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Abstract: A new closed loop fuzzy motion control system including on-line Kalman’s filter (KF) for the two 
dimensional motion of underactuated and underwater Remotely Operated Vehicle (ROV) is presented. Since the 
sway force is unactuated, new continuous and discrete time models are developed using a polar transformation. A 
new hierarchical control architecture is developed, where the high level fuzzy guidance controller generates the 
surge speed and the yaw rate needed to achieve the objective of planar motion, while the low level controller gives 
the thruster surge force and the yaw torque control signals. The Fuzzy controller ensures robustness with respect 
to uncertainties due to the marine environment, forward surge speed and saturation of the control signals. Also 
Lyapunov’s stability of the motion errors is proved based on the properties of the fuzzy maps. If Inertial 
Measurement Unit data (IMU) is employed for the feedback directly, aleatory noises due to accelerometers and 
gyros damage the performances of the motion control. These noises denote a kind of non parametric uncertainty 
which perturbs the model of the ROV. Therefore a KF is inserted in the feedback of the control system to 
compensate for the above uncertainties and estimate the feedback signals with more precision.  
Keywords: Fuzzy control , Kalman’s filter, Lyapunov’s stability, Motion control, ROV. 

 
1. Introduction 

Underwater Robotic Vehicles (URV) are used in 
oceanographich studies and naval and archeological 
applications. The URV includes both Remotely Operated 
Vehicles (ROV) and Autonomous Underwater Vehicles 
(AUV). The ROV is normally used for the repairs of 
offshore structures or the inspection of the subsea 
environment (Antonelli et al., 2008, Koh et al., 2002). 
Actually URV operators are very sceptical about the 
prospect that AUVs will replace ROVs for inspection or 
repairs, so modern techniques are dedicated to designing 
advanced and intelligent ROVs with navigation systems 
(Ontini, 1998). In conventional operating, a human 
operator is in control and navigates the ROV by 
observing the images produced by an underwater 
camera. But a human in control is not efficient and not 
satisfactory because it is difficult to obtain a clear visual 
image from a camera and it is difficult to obtain a 
mathematical model of the environment around the ROV 
(Dai et al., 2002). Therefore, the priority of the ROV is to 
position itself, either tracking curves with autonomous 
navigation in the environment which has to be inspected, 
or near the structure of interest, against disturbances. 
Most ROVs are underactuated, so they have fewer control 
actuators than the number of independent directions of 
desired motion and in general, falls into category of so-
called non-holonomic systems. However motion control 
strategies for non-holonomic Unmanned Aerial Vehicles 
(UAV) (Raimondi & Melluso, 2008) and for non-

holonomic ground cars (Raimondi & Melluso, 2009) are 
not directly applicable to ROVs, because they are 
subjected to complex hydrodynamic factors (Fossen, 
1994), they present unactuated dynamics and have a 
minimum surge control speed constraint that is greater 
than zero. Many ROVs operate in a crab-like manner with 
small roll and pitch angle that can be neglected during 
normal operations. Therefore it is useful to regard the 
vehicle’s spatial motion as a superposition of two 
displacements: the motion in the vertical plane and the 
motion in the horizontal plane, so that it allows the ROV 
propulsion system to be divided into two independent 
subsystems responsible for movement in these planes 
respectively (Dobref & Tarabuta, 2007). For example the 
VideoRay ROV has two horizontal thrusters for planar 
motion and one for vertical motion (Miskovic et al., 2009). 
Motion control methodologies for ROVs have been put 
forward to handle external disturbances and parametric 
model uncertainties, i.e robust and adaptive control 
techniques, introducing the use of sliding-mode control  
(Yoerger &  Slotine, 1985 ; Yoerger & Slotine, 1991). 
Hierarchical architecture for the motion control of 
underwater vehicles, which encompasses strategic, 
tactical and execution levels of control has been proposed 
(Valavanis et al., 1997). Horizontal motion control 
strategies have been developed adopting a dual-loop 
hierarchical guidance control scheme, based on a set of 
Lyapunov-based guidance task functions and a PI gain 
scheduling controller (Caccia & Verruggio, 2000). Vision-
based conventional dual-loop hierarchical architecture for 
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kinematic and kinetic control of the two dimensional 
motion of ROV has been developed (Caccia, 2007).  
Techniques of intelligent control have not been addressed 
in any of the above papers. The advantage of intelligent 
fuzzy systems is that the controller can be designed to 
apply heuristic rules that reflects the experiences of 
human experts and the membership functions are 
generally predefined according to the non-linearities of 
the system. A Fuzzy like proportional derivative (PD) 
controller for ROVs to control the yaw and the depth of 
the vehicle has been developed (Akkizidis et al., 2007). A 
Fuzzy logic system has been employed in ROV to 
perform autonomous navigation in 3D space (Day et al., 
2002). Precise autonomous navigation remains a 
significant challenge for all underwater platforms (Hagen 
P.E. et al, 2009). One strategy is to employ the best 
possible inertial navigation system (INS) together with 
internal sensors, like for example accelerometers and 
gyros, as done by the Hugin navigation system (Jalving et 
al., 2003). However noise from the internal sensors of the 
INS is responsible for non-parametric uncertainties which 
perturb the localization of the ROV. Several alternatives 
have therefore been included for providing the integrated 
inertial navigation systems with position updates.  
Following the ROV with a survey vessel is the preferred 
method for obtaining maximum position accuracy 
(Hagen et al., 2009). The survey vessel is tethered to the 
ROV with an umbilical cable that relays control signals. It 
is powered down to the vehicle and returns sensor data, 
and it has to be equipped with a Global Position System 
(GPS) and Ultra Short Base Line (USLB) for tracking the 
ROV at all times. To obtain a good estimation of the 
vehicle’s position, an off-line Kalman’s Filter (KF) has 
been employed which processes data provided by 
exteroceptive (GPS and USLB) and internal sensors (Jwo 
et al., 2009 ; Fabrizi et al., 1998).  
In this paper, to continue this line of research, a new 
closed loop fuzzy hierarchical horizontal motion control 
system with on-line KF for underactuated ROVs is 
presented. The following contributions are given: 
1) New stochastical continuous time and sampled models 
for horizontal motion of underactuated ROVs. They are 
developed using polar coordinates to consider the 
unactuated sway direction. The continuous time model is 
necessary to apply the fuzzy guidance commands and the 
kinetic control laws, while the sampled model describes 
the transition relationship state during a sampling 
interval and it is necessary to apply the KF.  
2) Hierarchical architecture which merges a new low level 
kinetic controller with a new high level Fuzzy inference 
system. The fuzzy controller is responsible for prescribing 
the ROV guidance laws in terms of the surge speed and 
yaw rate needed to achieve horizontal motion control 
objectives in the work space. The kinetic controller gives 
the surge force and the yaw torque and ensures the 
convergence of the actual speeds to the guidance 
commands. Suitably actuator allocation gives the actuator 
forces. Unlike previous works (Caccia, 2007; Day et al., 

