xk
)
=


−κw,j (σ)

(
J
(
xj, xk

))
1

−
(
J
(
xj, xk

))
3

κ∆θ,j (σ)

 (2.22)

where
(
J
(
xj, xk

))
i denotes the ith row of matrix J

(
xj, xk

)
.

Eqs. (2.19 and 2.20) can be used to obtain Λj in terms of vector c only.
Starting from Eq. (2.19) for Λ1, Eq. (2.20) allows to be expressed Λj in the
following form:

Λj = ΦΩ

(
xj
)

c+

+ ∑
2≤q≤j

∑
(j, m, n, ..., r, s︸ ︷︷ ︸Nq)∈N(j)

q

ΦJ
(

xj, xm
)

ΦJ (xm, xn) · · ·ΦJ (xr, xs)ΦΩ (xs) c

(2.23)



20
2. Novel approach to the moving load problem in discontinuous

Euler-Bernoulli beams

where N(j)
q = {(j, m, n, ...r, s︸ ︷︷ ︸

q

) : j > m > n > ... > r > s; m, n, ...r, s =

1, 2, ..., (j− 1) } is the set including all possible q-ples of indexes (j, m, n, ...r, s︸ ︷︷ ︸
q

)

such that j > m > n > ... > r > s being 2 ≤ q ≤ j. For instance, with N = 4
support/joint locations the following sets results to be:

Table 2.1: Sets of indexes N(j)
q for N = 4 support/joint locations

j = 2 j = 3 j = 4

q = 2 N(2)
2 = {(2, 1)} N(3)

2 = {(3, 1) , (3, 2)} N(4)
2 = {(4, 1) , (4, 2) , (4, 3)}

q = 3 - N(3)
3 = {(3, 2, 1)} N(4)

3 = {(4, 3, 2) , (4, 3, 1) , (4, 2, 1)}

q = 4 - - N(4)
4 = {(4, 3, 2, 1)}

At this point substituting Eq. (2.23) into Eq. (2.15) it is possible to write the
following general form of Y (x):

Y (x) = Ỹ (x) c (2.24)

where Ỹ (x) is given as:

Ỹ (x) = Ω (x) +
N
∑

j=1
J
(
x, xj

)
ΦΩ

(
xj
)
+

N
∑

j=2
J
(

x, xj
)

∑
2≤q≤j

∑
(j, m, n, ..., r, s︸ ︷︷ ︸

q

)∈(j)
q

ΦJ
(
xj, xm

)
ΦJ (xm, xn) · ·ΦJ (xr, xs)ΦΩ (xs)

(2.25)

As shown for the bare beam, the 4 × 1 vector of integration constants c in
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Eq. (2.24) can be computed by enforcing the B.C. of the beam. This leads to
four equations with the same general form written for the bare beam (Bc =
0). Remarkably, matrix B will always be a 4× 1 matrix, for any number of
supports/joints along the beam. Terms in matrix B are given by the response
variables Y (x) computed at x = 0, x = 1 and, therefore, can readily be ob-
tained in a closed analytical form using Eqs. (2.24) and (2.25). The character-
istic equation can be built as determinant of the 4× 4 matrix B, (det B = 0),
from which it is possible to find the dimensionless eigenvalue σ.

Upon deriving the non-trivial solution c from the characteristic equation,
exact closed-form expressions can be built for the vector of eigenfunctions
Y (x), using Eq. (2.24). Due to the fact that damping associated with sup-
ports/joints is in general not proportional, modes are expected to be com-
plex. The same procedure is also valid for non-homogeneous B.C. due to end
dampers. Modelling end dampers as internal dampers located at x1 = 0+ and
xN = 1−, the B.C. can still be taken as homogeneous [49].
Changes to be made when a single translational support or rotational joint oc-
cur at a given abscissa xj are straightforward. If no support occurs at x = xj,
κw,j (σ) = 0 shall be set at x = xj. This will automatically set equal to zero
the first row in matrices ΦΩ

(
xj
)
, ΦJ

(
xj, xk

)
. Setting the reaction force pj = 0

at x = xj, the 1st column of matrix ΦJ
(
xm, xj

)
shall be set equal to zero for

all xm > xj. Obviously, if no joint occurs at x = xj, κ∆θ,j (σ) = ∞ shall be
set at x = xj. As a result, the second row of matrices ΦΩ

(
xj
)
, ΦJ

(
xj, xk

)
will

be equal to zero. Also, setting ∆ϑj = 0 at x = xj, the 2nd column of matrix
ΦJ
(

xm, xj
)

shall be set equal to zero for all xm > xj.
At this stage, a few remarks are necessary to stress the advantages of the pro-
posed approach. This procedure provides the exact eigenvalues, and the ex-
act eigenfunctions of all response variables Y (x), in a closed form. Likewise,
terms of the 4 × 4 matrix B can readily be computed in a closed form, for
any number and positions of supports and joints, with no changes when their
number and relative positions vary along the beam. These are significant ad-
vantages over the exact classical approach, which requires representing the
free vibration response in every beam segment between two consecutive sup-
ports/joints in terms of four integration constants, totalling 4× (N + 1) con-
stants for N support/joint locations. These integration constants have to be
computed by a set of equations built by enforcing the B.C. and matching con-
ditions between the responses over contiguous beam segments, to the left and
right of any support/joint location. Through the use of this approach, the co-
efficient matrix associated with the set of equations has to be updated when-
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ever the support/joint locations change along the axis, and its size increases
with the number of supports/joints. Finally, it is noted that the proposed ex-
act eigensolutions can serve as a benchmark for standard FE solutions with
two-node beam elements. Advantages over the FE method are that, in a stan-
dard FE method, a mesh node must be inserted at the application point of
any support or joint, and re-meshing may be required whenever they change
position.

2.3.2 Orthogonality conditions

The derivation of the orthogonality conditions for the complex modes are now
described. Firstly, Eq. (2.7) is written for ψm (x) and multiplied by ψn (x), us-
ing Eqs. (2.13) and (2.14) to express ϕj (σ) and ∆ϑj (σ) in terms of ψm (x) and
µm (x); likewise, Eq. (2.7) is written for ψn (x) and multiplied by ψm (x) using,
in this case, Eqs. (2.13) and (2.14) for ϕj (σ) and ∆ϑj (σ) in terms of ψn (x) and
µn (x). Secondly, both equations are integrated by parts over the interval [0,1],
taking into account the sampling property of Dirac’s delta. The two equations
are then used as follows: the first orthogonality condition is obtained by com-
puting the difference between the two equations, while the second orthogo-
nality condition is obtained by computing the difference between Eq. (2.7) in
ψm (x) multiplied by σn and Eq. (2.7) in ψn (x) multiplied by σm. Therefore the
two orthogonality conditions obtained read as:

(
σ2

m − σ2
n
) ∫ 1

0
ψmψndx + ∆1 (σm, σn) = 0 (2.26)

(σm − σn)
∫ 1

0

d̄2ψm

dx2
d̄2ψn

dx2 dx + σmσn (σm − σn)
∫ 1

0
ψmψndx + ∆2 (σm, σn) = 0

(2.27)

where in Eq. (2.26)

∆1 (σm, σn) =
N
∑

j=1

{[
κw,j (σn)− κw,j (σm)

]
ψm
(
xj
)

ψn
(
xj
)
+

+
[(

κ∆θ,j (σm)
)−1 −

(
κ∆θ,j (σn)

)−1
]

µm
(
xj
)

µn
(
xj
)} (2.28)

while in Eq. (2.27)
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∆2 (σm, σn) =
N

∑
j=1

{[
σmκw,j (σn)− σnκw,j (σm)

]
ψm
(
xj
)

ψn
(
xj
)
+

+
[
σn
(
κ∆θ,j (σm)

)−1 − σm
(
κ∆θ,j (σn)

)−1
]

µm
(
xj
)

µn
(
xj
)
+ (σm − σn) Γj (σm, σn)

}
(2.29)

where

Γj (σm, σn) =
(
κ∆θ,j (σm)

)−1(
κ∆θ,j (σn)

)−1
µm
(
xj
)

∫ 1

0
µn
(

xj
)

δ
(
x− xj

)
δ
(
x− xj

)
dx

(2.30)

2.4 Beam response to moving loads

The complex modes, built as explained in section 2.3 serve as a basis to build
the beam response to the moving load. The procedure and the formulation are
the same as those described in section 1.4 concerning the continuous Euler-
Bernoulli beam under moving load. The only difference is that in the case of
discontinuous beams, the eigenfunctions include the contribution of supports
and joints. Consequently

Ξk = 2
∫ 1

0
ψ2

k (x) dx−

 N

∑
j=1

icw,j

σk
ψ2

k
(
xj
)
+

ic∆θ,j

σk

[
µk
(
xj
)

κ∆θ,j (σk)

]2
 (2.31)

Note that the B.C. of the beam are inherently fulfilled by the deflection eigen-
functions ψk (x). Therefore, this method can be applied for any B.C.

In practical applications, a few M modes in the modal superposition will
be sufficient to accurately represent the response and, upon summing up the
contributions of complex-conjugate eigenfunction pairs, the beam deflection
can be rewritten in the following real form [50, 51]:
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w (x, τ) ≈ Re

[
M

∑
k=1

ψk (x)
∫ τ

0
eiσk(τ−τ′)gk

(
τ′
)

dτ′
]

(2.32)

Recognise that equations analogous to Eq. (2.32) may be written for the
other response variables, i.e. rotation, bending moment and shear force, using
pertinent eigenfunctions from Eq. (2.24). At this stage, a few remarks, in order
to highlight some advantages of the proposed solution, are necessary. The first
is that closed-form expressions can be derived for the convolution integral∫ τ

0
eiσk(τ−τ′)gk

(
τ′
)

dτ′ (2.33)

In light of Eq. (1.20) for gk (τ
′), Eq. (2.24) for the kth eigenfunction ψk (x),

and Eqs. (2.17) and (2.18) for J
(

x, xj
)
, it may be seen that the integral Eq. (2.33)

can be reverted as the sum of individual integrals with the general form:∫ τ

0
λ
(
τ′
)

H
(
v0τ′ − xj

)
dτ′ (2.34)

where λ (τ′) is given by the product of the exponential function eiσk(τ−τ′) and
trigonometric/hyperbolic functions:

λ
(
τ′
)
= eiσk(τ−τ′) 2−1σ−3/2 [sinh

(√
σ
(
v0τ′ − xj

))
− sin

(√
σ
(
v0τ′ − xj

))]
(2.35)

Using the theory of generalised functions [49], the integral (2.34) can be
computed as:

∫ τ
0 λ (τ′) H

(
v0τ′ − xj

)
dτ′ =

{
H
(
ζ − xj

) [
λ[1]

(
ζv−1

0

)
− λ[1]

(
xjv−1

0

)]}v0τ

0
=

= H
(
v0τ − xj

) [
λ[1] (τ)− λ[1]

(
xjv−1

0

)]
(2.36)

where λ[1] (·) denotes the first-order primitive function of λ (·). Note that, for
functions λ (τ′) given as the product of the exponential function eiσk(τ−τ′) and
trigonometric or hyperbolic functions, the first-order primitive λ[1] (·) can be
obtained in a closed form by any symbolic package [52].
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Secondly, it is worth remarking that Eq. (2.32) involves the exact modes
of the beam and it is derived based on appropriate orthogonality conditions.
The exact complex modes reflect the actual amount of damping introduced in
the system by the viscoelastic supports and joints. No simplifying assump-
tions are made on such damping, unlike the alternative modal superposition
approaches where proportional damping is assumed in order to use classical
orthogonality conditions of undamped modes [9–11, 13].

2.5 Numerical Applications

Two numerical applications are presented in which free vibration solutions
and dynamic response to moving loads, as obtained by the proposed method,
are compared respectively to exact free vibration solutions built by the exact
classical procedure and dynamic response built by the ADINA FE code [53],
with time-dependent nodal forces modelled as explained in ref.[25].

2.5.1 Example A

Consider the four-span beam in Fig.2.2. Kelvin-Voigt viscoelastic translational
supports and rotational joints occur at x1 = 1/4, x2 = 1/2 and x3 = 3/4,
while the two ends are assumed to be simply supported. The following di-
mensionless parameters are assumed: kw,1 = kw,2 = kw,3 = 102 and cw,1 =
cw,2 = cw,3 = 10−1 ; k∆θ,1 = k∆θ,2 = k∆θ,3 = 10 and c∆θ,1 = c∆θ,2 = c∆θ,3 = 10−1.

1

1

1

Figure 2.2: Simply-supported three-span beam with Kelvin-Voigt viscoelastic sup-
ports and joints.
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Table 2.2 reports the dimensionless eigenvalues of the first three modes,
as built by the proposed method, and the classical method, i.e. represent-
ing the free-vibration response in a trigonometric/hyperbolic form with four
integration constants over each segment between two consecutive damper lo-
cations, and enforcing matching conditions at the subdivision points along
with the B.C. Both methods provide the exact eigenvalues. However, using
the proposed method the characteristic equation is given as determinant of a
4× 4 matrix, with terms of matrix B given by analytical expressions Eq.(2.24).
In contrast, the characteristic equation built by the classical exact procedure is
given as determinant of a 16× 16 matrix. Table 2.2 shows that the eigenvalues
obtained by the two methods coincide up to the fourth decimal place (in this
case, Newton’s method is used to solve the characteristic equations). It can be
observed that damping effects on the individual modes are not the same.

Table 2.2: Eigenvalues of beam in Fig.2.2 by exact proposed method (PM) and classi-
cal method (CM).

Mode Eigenvalues (PM) Eigenvalues (CM) Damping ratio

1 ± 21.90371+i 0.26292 ± 21.90370+i 0.26292 0.0120
2 ± 39.89872+i 1.54879 ± 39.89871+i 1.54875 0.0388
3 ± 81.82443+i 6.54101 ± 81.82442+i 6.54108 0.0796

The eigenfunctions of mode 1 are shown in Fig.2.3, for all response vari-
ables (complex-conjugate eigenfunctions are not reported for conciseness). As
observed, the rotational dampers induce a jump discontinuity at mode 1 rota-
tion while the shear force is discontinuous at the translational supports.

Next, the dynamic response to a moving force f = 1 is investigated.
Fig.2.4 shows the mid-span deflection of the beam for various velocities of
the moving force, as computed by Eq. (2.32) with M=3 modes and the FE
method in ADINA, with 4 and 16 elements. A very satisfactory agreement
is encountered between the two solutions, when 16 elements are considered.
No significant changes are found when considering M > 3 modes in the pro-
posed solution and more than 16 elements in the FE solution and, for this
reason, pertinent results are omitted.
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b)

c)

d)

a)

Figure 2.3: Mode 1 eigenfunctions of beam in Fig.2.2: (a) deflection; (b) rotation; (c)
bending moment; (d) shear force. Left column: real part. Right column:
imaginary part. Exact proposed solution (black line); exact classical solu-
tion (black circle).
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Figure 2.5 shows the mid-span deflection, as computed by Eq. (2.32) with
M = 1, M = 2 and M = 3 modes, and FE method with 16 elements. It is
evident that contributions of various modes change depending on the veloc-
ity and that, in general, one mode is not sufficient to describe the mid-span
deflection with due accuracy.

