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Abstract. The paper deals with the evolution of the parameters of a fractional model for different values of temperature. An
experimental campaign has been performed on epoxy resin at different levels of temperature. It is shown that epoxy resin is very
sensitive to the temperature.
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INTRODUCTION

Linear viscoelasticity has traditionally been modeled by different proper arrangements of springs and dashpots. The
most well-know mechanical models are Kelvin-Voigt and Maxwell. Kelvin-Voigt model consists of a spring in parallel
with a dashpot and Maxwell model is a spring in series with a dashpot. Other classical models as standard linear solid,
the Zener model, the Burger’s, etc. are obtained by means of more complex and sophisticated arrangements of springs
and dashpots. Classical viscoelastic models are governed by constitutive laws in which integer order derivatives and/or
integrals appear. That implies that, for all classical models the strain history under a constant imposed stress history
(the creep function) and also the response in terms of stress history under a constant imposed strain history (the
relaxation function) are exponential laws.

The first who showed the experimental inconsistency of classical models to describe the viscoelasticity was
Nutting. In fact, in his work [1], he observed that the stress relaxation of several materials have to be modeled as
power-law time function with order 8 : 0 < 8 < 1, and this experimental evidence has been confirmed by other
authors for different materials [3, 4]. In order to satisfy the Nutting’s experience, Gemant in the 1936 [2] proposed
the fractional-order derivative in the stress-strain relation to represent properly the stiffness and damping properties
of viscoelastic media. These fractional operators are nothing else that the simple generalization of the classical ones
for non-integer differential/integral order. Later, Scott-Blair & Caffyn [5] suggested the use of fractional calculus to
provide a mathematical interpretation of the Nutting’s experimental results.

Viscoelasticity is characterized by the time dependence. But it also has been shown, theoretically and experi-
mentally, that the temperature effect change drastically the properties of viscoelastic materials. Temperature and time
effect on viscoelasticity have been classically studied thought the Time Temperature Superposition Principle [6, T].

In this paper, the effect of the temperature is studied through the coefficients that characterize the fractional vis-
coelastic model. On the basis of an experimental campaign for an epoxy resin, the variation of the relevant parameters
of the proposed model is reported for different values of temperature.

FRACTIONAL LINEAR VISCOELASTIC MODEL

Linear viscoelasticity is based upon the knowledge of the creep and the relaxation function. The creep function,
denoted by J(f), represents the time response in terms of deformation due to a constant imposed stress-history o (f) =
U@, (U@) =0V 1t<0,U(r) = 1 elsewhere). The relaxation function, denoted by G(¢), is the time response in terms
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of stress due to a constant imposed strain-history () = U(¢). The Boltzmann superposition principle states that the
stress history resulting from an arbitrary strain history &(¢) is given as

o(t) = e0G(1) + f G(t — 1)é(r)dr, (D)
0

where the kernel is the relaxation function G(¢) and & is &(t),=¢.
Viceverse, the strain history an assigned stress history o(¢) is

e(t) =oogJ@) + f J(t —t)o(r)dr, 2)
0

where the kernel is the creep function J(#) and o is o7(#),=0.
The fundamental relationship in Laplace domain of J(t) and G(t) may be easily derived from Eq.s (1) and (2) and
results
G(s)J(s) =572, 3)

being G(s) and J(s) the Laplace transforms of G(¢) and J(¢), respectively.

The creep (or the relaxation) function may be determined through experimental data. On the bases of the ex-
periments that Nutting [1] conducted on several materials, the creep (or the relaxation) function is well fitted by a
power-law, that is

J@) = 4)

EgT(1+pB)’
where Eg and 8 € R* : 0 < 8 < | are coefficients obtained from the best fitting of experimental data, and I'(-) denotes
the Euler gamma function. From the relationship in Eq. (3) and the creep function defined in Eq. (4), the relaxation
function may be immediately obtained, and is given as
Egt™?
G(t) = &)

By using the creep and relaxation functions in Eq.s (4) and (5) as kernels of the two convolution integrals in
Eq.s (1) and (2), for a quiescent system at ¢ = O the stress history o(f) and the strain history are given as

Eg
ra-pg

o(f) = fo (t - 1) Pe(r)dr &(t) = m fo (t - tPo(t)dr. (6)