2002; Caccia & Verruggio, 2000), an intelligent fuzzy 
controller has been addressed with a dinamical approach, 
where asymptotical stability is built on Lyapunov’s 
theory, based on the properties of the fuzzy control 
surfaces. In other words, the stability theorem provides 
conditions on the fuzzy control surfaces under which the 
motion errors are bounded and converge to zero. The 
fuzzy controller proposed in this paper ensures the 
robustness of the motion with respect to disturbances due 
to the marine environment, forward surge speed and 
saturation of the control signals. 
3) A methodology for solving the on-line sensors data 
fusion using KF. Unlike to previous works (Jwo et al., 
2009 ; Fabrizi et al., 1998), where off-line KF  algorithms 
have been put forward to estimate the location of mobile 
vehicles, in this  paper the KF is located in the feedback of 
the Fuzzy dynamic motion control system. It fuses data 
provided by internal and exteroceptive sensors, filters the 
noises of the internal sensors and obtains a good estimate 
of the feedback signals. In this way the KF compensates 
the effects of non-parametric uncertainties due to the 
noise of the internal sensors, i.e. discontinuities in the 
dynamics of the motion errors, guidance commands and 
force control signals. 
This paper is organized as it follows.  In Subsection 2.1 
continuous time kinematic and dynamic models are 
presented for horizontal motion of an Underactuated 
ROV. The KF requires a stochastic sampled state space 
representation to be derived which is developed in 
subsection 2.2. Section 3.2 presents the new high level 
fuzzy control guidance commands, where the 
Lyapunov’s theorem is used in order to investigate the 
asymptotical stability of the motion errors. Section 3.3 
presents news kinetic control laws to obtain the surge 
force and the yaw torque from the guidance commands. 
Convergence of the actual speeds of the ROV to the fuzzy 
guidance commands is proved. In Section 3.4 the on-line 
KF algorithm is developed. Section 4 presents simulation 
experiments performed in a Matlab environment, where 
the effectiveness of our motion control system is shown. 

2. Continuous and sampled time models for the two 
dimensional motion of ROV 

This section focuses on the development of continuous 
and discrete time models for the planar motion of ROVs. 

2.1. Continuous time dynamic model  
Let ( ,  Y)X  be the Earth Fixed Reference System (ERF) 
and ( , )b bx y  be the fixed body frame (cf. Fig. 1). In 
normal operations the pitch and the roll angles are small, 
so they can be neglected. Therefore in the horizontal 
plane the following vectors may be considered: 

                        
( ) ( )  ( )  ( ) ,

( ) [ ( )  ( )  ( )] ,

t x t y t t

t u t v t r t

ψ= ⎡ ⎤⎣ ⎦
=

T

T

η

υ
 (1) 

where: 
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( ),   ( )x t y t  represent the position coordinates with 
reference to the ERF; 
 ( )tψ  represent the yaw, i.e. the orientation of the ROV 
(Euler angle); 

( ),   ( )u t v t  represent the surge and sway speeds 
respectively, i.e. the linear velocities along longitudinal 
and transversal axes evaluated in relation to the fixed 
body frame; 

( )r t  represents the yaw rate, i.e. the angular velocity 
about the axis perpendicular to the plane (X,Y). 
The velocity transformation in the horizontal plane 
assumes the following form: 

                            ( ) ( )) ( ) ,t t t=η J(η υ  (2) 

where  ( )J η is the following matrix: 

             
cos( ( )) sin( ( )) 0

( )) sin( ( )) cos( ( )) 0  .
0 0 1

t t
t t t

ψ ψ
ψ ψ

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

J(η         (3) 

In extensive form the result is: 

               
( ) ( )cos ( ) ( )sin ( ) ,
( ) ( ) ( ) ( )cos ( ) ,
( ) ( ) .

x t u t t v t t
y t u t sen t v t t

t r t

ψ ψ
ψ ψ

ψ

= −
= +
=

                  (4) 

Practically all the trajectories are planned with 
combination of straightlines and arcs of circumference, so 
in many applications the reference surge velocity is 
positive and constant, while the reference yaw rate may 
be constant or null. However in (4) the presence of the 
sway speed is evident. It is responsible for translational 
motion with respect to the vehicle’s longitudinal axis. In 
fact, the equations (4) require integration of the 
unactuated dynamics to obtain the planar trajectory from 
the surge and angular velocities. Therefore it is necessary 
to determine the dynamic model of the ROV. Indicate the 
thruster surge force with ( )u tτ   and the yaw torque with 

( )r tτ . 
Lemma 1. Assume the mass matrix of the ROV as the 
identity matrix. Then the dynamic model of the ROV 
assumes the following form: 

                              
( ) ( ) ( ) ( ) ,
( ) ( ) ( ) 0 ,
( ) ( ) .

u

r

u t v t r t t
v t r t u t
r t t

τ

τ

− =
+ =
=

                    (5) 

Proof. The Lagrangian function of the system is given by: 