Figure 2.6 shows the beam deflection over the whole axis at certain time
instants, for two load velocities, as computed by Eq. (2.32) with M = 3 modes
and FE method with 16 elements. With previous results at the mid-span
shown in Figs.2.4-2.6, the agreement between the two solutions is very sat-
isfactory over the whole beam axis.

A final remark is that all proposed solutions rely on closed-form analytical
expressions of Eq. (2.32), while the FE solution in ADINA requires numerical
integration, with a considerable computational effort.

Figure 2.4: Mid-span deflection of beam in Fig.2.2 under a moving force with differ-
ent velocities v0: proposed solution with M = 3 modes (black line); FE
solution with 4 (red triangle) and 16 (black circle) elements.
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Figure 2.5: Mid-span deflection of beam in Fig.2.2 under a moving force with dif-
ferent velocities v0: proposed solution with M = 1 (gray line), M = 2
(dashed line) and M = 3 (black line) modes; FE solution with 16 elements
(black circle).

τ = 2.5

τ = 1 τ = 4

τ = 0.5

τ = 0.2 τ = 0.8

Figure 2.6: Deflection profile of beam in Fig.2.2 at different time instants, under a
moving force with different velocities v0: proposed solution with M = 3
modes (black line); FE solution with 16 elements (black circle).
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2.5.2 Example B

Consider the three-span beam in Fig.2.7. Two viscoelastic translational sup-
ports are located at x = 1/4 and x = 3/4, while two viscoelastic rotational
dampers are applied at the beam ends. Examples of end rotational dampers
may be found in ref.[14, 51, 54].

The proposed method is implemented assuming clamped-clamped B.C.
and considering the end rotational dampers as internal dampers at x =0+

and x =1−, totalling four damper locations: x =0+, x2 = 1/4, x3 = 3/4
and x4=1−. The corresponding sets N(j)

q , for j = 1, 2, 3, 4, to be considered
in Eq. (2.25), are given in Table 2.3. Dimensionless parameters are selected as
follows: kw,2 = kw,3 = 102, cw,2 = cw,3 = 10−1 for the translational supports;
k∆θ,1 = k∆θ,4 = 10 and c∆θ,1 = c∆θ,4 = 10−1 for the rotational dampers. Nu-
merical values for x =0+ and x4=1− are as follows: x1 = ε and x4 = 1− ε ,
with ε = 10−10.

Figure 2.7: Three-span beam with Kelvin-Voigt viscoelastic supports and end
dampers.

The exact eigenvalues, as obtained from the proposed procedure and the
classical method, are listed in Table 2.3. Again, an excellent agreement is
found. As in the previous case, however, recognize that the characteristic
equation is built as determinant of a 4 × 4 matrix using the proposed ap-
proach, and a 12× 12 matrix using the classical one.
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Table 2.3: Eigenvalues of beam in Fig.2.7 by exact proposed method (PM) and classi-
cal method (CM).

Mode Eigenvalues (PM) Eigenvalues (CM) Damping ratio

1 ± 21.68703+i 0.52471 ± 21.68701+i 0.52470 0.0242
2 ± 54.45782+i 2.92061 ± 54.45783+i 2.92060 0.0536
3 ± 105.16203+i 7.60262 ± 105.16201+i 7.60263 0.0723

The eigenfunctions of mode 1 are shown in Fig.2.8, for all response variables
(complex-conjugate eigenfunctions are not reported for conciseness). There
is a non-zero rotation at the end rotational dampers, and the shear force is
discontinuous at the translational supports. The same consideration holds for
the eigenfunctions of the all other modes. Figure 2.9 through Fig.2.11 show
the dynamic response to a moving force f = 1, as computed by the pro-
posed method using Eq. (2.32), and ADINA FE code [53]. In particular, Fig.2.9
shows that the two solutions for the mid-span deflection agree very well when
M = 3 modes are used in Eq. (2.32) and 16 elements are considered in the FE
solution (for various velocities of the moving force). Again, it should be em-
phasised that no significant changes are found when M > 3 modes are used
in Eq. (2.32) and more than 16 elements in the FE solution. Figure 2.10 shows
that M=3 modes are needed in Eq. (2.32) to accurately describe the mid-span
deflection. Finally, Fig.2.11 demonstrates that the agreement between pro-
posed solution with M = 3 modes and FE solution with 16 elements is very
satisfactory over the whole axis, at given time instants for two load velocities.
As in the previous case, closed-form analytical expressions (2.32) prove com-
putationally more efficient than numerical integration required by ADINA.
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b)

c)

d)

a)

Figure 2.8: Mode 1 eigenfunctions of beam in Fig.2.7: (a) deflection; (b) rotation; (c)
bending moment; (d) shear force. Left column: real part. Right column:
imaginary part. Exact proposed solution (black line); exact classical solu-
tion (black circle).
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Figure 2.9: Mid-span deflection of beam in Fig.2.7 under a moving force with differ-
ent velocities v0: proposed solution with M = 3 modes (black line); FE
solution with 4 (red triangle) and 16 (black circle) elements.
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Figure 2.10: Mid-span deflection of beam in Fig.2.7 under a moving force with differ-
ent velocities v0: proposed solution with M = 1 (gray line), M=2 (dashed
line) and M = 3 (black line) modes; FE solution with 16 elements (black
circle).

τ = 2.5

τ = 1 τ = 4

τ = 0.5

τ = 0.2 τ = 0.8

Figure 2.11: Deflection profile of beam in Fig.2.7 at different time instants, under a
moving force with different velocities v0: proposed solution with M = 3
modes (black line); FE solution with 16 elements (black circle).



2.6 Concluding remarks

A method has been presented to analyse the vibration response under mov-
ing loads of beams with Kelvin-Voigt viscoelastic translational supports and
rotational joints. The method relies on exact complex modes and pertinent or-
thogonality conditions to express all response variables by appropriate time-
domain convolution integrals, which can be reverted to closed-form analyt-
ical expressions using simple integration rules of generalised functions. No
numerical integration is required. This allows considerable computational ad-
vantages over standard numerical solutions built by FE method. The method
accounts for non-proportional damping due to supports and joints, since ex-
act complex modes with pertinent orthogonality conditions are used, with a
significant benefit with respect to alternative modal superposition methods
where proportional damping is assumed or no damping is considered.





Chapter 3

Extension of the proposed
approach to the moving load
problem in discontinuous
Euler-Bernoulli beams with
tuned mass dampers

In this chapter the original and efficient approach to the moving load problem
on Euler-Bernoulli beams, with Kelvin-Voigt viscoelastic translational sup-
ports and rotational joints, proposed in chapter 2, is generalised to be ap-
plied if such beams are equipped with Kelvin-Voigt viscoelastic tuned mass
dampers (TMDs). The proposed solution holds for any number of TMDs and
along-axis supports/joints. To show its applicability, accuracy and efficiency,
a numerical application concerning a beam with multiple supports/joints is
considered, subjected to a moving concentrated force and a series of con-
centrated forces, respectively. In two different configurations, the beam is
equipped with one TMD and three TMDs, respectively.

3.1 Preliminary remarks

A beam crossed by a single load or a sequence of loads travelling with criti-
cal speed may be excited to a state of resonance. An effective way to reduce

37
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the moving load induced vibration amplitudes is the application of TMDs
[55–64]. In a pioneering work, Chen and Chen [65] discussed the appropriate
design of TMDs for vibration control of Timoshenko beams subjected to con-
stant and harmonic moving loads, as well as critical speed and structural res-
onance. Solutions were built by the modal superposition method for uniform
beams with TMDs, but no external supports or internal joints were consid-
ered. Further studies on the application of TMDs for beam vibration control
under moving loads were carried out in ref.[66], where the effectiveness of one
versus multiple TMDs was investigated, and in ref.[67], where the uncertainty
in dynamic excitation for robust design optimisation of TMDs was discussed.
This chapter introduces a novel modal superposition approach to the moving-
load problem in Euler-Bernoulli beams with TMDs, translational supports
and rotational joints, all featuring a Kelvin-Voigt viscoelastic behaviour. This
work has been published by myself and professors Adam, Failla and Pirrotta
in the International journal ”Meccanica” [68]. The approach uses the gener-
alised functions theory [29–31, 34–37, 39, 40] to derive exact complex modes
with pertinent orthogonality conditions, and closed-form expressions for all
response variables. Specifically, analytical solutions will be built under loads
with constant velocity, for any number of TMDs, supports, and joints. After
describing the beams under study in Section 3.2, Section 3.3 will present exact
modes and orthogonality conditions. Analytical solutions for the moving-
loads problem will be presented in Section 3.4. Numerical applications will
be discussed in Section 3.5.

3.2 Equation of motion for discontinuous beam equipped
with Kelvin-Voigt viscoelastic tuned mass dampers
under moving loads

The Euler-Bernoulli beam in Fig.3.1 carries an arbitrary number N of vis-
coelastic TMDs, translational supports and rotational joints at abscissas Xj.
Kelvin-Voigt viscoelastic behaviour is assumed, in agreement with previous
studies [44–48]. Spring stiffness and damping coefficients for the jth TMD are
respectively KTMD,j, CTMD,j, with MTMD,j mass of the jth TMD. Equations will
be presented to satisfy the most general case of TMDs, supports and joints
occurring simultaneously at the same location. Under this assumption, the
theory of generalised functions leads to the following equation of motion of
the beam subjected to series of NL concentrated loads Fii (ii = 1, ...., NL), with
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constant velocity V0 [1, 7]:

EI
∂̄4W (X, t)

∂X4 + mL
∂2W (X, t)

∂t2 + R (X, t) =

=
NL
∑

ii=1
Fiiδ (x−V0 t + Sii)

[
H
(
t− t0

ii

)
− H

(
t− tE

ii
)] (3.1)

where Heaviside function H indicates the arrival and the departure of Fii at
time instants t0

ii = Sii/V0 and tE
ii = (Sii + L)/V0 respectively, depending on

the constant speed V0 and the initial location Sii of Fii.
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Figure 3.1: Euler-Bernoulli beam with TMDs, translational supports and rotational
joints under moving load with constant velocity V0.

Because of the discontinuities at support/joints locations, the fourth order
derivative in Eq. (3.1) is a generalised derivative, as denoted by the over-bar.
Further, R (X, t) is a generalised function given as (2.2). However in this case
Pj (t) includes the reaction force of the jth TMD as well as that of the j-th
support. In a non-dimensional form, Eq. (3.1) reverts to:

∂̄4w (x, τ)

∂x4 +
∂2w (x, τ)

∂τ2 + r (x, τ) =

=
NL
∑

ii=1
fiiδ (x− v0 τ + sii)

[
H
(
τ − τ0

ii

)
− H

(
τ − τE

ii
)] (3.2)

where sii = Sii/L, fii = FiiL2/EI, τ0
ii = t0

ii

/
T and τE

ii = tE
ii
/

T. For the jth
TMD: kTMD,j = KTMD,jL3/EI, cTMD,j = CTMD,jL

/√
mLEI and mTMD,j =

MTMD,j
/

mLL.
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The solution of Eq. (3.2) will be obtained based on the complex mode super-
position principle.

3.3 Beam complex modes

In this section the free vibration problem of the beam shown in Fig.3.1 is dis-
cussed.

3.3.1 Eigenvalue problem

The free vibration equation of the beam in Fig.3.1 is solved using Eq. (2.7) and
Eq. (2.8), where ϕj (σ) includes the reactions of the jth TMD and jth support:

ϕj (σ) = −κT,j (σ)ψ
(
xj
)

(3.3)

κT,j (σ) = κTMD,j (σ) + κw,j (σ) (3.4)

with:

κTMD,j (σ) =

(
kTMD,j + iσ cTMD,j

)
MTMD,jσ

2

MTMD,jσ2 −
(
kTMD,j + iσ cTMD,j

) κw,j (σ) = kw,j + iσ cw,j

(3.5)
Eq. (3.5) shows that a TMD can be treated as a grounded damper, i.e. its

reaction force depends on the deflection of the attachment point only through
a frequency-dependent term involving stiffness, damping and mass [36,43].
Also, note that an attached lumped mass can be modelled by assuming that
kTMD,j = ∞ in Eq. (3.5). At this point, following the same procedure described
in Chapter 2 for a discontinuous beam without TMDs, it is possible to find the
exact closed-form expressions for the eigenfunctions responses of a discon-
tinuous beam equipped with an arbitrary numbers of TMDs, using the same
equations and solutions reported before by only adding the contribution of
the TMDs in the stiffness κT,j (σ). Since, in general, damping associated with
TMDs/supports/joints is not proportional, complex modes are expected [50].

If no TMD and no support is attached at x = xj, κT,j (σ) = 0 at x = xj.
This will set the first row in matrices ΦΩ

(
xj
)

and ΦJ
(
xj, xk

)
equal to zero.

Accordingly, the first column of matrix ΦJ
(
xm, xj

)
shall be set equal to zero

for all values xm > xj, due to the reaction pj = 0 at x = xj. Naturally the same
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considerations made for the rotational joints reported in the chapter 1 are also
valid for this case.

Terms of the 4 × 4 matrix B can readily be computed in a closed form,
for any number and positions of TMDs, supports and joints, with no changes
when their number and relative positions vary along the beam. These are
significant advantages over the exact classical approach, which requires to be
represented in terms of four integration constants. The vibration response
in each beam segment between two consecutive application points of TMDs-
supports-joints (totalling 2 × (N + 1) constants for N application points) is
computed by enforcing the B.C. and matching conditions between the re-
sponses over continuous beam segments. By using this approach, the coef-
ficient matrix associated with the equations to be solved is updated when-
ever positions of TMDs, supports and joints change, and its size inevitably
increases with the number of TMDs, supports, joints.

Advantages over a FE method are also that a mesh node shall be inserted
at the application point of any TMD, support or joint, and re-meshing may be
required whenever they change position.

