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Abstract. The paper presents a cohesive-frictional interface model based on surface damage
mechanics. The proposed model is developed under the assumption that the fracture energies
in mode I and in mode II are different values, as shown by several experimental evidences. At
difference with the most spread available interface models, only one isotropic interface internal
variable is adopted for the constitutive model. The interface constitutive model is developed in
a Thermodynamic consistent framework with an Helmholtz free energy potential and the ful-
fillment of the thermodynamic principles is obtained enforcing the Clausius-Duhem inequality.
The damage/friction activation functions and dissipative flow potentials are defined together
with nonassociative flow rules and loading/unloading conditions. The latter loading/unloading
conditions emerge directly from the nature of the proposed approach, which is framed in the
mechanics dissipative process with internal variables, and then does not require any special
ad-hoc unloading rule. Finally, some numerical examples of interface subjected to complex
mixed loading/unloading/reloading paths are analyzed.
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1 Introduction

Mechanical interfaces are devices which can effectively reproduce decohesion processes
along surfaces. Different approaches are available to derive constitutive relations for cohesive
interfaces, in which surface traction and the correspondent displacement jump are related. The
first available approaches were derived for studying the progressive dechoesion in the area in
front a crack tip, as specific nonlinear elastic-softening relations [1, 2]. A further step was the
introduction of specific constitutive potential functions [3, 4], which can handle mixed mode
loading. However, because of their intrinsic reversibility nature (potential function implies non-
linear reversible elastic behavior), it is necessary to introduce ad-hoc unloading and reloading
rules, which may give unexpected response paths [5].

Since interface models are constructed for driving fracture processes (including possible
closing and frictional sliding mechanisms) it seems reasonable to frame their constitutive rela-
tions in the area of mechanical dissipative processes, derived with the contribution of some in-
ternal variables. In this context two constitutive frameworks can be envisaged: the first based on
surface plasticity laws [6, 7] and the other on surface damage mechanics (SDM) [8,9, 10, 11, 12]
Setting internal variables and constitutive parameters, either plasticity or damage models can
properly reproduce proportional loading decohesion processes. However, they strongly differ
as soon as unloading take place. Plasticity models unload keeping their original interface stiff-
ness and display a permanent plastic displacement jump, whereas damage models unload with a
reduced stiffness an do not develop permanent displacement jump. Because fracture is the main
physical aspect to be reproduced, the damage approach seems to be the most suited, provided
that a frictional law is also considered in order to describe compressive/sliding deformation
modes. [8, 13,9, 7, 10, 12]

A further topic to be considered is related to the experimental evidence that the energy dissi-
pated in opening mode (Mode I) is typically smaller than the energy dissipated in a pure sliding
mode (Mode II). Moreover it is olso important to correctly reproduce the mixed fracture mode
propagation.

A different approach, which introduces micro-mechanic asperities, is given by Sacco and co-
workers, [14, 15], where the difference between (G and (G is attributed to frictional dissipation
for micro dilatancy deformation modes.

In [16] the potential based Xu-Needleman model [3] is analyzed for mixed mode delamina-
tion conditions, showing that it produces work of separation in mixed mode loading paths which
is Wpr > Gy > G/, for material with mode II fracture energy greater than mode I fracture en-
ergy (G > Gy). In [16] this behavior is considered as physically inconsistent and certainly
such results are in disagreement with experimental results proposed [17].

The same kind of deficiencies have been analyzed in [18], where the work of separation ob-
tained by four different interface constitutive models [19, 20, 21], under mixed mode debond-
ing process, are evaluated and compared to the pure mode I and pure mode II fracture energies
(G; < Gyp). In [18] the authors show that the analyzed CZMs can produce physically incon-
sistent results. Moreover, the response of the model proposed by van den Bosch [4] results in
agreement with the experimental data. In Dimitri et al [ 18], authors propose a model, with simi-
lar features of the van den Bosch model [4], but derived from a Helmholtz free energy functional
in a thermodynamics consistent form and endowed with four scalar damage variables.

It is to remark that the well known experimental study of Benzeggagh and Kenane [17] on
the composite delamination, devoted to the evaluation of the fracture energy under different
mixed mode ratios loading, shows an almost linear law between the total fracture energy and
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the ratio G;; /Gt between the mode II energy release rate (ERR) and the total ERR. The latter
experimental study confirms that the mixed mode fracture energy Gy, is confined between the
upper limit GG;; and lower limit G;. Delamination problems where a mixed mode fracture
energy (5, is external to the interval (G, Gyy) has never been experimentally found in author’s
best knowledge.

In the present contribution we analyse a cohesive-frictional interface model which is based
on the SDM and we show that, in order to avoid possible unexpected response, the model is
constructed possessing all the following features:

e It is defined with two different fracture energies G; and G;; and can reproduce mixed
proportional loading paths;

e Being based on SDM and since the mechanical phenomena to be described is the pro-
gressive decohesion (breaking of elastic links), only one isotropic scalar damage variable
in adopted in the model;

e [t is derived in a thermodynamics consistent setting, which means that first and second
principle of thermodynamics are satisfied for any possible deformation processes;

e Beside damage other internal variables are introduced, which allow to describe the mi-
crostructure state in terms of softening;

e [t has a well-defined damage/friction activation function (in mixed mode loading) and
a well-defined damage/friction potential function. The last two functions being differ-
ent, frame the proposed model in the class of non-associative SDM. Damage and kine-
matic internal variables flow rules are then derived, together with the Kuhn-Tucker load-
ing/unloading damage conditions.