             2 2 21 1 1( ( ), ( )) ( ) ( ) ( ) .
2 2 2

L t t x t y t tψ= + +η η    (6) 

 The equations of the planar motion can be obtained 
using the following Lagrange formulation: 

         ( ( ), ( )) ( ( ), ( )) ( ) ,d L t t L t t t
dt
⎛ ⎞∂ ∂

− =⎜ ⎟
∂ ∂⎝ ⎠

η η η η τ
η η

         (7) 

where  ( )tη  is given by (1), while ( )tτ is the following 
vector: 

        ( ) ( )cos ( )    ( )sin ( )    ( ) .u u rt t t t t tτ ψ τ ψ τ= ⎡ ⎤⎣ ⎦
Tτ        (8)           

From the Lagrange equations (7) it follows that: 

 
( ) ( )cos ( ) ,
( ) ( ) ( ) ,
( ) ( ) .

u

u

r

x t t t
y t t sen t

t t

τ ψ
τ ψ

ψ τ

=
=
=

  (9) 

Differentiating equations (4) leads to the following model: 

       

( ) ( ) ( )sin ( ) ( )cos ( )
         - ( ) ( )cos ( ) ( )sin ( ),
( ) ( ) ( )cos ( ) ( )sin ( )

         - ( ) ( )sin ( ) ( )cos ( ),
( ) ( ).

x t r t u t t u t t
r t v t t v t t

y t r t u t t u t t
r t v t t v t t

t r t

ψ ψ
ψ ψ
ψ ψ
ψ ψ

ψ

= − + +
−

= + +
+

=

               (10) 

Multiplying the first and second equations of (10) by 
cos ( )tψ  and sin ( )tψ  respectively and adding the results, 
gives: 

     ( ) ( )cos ( ) ( )sin ( ) ( ) ( ).u t x t t y t t v t r tψ ψ= + +          (11) 

From the dynamic equations (9) it follows that: 

        ( )cos ( ) ( )sin ( ) ( ).ux t t y t t tψ ψ τ+ =  (12) 

Substituting equation (12) into (11), result is: 

 ( ) ( ) ( ) ( ).uu t t v t r tτ= −  (13) 

Multiplying the first and second equations of (10) by   
cos ( )tψ  and subtracting these two equations  leads  to: 

 ( )sin ( ) ( )cos ( ) ( ) ( ) ( ).x t t y t t r t u t v tψ ψ− = − −  (14) 

From the dynamic equations (9), the result is: 

  ( )cos ( ) ( )sin ( ) 0.y t t x t tψ ψ− =  (15) 

Substituting  (15) into (14), it follows that: 

 ( ) ( ) ( ).v t r t u t= −   (16) 

Therefore the complete dynamic model is given by (5). 
Q.E.D. 
Generally, the mass matrix of the ROV is not the identity 
matrix and the hydrodynamic added mass has to be 
considered. Indicate the mass of the ROV with m, the 
inertial moment about the axis perpendicular to the plane   
( , )b bx y with zI and the hydrodynamic masses with 

,u vX Y  and rN . The dynamic model (5) may be rewritten 
as follows: 

  
( ) ( ) ( ) ( ) ,
( ) ( ) ( ) 0 ,
( ) ( ) ,

u v u

v u

r r

m u t m v t r t t
m v t m r t u t
m r t t

τ

τ

− =
+ =
=

 (17) 

where: 

 
 ,
 ,
 .

u u

v v

r z r

m m X
m m Y
m I N

= −
= −
= −

 (18) 
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Fig. 1. ROV with reference systems.  

Since the sway force is unavailable, the greatest difficulty 
for the control of the ROV is how to properly handle the 
vehicle’s sway dynamics. To deal with this problem, the 
following polar coordinates transformation is defined 
(see Fig. 1): 

                           
2 2( ) ( ) ( )  ,

( ) ( ) ( ) ,
l

l a

u t u t v t
t t tψ ψ ψ
= +

= +
 (19) 

where: 

                         ( ) arctan[ ( ) / ( )]a t v t u tψ =  (20) 

is a polar angle and also called the sideslip angle [16].  
Since the surge velocity is positive, it gives: 

                          0.5 ( ) 0.5  .a tπ ψ π− ≤ ≤  (21) 

Differentiating the first equation of (19) and considering 
that: 

                          
( ) ( )cos ( ),  
( ) ( )sin ( ),

l a

l a

u t u t t
v t u t t

ψ
ψ

=
=

  (22) 

the ROV kinematic model (4) and the dynamic equations 
(17) may be rewritten as it follows:  

                    

( ) ( )cos ( ) ,
( ) ( )sin ( ) ,
( ) ( ) ( ) ( ) ,
( ) ( ) / cos ( ) ( ) ( )

         ( ) ( )tan ( ) ,

( ) ( ) .

l l

l l

l a l

u u l a v

u
a

v

r r

x t u t t
y t u t t

t r t t r t
t m u t t m v t r t

m r t u t t
m

t m r t

ψ
ψ

ψ ψ
τ ψ

ψ

τ

=
=
= + =
= − +

+

=

 (23) 

The accelerations of the ROV evaluated in relation to the 
ERF are given by: 

          
( )  ( )   sin ( ) ( )cos ( )
( ) ( )   cos ( ) ( )sin ( )  .