3.4 Beam response to moving loads

Generalising the approach devised in chapter 2, and using the same orthogo-
nality conditions as in Eqs. (2.26) and (2.27), the response to the moving loads
in Eq. (3.2) can be represented in terms of complex modes in the form:

w (x, τ) =
NL

∑
ii=1

fii

∞

∑
k=1

ψk (x)


∫ τ

τ0
ii

eiσk(τ−τ′)gk,ii (τ
′) dτ′−

∫ τ
τE

ii
eiσk(τ−τ′)gk,ii (τ

′) dτ′

 (3.6)

where ψk (x) is the kth deflection eigenfunction, and gk,ii (·) is given as

gk,ii (τ) = (iσkΞk)
−1ηk,ii (τ) (3.7)

In Eq. (3.7), ηk,ii (τ) depends on the moving loads,

ηk,ii (τ) =
∫ 1

0
ψk (x) δ (x− v0 τ + sii) dx (3.8)
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while term Ξk involves the parameters of TMDs, as well as those of the sup-
ports and joints according to

Πk =
N

∑
j=1



icw,j

σk
ψ2

k

(
xj
)
+

ic∆θ,j

σk

[
µk
(
xj
)

κ∆θ,j (σk)

]2

−

mTMD,j

[
2
(
kTMD,j+iσkcTMD,j

)2 − iσ3
k mTMD,jcTMD,j

]
[(

kTMD,j+iσkcTMD,j
)
−mTMD,jσ

2
k

(
xj
)]2 ψ2

k

(
xj
)


(3.9)

In practical applications, a few NM modes in Eq. (3.6) will be sufficient to
accurately represent the response and, upon summing up the contributions
of complex-conjugate eigenfunction pairs, Eq. (3.6) can be reverted to the fol-
lowing real form [50, 51]:

w (x, τ) ≈ Re

 NL

∑
ii=1

fii

NM

∑
k=1

ψk (x)


∫ τ

τ0
ii

eiσk(τ−τ′)gk,ii (τ
′) dτ′−

∫ τ
τE

ii
eiσk(τ−τ′)gk,ii (τ

′) dτ′


 (3.10)

Equations analogous to Eq. (3.10) may be written for all response vari-
ables, i.e. rotation, bending moment and shear force, using pertinent eigen-
functions from Eq. (2.25). At this stage, some remarks on the advantages of the
proposed approach must be made. The first is that closed-form expressions
can be derived for the convolution integral∫ τ

0
eiσk(τ−τ′)gk,ii

(
τ′
)

dτ′ (3.11)

or as shown in the previous chapter, for the sum of integrals with general
form ∫ τ

0
λ
(
τ′
)

H
(
v0τ′ − sii − xj

)
dτ′ (3.12)

Once again, using the generalised functions theory [29, 49], Eq. (3.12) can
be computed as
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∫ τ
0 λ (τ′) H

(
v0τ′ − sii − xj

)
dτ′ ={

H
(
ξ − sii − xj

) [
λ[1]

(
ξv−1

0

)
− λ[1]

(
xjv−1

0 + siiv−1
0

)]}v0τ

0
=

= H
(
v0τ − sii − xj

) [
λ[1] (τ)− λ[1]

(
xjv−1

0 + siiv−1
0

)] (3.13)

Secondly, it is worth noting that the exact complex modes of the beam
in Eq. (3.6) and Eq. (3.10) reflect the actual amount of damping introduced
by viscoelastic TMDs, supports and joints. This means that no simplifying as-
sumptions are made on system damping, as is the case in modal superposition
approaches where proportional damping is assumed in order to use classical
orthogonality conditions of undamped modes [9–11, 13].

3.5 Numerical Applications

3.5.1 Example A: Beam subjected to a single moving load

Consider a simply-supported beam of unit length with Kelvin-Voigt viscoelas-
tic translational supports and rotational joints located at x1 = 1/4 and x3 =
3/4 in two different configurations. In the first configuration the beam is
equipped with one viscoelastic TMD at mid-span, whereas in the second con-
figuration three viscoelastic TMDs are attached, located at x2 = 0.5, x4 = 0.45
and x5 = 0.55, as shown in Fig.3.2. Non-dimensional parameters are selected
as follows: Translational supports kw,1 = kw,3 = 102, cw,1 = cw,3 = 10−1; Rota-
tional dampers k∆θ,1 = k∆θ,3 = 10, c∆θ,1 = c∆θ,3 = 10−1. The beam is subjected
to a non-dimensional unit single force f1 = 1 moving with constant speed
v0 = 3.5 and starting from s1 = 0. In an initial numerical study, performing
repeated time history analysis of the beam without TMDs with incrementally
increased speed, speed v0 was found to yield at the largest displacement re-
sponse in the speed range [0,8]. At this speed the force leaves the beam at time
instant τ = 0.286. The maximum deflection wmax = 0.01289 of the beam with-
out TMDs undergoes at x = 0.6 and time τ = 0.219 when the unit force f1,
travelling with speed v0, is located at x = 0.763. Although the peak deflection
occurs at x = 0.6, the TMDs (or the single TMD in the first configuration) are
symmetrically placed along the beam because the structure may be crossed in
both directions.
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In the single TMD configuration, the mass ratio α = mTMD/m̄1 is chosen
to be 5%, i.e. α = 0.05. In this relationship mTMD is the non-dimensional
TMD mass while m̄1 =

(∫ 1
0 ψ2

1 (x) dx
)

/
(
ψ2

1 (x = xTMD = 0.5)
)

is the non-
dimensional first modal mass of the beam without TMD. In a simplified ap-
proach, tuning of the frequency ratio β (i.e. TMD natural frequency σTMD over
the real part of the fundamental eigenvalue Re[σ1] of the beam without TMD),
and the TMD damping ratio ζ is accomplished according to Den Hartog [69],

β ≡ σTMD

Re[σ1]
=

1
1 + α

, ζ =

√
3α

8 (1 + α)
(3.14)

yielding the frequency ratio β = 0.952 and TMD damping ratio ζ = 0.133.
Then, the non-dimensional TMD stiffness coefficient and TMD damping co-
efficient are found from:

kTMD = mTMD(βRe[σ1])
2 , cTMD = 2ζ

√
kTMDmTMD (3.15)

where σ1 = 16.9419 + i0.1158 is considered. A more elaborate tuning proce-
dure yielding optimal TMD parameters can be found in [65].

The three TMDs of the second structural configuration are attached in
proximity to the mid-span of the beam in accordance with the fundamen-
tal mode shape [65–67]. The mass ratio of each TMD is chosen equal to
α = 1.67%, i.e., the total mass of the three TMDs corresponds to the mass
of the single TMD in the first configuration. Again, Den Hartog’s relations
are used to tune the TMD parameters. Thus, the non-dimensional stiffness
coefficients and damping coefficients of the TMDs are given by Eqs. (3.15),
considering the mass ratio α = 1.67% . It should be noted that optimal tun-
ing of TMD parameters is no objective of this work. For this issue it is re-
ferred to, for instance, [65]. In Tables 3.1 to 3.3 the exact non-dimensional
eigenvalues of the first eight modes of the beam without TMDs, the beam in
the first configuration (equipped with one TMD) and the beam in the second
configuration (equipped with three TMDs) are specified, derived by the pro-
posed method using Eq. (1.16), and the classical method. In the latter method
the free-vibration response is represented in trigonometric/hyperbolic form
with four integration constants over each segment between two consecutive
damper/support locations, and the matching conditions are enforced at the
subdivision points along with the boundary conditions. Whereas for the pro-
posed method the characteristic equation is derived from a determinant of a
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4 × 4 matrix, as oppose to in the classical procedure where the underlying
determinant is of a 12× 12 matrix. All modes of this non-classically damped
problem are complex, and thus, the equivalent modal damping coefficients
of the individual modes are not the same. According to these tables, the first
mode of the beam without TMDs is split into two modes when applying one
or three TMDs, respectively [65]. However, the TMDs have almost no impact
on the higher modes, as it has already found in previous studies such as [65].
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x = 0.251

1

x = 0.753
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x = 0.454

1

Figure 3.2: Simply-supported beam with Kelvin-Voigt viscoelastic supports and
joints and one viscoelastic TMD (first configuration) or three viscoelastic
TMDs (second configuration) attached.

Figure 3.3 shows the mode 1 eigenfunctions of the beam without TMDs
(red lines), the beam in the first configuration (blue lines), and the beam in
the second configuration (black lines). In particular the real part (left column)
and the imaginary part (right column) of the mode 1 deflection (first line), the
mode 1 rotation (second line), the mode 1 bending moment (third line), and
the mode 1 shear force (fourth line) are depicted. As observed, the rotational
dampers induce a jump discontinuity at mode 1 rotation while the transla-
tional dampers induce a jump discontinuity at the mode 1 shear force. The
TMDs greatly affect the shape of the imaginary part of the considered mode
1 eigenfunctions, reflecting the introduced non-classical damping to the sys-
tem. In contrast, the global shape of the real part remains similar. The TMDs
create a kink in the mode 1 bending moment, and a jump discontinuity in the
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Table 3.1: Eigenvalues of the beam without TMDs obtained by the proposed method
(PM) and the classical method (CM).

Mode Eigenvalues (PM) Eigenvalues (CM) Damping ratio

1 ± 16.9419+i 0.1158 ± 16.9417+i 0.1159 0.0068
2 ± 39.8987+i 1.5487 ± 39.8985+i 1.5484 0.0387
3 ± 85.5111+i 3.0840 ± 85.5113+i 3.0838 0.0360
4 ± 157.914 ± 157.916 —
5 ± 242.810+i 7.6555 ± 242.808+i 7.6557 0.0315
6 ± 348.718+i 17.468 ± 348.715+i 17.470 0.0500
7 ± 480.920+i 9.2064 ± 480.922+i 9.2062 0.0191
8 ± 631.655 ± 631.653 —

Table 3.2: Eigenvalues of the structural configuration with one TMD obtained by the
proposed method (PM) and the classical method (CM).

Mode Eigenvalues (PM) Eigenvalues (CM) Damping ratio

1 ± 15.0493+i 1.0641 ± 15.0495+i 1.0643 0.0705
2 ± 18.0474+i 1.2957 ± 18.0472+i 1.2955 0.0716
3 ± 39.8987+i 1.5487 ± 39.8985+i 1.5486 0.0387
4 ± 85.5856+i 3.1932 ± 85.5858+i 3.1985 0.0372
5 ± 157.914 ± 157.916 —
6 ± 242.820+i 7.7563 ± 242.822+i 7.7565 0.0319
7 ± 348.718+i 17.468 ± 348.716+i 17.469 0.0500
8 ± 480.944+i 9.3117 ± 480.947+i 9.3115 0.0193

mode 1 shear force, at the point of attachment.
Now, the dynamic response of the beam with and without TMDs when

subjected to a moving single force with speed v0 is considered.
Figure 3.4 shows the beam deflection over the span of the beam at time

instant τ = 0.219, computed by the proposed method, based on a four-mode
approximation, and by FE analysis using ADINA [53] with time-dependent
nodal forces built as explained in ref.[25]. At this time instant the displace-
ment of the beam without TMDs is at maximum value in the forced vibration
phase. As observed in Fig.3.4, the TMDs do not significantly affect the beam
response in the forced vibration phase. Attaching one or three TMDs to the
beam, leads to a peak displacement reduction of only 1%.
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Table 3.3: Eigenvalues of the structural configuration with three TMDs obtained by
the proposed method (PM) and the classical method (CM).

Mode Eigenvalues (PM) Eigenvalues (CM) Damping ratio

1 ± 15.0692+i 1.0700 ± 15.0665+i 1.0703 0.0708
2 ± 18.0270+i 1.2895 ± 18.0272+i 1.2892 0.0713
3 ± 39.9084+i 1.5574 ± 39.9082+i 1.5557 0.0389
4 ± 85.5752+i 3.1780 ± 85.5757+i 3.1778 0.0371
5 ± 157.922+i 0.0241 ± 157.924+i 0.0243 0.0001
6 ± 242.817+i 7.7300 ± 242.819+i 7.7304 0.0317
7 ± 348.724+i 17.513 ± 348.727+i 17.515 0.0501
8 ± 480.932+i 9.2560 ± 480.934+i 9.2563 0.0192

It can be also observed that the agreement between the proposed solution
and the FE solution is very satisfactory.

No significant changes are found when taking into account more than four
modes, as shown in Fig.3.5, where the deflection at x = 0.6 of the beam with
three TMDs is shown with respect to time τ using one, two, three modes, four
and five modes, respectively. Additionally, the FE solution is depicted. It is
evident that, in general, one mode is not sufficient to describe the deflection
of the beam.

Figure 3.6 shows the beam deflection at x = 0.6 with respect to time τ for
the considered structural configurations. As is well known, the peak response
induced by a single moving load is not greatly affected by TMDs, in the forced
vibration phase.

However, the results of Fig.3.6 highlight the importance of the TMDs to
reduce the free-vibration response after the single force has left the beam to
increase the fatigue life of the structure. No significant changes are found with
one or three TMDs attached, as shown in Fig.3.6. With one or three TMDs
equipped, the beam is almost at rest after eight free-vibration cycles, whereas
the displacement amplitude of the beam without TMDs is only 25.3% less than
its initial value at τ = 0.423 .
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b)

c)

d)

a)

Figure 3.3: Mode 1 eigenfunctions of the beam (i) without TMDs (red line), (ii) with
one TMD (blue line) and (iii) with three TMDs (black line) shown in
Fig.3.2: (a) deflection; (b) rotation; (c) bending moment; (d) shear force.
Left column: real part. Right column: imaginary part. Solution based
on the proposed method (solid line) and on the classical procedure (black
markers).
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Figure 3.4: Deflection profile at time τ = 0.219, subjected to moving concentrated
force with speed v0: Proposed solution for the beam (i) without TMDs
(red line), (ii) with one TMD (blue dashed line), (iii) with three TMDs
(black line); corresponding FE solution (black markers).
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line), two modes (dashed blue line), three modes (red line), four modes
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sponding FE solution (black markers).
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Figure 3.6: Beam deflection at x = 0.6 subjected to moving concentrated force with
speed v0: proposed solution for the beam (i) without TMDs (red line), (ii)
with one TMD (blue line), (iii) with three TMDs (black line).

3.5.2 Example B: Beam subjected to a series of moving loads

In the second application the previously considered structural configurations
shown in Fig.3.2 are subjected to a series of concentrated forces. In this par-
ticular example the series of concentrated forces represent the axle loads of
a train composed of one rail car and seven passenger cars [4], as shown in
Fig.3.7. Each car has at both ends a bogie with two axles each, with non-
dimensional distances specified in Fig.3.7: h = c = 0.115, b = e = 0.093,
g = 0.493, d = 1. The non-dimensional axle loads of the rail cars and pas-
senger cars are respectively 1.0 and 0.5. At critical speeds of the passing load
series, the dynamic response of the bridge is severely amplified and driven
into resonance. The critical speeds depend on the natural structural frequen-
cies and load distance d [49]. In the current application it is assumed that the
loads cross the beam with the critical speed of first order [49, 50], i.e.

v0 =
Re[σ 1]d

2π
(3.16)

with the non-dimensional complex fundamental eigenvalue of the beam with-
out TMDs, σ1, yielding v0 = 2.69.
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Figure 3.7: Idealization of the train loads (modified from [1]).