The features describe above allow the proposed model to be enough simple (just one scalar
damage variable), but at the same time capable to properly reproduce all possible dissipative
histories, included non-proportional and cyclic complex loadings. The proposed approach con-
siders a zero-thickness interface, at difference with some interphase models which requires a
finite initial thickness and therefore a layer with an internal stress state [22, 23, 15].

2 The cohesive-frictional model

Let us consider an interface Representative Surface Element (RSE) with local tangential and
normal axises (7, N). t* and ¢t~ are the traction vectors on positive and negative edges with
t =ttt =t~ in order to satify equilibrium condition.

From the kinematic point of view, u™ and u~ are displacement vectors of the positive and
negative edges respectively, and the separation displacement u = ™ — ™~ is an interface strain
measure.

In order to set the problem, interface constitutive law, relating the traction ¢ to the displace-
ment jump u, has to be defined. In damage mechanics theory the isotropic damage variable,
say w, can be defined (see [24]) as the local ratio between the area d A, of the debonded fraction
of RSE and the whole RSE area dA; that is

d4y
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The interface constitutive model is developed in the same phenomenological setting proposed
in [8], where the damage variable is also considered as a parameter which governs the transition
from the initial nondamaged elastic behavior (w = 0) up to the fully damaged one (w = 1).

At the debonded fraction of the RSE, namely dA,; = w ddA, the interface edges can mutually
transmits only frictional traction £ ;; whereas at the nondamaged RSE fraction, of area dA; =
(1 —w)dA, the two edges are still bonded and they can transmit cohesive traction ¢..

Let us introduce the following Helmholtz free energy

1
(1—w) utTK u + 5wu;TK suG + Wi (€) (2)

1
U=
2
where: ug; = w is the elastic separation displacement of cohesive fraction; u$} = u — ufc is the
frictional elastic separation displacement of the nondamaged fraction, with ufc the plastic part,
whose components are the frictional sliding and the frictional dilatancy; K. = [K§ K] and

K; = [K 1 K%J are diagonal stiffness matrices respectively of cohesive and frictional frac-

tions, respectively; and W,, (&) is the internal energy, function of the scalar kinematic internal
variable &.
The state laws are then derived by standard arguments, that is:

t. = g,li:(l—w)Kcu 3)
6 — gz‘f’;:mf (u— ) 4)
x() = %—? (5)
Y = —g—i:%uTKcu—%(u—up)TKf(u—up) (6)

Moreover, dissipation inequality can be derived in the form of Clausius-Duhem inequality,
namely . .
D=t"a—V=tTu+Yo—tha, —tias — x>0, (7)

where Y is the strain energy release rate, power conjugate variable of the damage w, and Y is
the internal static variable, which governs hardening and softening phenomena. It can be easily
shown that

t=1t.+1; (8)

so that the overall interface elastic traction-displacement relation is
t=(1-wKu+wK;(u—ul). 9)
Damage activation is governed by the following yield function
1 2 1 2
¢a (Y, x;ur, un) =Y = SAnuy — gArur — x (§) = Yo <0, (10)

where Y, > 0 is the initial damage threshold, uy and u; are normal and tangential components
of the separation displacement, Ay > 0 and Ay > 0 are constitutive parameters.
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The relevant flow rules and loading-unloading conditions read

O0¢a

w = 6—Y ).\d == ).\dy
. O - .
= —%AdzAd, (11)
X
M > 0, daha=0, dghg=0,

with \ scalar multiplier.

It is to remark that in [8] the damage activation function depends only on the energy release
rate Y, producing the same separation work in pure mode I, in pure mode II and in any other
mixed mode debonding condition.

Activation and evolution of the frictional displacement components u?; and 7. are defined in
the framework of non-associtive plasticity theory, governed by the classic Mohr-Coulomb yield
function

op = |t +atl <0. (12)
and by means of the following plastic potential
Q, = [t| + Bt (13)

where t/ and t{ are the components of frictional traction ¢, « and 3, with o > [3, are respec-
tively the frictional coefficient and the dilatancy one. The plastic (or frictional) flow rules and
loading/unloading conditions are

o0, . .
. P _ f
Up = ot Ap = sgn (tT) Moy
. o0, . :
= ol Ap = B, (14)

v

0, dprp =0, ¢\, =0.

The cohesive model is completed by the damage softening law, which allow to derive the
actual damage threshold, namely y + Yp, defined in the damage activation function of eq.(10)

R 1 s 2 Uf 2_
(@ = 3K [(um— L) 1] (15)
Yy = %KZueuf (16)

where K is the normal stiffness of interface cohesive fraction, u. and u; are limit values of
normal separation displacement, respectively, at the elastic threshold and at the unitary damage
condition, in a pure mode I opening condition.