( )( )

l l l l l

l l l l l

l

x t u t (t) t u t t
y t u t (t) t u t t

r tt

ψ ψ ψ
ψ ψ ψ

θ

⎡ ⎤ +⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

  (24)                      

Formula (24) may be written in relation to the body 
reference system as follows: 

B

B

( ) cos( ( ) ( )) sin( ( ) ( )) ( )
.

sin( ( ) ( )) cos( ( ) ( )) ( )( )
l a l a

l a l a

x t t t t t x t
t t t t y ty t

ψ ψ ψ ψ
ψ ψ ψ ψ

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦⎣ ⎦

 (25) 

Remark 1. The INS calculates the position velocity and 
acceleration of the ROV from an Inertial Measurement 
Unit (IMU). An IMU consists of accelerometers 
measuring specific force and gyros measuring angular 
rate. The output of the accelerometers gives data on the 
accelerations (24). Therefore the longitudinal and lateral 
positions may be evaluated by applying the inverse of 
(24) and then double integration, once the orientation of 
the ROV has been calculated from the data of the gyros.  
Remark 2. Following the ROV with a survey vessel is the 
preferred method to obtain maximum position accuracy. 
The survey vessel is equipped with a Global Position 
System (GPS) and tracks the ROV with an Ultra Short 
Base Line (USLB). By combining GPS with USBL the 
position of the ROV may be estimated. The IMU typically 
employ data provided by GPS and USBL to correct errors 
in the IMU state estimate. The KF will combine data 
obtained from internal and external sensors to localize the 
ROV with more precision. 
Indicate with 3( )t R∈w  the following vector: 

 1 2 3( ) ( ) ( )  ( )t w t w t w t= ⎡ ⎤⎣ ⎦
Tw  (26) 

where the components are the measurements of noise 
due to the IMU. Indicate the output vector of the external 
sensors constituted by GPS and USLB with ( )tξ  and  the 
noise vector with 3( )t R∈ρ . The complete continuous 
time mathematical model for the two dimensional motion 
of the ROV with non-parametric uncertainties due to the 
noise of the sensors, is given by:      

          

1

2

ln 3 3

( ) ( )cos ( ) ( ) ,
( ) ( ) ( ) ( ) ,
( ) ( ) ( ) ( ) ( ) ( ) ,

( )1 0 0
( ) 0 1 0  ( ) ( ) ,

0 0 1 ( )
( ) ( ) / cos ( ) ( ) ( )

         

n l l

n l l

a l

l

u u l a v

u

v

x t u t t w t
y t u t sen t w t

t r t t w t r t w t
x t

t y t t
t

t m u t t m v t r t
m r
m

ψ
ψ

ψ ψ

ψ
τ ψ

= +
= +
= + + = +

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
= − +

+

ξ ρ

( ) ( ) tan ( ) ,

( ) ( ),

a

r r

t u t t

t m r t

ψ

τ =

 (27) 

where ( )nx t , ( )ny t  and ln( )tψ are the position and 
orientation of the ROV in presence of noise of the IMU. 

2.2. Stochastical sampled odometric model  
In this subsection a discrete time odometric model  for 
planar motion of the ROV is set out. An analogical to 
digital converter obtains samples of ( ), ( )x t y t  and ( )l tψ .  
Assume a constant sampling period T and denote 

,  k kT k Z= ∈ . Indicate the incremental distance traveled 
by the reference point  ( , )x y  with ( )D kΔ (cf. Fig. 2).  It 
gives: 

 ( ) ( ( ) ( )) / 2,
,

right leftD k d k d k
k Z
Δ = Δ + Δ

∈
 (28) 

where ( )rightd kΔ  and  ( )leftd kΔ  are incremental distances 
traveled by the points in which the engines are located. 



Francesco M. Raimondi and Maurizio Melluso: Fuzzy/Kalman Hierarchical Horizontal Motion Control of Underactuated ROVs 

 143

By considering the unactuated sway speed, the incremental 
distance traveled by the reference point is given by: 

 ( ) ( ) / cos( ( )),
.

aM k D k k
k Z

ψΔ = Δ
∈

 (29) 

Let parameter b  be the distance between the right and the 
left thrusters. Assume the noises of the internal and 
external sensors given by 3( )k R∈w and 3( )k R∈ρ  
respectively to be random variables with Gaussian 
distributions, sequences that have zero cross-correlation 
with each other and zero mean (statistically), that is: 

  ( )    and      ( )  ;E k E k= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦w 0 ρ 0  (30)  

 
   

( ) ( )  ;
      

i j
E i j

i j
=⎧⎪⎡ ⎤ = ⎨⎣ ⎦ ≠⎪⎩

wT R
w w

0
 (31)  

  
   

( ) ( )  ,
      

i j
E i j

i j
=⎧⎪⎡ ⎤ = ⎨⎣ ⎦ ≠⎪⎩

ρT R
ρ ρ

0
 (32)                    

where  E ⋅⎡ ⎤⎣ ⎦ represents expectation, wR is the process 
noise covariance matrix and   ρR is the measurement 
noise covariance matrix.  
By assuming that: 

                ( ) ( ) ( ( ) / 2) ,l lk k kμ ψ ψ= + Δ  (33) 
where 

          ( ) ( ( ) ( )) / cos( ( ))l right left ak d k d k b kψ ψΔ = Δ − Δ  (34) 

and after some algebra, the complete odometric model 
yields: 

         
( 1) ( ) ( ) ( ) ( ) ( ) ,
( ) ( ) ( ) ( ) ,
k k k k k k
k k k k
+ = + +
= +

χ A χ B u w
ξ C χ ρ

 (35) 

where: 

ln        ( ) ( )  ( )  ( )  ,   

1 0 ( )sin( ( ))
( ) 0 1 ( )cos( ( ))  ,

0 0 1

n nk x k y k k

M k k
k M k k

ψ

μ
μ

= ⎡ ⎤⎣ ⎦
−Δ⎡ ⎤

⎢ ⎥= Δ⎢ ⎥
⎢ ⎥⎣ ⎦

Tχ

A
 

 

1 ( )cos( ( )) sin( ( ))...
2 2
1 ( )( ) sin( ( )) cos( ( ))...
2 2

1                   

1 ( )          ... cos( ( )) sin( ( ))
2 2
1 ( )          ... sin( ( )) cos( ( ))  ,
2 2

1

M kk k
b

M kk k k
b

b
M kk k

b
M kk k

b

b

μ μ

μ μ

μ μ

μ μ

Δ⎡ +⎢
⎢

Δ⎢= −⎢
⎢
⎢ −
⎢⎣

Δ ⎤−
⎥
⎥Δ ⎥+
⎥
⎥
⎥
⎦

B

 (36)                                    

1 0 0
( ) 0 1 0  ,

0 0 1
k

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

C  

 
Fig. 2. ROV with odometric system 

( ) ( ) / cos ( ) ( ) / cos ( ) ,left a right ak d k k d k kψ ψ= Δ Δ⎡ ⎤⎣ ⎦
Tu  

1 2 3( ) ( ) ( )  ( )  ,k w k w k w k= ⎡ ⎤⎣ ⎦
Tw  

1 2 3( ) ( ) ( )  ( )k k k kρ ρ ρ= ⎡ ⎤⎣ ⎦
Tρ . 