Figure 3.8 shows the beam deflection at x = 0.5 with respect to time τ for
the structural configurations: (i) beam without TMDs (red line), (ii) beam with
one TMD (blue line), and (iii) beam with three TMDs (black line). The results
of Fig.3.8 highlight the importance of using TMDs to reduce the response of
the beam subjected to a series of repetitive loads at critical speed. The differ-
ence of the response of the two structural configurations with one TMD and
three TMDs is negligible for the considered problem (about 1%), as shown in
Fig.3.8. The vibrations decrease significantly in the forced vibration phase,
unlike in the previous case of a single passing force, in which TMDs are only
useful to reduce the free-vibration response. In this example the decrease of
the peak response is about 60% when attaching three TMDs to the beam.
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Figure 3.8: Beam deflection at x = 0.5 subjected to a series of moving concentrated
forces with critical speed v0 : proposed solution for the beam (i) without
TMDs (red line), (ii) with one TMD (blue line), (iii) with three TMDs (black
line).

3.6 Concluding remarks

Euler-Bernoulli beams with Kelvin-Voigt viscoelastic tuned mass dampers
(TMDs), translational supports and rotational joints subjected to moving loads
have been studied. A generalised function approach has been proposed, which
uses exact complex modes and pertinent orthogonality conditions to express
all response variables by time-domain convolution integrals in closed analyt-
ical form. No numerical integration is required, as is the case in finite element
approaches. Unlike in a FE method where a mesh node must be inserted at
the application point of any TMD, support or joint, and re-meshing may be
required whenever they change position, in the proposed method this is not
required. The proposed solution accounts for non-proportional damping due
to TMDs, viscoelastic supports and joints, with significant benefits over ex-
isting modal superposition methods, where only proportional damping or,
alternatively, no damping can be considered. The applicability, accuracy, and
efficiency of the proposed procedure has been tested on a beam with multiple
supports/joints and TMDs, acted under moving concentrated forces.



Chapter 4

On the moving multi-loads
problem in beam structures with
interlayer slip

The moving multi-loads problem for two-layered elastically bonded beams
with interlayer slip is considered here. Bernoulli-Euler hypothesis is assumed
to hold for each layer separately, and a linear constitutive equation between
the horizontal slip and the interlaminar shear force is considered. On using
pertinent orthogonality condition for the deflection modes, the dynamic re-
sponse of the beam is derived in time domain.

4.1 Preliminary remarks

In engineering applications, beams composed of two or more layers are widely
used to increase the strength-to-weight and stiffness-to-weight ratio of struc-
tural components. If bonded by strong adhesives, the layers can be assumed
to be rigidly interconnected, and a full composite action between the layers
is developed. During the last decades a large amount of studies has been de-
voted to static and dynamic analysis of rigidly bonded composite structures
for various engineering problems [70–83], providing engineers with various
well established methods.

However, in certain structural components such as composite steel-concrete
beams and layered wood beams with flexible shear connectors, a rigid bond
between the layers cannot be achieved. The deformation of the connectors

53
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results in an interlayer slip, which affects both strength and deformation of
the structure. Existing literature has focused on static and dynamic analy-
sis of layered elastically bonded beams. For instance, linear static analysis is
performed in [84–93], and vibration problems are addressed in [2, 94–104].

In this Chapter, the vibration problem of two-layer elastically bonded beams
under moving loads is analysed. Firstly, the governing motion equations are
presented. Then, a modal superposition approach is applied to build the dy-
namic response. Finally two illustrative examples are reported.

4.2 Equation of motion for layered beams under moving
loads

In this section the dynamic response under moving loads of the two-layered
beam shown in Fig.4.1 is analyzed. The layers are disposed about the trans-
verse (Z-) beam axis, with otherwise arbitrary shape and constant cross sec-
tion.

The beam is subjected to a series of NL concentrated loads Fii (i = 1, ..., NL)
along the longitudinal (X-), with constant velocity V0 and initial location Sii,
inducing the dynamic lateral beam deflection W(X, t), which, under the as-
sumption of small deformations, is assumed to be the same for each fiber at
given X (no uplift between the layers). Variable t denotes time.

The equation of flexural motion in terms of deflection W(X, t) is derived
neglecting the effect of rotatory and longitudinal inertia and in absence of ex-
ternal axial forces [95]. With these assumptions, conservation of momentum
in transverse direction, conservation of the angular momentum about the (Y-)
axis, and conservation of momentum in axial direction for the beam element
yield the following equilibrium equations:

∂Q (X, t)
∂X

= −
NL
∑

ii=1
Fiiδ (X−V0 t + Sii)

[
H
(
t− t0

ii

)
− H

(
t− tE

ii
)]

+ mL
∂2W (X, t)

∂t2

∂M (X, t)
∂X

= Q (X, t)

∂N (X, t)
∂X

= −T1(X, t) + T2(X, t) = 0
(4.1)



4.2 Equation of motion for layered beams under moving loads 55

in which Q(X, t), M(X, t), N(X, t), T1(X, t) = T2(X, t) = T(X, t) denote the
total shear force, the total bending moment, the total axial force, and the elas-
tic interlaminar shear force transmitted between the upper and lower layer,

respectively. The mass per unit length mL is calculated as mL =
2
∑

i=1
ρi Ai with

mass densities ρi and cross sectional areas Ai (i = 1, 2) of the upper (subscript
1) and the lower layer (subscript 2).

Z

Fii+1

V0

( )

( )

Fii

Sii Θ X

X

XW

Figure 4.1: Two-layered elastically bonded beam under moving loads

The total shear force Q(X, t), the total bending moment M(X, t) and the
total axial force N(X, t) are expressed in terms of the layer stress resultants as
shown in Fig.4.2 and discussed in [2]:

Q(X, t) = Q1(X, t) + Q2(X, t)

M(X, t) = M1(X, t) + M2(X, t)− N1(X, t) r

N(X, t) = N1(X, t) + N2(X, t) = 0

(4.2)

where r represents the distance between the layer centroids, see Fig.4.2.

Considering that Euler-Bernoulli hypothesis is not applicable to the total
cross-section of the beam due to interlayer slip, but remains valid for each
individual layer, and referring once more to Fig.4.2, the individual layer stress
resultants are:



56
4. On the moving multi-loads problem in beam structures with interlayer

slip

1

2

, t( )

, t( )
, t( ) , t( )

, t( ) , t( )

, t( )

, t( )

, t( )
, t( )

( , t) ( , t)

( , t)

( , t)

( , t)
( , t)

( , t)
( , t)

2

+

+

+

+

+

+

+

+

X

X

X
X

X
X X

X

X

X

X

X

X

X
X

X

X

X

dX

dX

dX

dX
dX

dX

dX

dX

X

dX

Figure 4.2: Infinitesimal two-layered beam element (according to [2])

Qi(X, t) =
∂Mi (X, t)

∂X
+ Ti(X, t) ri

Mi(X, t) = −Ei Ii
∂2W (X, t)

∂X2 i = 1, 2

Ni(X, t) = Ei Ai
∂Ui (X, t)

∂X

(4.3)

where E1 and E2 denote Young’s moduli, and I1 and I2 are the principal mo-
ments of inertia of the cross-sectional areas of the upper and lower layer, re-
spectively. The distances between the centroids of the single layers and the
interlayer are referred to as r1 and r2 (see Fig.4.2). Furthermore, U1(X, t) and
U2(X, t) are the longitudinal displacements at the centroid of the upper and
lower layer, respectively.

The elastic interlaminar shear force T(X, t) = T1(X, t) = T2(X, t) between
the upper and lower layer is a force per unit length and is related to the inter-
laminar slip (see Fig.4.3)

∆U (X, t) = U2 (X, t)−U1 (X, t) + r
∂W (X, t)

∂X
(4.4)

via Hooke’s law, i.e.
T(X, t) = ks ∆U(X, t) (4.5)
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with ks being the elastic slip modulus.

, t( )

X UY

Z W
X

1U

XW

U∆

2U

XW 2 1U U− XW

Figure 4.3: Deformed two-layered beam (according to [2])

Differentiation of Eq.(4.5) with respect to X, together with Eqs.(4.4),(4.3c),
(4.2c), and taking into account that ∂N1 (X, t) /∂X = −T(X, t) , yields after
some algebra to the following equation:

r
∂2W (X, t)

∂X2 +
1
ks

∂2N1 (X, t)
∂X2 − N1 (X, t)

(
1

E1A1
+

1
E2A2

)
= 0 (4.6)

Combining Eq.(4.3b) and Eq.(4.2b) allows the axial force in the upper layer
N1(X, t) to be expressed as a function of the total bending moment M(X, t)
and the kinematic variables W(X, t):

N1 (X, t) = −1
r

[
M (X, t) + EI0

∂2W (X, t)
∂X2

]
(4.7)
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with EI0 denoting the bending stiffness corresponding to non-composite ac-
tion (subscript 0),

EI0 =
2

∑
i=1

Ei Ii (4.8)

Subsequently, Eq.(4.7) and its second derivative with respect to X are sub-
stituted into Eq.(4.6), yielding:

∂4W (X, t)
∂X4 − α2 ∂2W (X, t)

∂X2 =
α2

EI∞
M (X, t)− 1

EI0

∂2M (X, t)
∂X2

(4.9)

In this equation, EAp = E1A1E2A2, EI∞ is the bending stiffness correspond-
ing to a rigid interlayer connection (subscript ∞) and EA0 is the longitudinal
stiffness for non-composite action, respectively defined as:

EI∞ = EI0 +
r2 EAp

EA0
, EA0 =

2

∑
i=1

Ei Ai (4.10)

while coefficient α2 reads [96]:

α2 = ks

(
EA0

EAp
+

r2

EI0

)
(4.11)

Twice differentiation of Eq.(4.9) with respect to X and using Eqs.(4.1a,b)
finally yields the equation of motion in terms of W(X, t):

∂6W (X, t)
∂X6 − α2 ∂4W (X, t)

∂X4 +
mL

EI0

∂4W (X, t)
∂X2∂t2 − mL α2

EI∞

∂2W (X, t)
∂t2 =

− α2

EI∞

NL
∑

ii=1
Fiiδ (X−V0 t + Sii)

[
H
(
t− t0

ii

)
− H

(
t− tE

ii
)]

+
1

EI0

NL
∑

ii=1
Fiiδ

(2) (X−V0 t + Sii)
[
H
(
t− t0

ii

)
− H

(
t− tE

ii
)]

(4.12)

In the present formulation, both limits α→ ∞ (rigidly bonded beam) and
α→ 0 (no bonded beam) can be taken into account without numerical diffi-
culties [96].
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The solution of Eq.(4.12) is found together with the initial conditions W(X, t =
0) = 0, ∂W(X, t = 0)/∂t = 0, and the beam boundary conditions. In the fol-
lowing, three classical boundary conditions are reported [96], with Xb = 0, L
denoting the beam ends.

(i) Simply supported end:

W (Xb, t) = 0 M1 (Xb, t) = M2 (Xb, t) = 0 N1 (Xb, t) = 0 (4.13)

(ii) Free end:

M1 (Xb, t) = M2 (Xb, t) = 0 N1 (Xb, t) = 0 Q (Xb, t) = 0 (4.14)

(iii) Clamped end:

W (Xb, t) = 0
∂W (Xb, t)

∂X
= 0 ∆U (Xb, t) = 0 (4.15)

After solving Eq.(4.12) for W(X, t), it is possible to built the stress re-
sultants M(X, t), Q(X, t), N1(X, t) and the interlaminar shear force per unit
length T(X, t).

In particular, the bending moment from Eqs.(4.9) and (4.1a,b) reads

M (X, t) = −EI∞
∂2W (X, t)

∂X2 +
EI∞

α2

(
∂4W (X, t)

∂X4 +
mL

EI0

∂2W (X, t)
∂t2

)

+
EI∞

EI0α2

(
−

NL
∑

ii=1
Fiiδ (X−V0 t + Sii)

[
H
(
t− t0

ii

)
− H

(
t− tE

ii
)]) (4.16)

the transverse shear force from Eq.(4.1b)) reads

Q (X, t) = −EI∞
∂3W (X, t)

∂X3 +
EI∞

α2

(
∂5W (X, t)

∂X5 +
mL

EI0

∂3W (X, t)
∂X∂t2

)
(4.17)
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the axial force in the upper layer, from Eq.(4.7)) reads

N1 (X, t) = −1
r

[
(EI0 − EI∞)

∂2W (X, t)
∂X2 +

EI∞

α2

(
∂4W (X, t)

∂X4 +
mL

EI0

∂2W (X, t)
∂t2

)]

− EI∞

r EI0α2

(
−

NL
∑

ii=1
Fiiδ (X−V0 t + Sii)

[
H
(
t− t0

ii

)
− H

(
t− tE

ii
)])

(4.18)

the axial force in the lower layer reads

N2 (X, t) = −N1 (X, t) (4.19)

and the interlaminar shear force from Eqs.(4.7), and (4.1c) reads

T(X, t) = −∂N1 (X, t)
∂X

=

1
r

[
(EI0 − EI∞)

∂3W (X, t)
∂X3 +

EI∞

α2

(
∂5W (X, t)

∂X5 +
mL

EI0

∂3W (X, t)
∂X∂t2

)]

+
EI∞

r EI0α2

(
−

NL
∑

ii=1
Fiiδ (X−V0 t + Sii)

[
H
(
t− t0

ii

)
− H

(
t− tE

ii
)])

(4.20)

4.3 Beam modes

The free vibration problem of the beam shown in Fig.4.1 is solved here.