In accordance with experimental data, only the case of mode II fracture energy greater then
the mode I value (G; > G) is considered by assuming the following constitutive parameters
of damage activation function (10): Ay = 0 and Ar > 0. Moreover, in order to prevent
damage activation under pure compressive stress state, normal stiffness of the cohesive fraction
and normal stiffness of the frictional fraction are imposed to be equal, thatis K5, = K ]{, In fact,
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Figure 1: Complex mixed mode loading condition

for a displacement uy < 0 and uy = 0, and with null frictional plastic displacement u? = 0,
the relevant energy release rate is

1
Y = éKf\,u?V — EK;;u?V =0, (17)
than, damage activation function in eq.(10) is negative and damage does not evolve.

Finally in order to set all the material constants of the interface, we define the two different
fracture energies Gy and G as

1 1
Gr= §k}]cvueu]c; Gy = ik:%ﬂ%a}} (18)

and since we are in the condition G < Gr, we set A;r = 0 and

(;II - (;I

Ar=Ri—a

(19)

It can be mathematically proved that for any mixed mode debonding the total separation work
G, s bounded, namely G; < G,,, < Gy and G,,, monotonically increases from the pure mode
I condition to the pure mode II condition. The latter condition, even if it is non a universal law,
has been confirmed by several experimental investigations, see €.g. Benzeggagh and Kenane
in [17], who measured the fracture energy of a unidirectional glass/epoxy composite for six
different mixed mode conditions, by the mixed mode bending apparatus developed by Crews
and Reeder in [25].

3 Numerical simulations

In the present section the response of the cohesive interface to complex mixed mode loading
conditions is analysed. The quasi-static loading condition is represented in Fig.1 where the law
of the imposed displacement is

u (t) = ugsin (Tioﬂ) (20)
with 7Ty = 50 and ¢ a time-like variable. The numerical simulation have been performed for
four different value of the loading angle, that is: @ = 0,a = 30, = 60, = 90. The set
of constitutive parameters of the proposed interface constitutive model are collected in Table 1.
The results of the numerical simulations are plotted in Fig. 2 in terms of traction ¢ vs imposed
diplacement u for the four loading angles. It can be observed that the maximum traction and
the relevant fracture energy increase from the pure mode I condition o = 0 to the pure mode II
condition o = 90. Moreover, after the first loading cycle, the behavior is elastic.
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Normal elastic stiffness k¢ = 1500N /mm?
Tangential elastic stiffness | k¢ = 1 500N/mm?

Mode I elastic displ. u§ = u. = 0.002mm
Mode I debonding displ. ﬂ}c =uy = 0.05mm
Tensile strength tr = 3N/mm?
Mode II elastic displ. uf; = 0.0049mm
Mode II debonding displ. ﬂ}c ; = 0.1225mm
Shear strength trr = 7.348N/mm?

Mode I Fracture energy G; =0.075N/mm
Mode II Fracture energy Grr = 0.45N/mm

Table 1: Constitutive parameters used for the numerical simulations.
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Figure 2: Response of the numerical simulations, for the complex mixed mode loading conditions, in terms of
traction ¢ vs imposed diplacement «

A second mixed mode loading test has been performed with two independent laws for the
tangential and normal imposed displacement, which are plotted in Fig.3. The interface response
to the second mixed mode loading condition is plotted in the Figures 4 and 5 respectively in
terms of normal traction components vs time and in terms of tangential traction components
vs time. The interface response shows that the unloading condition is linear elastic and any
damage increment involves both the tangential and the normal components. At the full damage
condition the interface cannot transmit neither normal traction or tangential traction.

4 Conclusions

The paper proposes an interface constitutive model based on a single scalar damage vari-
able which produces effects either in normal or in tangential directions to the interface. The
constitutive model enjoys thermodynamic consistency being defined through a free energy, the
damage activation function and a non-associative frictional function. The evolution rules are
derived in the context of dissipative mechanics with internal variables. The proposed interface
model, produces two independent fracture energies, GG; in pure mode I opening condition and
G in pure mode II sliding fracture. G; and G;; are minimum and maximum values of the
work-of-separation for any proportional loading path. The model describes also frictional trac-
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Figure 3: Laws of the normal and tangential components of imposed diplacement
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Figure 4: Response of the second complex mixed mode loading condition in terms of normal traction compontent
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Figure 5: Response of the second complex mixed mode loading condition in terms of tangential traction compon-
tent
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tion both at the fully debonded zones and at the partially debonded ones under the combined
action of sliding tangential and compressive forces. The proposed model is able to accurately
reproduce with a unique set of few constitutive parameters, very different loading paths, either
in opening mode or in sliding mode and in any mixed condition, recovering also closing con-
ditions and frictional effects. In order to verify the actual capacities of the proposed model a
non-proportional complex loading/unloading/reloading history has been applied to an interface
element showing the features of the relevant interface response.
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