3. Fuzzy hierarchical control system with on-line 
Kalman’s filter for planar motion of underactuated 
ROVs  

In this Section a new hierarchical control system for 
planar motion of underactuated ROVs is developed. A 
new high level fuzzy control obtains the guidance control 
laws, while a new low level controller generates the surge 
force command and the yaw torque control. A KF is 
inserted into the feedback of hierarchical control system 
to combine the data given by IMU, GPS and USLB and to 
obtain good estimates of the feedback position and 
orientation of the ROV. The fuzzy control system requires 
a knowledge of the model (23), while the KF requires a 
knowledge of the discrete time model (36).   

3.1. Control problem formulation  
Indicate the reference surge velocity and the reference 
yaw rate with ( )ru t and ( )rr t respectively. Also indicate 
the reference speeds in the presence of a certain sideslip 
angle with ( )lru t  and ( )lrr t , and  the time varying 
coordinates of the reference trajectory evaluated in 
relation to the ERF with ( ), ( )r rx t y t and ( )lr tψ . The planar 
reference trajectory is given by the following equations: 

 
( ) ( )cos ( ) ,
( ) ( ) ( ) ,
( ) ( ) ( ) ( ) ,

r lr l

r lr l

lr r a lr

x t u t t
y t u t sen t

t r t t r t

ψ
ψ

ψ ψ

=
=
= + =

 (37) 

where: 

                       ( ) ( )cos ( ) .r lr au t u t tψ=   (38) 

Define the following vectors of the guidance laws: 

                       1 2

1 2

( ) ( )   ( )   ,  
0 ( ) ,

,

T
c c c

c

t u t r t
u t

R

ρ ρ

ρ ρ +

= ⎡ ⎤⎣ ⎦
< ≤ ≤

∈

α
 (39) 
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and: 

        
( ) / cos ( ) ( )

( )  ,
( ) ( ) ( )
c a lc

c
c a lc

u t t u t
t

r t t r t
ψ

ψ
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦
β  (40)  

where ( )cu t and ( )cr t  are the surge velocity and yaw rate 
controls respectively, while ( )lcu t and ( )lcr t  are the 
guidance control laws in the presence of sideslip angle. 
The actual position and orientation of the ROV can be 
obtained as it follows: 

 
( ) ( )cos ( ),  
( ) ( ) ( ) ,
( ) ( ) ( ) ( ) .

lc l

lc l

l c a lc

x t u t t
y t u t sen t

t r t t r t

ψ
ψ

ψ ψ

=
=
= + =

  (41) 

Remark 3. The control velocity ( )lcu t  is positive every 
time, once the surge velocity control is positive.  
Indicate the surge force and the yaw torque control 
signals respectively with ( )uc tτ  and ( )rc tτ  and with ( )tα  
the following vector: 

                               ( ) ( )  ( )  ,t u t r t= ⎡ ⎤⎣ ⎦
Tα  (42) 

where ( )u t and ( )r t denote the actual surge speed and 
yaw rate, i.e. the virtual controls. Let ( )lu t and ( )lr t be 
the same functions in the presence of sway. 
The control system put forward in this paper is made up of 
two hierarchical levels. The high level controller gives the 
guidance commands (40), so that the following tracking 
errors evaluated in relation to the ROV body frame: 

  

( ) cos ( ) sin ( ) 0 ( ) ( )
( ) ( ) sin ( ) cos ( ) 0 ( ) ( )

0 0 1 ( ) ( )( )

x l l r

y l l r

l r ll

e t t t x t x t
t e t t t y t y t

t te tψ

ψ ψ
ψ ψ

ψ ψ

⎡ ⎤ −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

e  (43) 

are bounded and converge to zero. A new Fuzzy 
controller will be employed without reference to the 
forces and moments that generates such motion. 
However, the dynamics of the ROV are given by the  
fourth  and fifth equations in (27); therefore,  the low level 
controller gives the functions ( )uc tτ and ( )rc tτ to ensure 

convergence to zero of the following error: 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ( ) ( ))cos ( )
        .

( ( ) ( ))

u c

r c

lc l a

lc l

e t u t u t
t t t

e t r t r t

u t u t t
r t r t

ψ

−⎡ ⎤ ⎡ ⎤
= − = = =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

ce α α
 (44)     

If the virtual controls converge to the guidance control 
laws, then the high level control ensures the trajectory 
tracking. When the velocities ( )lu t and ( )lr t are applied 
to the ROV, the IMU evaluates the position and 
orientation of the submarine vehicle through the 
integration of the following equations (see. Eqs. 27): 

 
1

2

ln 3 3

( ) ( )cos ( ) ( ) ,
( ) ( ) ( ) ( ) ,
( ) ( ) ( ) ( ) ( ) ( ) .

n l l

n l l

a l

x t u t t w t
y t u t sen t w t

t r t t w t r t w t

ψ
ψ

ψ ψ

= +
= +
= + + = +

 (45)   

Aleatory noises of the IMU made by the components of 
the vector (26) cause non-parametric uncertainties which 
perturb the model and, therefore, the measurements of 
the ROV’s position. They can corrupt the performance of 
the control system in terms of the dynamics of the motion 
errors given by (43). Measurements obtained by GPS and 
USLB are necessary to correct the localization of the ROV. 
The KF will estimate the filtered state from the outputs of 
the IMU and the outputs of the exteroceptive sensors, i.e. 
it will estimate the actual feedback position and 
orientation of the ROV. The filter above requires the 
linear discrete time stochastic state space representation 
given by (35) to be obtained. Then, an estimation of the 
feedback signals, using a ‘Digital to Analogic Converter’ 
(DAC) with ‘Zero Order Hold’ (ZOH) provides analogical 
information for generating the motion errors (43) and for 
applying the high level guidance control laws (40) and 
the low level control signals.    