4.3.1 Eigenvalue problem

Based on the standard separate variables approach (W(X, t) = Φ(X)eIωt), the
following sixth order ordinary differential equation for the deflection eigen-
function Φ(X) of the two-layered elastically bonded beam, is obtained:

d6Φ (X)

dX6 − α2 d4Φ (X)

dX4 − mL ω2

EI0

d2Φ (X)

dX2 +
mL α2ω2

EI∞
Φ (X) = 0 (4.21)

The eigenfunctions for the bending moment Υ (X), the shear force Γ (X), the
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axial force in the upper layer Σ (X), and the elastic interlaminar shear force
Ψ (X), are similarly obtained from Eqs.(4.16), (4.17), (4.18) and (4.20):

Υ (X) = −EI∞
d2Φ (X)

dX2 +
EI∞

α2

(
d4Φ (X)

dX4 − mL ω2

EI0
Φ (X)

)
(4.22)

Γ (X) = −EI∞
d3Φ (X)

dX3 +
EI∞

α2

(
d5Φ (X)

dX5 − mL ω2

EI0

dΦ (X)

dX

)
(4.23)

Σ (X) = −1
r

[
(EI0 − EI∞)

d2Φ (X)

dX2 +
EI∞

α2

(
d4Φ (X)

dX4 − mL ω2

EI0
Φ (X)

)]
(4.24)

Ψ (X) =
1
r

[
(EI0 − EI∞)

d3Φ (X)

dX2 +
EI∞

α2

(
d5Φ (X)

dX4 − mLω2

EI0

dΦ (X)

dX

)]
(4.25)

The eigenfunction of rotation O (X) is found considering that:

O (X) =
dΦ (X)

dX
(4.26)

Next, the eigenfunctions of the response variables are collected in vector
Y (X) =

[
Φ (X) O(X) Υ (X) Γ (X) Σ (X) Ψ (X)

] T, expressed thought
the following expression, from Eq.(4.21):

Y (X) = Ω (X) c (4.27)

where c =
[

c1 c2 c3 c4 c5 c6
] T is a 6 × 1 vector of integration con-

stants, while:
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Ω (X) =



ΩΦ1 ΩΦ2 ΩΦ3 ΩΦ4 ΩΦ5 ΩΦ6

ΩO1 ΩO2 ΩO3 ΩO4 ΩO5 ΩO6

ΩΥ1 ΩΥ2 ΩΥ3 ΩΥ4 ΩΥ5 ΩΥ6

ΩΓ1 ΩΓ2 ΩΓ3 ΩΓ4 ΩΓ5 ΩΓ6

ΩΣ1 ΩΣ2 ΩΣ3 ΩΣ4 ΩΣ5 ΩΣ6

ΩΨ1 ΩΨ2 ΩΨ3 ΩΨ4 ΩΨ5 ΩΨ6

 (4.28)

All terms in Eq.(4.28) are available in a simple analytical form; in particular,
the terms of the first row of matrix Ω (X) concerning the deflection eigen-
function are:

ΩΦ1(X) = e−X
√

R1 ΩΦ2(X) = eX
√

R1 ΩΦ3(X) = e−X
√

R2

ΩΦ4(X) = eX
√

R2 ΩΦ5(X) = e−X
√

R3 ΩΦ6(X) = eX
√

R3

(4.29)

where R1, R2 and R3 are the roots of the characteristic polynomial associated
with the homogeneous differential Eq.(4.21):

R1 =
1
6

(
2α2 +

24/3 (EI0 α4 + 3mL ω2)
a

+
22/3a
EI0

)
(4.30)

R2 =
1

12

4α2 −
4(−2)1/3 (EI0 α4 + 3mL ω2)

a
+

i 22/3
(

i +
√

3
)

a

EI0

 (4.31)

R3 =
1

12

4α2 +
27/3(−1)2/3 (EI0 α4 + 3mL ω2)

a
−

i 22/3
(
−i +

√
3
)

a

EI0


(4.32)
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Symbol a is a constant defined as:

a =

[
2EI0

3 α6 + 9EI0
2 α2mL ω2 − 27EI0

3 α2mL ω2

EI∞
+

√√√√√√√√EI0
3


−4
(
EI0 α4 + 3mL ω2)3

+

EI0
(
2 EI0 EI∞ α6 + 9 (−3EI0 + EI∞) α2mL ω2)2

EI∞
2




1/3
(4.33)

The other terms of matrix Ω (X) , concerning the eigenfunctions of rota-
tion, bending moment, shear force, individual layer axial force and the elastic
interlaminar shear force, respectively, according to Eqs(4.22-4.26), are simply
obtained from the following relationships:

ΩOg(X) =
dΩΦg (X)

dX
(4.34)

ΩΥg(X) = −EI∞
d2ΩΦg (X)

dX2 +
EI∞

α2

(
d4ΩΦg (X)

dX4 − mL ω2

EI0
ΩΦg (X)

)
(4.35)

ΩΓg(X) = −EI∞
d3ΩΦg (X)

dX3 +
EI∞

α2

(
d5ΩΦg (X)

dX5 − mL ω2

EI0

dΩΦg (X)

dX

)
(4.36)

ΩΣg(X) = −1
r

[
(EI0 − EI∞)

d2ΩΦg (X)

dX2 +
EI∞

α2

(
d4ΩΦg (X)

dX4 − mL ω2

EI0
ΩΦg (X)

)]
(4.37)

ΩΨg(X) =
1
r

[
(EI0 − EI∞)

d3ΩΦg (X)

dX3 +
EI∞

α2

(
d5ΩΦg (X)

dX5 − mL ω2

EI0

dΩΦg (X)

dX

)]
(4.38)

with g = 2, 3, ...., 6.
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At this stage, the eigenvalue problem can be formulated using Eq.(4.27)
together with the boundary conditions of the beam, obtaining six equations
expressed in the same general form used for the previous chapters:

Bc = 0 (4.39)

Notice that each equation corresponds to a component of vector Y (X) in
Eq.(4.27) evaluated at the beam ends Xb = 0, L. For example, see the fol-
lowing typical boundary conditions in term of eigenfunctions:

(i) Simply supported end:

Φ (Xb) = 0 Υ (Xb) = 0 Σ (Xb) = 0 (4.40)

(ii) Clamped end:

Φ (Xb) = 0 O (Xb) = 0 Ψ (Xb) = 0 (4.41)

(iii) Free end:

Υ (Xb) = 0 Γ (Xb) = 0 Σ (Xb) = 0 (4.42)

where Xb = 0, L.

The characteristic equation of the eigenvalue problem is the determinant of
matrix B, i.e:

det B = 0 (4.43)

whose roots ωn are the natural frequencies of the beam (subscript n is added
to indicate the infinite number of eigensolutions). Once vector c is derived
as non-trivial solution of Eq.(4.39) for the nth natural frequency ωn, the exact
closed analytical expression for the corresponding vector of eigenfunctions
Yn (X) is finally built by Eq.(4.27).
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4.4 Beam response to moving loads

Based on modal analysis, the beam deflection response W (X, t) under mov-
ing multi-loads may be expressed as:

W (X, t) =
∞

∑
n=1

Rn (t)Φn (X) (4.44)

where Φn (X) denotes the nth deflection eigenfunction derived in Section 4.3,
while Rn(t) is the corresponding time-dependent modal coordinate.

Modal series Eq.(4.44) is substituted into the equation of motion Eq.(4.12),
multiplied by the mth eigenfunction Φm (X), and integrated over beam length
L. Then, considering the orthogonality relations [96]:

−mL

EI0

L∫
0

d2Φm (X)

dX2 Φn dX +
mLα2

EI∞

L∫
0

ΦnΦm dX+

+
2
∑

h=1
Φn (Xb)Ch [Φm (Xb)] = mmδmn

(4.45)

where Xb = 0, L, δmn is the Kronecker delta, Ch denotes a linear homogeneous
differential operator containing derivatives of the boundaries.

(i) Simply supported or clamped end:

C1 = C2 = 0 (4.46)

(ii) Free end:

C1 =
mL

EI0
() C2 =

mL

EI0

d
dX

() (4.47)

Variable mm is the modal mass:

mm = −mL

EI0

L∫
0

d2Φm (X)

dX2 Φm (X) dX +
mLα2

EI∞

L∫
0

Φ2
m (X) dX+

2
∑

h=1
Φm (Xb)Ch [Φm (Xb, t)]

(4.48)
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The ordinary equation for modal coordinate Rm (t), is written as:

d2Rm (t)
dt2 + ω2

mRm (t) =
1

mm
Vm (t) , m = 1, ..., ∞ (4.49)

with modal loading Vm:

Vm(t) =
α2

EI∞

L∫
0

Φm (X)
NL
∑

ii=1
Fiiδ (X−V0 t + Sii)

[
H
(
t− t0

ii

)
− H

(
t− tE

ii
)]

dX

− 1
EI0

L∫
0

Φm (X)
NL
∑

ii=1
Fiiδ

(2) (X−V0 t + Sii)
[
H
(
t− t0

ii

)
− H

(
t− tE

ii
)]

dX

(4.50)

Within a linear theory, assuming proportional viscous damping, Eq.(4.49)
can be modified as:

d2Rm (t)
dt2 + 2ζmωm

dRm (t)
dt

+ ω2
mRm (t) =

1
mm

Vm (t) (4.51)

For quiet initial conditions, the time domain solution of Eq.(4.51) is given
by the well-known Duhamel’s convolution integral:

Rm (t) =
1

mmωdm

t∫
0

Vm (τ) exp [−ζmωm (t− τ)] sin [ωdm (t− τ)]dτ (4.52)

with the mth damped natural frequency ωdm = ωm
√

1− ζ2
m.

4.5 Numerical Applications

In the following numerical applications, both free vibrations and dynamic
response to moving multi-loads are analyzed, for two different layered beams.

4.5.1 Example A

Consider the simply-supported two-layered beam of length L = 40 m com-
posed of a concrete deck (upper layer) and two symmetrically arranged steel
girders (lower layer), as shown in Fig.4.4. The layer parameters are [5]:
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A1 = 2.08 m2, E1 = 33 109 N/m2, E1 I1 = 61.2 107 Nm2 for the upper layer and
A2 = 0.195 m2, E2 = 210 109 N/m2, E2 I2 = 42.5 109 Nm2 for the lower layer.
The mass per unit length is mL = 15000 kg/m, and r = 1.98 m is the distance
between the centroids of the individual layers. The effect of the steel anchor
bolts, which couple flexibly the two layers, is modeled as continuous elastic
connection with slip modulus ks = 107 N/m2.

The bridge is subjected to the high-speed train used in chapter 3, but in
this application in dimensional way. In particular, according to Fig. 4.4: h =
c = 2.80 m, b = e = 2.27 m, g = 13 m, and d = 24.34 m. The axle loads of
the rail cars and passenger cars are respectively 200 kN and 116.5 kN. In the
current application it is assumed that the loads cross the beam with the first
critical speed of first order, i.e. V0 = ω1d/2π [105], yielding V0 = 43.22 m/s
for the fundamental circular beam frequency ω1 = 11.16 rad/s.

c b b c c b b c c b e h hg

dd

F1F2Fii-1Fii

( )

a) b)

W X

X

Figure 4.4: Simply-supported two-layered beam under multi-moving loads [1]

In Table 4.1 the first five natural frequencies of the beam, built by using
Eq.(4.43), are listed. Additionally, in Table 4.1 the natural frequencies of the
rigidly bonded beam (i.e. without interlayer slip) are specified. The frequen-
cies of this beam configuration are much larger, emphasizing the importance
of the interlayer connection.

Figure 4.5 shows the eigenfunctions of mode 1 for all response variables of
the two-layered elastically bonded beam. The corresponding eigenfunctions
of the rigidly bonded beam are also reported for comparison.

Next, the dynamic beam response to the high-speed train, shown in (Fig.4.4),
is investigated.
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c)

e)

a) b)

d)

f)

Figure 4.5: Beam in Fig.4.4: mode 1 eigenfunctions for the elastically bonded beam
(black dashed line) and for the rigidly bonded beam (black solid line): (a)
deflection, (b) rotation, (c) total bending moment, (d) axial force in the
upper layer, (e) shear force, (f) interlaminar shear force.
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Table 4.1: First five natural frequencies of the elastically bonded beam in Fig.4.4 (first
column) and the corresponding rigidly bonded beam (second column)

Natural frequency [rad/s]

Elastically bonded beam Rigidly bonded beam

11.16 19.09
42.58 76.36
94.88 171-81
168.08 305.44
262.20 477.25

In particular Fig. 4.6 shows the deflection at the mid span of the two-layered
elastically bonded beam and the corresponding rigidly bonded beam.
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Figure 4.6: Time history of the mid-span deflection of the two-layered elastically
bonded beam shown in Fig.4.4 (black dashed line) and for the rigidly
bonded beam (black solid line)

The deflection over the whole domain at six time instants, specified in
Fig.4.6 by numbers 1 to 6, for the two-layered elastically bonded beam, is de-
picted in Fig.4.7. Additionally, also the displacement considering only the
first eigenfunction for time instant 5 is shown (red solid line). No significant
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changes are found when considering more than four modes in the proposed
solution, thus, the results shown are based on a five mode series approxima-
tion.
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Figure 4.7: Deflection over span of the the two-layered elastically bonded beam
shown in Fig.4.4. Black dashed lines: multi-mode response at six time in-
stants specified in Fig.4.6 (t1 = 3.93 s, t2 = 4.20 s, t3 = 4.49 s, t4 = 4.75 s,
t5 = 5.04 s, t6 = 6.15 s). Red solid line: first mode response at time instant
t5. Red solid line: first mode response at time instant t5

Finally, the deflection at the mid span of the two-layered elastically bonded
viscous beam is shown in Fig. 4.8. Modal damping with with coefficient
ζm = 0.05 for all modes is considered.
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0 2 4 6 8 10

0.000

0.025

0.0500.050

-0.025

t@sD

W
@m

D

Figure 4.8: Time history of the mid-span deflection of the two-layered elastically
bonded viscous beam shown in Fig.4.4

4.5.2 Example B

The two-layered elastically bonded beam of the previous example is now con-
sidered in clamped-clamped boundary condition Fig.4.9.

c b b c c b b c c b e h hg

dd

F1F2Fii-1Fii

X

( )W X

Figure 4.9: Clamped-clamped two-layered elastically bonded beam [1]
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c)

e)

a) b)

d)

f)

Figure 4.10: Beam in Fig.4.9: mode 1 eigenfunctions for the elastically bonded beam:
(a) deflection, (b) rotation, (c) total bending moment, (d) axial force in
the upper layer, (e) shear force, (f) interlaminar shear force.

Figure 4.10 shows the eigenfunctions of mode 1 for all response variables
of the two-layered elastically bonded beam in Fig.4.9 while the first five natu-
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ral frequencies, built by using Eq.(4.43), are listed in Table 4.2.

Table 4.2: First five natural frequencies of the elastically bonded beam in Fig.4.9

Modes Natural frequency [rad/s]
1 24.12
2 65.91
3 128.73
4 212.42
5 317.02

Figure 4.11 shows the deflection at the mid span of the two-layered elas-
tically bonded beam subjected to the high-speed train, shown in (Fig.4.9) that
cross the beam with the first critical speed of first order, V0 = 93.43 m/s.
Five modes have been considered also in this example, because no signifi-
cant changes were found when considering more than four modes.
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Figure 4.11: Time history of the mid-span deflection of the two-layered elastically
bonded beam shown in Fig.4.9
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Finally, for comparison, the deflection at the mid span of the two-layered
elastically bonded viscous beam subjected to the same loads conditions, is
shown in Fig. 4.12. Modal damping with with coefficient ζm = 0.05 for all
modes is considered.
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Figure 4.12: Time history of the mid-span deflection of the two-layered elastically
bonded viscous beam shown in Fig.4.9

4.6 Concluding remarks

The dynamic flexural behavior of two-layered elastically bonded beams has
been presented. From a characteristic equation built as determinant of a 6
x 6 matrix, the exact eigenfunctions of all response variables has been de-
rived. Based on pertinent orthogonality conditions for deflection modes, the
dynamic response has been built in time domain by modal superposition. Ef-
ficiency and accuracy of the proposed method have been shown for a two-
layered elastically bonded beam in two different boundary conditions config-
uration.