By definition

1 g _.de(T)
_ B _(c
T ﬁ)j;(t 0= —dr (°Dj.e) o), ©)

that is the so called Caputo’s fractional derivative of order § of the strain history. An integration by parts of &(¢) in
Eq. (6) leads to

&) = ﬁ fo (t - ¥ o (7)dr, (8)

where Ege(t) represents the Riemann-Liouville fractional integral of the stress history, denoted by (Ig+ 0') ().
So the constitutive laws of linear fractional viscoelasticity are written as

() = Es (CDh.&) (1) e(r) = Eiﬁ(lécr) (). ©)

Observe that for the two limit values of 8 (8 = 0 and 8 = 1), since (CDg+ 8) (t) = &(t) and (CD})+ s) (#) = &(1) the elastic
and the viscous behaviors are recovered, respectively.

The problem arises in the evaluation of the coeflicient Eg for different values of temperature. As in fact, Eg has
anomalous dimensions [ML™!T#~2]. Then direct comparison for different values of temperature may not be done since
Eg depends on $. In order to overcome this issue, the creep function J(f) may be rewritten in the form

1 B
0= 2 (Ti) , (10)
B &
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where E} is a coefficient with Young modulus dimensions [ML'T2] and 7. is the fractional creep characteristic
time. The fractional creep characteristic time, 7., has been calculated through the proposed methodology in [8]. For a

periodic stress input, 7, results
M
v = a@cot ()T ), (an

where g(8) = 2.(0) (8 + 1)/ 1.(2) A.(B) accounts for the distribution of the power due to each harmonic component
present on the periodic function and its dimension is time [T]. A.(p) are the spectral moments of order p of the power
associated to each harmonic component that is,

n

L(p) = 3 5GF. p=0.2,p.p+1. (12)

Jj=1

The constant imposed stress-history (o(#) = U(#)) input of which the creep function is response, may be sought as
periodic function (as a sum of harmonic functions), see Figure 1. For the case under study it is assumed a periodic
stress function, and for this reason the characteristic creep time may be calculated as Eq (11).
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Figure 1. Stress function input in periodic form.

In the next section, the proposed model is used to evaluate the effect of the temperature in the creep function.

MODELLING THE EFFECT OF THE TEMPERATURE IN THE CREEP TEST
The fractional linear viscoelastic model may be used for every viscoelastic material. In this paper, the creep behavior
of an epoxy resin is studied at different temperatures. The correspondent mechanical model for the material under

study is the fractional Maxwell model, see Figure 2, that consists on a spring in series with a springpot. The springpot
represents the fractional linear viscoelastic model described in the previous section.

Eo E; B

a—/\/W\/\/y o(®) ,

Figure 2. Fractional Maxwell model for SX8.

The constitutive law that characterizes the behavior of the fractional Maxwell model is

1 1
o) = o0 + 5 (#.0) . (13)
B

where E| is the stiffness at # = 0. So, the creep function for the fractional Maxwell model is defined as

11tV
J(@) = o +E_/’;(Z) . (14)
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An epoxy resin (SX8 EVO) is under study, this thermosetting polymer has been cured for 24h at ambient tempera-
ture under atmospheric pressure. The creep tests have been performed in a DMA (Dynamic Mechanical Analyzer)
machine, equipped with a load cell of 150N and capable of measuring displacement up to 6000 pm. The imposed
stress history was o(¢) = ogU(f), where oy = 2 MPa. The nominal dimensions of the specimens were 50mm x 3.5mm
X 2.7mm.

The coefficients of the creep function have been obtained by a best fitting procedure from the experimental results
of the creep test. The best fitting has been done with the program Mathematica 9. The results of the best fitting are
depicted in the Figure 3, where in blue is plotted the experimental data and in red the best-fitting.

In the table , the values are obtained for the coefficients through the best fitting of the experimental results.
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25 3009 4445 0.182  243.6
00002 27 2649 4698 0255 1772
TSz — 1 32,5 2434 5180 0.339 1513
Figure 3. Best fitting results. Table 1. Best fitting results at different temperatures.
CONCLUSIONS

In this paper, fractional linear viscoelastic model has been used to model the creep behavior of a polymer at different
temperatures, concretely an epoxy resin. The present model and methodology may be used for modeling all viscoelas-
tic materials. It has to be noticed that, from the obtained coefficients at the different temperatures it is possible to
characterize the dynamic behavior of the material.
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