3.2. High level Fuzzy guidance laws  
The problem is to determine the guidance laws given  by 
(39) and (40), where ( )lcu t has to be saturated and must be 

a forward velocity, so that the Lyapunov’s asymptotical 
stability of the tracking errors given by (43) is ensured. 
The following fuzzy guidance control laws are  
proposed: 

   

max

( ) ( ( )) * cos ( ) ( ) ,
( ) [ ( ) ( )] [ ( ) / cos ( )]

          [ ( ( )) ( ( ))sin ( )] ,
( ) 0 ,

( ) 0    ,

c a r

c r a r a

l

c c

r

u t f t t u t
r t r t t u t t

g t h t e t
u u t
u t t

ψ

ψ
ψ ψ

= +
= + + ×
× +

≥ ≥
> ∀

e

e e  (46) 

 

where the nonlinear functions ( ( )),   ( ( ))f t g te e and ( ( ))h te  
are continuous and differentiable. The functions (40) are 
as follows: 

  

max

( ) ( ( )) ( ) ,
( ) ( ) ( )[ ( ( )) ( ( ))sin ( )] ,

( ) 0 ,
( ) 0    .

lc lr

lc lr lr l

lc lc

lr

u t f t u t
r t r t u t g t h t e t
u u t
u t t

ψ

= +
= + +

≥ ≥
> ∀

e
e e

 (47) 

 

The functions ( ( )), ( ( ))f t g te e and ( ( ))h te  are the crisp 

outputs of a fuzzy controller. The Fuzzy inference system 
is now described. The following linguistic labels are 
defined:  
S=Small;  
M=Medium;  
H=High; 
Opp=Opposite.  
The input and output Fuzzy memberships are 
generalized bell functions and they are shown in Figs. 3 
and 4. The fuzzy rules are shown in Table 1. The fuzzy 
controller is shown in Fig. 5. Fig. 6-8 show the fuzzy 
control surfaces. 
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Fig. 3. Input fuzzy membership functions 
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Fig. 4. Output fuzzy membership functions 
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Fig. 5. Fuzzy controller 
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Fig. 6. Fuzzy control surface with constant lateral error 

TABLE I Fuzzy Rules 

If  abs( xe ) is S and abs( ye )  is S and abs(  leψ ) is S+ then 

f(e) is S and g(e) is S and h(e) is S 
If  abs( xe ) is S and abs( ye ) is M and abs( leψ ) is  S+ 

then f(e) is S and g(e) is M and h(e) is S 
If abs( xe ) is S and abs( ye )  is H and abs(  leψ ) is S+ then 

f(e) is M and g(e) is H and h(e) is S 
If abs( xe ) is M and abs( ye )  is S and abs( leψ ) is S+ 

then f(e) is M and g(e) is S and h(e) is S  
If abs( xe ) is M and abs( ye ) is M and abs( leψ ) is S+ 

then f(e) is M and g(e) is M and h(e) is S 
If abs( xe ) is  M and abs( ye ) is H and abs( leψ )is S+ 

then f(e) is M and g(e) is H and h(e) isS 
If abs( xe )  is H and abs( ye )  is S and  abs( leψ ) is S+ 

then f(e) is H and g(e) is M and h(e) is S 
If abs( xe ) is H and abs( ye )  is M and abs( leψ ) is S+ 

then f(e) is H and g(e) is M and h(e) is S 
If abs( xe ) is H and abs( ye ) is H and abs( leψ ) is S+ 

then f(e) is H and g(e) is H and h(e) is S 
If abs( xe )  is S and  abs( ye ) is S and abs( leψ ) is M+ 

then f(e) is M and g(e) is M and h(e) is M 
If abs( xe ) is S and abs( ye ) is M and abs( leψ ) is M+ 

then f(e) is M and g(e) is M and h(e) is M 
If abs( xe ) is S and abs( ye ) is H and abs( leψ ) is M+ 

then f(e) is M and g(e) is H and h(e) is M 
If abs( xe ) is M and abs( ye ) is S and abs( leψ ) is M+ 

then f(e) is M and g(e) is M and h(e) is M 
If abs( xe ) is M and abs( ye )is H and abs( leψ ) is M+ 

then f(e) is M andg(e) is H and h(e) is M 
If abs( xe ) is H and abs( ye ) is S and abs( leψ ) is M+ 

then f(e) is H and g(e) is M and h(e) is M 
If abs( xe ) is H and abs( ye ) is M and abs( leψ ) is M+ 

then f(e) is H and g(e) is M and h(e) is M 
If abs( xe ) is H and abs( ye ) is H and abs( leψ ) is M+ 

then f(e) is H and g(e) is H and h(e) is M 
If abs( xe ) is S and abs( ye ) is S and abs( leψ ) is OPP 

then f(e) is M and g(e) is M and h(e) is H 
If abs( xe ) is S and abs( ye ) is M and abs( leψ ) is OPP 

then f(e) is M andg(e) is  M and h(e) is H 
If abs( xe ) is S and abs( ye ) is H and abs( leψ ) is OPP 

then f(e) is M andg(e) is H and h(e) is H 
If abs( xe ) is M and abs( ye ) is S and abs( leψ ) is OPP 

then f(e) is M andg(e) is M and h(e) is H 
If abs( xe )is M and abs( ye ) is M and abs( leψ )is OPP 

then f(e) is M andg(e) is M and h(e)is H 
If abs( xe )is M and abs( ye ) is H and abs( leψ )is OPP 