Chapter 5

Novel approach to the moving
multi-loads problem in
discontinuous beam structures
with interlayer slip

This chapter addresses the dynamic flexural behavior of two-layered elasti-
cally bonded beams carrying an arbitrary number of elastic translational sup-
ports and rotational joints, under moving multi-loads. As discussed for the
continuous layered elastically bonded beams, the Euler-Bernoulli hypothesis
is assumed to hold for each layer separately, and a linear constitutive rela-
tion between the horizontal interlayer slip and the interlaminar shear force is
considered. Based on the theory of generalized functions to handle the dis-
continuities of response variables due to supports/joints, exact beam modes
are obtained from a characteristic equation built as determinant of a 6 x 6
matrix, regardless of the number of supports/joints. On using pertinent or-
thogonality condition for the deflection modes, the dynamic response of the
beam under moving multi-loads is derived in time domain. Remarkably, all
response variables are presented in a closed analytical form. Four numerical
applications illustrate the efficiency of the proposed method.

75
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5.1 Preliminary remarks

In practical applications, beams have one or several in-span elastic supports,
and in-span local flexibility may arise from cracks and imperfections, whether
the beams are layered or not [9, 10, 12, 106–110]. In this case, the correspond-
ing structural model is a discontinuous beam, for the presence of the elastic
translational supports and elastic rotational joints, as mentioned several times
in this thesis.

For discontinuous homogeneous beams, i.e beams made of a single mate-
rial, an innovative modal superposition approach, based on exact analytical
modes derived by the theory of generalized functions [31–42], has been dis-
cussed in chapters 2 and 3 and published in Refs.[29, 30, 68].

In the present chapter, the theory of generalized functions is used to refor-
mulate and solve the moving multi-loads problem of the two-layered elasti-
cally bonded beams with elastic translational supports and rotational joints.
This approach has been proposed in a paper published by myself and co-
authors in the International journal ”Composites Part B” [111] and in Refs.
[112, 113]

First, the governing equations of motion are presented. Then, a modal
superposition approach is applied to build the dynamic response of the dis-
continuous layered elastically bonded beams under moving multi-loads. The
exact modes derived from an eigenvalue problem involving a 6× 6 matrix, for
any number of supports/joints. This result is obtained thanks to novel solu-
tions of the equation of motion, built via the theory of generalized functions.
Finally four illustrative examples are reported.

5.2 Equation of motion for discontinuous layered beam
under moving multi-loads

The dynamic response of a beam composed of two elastically bonded lay-
ers, under moving multi-loads and carrying an arbitrary number N of elastic
translational supports and elastic rotational joints at abscissas Xj along the
longitudinal (X-) axis, as shown in Fig.5.1, is analyzed. As in the previous
chapter, the beam, composed by two layers disposed about the transverse (Z-
) beam axis, is subjected to a series of NL concentrated loads Fii (i = 1, ..., NL)
along the longitudinal (X-), with constant velocity V0.

The dynamic lateral beam deflection W(X, t), is assumed to be the same
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for each fiber at given X, under the assumption of small deformations.
Also in this case, neglecting the effect of rotatory and longitudinal inertia

and in absence of external axial forces [95], conservation of momentum in
transverse direction, conservation of the angular momentum about the Y-axis,
and conservation of momentum in axial direction for the beam element, yield
the following equations of motion:

∂̄Q (X, t)
∂X

= −
NL
∑

ii=1
Fiiδ (X−V0 t + Sii)

[
H
(
t− t0

ii

)
− H

(
t− tE

ii
)]
−

Pj(t) δ
(
X− Xj

)
+ mL

∂2W (X, t)
∂t2

∂̄M (X, t)
∂X

= Q (X, t)

∂̄N (X, t)
∂X

= −T1(X, t) + T2(X, t) = 0

(5.1)

in which the space-derivatives are generalized derivatives, as denoted by the
over-bar, to capture the discontinuities of response variables at the elastic sup-
ports and joints.

Z

( )Θ X

X

( )XW
X K W,1

X K W,NNDQ,j DQ,N

Figure 5.1: Discontinuous two-layered elastically bonded beam

Dirac’s delta function δ() describes the effect of the reaction force Pj(t)
exerted by the j-th elastic translational support of stiffness KW,j:

Pj(t) = −KW,jW
(
Xj, t

)
(5.2)

As discussed in chapter 4, it is possible to express the total shear force
Q(X, t), the total bending moment M(X, t) and the total axial force N(X, t) in
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terms of the layer stress resultants Eq.(4.2) that in this case, in according with
Fig.4.2 result to be:

Qi(X, t) =
∂Mi (X, t)

∂X
+ Ti(X, t) ri

Mi(X, t) = Ei Ii

[
− ∂̄2W (X, t)

∂X2 + ∆Θj(t) δ
(
X− Xj

)]
, i = 1, 2

Ni(X, t) = Ei Ai
∂Ui (X, t)

∂X

(5.3)

The relative rotation ∆Θj(t) at the jth elastic rotational joint is related to the
corresponding bending moment M

(
Xj, t

)
according to:

∆Θj(t) = Θ
(

X+
j , t
)
−Θ

(
X−j , t

)
= −

M
(
Xj, t

)
K∆Θ,j

(5.4)

where Θ(X, t) = ∂̄W (X, t) /∂X is the rotation of the cross section, assumed to
be equal for both layers, while K∆Θ,j denotes the stiffness of the j-th rotational
joint.

Again, assuming the elastic behaviour T(X, t) = ks ∆U(X, t), between the
interlaminar shear force T(X, t) and the interlaminar slip ∆U (X, t) expressed
as:

∆U (X, t) = U2 (X, t)−U1 (X, t) + r
∂̄W (X, t)

∂X
(5.5)

Differentiation of T(X, t) = ks ∆U(X, t) with respect to X, together with
Eqs.(5.5),(5.3c),(4.2c) and ∂̄N1 (X, t) /∂X = −T(X, t), yields to the following
equation:

r
∂̄2W (X, t)

∂X2 +
1
ks

∂̄2N1 (X, t)
∂X2 − N1 (X, t)

(
1

E1A1
+

1
E2A2

)
= 0 (5.6)

Combining Eq.(5.3b) and Eq.(4.2b) allows the axial force in the upper layer
N1(X, t) to be expressed as a function of the total bending moment M(X, t)
and the kinematic variables W(X, t) and ∆Θj(t):

N1 (X, t) = −1
r

[
M (X, t) + EI0

(
∂̄2W (X, t)

∂X2 − ∆Θj(t) δ
(
X− Xj

))]
(5.7)
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Subsequently, Eq.(5.7) and its second derivative with respect to X are substi-
tuted into Eq.(5.6), obtaining:

∂̄4W (X, t)
∂X4 − α2 ∂̄2W (X, t)

∂X2 + ks
EA0

EAp
∆Θj(t) δ

(
X− Xj

)
− ∆Θj(t) δ(2)

(
X− Xj

)
=

+
α2

EI∞
M (X, t)− 1

EI0

∂̄2M (X, t)
∂X2

(5.8)

In this equation, δ(2)
(
X− Xj

)
denotes the second derivative of the Dirac’s

Delta function at Xj with respect to X.
Twice differentiation of Eq.(5.8) with respect to X and using Eqs.(4.1a,b)

finally yields the equation of motion in terms of W(X, t),

∂̄6W (X, t)
∂X6 − α2 ∂̄4W (X, t)

∂X4 +
mL

EI0

∂̄4W (X, t)
∂X2∂t2 − mL α2

EI∞

∂2W (X, t)
∂t2 +

+
α2

EI∞
Pj(t) δ

(
X− Xj

)
−

Pj(t)
EI0

δ(2)
(
X− Xj

)
+ ks

EA0

EAp
∆Θj(t) δ(2)

(
X− Xj

)
−∆Θj(t) δ(4)

(
X− Xj

)
= − α2

EI∞

NL
∑

ii=1
Fiiδ (X−V0 t + Sii)

[
H
(
t− t0

ii

)
− H

(
t− tE

ii
)]

+
1

EI0

NL
∑

ii=1
Fiiδ

(2) (X−V0 t + Sii)
[
H
(
t− t0

ii

)
− H

(
t− tE

ii
)]

(5.9)

Note that, in Eq.(5.9), the reaction force Pj(t) exerted by the j-th translational
support and the relative rotation ∆Θj(t) at the j-th rotational joint are un-
known quantities.

In the present formulation, both limits α→ ∞ (rigidly bonded beam) and
α→ 0 (no bonded beam) can be taken into account without numerical diffi-
culties. If no supports and joints are present then Pj = 0 and ∆Θj = 0 for any
j. In such case, Eq.(5.9) reverts to the equations of motion of two-layered elas-
tically bonded beam without discontinuities Eq.(4.12), as shown in [95] and
[96].
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The solution of Eq.(5.9) is found together with the initial conditions W(X, t =
0) = 0, ∂W(X, t = 0)/∂t = 0, and the beam boundary conditions. In the fol-
lowing, three classical boundary conditions are reported [96], with Xb = 0, L
denoting the beam ends.

(i) Simply supported end according to Eq.(4.13)

(ii) Free end according to Eq.(4.14)

(iii) Clamped end:

W (Xb, t) = 0
∂̄W (Xb, t)

∂X
= 0 ∆U (Xb, t) = 0 (5.10)

Upon solving Eq.(5.9) for W(x, t), the stress resultants M(X, t), Q(X, t),
N1(X, t) and the interlaminar shear force per unit length T(X, t) can be built
from Eqs.(5.8), (5.1a,b), (5.7), and (5.1c), (4.2c), respectively.

In particular, the bending moment M(X, t) from Eqs.(5.8) and (5.1a,b) be-
come

M (X, t) = −EI∞
∂̄2W (X, t)

∂X2 +
EI∞

α2

(
∂̄4W (X, t)

∂X4 +
mL

EI0

∂2W (X, t)
∂t2

)
+

ks EA0EI∞

EApα2 ∆Θj(t) δ
(
x− xj

)
− EI∞

α2 ∆Θj(t) δ(2)
(
x− xj

)
+

EI∞

EI0α2

(
−

NL
∑

ii=1
Fiiδ (X−V0 t + Sii)

[
H
(
t− t0

ii

)
− H

(
t− tE

ii
)]
− Pj(t) δ

(
X− Xj

))
(5.11)
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the transverse shear force from Eq.(5.1b):

Q (X, t) = −EI∞
∂̄3W (X, t)

∂X3 +
EI∞

α2

(
∂̄5W (X, t)

∂X5 +
mL

EI0

∂̄3W (X, t)
∂X∂t2

)

+
ks EA0EI∞

EApα2 ∆Θj(t) δ(1)
(
X− Xj

)
− EI∞

α2 ∆Θj(t) δ(3)
(
X− Xj

)
+

EI∞

EI0α2

(
−

NL
∑

ii=1
Fiiδ

(1) (X−V0 t + Sii)
[
H
(
t− t0

ii

)
− H

(
t− tE

ii
)]
− Pj(t) δ(1)

(
X− Xj

))
(5.12)

the axial force in the upper layer from Eq.(5.7)):

N1 (X, t) = −1
r

[
(EI0 − EI∞)

∂̄2W (X, t)
∂X2 +

EI∞

α2

(
∂̄4W (X, t)

∂X4 +
mL

EI0

∂2W (X, t)
∂t2

)]
+

1
r

∆Θj(t) δ
(
X− Xj

)
− ks EA0EI∞

r EApα2 ∆Θj(t) δ
(
X− Xj

)
+

EI∞

r α2 ∆Θj(t) δ(2)
(
X− Xj

)
−

EI∞

r EI0α2

(
−

NL
∑

ii=1
Fiiδ (X−V0 t + Sii)

[
H
(
t− t0

ii

)
− H

(
t− tE

ii
)]
− Pj(t) δ

(
X− Xj

))
(5.13)

the axial force in the lower layer:

N2 (X, t) = −N1 (X, t) (5.14)
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and the interlaminar shear force from Eqs.(5.7), and (5.1c)):

T(X, t) = − ∂̄N1 (X, t)
∂X

=

1
r

[
(EI0 − EI∞)

∂̄3W (X, t)
∂X3 +

EI∞

α2

(
∂̄5W (X, t)

∂X5 +
mL

EI0

∂̄3W (X, t)
∂X∂t2

)]
−

1
r

∆Θj(t) δ(1)
(
X− Xj

)
+

ks EA0EI∞

r EApα2 ∆Θj(t) δ(1)
(
X− Xj

)
− EI∞

r α2 ∆Θj(t) δ(3)
(
X− Xj

)
+

EI∞

r EI0α2

(
−

NL
∑

ii=1
Fiiδ (X−V0 t + Sii)

[
H
(
t− t0

ii

)
− H

(
t− tE

ii
)]
− Pj(t) δ(1)

(
X− Xj

))
(5.15)

5.3 Beam modes

Here, the forced vibration problem of the beam shown in Fig.5.1 is solved
through modal analysis, thus requiring eigenfunctions and natural frequen-
cies.

5.3.1 Eigenvalue problem

As solved in the previous chapter, based on the standard separate variables
approach, the following sixth order ordinary differential equation for the de-
flection eigenfunction Φ(X) of the two-layered elastically bonded beam with
elastic supports/joints, is obtained:

d̄6Φ (X)

dX6 − α2 d̄4Φ (X)

dX4 − mLω2

EI0

d̄2Φ (X)

dX2 +
mL α2ω2

EI∞
Φ (X) +

α2

EI∞
bj δ

(
X− Xj

)
−

bj

EI0
δ(2)

(
X− Xj

)
+ ks

EA0

EAp
∆Oj δ(2)

(
X− Xj

)
− ∆Oj δ(4)

(
X− Xj

)
= 0

(5.16)

The eigenfunctions for the bending moment Υ (x), the shear force Γ (x), the
axial force in the upper layer Σ (x), and the elastic interlaminar shear force
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Ψ (x), are similarly obtained from Eqs.(5.11), (5.12), (5.13) and (5.15):

Υ (X) = −EI∞
d̄2Φ (X)

dX2 +
EI∞

α2

(
d̄4Φ (X)

dX4 − mL ω2

EI0
Φ (X)

)
+

ks EA0 EI∞

EAp α2 ∆Oj δ
(
X− Xj

)
− EI∞

α2 ∆Oj δ(2)
(
X− Xj

)
−

EI∞

EI0 α2 bj δ
(
X− Xj

)
(5.17)

Γ (X) = −EI∞
d̄3Φ (X)

dX3 +
EI∞

α2

(
d̄5Φ (X)

dX5 − mL ω2

EI0

d̄Φ (X)

dX

)
+

ks EA0 EI∞

EAp α2 ∆Oj δ(1)
(
X− Xj

)
− EI∞

α2 ∆Oj δ(3)
(
X− Xj

)
−

EI∞

EI0 α2 bj δ(1)
(
X− Xj

)
(5.18)

Σ (X) = −1
r

[
(EI0 − EI∞)

d̄2Φ (X)

dX2 +
EI∞

α2

(
d̄4Φ (X)

dX4 − mL ω2

EI0
Φ (X)

)]
+

1
r

∆Oj δ
(
X− Xj

)
− ks EA0 EI∞

r EAp α2 ∆Oj δ
(
X− Xj

)
+

EI∞

r α2 ∆Oj δ(2)
(
X− Xj

)
+

EI∞

r EI0 α2 bj δ
(
X− Xj

)
(5.19)



84
5. Novel approach to the moving multi-loads problem in discontinuous

beam structures with interlayer slip

Ψ (X) =
1
r

[
(EI0 − EI∞)

d̄3Φ (X)

dX2 +
EI∞

α2

(
d̄5Φ (X)

dX4 − mL ω2

EI0

d̄Φ (X)

dX

)]
−

1
r

∆Oj δ(1)
(
X− Xj

)
+

ks EA0 EI∞

r EAp α2 ∆Oj δ(1)
(
X− Xj

)
−

EI∞

r α2 ∆Θj δ(3)
(
X− Xj

)
− EI∞

r EI0 α2 bj δ(1)
(
X− Xj

)
(5.20)

The eigenfunction of rotation O (X) is found considering that:

O (x) =
d̄Φ (X)

dX
(5.21)

Unknown quantities bj and ∆Oj, appearing in Eq.(5.16) at the application
points of the supports/joints, are given by Eq.(5.2) and Eq.(5.4), respectively:

bj = −KW,jΦ
(
Xj
)

(5.22)

∆Oj = −
Υ
(
Xj
)

K∆O,j
(5.23)

Next, based on a procedure proposed in [29] a novel approach for evalua-
tion of the eigenfunctions of the discontinuous two-layered elastically bonded
beam problem is introduced.

For this purpose, as proposed in the previous Chapter for the two-layered
elastically bonded beam, the eigenfunctions of the response variables are col-
lected in the vector Y (X) =

[
Φ (X) O (X) Υ (X) Γ (X) Σ (X) Ψ (X)

] T,
and Tj =

[
bj ∆Oj

]
is the vector of the unknown quantities bj and ∆Oj at the

application points of the elastic supports and joints. Based on the linear super-
position principle, vector Y (X) is built as the sum of the solution Ω (X) c to
the homogeneous equation associated with Eq.(5.16), representing the eigen-
functions of the two-layered elastically bonded beam considered in Chapter
4 (i.e. the beam without supports/joints) Eq.(4.34-4.38), and the particular so-
lution J

(
X, Xj

)
Λj associated with the unknowns bj and ∆Oj, which account

for the discontinuities of the response variables at support and joint locations,
respectively:
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Y (X) = Ω (X) c+
N

∑
j=1

J
(
X, Xj

)
Tj (5.24)

In Eq.(5.24), all terms associated with a unit transverse force bj = 1 and a unit
relative rotation ∆Oj = 1, applied at X = Xj, respectively, and defined as:

J
(
X, Xj

)
=
[

J(b) J(∆O)
]
=



J(b)Φ J(∆O)
Φ

J(b)O J(∆O)
O

J(b)Υ J(∆O)
Υ

J(b)Γ J(∆O)
Γ

J(b)Σ J(∆O)
Σ

J(b)Ψ J(∆O)
Ψ


(5.25)

are available through Mathematica [52] after some mathematical manipula-
tions in the following simple analytical form, involving the generalized func-
tions:

J(P)
Φ = H(X− Xj)

[
EI∞ EI0

2/b
]
(R2 − R3) (R1 − R3) (R1 − R2)

{[(
R2 − R3√

R1

) (
EI∞R1 − EI0α2)] sinh

(√
R1(X− Xj)

)

−
[(

R1 − R3√
R2

) (
EI∞R2 − EI0α2)] sinh

(√
R2(X− Xj)

)

+

[(
R1 − R2√

R3

) (
EI∞R3 − EI0α2)] sinh

(√
R3(X− Xj)

)}

(5.26)

while the following particular integral J(∆O)
Φ for a relative rotation ∆Oj = 1 at

X = Xj is obtained via successive differentiation of Eq.(5.26), taking into ac-
count Eq.(5.16):
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J(∆O)
Φ (X) = H(X− Xj)

[(
EI2

∞ EI0
3) /

(
b EAp

)]
(R2 − R3) (R1 − R3) (R1 − R2)

{[√
R1 (R2 − R3)

(
−EA0 ks + EAp R1

)]
sinh

(√
R1(X− Xj)

)

−
[√

R2 (R1 − R3)
(
−EA0 ks + EAp R2

)]
sinh

(√
R2(X− Xj)

)

+
[√

R3 (R1 − R2)
(
−EA0 ks + EAp R3

)]
sinh

(√
R3(X− Xj)

)}
(5.27)

Symbol b is a constant defined as:

b = mL ω2
[
4EI0

3EI∞ α8 + EI0
(
−27EI0

2 + 18EI0 EI∞ + EI 2
∞
)

α4mL ω2

+ 4EI 2
∞ m2

Lω4
]

(5.28)

Once again, according to Eqs.(5.17-5.21), the remaining particular integrals
in vector J(p) are obtained by the following relationships:

J(b)O (X) =
d̄ J(b)Φ (X)

dX
(5.29)

J(b)Υ (X) = −EI∞
d̄2 J(b)Φ (X)

dX2 +
EI∞

α2

(
d̄4 J(b)Φ (X)

dX4 − mLω2

EI0
J(b)Φ (X)

)
−

EI∞

EI0 α2 δ
(
X− Xj

) (5.30)
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J(b)Γ (X) = −EI∞
d̄3 J(b)Φ (X)

dX3 +
EI∞

α2

(
d̄5 J(b)Φ (X)

dX5 − mLω2

EI0

d̄ J(b)Φ (X)

dX

)
−

EI∞

EI0 α2 δ(1)
(
X− Xj

) (5.31)

J(b)Σ (X) = −1
r

[
(EI0 − EI∞)

d̄2 J(b)Φ (X)

dX2 +
EI∞

α2

(
d̄4 J(b)Φ (X)

dX4 − mLω2

EI0
J(b)Φ (X)

)]
+

EI∞

r EI0 α2 δ
(
X− Xj

)
(5.32)

J(b)Ψ (X) =
1
r

[
(EI0 − EI∞)

d̄3 J(b)Φ (X)

dX3 +
EI∞

α2

(
d̄5 J(b)Φ (X)

dX5 − mLω2

EI0

d̄ J(b)Φ (X)

dX

)]
−

EI∞

r EI0 α2 δ(1)
(
X− Xj

)
(5.33)

and analogously, for J(∆O) as:

J(∆O)
O (X) =

d̄ J(∆O)
Φ (X)

dX
(5.34)

J(∆O)
Υ (X) = −EI∞

d̄2 J(∆O)
Φ (X)

dX2 +
EI∞

α2

(
d̄4 J(∆O)

Φ (X)

dX4 − mLω2

EI0
J(∆O)
Φ (X)

)
+

ks EA0 EI∞

EAp α2 δ
(
X− Xj

)
− EI∞

α2 δ(2)
(
X− Xj

)
(5.35)
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J(∆O)
Γ (X) = −EI∞

d̄3 J(∆O)
Φ (X)

dX3 +
EI∞

α2

(
d̄5 J(∆O)

Φ (X)

dX5 − mLω2

EI0

d̄ J(∆O)
Φ (X)

dX

)
+

ks EA0 EI∞

EAp α2 δ(1)
(
X− Xj

)
− EI∞

α2 δ(3)
(
X− Xj

)
(5.36)

J(∆O)
Σ (X) = −1

r

[
(EI0 − EI∞)

d̄2 J(∆O)
Φ (X)

dX2 +
EI∞

α2

(
d̄4 J(∆O)

Φ (X)

dX4 − mLω2

EI0
J(∆O)
Φ (X)

)]
+

1
r

δ
(
X− Xj

)
− ks EA0 EI∞

r EAp α2 δ
(
X− Xj

)
+

EI∞

r α2 δ(2)
(
X− Xj

)
(5.37)

J(∆O)
Ψ (X) =

1
r

[
(EI0 − EI∞)

d̄3 J(∆O)
Φ (X)

dX3 +
EI∞

α2

(
d̄5 J(∆O)

Φ (X)

dX5 − mLω2

EI0

d̄ J(∆O)
Φ (X)

dX

)]
−

1
r

δ(1)
(
X− Xj

)
+

ks EA0 EI∞

r EAp α2 δ(1)
(
X− Xj

)
− EI∞

r α2 δ(3)
(
X− Xj

)
(5.38)

In Eqs(5.29-5.38), the space-derivatives are generalized derivatives, as denoted
by the over-bar.

It is important to note that, in this context, novel exact closed analytical
expressions are obtained for the particular integrals.

Considering Eq.(5.24) together with Eqs.(5.22) and (5.23) allows vector Tj
to be expressed in terms of vector c, resulting in the following general form
for Y (X):

Y (X) = Ỹ (X) c (5.39)
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where Ỹ (X) is:

Ỹ (X) = Ω (X) +
N

∑
j=1

J
(
X, Xj

)
ΠΩ

(
Xj
)
+

+
N

∑
j=2

J
(
X, Xj

)
∑

2≤q≤j
∑

(j, m, n, ..., r, s︸ ︷︷ ︸
q

)∈Nq
(j)

ΠJ
(
Xj, Xm

)
ΠJ (Xm, Xn)

· · · · ·ΠJ (Xr, Xs)ΠΩ (Xs)

(5.40)

with:

ΠΩ

(
Xj
)
=

 −KW,jΩ
(
Xj
)

1

−
(
K∆Θ,j

)−1
Ω
(
Xj
)

3

 ΠJ
(
Xj, Xk

)
=

 −KW,jJ
(
Xj, Xk

)
1

−
(
K∆Θ,j

)−1J
(
Xj, Xk

)
3


(5.41)

In Eq.(5.40), N(j)
q = {(j, m, n, ...r, s︸ ︷︷ ︸

q

) : j > m > n > ... > r > s; m, n, ...r, s =

1, 2, ..., (j− 1) } is the set including all possible qples of index (j, m, n, ...r, s︸ ︷︷ ︸
q

)

such that j > m > n > ... > r > s being 2 ≤ q ≤ j.
At this stage, the eigenvalue problem can be formulated using Eq.(5.39)

together with the boundary conditions of the beam, obtaining six equations
expressed in the general form:

Bc = 0 (5.42)

Each equation corresponds to a component of vector Y (X) in Eq.(5.39) eval-
uated at the beam ends Xb = 0, L, as described in the previous chapter where
there are also reported the typical boundary conditions in term of eigenfunc-
tions Eq.(4.40-4.42)

It is worth underscoring that matrix B in Eq.(4.39) is always a 6× 6 matrix,
independently of the number of elastic supports and joints along the beam.
The characteristic equation of the eigenvalue problem is the determinant of
matrix B, i.e:

det B = 0 (5.43)

whose roots ωn are the natural frequencies of the beam (subscript n is added
to indicate the infinite number of eigensolutions). Once vector c is derived
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as non-trivial solution of Eq.(5.42) for the nth natural frequency ωn, the exact
closed analytical expression for the corresponding vector of eigenfunctions
Yn (x) is finally built by Eq.(5.39). The eigenfunctions satisfy intrinsically all
the required conditions at the application points of support/joints, thanks to
the generalized functions involved in the particular integrals (5.25).

In contrast, the exact classical approach requires six integration constants
for each beam segment between two consecutive application points of sup-
ports/joints, totalling 6 × (N + 1) constants for N application points. Fur-
thermore, when using the classical approach, the coefficient matrix associated
with the equations to be solved must be updated whenever positions of sup-
ports and joints change, and its size inevitably increases with the number of
supports and joints.

The proposed procedure remains valid also when a single translational
support or rotational joint occurs at given abscissa Xj. If no support occurs at
X = Xj, KW,j = 0 shall be set at X = Xj. This will automatically set equal to
zero the first row in matrices ΠΩ

(
Xj
)
, ΠJ

(
Xj, Xk

)
. Being the reaction force

bj = 0 at X = Xj, the 1st column of matrix ΠJ
(
Xj, Xk

)
shall be set equal to

zero for all Xk > Xj. Obviously, if no joint occurs at X = Xj, K∆Θ,j = ∞ shall
be set at X = Xj. As a result, the second row of matrices ΠΩ

(
Xj
)
, ΠJ

(
Xj, Xk

)
will be equal to zero. Also, being ∆Oj = 0 at X = Xj, the 2nd column of
matrix ΠJ

(
Xj, Xk

)
shall be set equal to zero for all Xk > Xj.

5.4 Beam response to moving loads

Based on modal analysis, the beam deflection response W (X, t) for a dis-
continuous two-layered elastically bonded beam, under moving multi-loads,
may be expressed through the same relationship proposed in chapter 4, here
repeated for convenience of reading:

W (X, t) =
∞

∑
n=1

Rn (t)Φn (X) (5.44)

where Φn (X) denotes the nth deflection eigenfunction derived in section 5.1,
that, unlike the previous chapter, include the discontinuities of the response
variables at support and joint locations.

Instead, the corresponding time-dependent modal coordinate Rn(t) for
the discontinuous two-layered elastically bonded beam remains unchanged
if compared to the one proposed for the layered beam without supports and
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joints, since the discontinuities only cause variations in the eigenfunctions of
the beam.

Furthermore, because the supports and joints are considered as perfectly
elastic, also the orthogonality relations [96] remains unchanged.

At this stage, to solve this problem, consider the equations of section 4.4 of
this thesis only by being careful that in this case the derivatives of the eigen-
function are denoted by the over-bar since the presence of the discontinuities
of the response variables at support and joint locations

5.5 Numerical Applications

In the following subsection, four numerical applications on the moving multi-
loads in discontinuous two-layered elastically bonded beam are analyzed. In
particular, example A is refereed to a simply-supported discontinuous two-
layered elastically bonded beam for the presence of a mid-span translational
support while in example B, rotational joints are considered. Again, in ex-
ample C, both the discontinuities, rotational and translational are included in
a clamped-clamped two-layered elastically bonded beam. Finally in exam-
ple D, a two-layered elastically bonded beam with elastic discontinuities at
the end is analysed. This last example wants to emphasize that the procedure
proposed in this thesis is also valid for non-homogeneous B.C. due to end dis-
continuities. Modelling end discontinuities as internal discontinuities located
at x1 = 0+ and xN = L−, the B.C. can still be taken as homogeneous.

5.5.1 Example A

Consider the compound high-speed train bridge of length L = 40 m, analysed
in Chapter 4, simply supported at both ends and equipped with an elastic
translational support of stiffness KW ,1 = 20 107 N/m at the center (see Fig. 5.2).