then f(e) is M andg(e) is H and h(e)is M 
If abs( xe ) is H and abs( ye ) is S and abs( leψ ) is OPP 
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then f(e) is H and g(e) is M and h(e) is H 
If abs( xe ) is H and abs( ye )is M and abs(  leψ )is OPP 

then f(e) is H and g(e) is M and h(e) is H 
If abs( xe )is H and abs( ye ) is H and abs(  leψ ) is OPP 

then f(e) is H and g(e) is H and h(e) is H 
If abs( xe ) is  S and abs( ye ) is  S and abs( leψ ) is M- 

then f(e) is M and g(e) is M and h(e) is M 
If abs( xe )is S and abs ( ye )is M and abs (  leψ )is M- then 

f(e) is M and g(e) is M and h(e) is M 
If abs ( xe ) is S and abs ( ye )is H and abs ( leψ ) is M- 

then f(e) is M and g(e) is H and h(e) is M 
If abs ( xe ) is M and abs ( ye ) is S and abs ( leψ )is M- 

then f(e) is M and g(e) is M and h(e) is M 
If abs ( xe ) is M and abs ( ye ) is M and abs( leψ )is M- 

then f(e) is M and g(e) is M and h(e) is M 
If abs ( xe ) is M and abs ( ye ) is H and abs( leψ )is M- 

then f(e) is M and g(e) is H and h(e) is M 
If abs ( xe )is H and abs ( ye )  is S and abs ( leψ )is M- 

then f(e) is H and g(e) is M and h(e) is M 
If abs ( xe ) is H and abs ( ye ) is M and abs( leψ )is M- 

then f(e) is H and g(e) is M and h(e) is M 
If abs ( xe ) is H and abs ( ye ) is H and abs ( leψ )is M- 

then f(e) is H and g(e) is H and h(e) is M 
If abs ( xe ) is  S  and abs ( ye ) is S and abs ( leψ ) is S- 

then f(e) is S and g(e) is  S and h(e) is S 
If abs ( xe ) is S and  abs( ye ) is M and  abs ( leψ ) is S- 

then f(e) is S and g(e) is M and h(e) is S 
If abs ( xe ) is S and abs ( ye ) is H and abs ( leψ ) is S- 

then f(e) is M and g(e) is H and h(e) is S 
If abs ( xe ) is M and abs ( ye ) is S and abs ( leψ ) is S- 

then f(e) is M and g(e) is S and h(e) is S 
If abs ( xe ) is M and abs ( ye ) is M and abs ( leψ )is S- 

then f(e) is M and g(e) is M and h(e) is S 
If abs ( xe ) is M and abs ( ye ) is H and abs ( leψ ) is S- 

then f(e) is M and g(e) is H and h(e) is S 
If abs ( xe )is H and abs ( ye )  is S and abs ( leψ ) is S- 

then f(e) is H and g(e) is M and h(e) is S 
If abs ( xe ) is H and  abs( ye )  is M and abs ( leψ )is S- 

then f(e) is H and g(e) is M and h(e) is S 
If abs( xe ) is H and abs ( ye ) is H and abs( leψ ) is S- 

then f(e) is H and g(e) is H and h(e) is S 
 
Fig. 5 and Table 1 show that the inputs of the 
fuzzification process are the absolute values of the 
tracking errors given by (42). The implemented method 
for the logical ‘and’ and for the implication are the 
‘minimum’ and the ‘fuzzy minimum’. The consequents of 
each rule have been recombined using a maximum 
method. The defuzzyfication method is the ‘centroid’.  
The input ranges are [0m-0.8m] for the position errors 
 

0
0.2

0.4
0.6

0.8

0
0.5

1
1.5

2
1

1.2

1.4

1.6

abs(ex)
abs(epsil)

f(e
)

 
Fig. 7. Fuzzy control surface with constant orientation 
error 
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Fig. 8. Fuzzy control surface with constant longitudinal 
error 

and [0rad- 2rad] for the orientation error. The outputs of 
the fuzzy system are crisp values that are the numerical 
values of the functions  ( ( )), ( ( ))f t g te e  and  ( ( ))h te . The 
input and output ranges may be subjected to changes 
manually to optimiz the convergence of the tracking 
errors and the robustness in relation to possible 
disturbances due to the marine environment.  
To ensure the Lyapunov’s stability of the motion errors 
given by (43), analytical properties of the fuzzy maps 
must be satisfied. 
Assumption 1. The membership functions have to be 
chosen in order to satisfy the following properties of the 
fuzzy control surfaces: 

  Property 1: 
( ( )) 0 ( )  ,
( ( )) 0 ( )  ,
( ( )) 0 ( )  .

f t t
g t t
h t t

= ⇔ =
= ⇔ =
= ⇔ =

e e 0
e e 0
e e 0

  (48) 

  Property 2:  max0 ( ( ))  .f t f≤ ≤e   (49) 

  Property 3:   max0 ( ( ))  .g t g≤ ≤e  (50) 

  Property 4:   max0 ( ( ))  .h t h≤ ≤e  (51)  

 Property 5: 
11

0
( ( )) 0, , 0 .

jM

j j
g t dt j N M

+−

=

⎡ ⎤
⎢ ⎥ > ∈ >
⎢ ⎥⎣ ⎦

∑ ∫ e  (52) 
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Property 6:     

 

( ( )) ( ( )) ( ( ))0; 0; 0,

( ( )) ( ( )) ( ( ))0; 0; 0,

( ( )) ( ( )) ( ( ))0; 0; 0.

x y ψ l

x y ψ l

x y l

f t f t f t
e e e

g t g t g t
e e e

h t h t h t
e e eψ

∂ ∂ ∂
> ≅ ≅

∂ ∂ ∂

∂ ∂ ∂
≅ > ≅

∂ ∂ ∂

∂ ∂ ∂
≅ ≅ >

∂ ∂ ∂

e e e

e e e

e e e

 (53)                

Remark 4. The fuzzy control surfaces shown in Figs. 6-8 
ensure the satisfaction of the properties given by (48)-(53).  
Remark 5. From Fig. 8 it is evident that the function 