It is assumed that the loads cross the beam with the first critical speed of
first order, i.e. V0 = ω1d/2π [105], yielding V0 = 104.91 m/s for the fun-
damental circular beam frequency ω1 = 27.08 rad/s. The next three natural
frequencies are: ω2 = 42.6 rad/s, ω3 = 98.5 rad/s, ω4 = 168 rad/s. To show
the effect of the elastic bond on the beam response, alternatively the response
of the beam bridge with rigid interlayer bond is also derived. In this case, the
natural frequencies become larger (i.e. ω1 = 31.83 rad/s, ω2 = 76.36 rad/s,
ω3 = 173.77 rad/s, ω4 = 305.44 rad/s) because of increased global lateral beam
stiffness.
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Figure 5.2: Simply-supported discontinuous two-layered beam under multi-moving
loads (modified from [1]))

Figure 5.3 shows the eigenfunctions of mode 1 for all response variables
of the discontinuous two-layered elastically bonded beam and alternatively
of the discontinuous rigidly bonded beam, derived by the proposed method
and the classical method. In the latter method, the free-vibration response
is represented by twelve integration constants, six for each segment, respec-
tively left and right of the translational support. Instead, in the proposed more
efficient method only six integration constants appear. The fundamental de-
flection mode of the two-layered elastically bonded beam exhibits a slope (see
Fig. 5.3a), indicating the impact of the flexible support. In contrast, the corre-
sponding mode of the rigidly bonded beam looks like more the mode of the
simply supported beam without elastic spring at mid-span (see Fig. 5.3b). As
observed, the translational support causes a slope discontinuity in the bend-
ing moment, mirroring the corresponding jump discontinuity in the shear
force. The eigenfunctions, built by the proposed method, satisfy inherently
all the required conditions at the support/joint locations, and are in perfect
agreement with those built by the classical method.

The dynamic lateral beam deflection induced by the series of repetitive
loads is shown in Figs. 5.4 and 5.5. In particular, in Fig. 5.4 the time history
of the deflection at x = L/2 is depicted. As observed, the beam with inter-
layer slip (black dashed line) is excited to resonance because the loads move
with a critical speed related to the first mode of this structure. In contrast, the
beam model with rigid interlayer bond underpredicts significantly the actual
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response, emphasizing the importance of correct consideration of the inter-
layer slip stiffness. This response behavior can be led back to detuning of the
critical speed from the actual fundamental frequency, as it has been shown
above. Figure 5.5 shows the beam deflection over span at six time instants,
specified in Fig. 5.4 by numbers 1 to 6. Additionally, also the displacement
considering only the first eigenfunction for time instant 3 is shown (red line).
No significant changes are found when considering more than four modes in
the proposed solution, thus, the results shown are based on a five mode series
approximation.
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c)

e)

a) b)

d)

f)

Figure 5.3: Beam in Fig.5.2: mode 1 eigenfunctions for the elastically bonded beam
(black dashed line) and for the rigidly bonded beam (black solid line): (a)
deflection, (b) rotation, (c) total bending moment, (d) axial force in the
upper layer, (e) shear force, (f) interlaminar shear force. Solution based
on the proposed method and on the classical procedure (black markers)
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Figure 5.4: Time history of the mid-span deflection of the discontinuous two-layered
elastically bonded beam shown in Fig.5.2 (black dashed line) and for the
rigidly bonded beam (black solid line)
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Figure 5.5: Deflection over span of the the discontinuous two-layered elastically
bonded beam shown in Fig.5.2. Black dashed lines: multi-mode re-
sponse at six time instants specified in Fig.4.6 (t1 = 1.383 s, t2 = 1.611 s,
t3 = 1.84 s, t4 = 2.076 s t5 = 1.73 s, t6 = 1.96 s). Red solid line: first
mode response at time instant t3. Red solid line: first mode response at
time instant t3

Finally, the deflection at the mid span of the two-layered elastically bonded
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viscous beam is shown in Fig. 5.6. Modal damping with with coefficient
ζm = 0.05 for all modes is considered.

0 1 2 3 4 5

0.000

0.025

0.0500.050

-0.025

t@sD

W
@m

D

Figure 5.6: Time history of the mid-span deflection of the two-layered elastically
bonded viscous beam shown in Fig.5.2

5.5.2 Example B

Consider now the same high-speed train bridge analysed in the previous ex-
amples, with local damage modeled by three in-span elastic rotational joints
Fig. 5.7, whose stiffness are fixed as K∆Θ = 1010Nm connecting the beam sec-
tions at X1 = L/4, X2 = L/2, X3 = 3L/4, respectively. In the current applica-
tion it is assumed that the loads cross the beam with the first critical speed
of first order, i.e. V0 = ω1d/2π = 36.13 m/s for the fundamental circu-
lar beam frequency ω1 = 9.32 rad/s. The next four natural frequencies are:
ω2 = 35.57 rad/s, ω3 = 78.74 rad/s, ω4 = 168.08 rad/s, ω5 = 230.96 rad/s.

Fig. 5.8 shows the eigenfunctions of mode 1 for all response variables
of the cracked beam as built by proposed and classical method. In the lat-
ter method, the free-vibration response is represented by eighteen integra-
tion constants, six for each segment. Instead, in the proposed more efficient
method only six integration constants are involved. A rotational joint induces
a jump discontinuity in the rotation while the displacement eigenfunction
of the damaged beam exhibits a slope discontinuity at the joint, mirroring
the jump discontinuity in the rotation. Furthermore, the joint produces a
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Figure 5.7: Cracked beam bridge subjected to a series of concentrated forces

slope discontinuity in the axial force N1(X, t) in the upper layer of the elas-
tically bonded beam, and, likewise, in the axial force N2(X, t) = −N1(X, t)
in the lower layer of the elastically bonded beam, mirroring the jump dis-
continuity in the interlaminar shear force, since T (X, t) = −∂̄N1 (X, t) /∂X =
∂̄N2 (X, t) /∂X (see Fig.4.2). The eigenfunctions, built by the proposed method,
satisfy inherently all the required conditions at the joint locations, and are in
perfect agreement with those built by the classical method.

The time history displacement at x = L/2 of the damaged beam and
the beam without imperfections, induced by the series of repetitive loads is
shown in Fig. 5.9. The damaged beam is excited to resonance because the
loads move with a critical speed related to the first mode of this damaged
structure. In contrast, the beam model without imperfection underpredicts
significantly the actual response, emphasizing the importance of correct con-
sideration of the damage in the beam with interlayer slip. No significant
changes are found when considering more than four modes in the proposed
solution, thus, the results shown are based on a five mode series approxima-
tion.
Finally, the deflection at the mid span of the two-layered elastically bonded
viscous beam is shown in Fig. 5.10. Modal damping with coefficient ζm = 0.05
for all modes is considered.
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Figure 5.8: Beam in Fig.5.7: mode 1 eigenfunctions for the elastically bonded cracked
beam (black dashed line): (a) deflection, (b) rotation, (c) total bending
moment, (d) axial force in the upper layer, (e) shear force, (f) interlaminar
shear force. Solution based on the proposed method and on the classical
procedure (black markers)
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Figure 5.9: Time history beam response at mid-span to moving multi-loads at critical
speed V0 = 36.13m/s. Beam without local damage (black dashed thick
line) and with local damage (red dashed line)
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Figure 5.10: Time history of the mid-span deflection of the two-layered elastically
bonded viscous beam shown in Fig.5.7

5.5.3 Example C

Consider now the high-speed train bridge analysed in Section 4.5.2, with one
translation elastic support located at X1 = L/4 and one in-span elastic rota-
tional joints at X2 = L/2 Fig. 5.11.
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Parameters are selected as follows: KW,1 = 5 108N/m, for the translational
supports and k∆Θ,1 = 1010Nm for the rotational joint.

c b b c c b b c c b e h hg

dd

F1F2Fii-1Fii

X

X 2

4

2

Figure 5.11: Clamped-Clamped discontinuous two-layered elastically bonded beam
subjected to a series of concentrated forces

The loads cross the beam with the first critical speed of first order, i.e.
V0 = ω1d/2π = 113.3 m/s for the fundamental circular beam frequency
ω1 = 29.22 rad/s. The next four natural frequencies are shown in the follow-
ing Table 5.1.

Fig. 5.12 shows the eigenfunctions of mode 1 for all response variables of
the discontinuous beam as built by proposed and classical method. As ob-
served, the rotational joint induces a jump discontinuity in the rotation and in
the interlaminar shear force, while the translational support induces a jump
discontinuity in the shear force. The deflection of the elastically bonded beam
exhibits a slope discontinuity at the joint, mirroring the jump discontinuity in
the rotation.
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Figure 5.12: Beam in Fig.5.11: mode 1 eigenfunctions for the elastically bonded
cracked beam (black dashed line): (a) deflection, (b) rotation, (c) total
bending moment, (d) axial force in the upper layer, (e) shear force, (f) in-
terlaminar shear force. Solution based on the proposed method and on
the classical procedure (black markers)
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Table 5.1: First five natural frequencies of the discontinuous elastically bonded beam
shown in Fig.5.11

Modes Frequency [rad/s]
1 29.22
2 126.33
3 213.12
4 295.51
5 444.11

Furthermore, the joint produces a slope discontinuity in the axial force
N1(X, t) in the upper layer of the elastically bonded beam, and, likewise,
in the axial force N2(X, t) = −N1(X, t) in the lower layer of the elastically
bonded beam, mirroring the jump discontinuity in the interlaminar shear
force, since T (X, t) = −∂̄N1 (X, t) /∂X = ∂̄N2 (X, t) /∂X (see Fig.4.2). The
translational support causes a slope discontinuity in the bending moment,
mirroring the corresponding jump discontinuity in the shear force. The eigen-
functions, built by the proposed method, satisfy inherently all the required
conditions at the support/joint locations, and are in perfect agreement with
those built by the classical method.

The time history displacement at X = L/2 and X = 3L/2 of the discontin-
uous beam, induced by the series of repetitive loads, as built by the proposed
and the classical method, is shown in Fig. 5.13a and Fig. 5.13b, respectively.
No significant changes are found when considering more than four modes in
the proposed solution, thus, the results shown are based on a five mode series
approximation. Finally, the deflection at X = L/2 and X = 3L/2 of the two-
layered elastically bonded viscous beam, as built by proposed and classical
method, is shown in Fig. 5.14. Modal damping with coefficient ζm = 0.05 for
all modes is considered.
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a) b)

Figure 5.13: Time history beam response to moving multi-loads at critical speed
V0 = 113.22m/s at: a) X = L/2 b) X = 3L/2. Solution based on the
proposed method and on the classical procedure (black markers)

a) b)

Figure 5.14: Time history of the two-layered elastically bonded viscous beam shown
in Fig.5.11 at: a) X = L/2 b) X = 3L/2. Solution based on the pro-
posed method and on the classical procedure (black markers)

5.5.4 Example D

Consider once again the two-layered elastically bonded beam with the same
cross section and material properties as in the previous examples, but at this
time with elastic translational/rotational supports at the ends, as shown in
Fig.5.15.

The stiffness properties are KW ,1 = kW ,2 = 5 108 N/m for the translational
supports, while for the rotational supports consider k∆Θ,1 = k∆Θ,2 = 1010Nm.
Modal damping with coefficient ζn = 0.05 for all modes is considered. In liter-
ature, homogeneous beams with end rotational joints are found in [114]. Here,
the beam shown in Fig.5.15 is considered to emphasize that the proposed pro-
cedure is valid also for layered elastically bonded beams equipped with elastic
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translational/rotational supports applied at the beam ends. Specifically, in the
proposed method, homogeneous boundary conditions are considered (end
rotation Θ(0, t) = Θ(L, t) = 0, end shear force Q(0, t) = Q(L, t) = 0), while
the translational/rotational supports at the ends are modelled respectively as
internal translational supports and internal rotational joints, at X = 0+ = ε
and X = L− = L− ε, with ε = 10−10m.

c b b c c b b c c b e h hg

dd

F1F2Fii-1Fii

,1K∆Θ ,2K∆Θ

,1K W ,2K W

Figure 5.15: Two-layered elastically bonded beam with elastic translational and rota-
tional supports at the ends, subjected to a series of concentrated forces

In the current application the first critical speed of first order is V0 =
65.97 m/s for the fundamental circular beam frequency ω1 = 17.03 rad/s. Note
that the train crosses the bridge with this critical speed. The next four natu-
ral frequencies are: ω2 = 120.25 rad/s, ω3 = 214.14 rad/s, ω4 = 293.06 rad/s,
ω5 = 424.4 rad/s.

Figure 5.16 shows the eigenfunctions of mode 1 for all response variables
of the discontinuous beam as built by proposed method, while the dynamic
response under moving multi-loads is analysed in Fig.5.17. Specifically, in
Fig.5.17(a) the mid-span deflection of the discontinuous two-layered elasti-
cally bonded beam is displayed, while the mid-span deflection of the discon-
tinuous two-layered elastically bonded viscous beam is depicted in Fig.5.17(b).
Five modes have been considered also in this example.
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Figure 5.16: Beam in Fig.5.15: mode 1 eigenfunctions for the elastically bonded
cracked beam (black dashed line): (a) deflection, (b) rotation, (c) total
bending moment, (d) axial force in the upper layer, (e) shear force, (f)
interlaminar shear force
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a) b)

Figure 5.17: Time history mid-span beam response to moving multi-loads at criti-
cal speed V0 = 65.97m/s: a) deflection of the discontinuous two-layered
elastically bonded beam b) deflection of the discontinuous two-layered
elastically bonded viscous beam

5.6 Concluding remarks

An efficient approach for analyzing the dynamic flexural behavior under mov-
ing multi-loads of two-layered elastically bonded beams, featuring an arbi-
trary number of elastic translational supports and rotational joints, has been
presented. The theory of generalized function has been used to derive the
exact eigenfunctions of all response variables, from a characteristic equation
built as determinant of a 6 x 6 matrix, independently of the number of discon-
tinuities associated with the supports and joints. Based on pertinent orthog-
onality conditions for deflection modes, the dynamic response has been built
in time domain by modal superposition. Efficiency and accuracy of the pro-
posed method have been shown for a two-layered elastically bonded beam
with various elastic supports/joints and in various boundary conditions.



Summary and conclusions

This thesis contains a novel and efficient approach to study the moving multi-
loads problem in discontinuous beam with external viscoelastic supports, in-
ternal rotational joints and alternatively tuned mass damper.

The proposed solution accounts for non-proportional damping with sig-
nificant benefits over existing modal superposition methods, where only pro-
portional damping or, alternatively, no damping is considered.

The method also exceeds the limitations found using the Finite Element
methods that generally require numerical integration, accuracy depends on
the grid mesh, and nodes must be inserted at any location of external transla-
tional/rotational supports, internal rotational joints, and tuned mass damper.
This is a significant disadvantage, especially in the early stages of design,
when different solutions have to be built and compared at various locations
of supports, joints or dampers.

In the present thesis, this novel modal superposition approach is applied
to homogeneous beams and two-layered elastically bonded beams.

Based on the theory of generalized functions to handle the discontinu-
ities of response variables due to supports/joints/TMDs, exact beam modes
are obtained regardless of the number of discontinuities. Instead, in the clas-
sical method the free-vibration response is represented through integration
constants over each segment between two consecutive damper/support lo-
cations, and the matching conditions are enforced at the subdivision points
along with the boundary conditions.

On using pertinent orthogonality condition for the deflection modes, the
dynamic response of the beam under moving loads is derived in time domain.
All response variables are presented in a closed analytical form by using the
relationship equations of the beam. Several numerical applications illustrate
the efficiency of the proposed method.
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