( ( ))f te does not change significantly when the lateral and 
orientation change. The symmetries of the functions 

( ( ))g te  and ( ( ))h te are the same as the function ( ( ))f te . 
Remark  6. The property given by (49) ensures that:  
 

          1 2 max( ) ( ) ( )  ,   lr lc lru t u t f u tρ ρ= ≤ ≤ = +  (54) 

where maxf  is the maximum of the function ( ( ))f te . Note 
that the saturation value of the surge speed   depends on 
the numerical value of maxf .  
Remark 7. The following conditions have been satisfied: 
 

                        max

max

( ) 0  ,  
( ) [0  ],

 0 .  

lru t t
f f
f

> ∀
∈
>

e  (55) 

Therefore the surge control speed of the ROV may be 
bounded because it has forward command and the 
maximum values may be regulated by varying the 
maximum value of the function ( ( ))f te . 
Taking into account the derivative of the errors (43), by 
suitably replacing (41) and (47) with it, the following 
closed loop mathematical model is obtained: 
 

  

 

   

2
 

 

( ( ) ( ) ( ( )) ( ( ))sin ( )) ( )
( ( ( )) ( )(1 cos ( )))

( ) ( ( ) ( )( ( ( )) ( ( ))sin ( ))

( ) 1 cos ( )

( )( ( ( )) ( ( ))sin ( ))

l r l r ψ l y

l r ψ l

l r l r ψ l x

l r ψ l

l r ψ l

r t u t g t h t e t e t
f t u t e t

t r t u t g t h t e t e

u t e t

u t g t h t e t

⎡
+ + +⎢

⎢+ + −⎢
⎢= − + + +
⎢
⎢+ −⎢
⎢− +⎣

e e
e

e e e

e e

.

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

 (56) 

Now a reformulation of the theorem presented in 
Raimondi & Melluso, 2008, is given for the underactuated 
ROV. 
Theorem 1. Consider the mathematical model of the ROV 
given by (41), in closed loop with the fuzzy control law 
given by (47). Under assumption 1, the equilibrium state 
of the closed loop fuzzy navigation system given by (56) 
is the origin of the state space and it is asymptotically 
stable. 
Proof. If the properties given by (48) are satisfied, then the 
equilibrium state of the representation (56) is the origin of 
the state space. We chooose the following Lyapunov’s 
function: 

 
0  

1 1

0

( ( ( )) ( ( ))) (1 cos ( ))

        ( ( ))  .

l

M j
j

j

V f t g t e t

g t dt

ψ

− +

=

= + + − ×

⎛ ⎞
× ⎜ ⎟

⎝ ⎠
∑ ∫

e e

e
 (57) 

Differentiating the function (57) and considering the 
analytical properties given by (53) lead to: 
 

)

0  

2
 

1 12
 

0

12
 

0
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∂
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∂
∂
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1

1

 
0

      (1 cos  ( )) ( ( ))   .
M

l
j

e t g jψ

−

=
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+⎟ ⎥

⎠ ⎦

+ −⎡ ⎤⎣ ⎦

∑

∑ e

(58)  

Based on the properties (48)-(52), the function (57) is 
definite positive. Assuming the reference longitudinal  

( )lru t  positive every time leads to the following 
mathematical relations: 
 

 

2
 l

1 12
 l

0

1 12
 l

0

1

 l
0

( ( ))0 1 cos ( ) ( )

1 cos ( ) ( ) ( ( )) ( ( ))

( ) ( ( ))(1 cos ( )) ( ( ))
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r
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M j
r j

j

M j
r j

j

M

j
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e
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e t g j

ψ

ψ

ψ

ψ

− +

=

− +

=

−
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⎞∂ ⎟≤ − <
⎟∂ ⎠
⎛ ⎞

< − ⎜ ⎟
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⎛ ⎞
− >⎜ ⎟

⎝ ⎠

> − ≥

∑ ∫

∑ ∫

∑

e

e e

e e

e

 (59) 

Consequently, function (58) is definite negative. 
Therefore the equilibrium point of the closed loop system 
(56) is asymptotically stable. Q.E.D. 

3.3. Low level kinetic controller 
In this subsection news thruster surge force  and  yaw  
torque control laws are proposed for the underactuated 
system given by (23). The dynamic effects lead to the 
error given by (44), where  ( )lcu t and ( )lcr t are the fuzzy 
guidance control laws given by (47), ( )lu t and ( )lr t are the 
actual velocities of the ROV, while ( )a tψ is the sideslip 
angle given by (20). From the fourth and fifth equations 
of (23), the surge force and the yaw torque are obtained as 
follows: 
 

( ) ( )/cos ( ) ( ) ( ) ( ) ( )tan ( ) ,

( ) ( ) .

u
u u l a v a

v

r

mt m u t t m v t r t r t u t t
m

t r t

τ ψ ψ

τ

= − +

=
(60)                          

The problem is to determine a surge force control and a 
yaw torque control, which ensure the convergence to zero 
of the error given by (44). The following dynamical 
control laws are proposed: 
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 0

( ) [ ( ) ( )] [ ( ) ( ) ( )] ,
( )( ) [ ( ) ( )]

cos ( )
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            ( ( ) ( )) ( )sin ( )

        

rc r lc a r lc a

u lc
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t

lc a lc a

u
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v

t m r t t Km r t t r t
m u tt m r t t

t

r t t u t t dt

m r t t u t t
m

τ ψ ψ

τ ψ
ψ

ψ ψ

ψ ψ

= − + − −

= + − ×

× − +

+ − +⎡ ⎤⎣ ⎦

∫

     ( ( ) ( )) ,
cos ( )

, .

u
lc l

a

Km u t u t
t

K K R

ψ
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∈

   (61)                                  

Now the following theorem can be formulated. 
Theorem 2. Consider the ROV system given by (23) in 
closed loop with the fuzzy guidance laws (47) and with 
the kinetic control laws (61). Then the speeds error given 
by (44) converge asymptotically to zero. 
Proof.  From the second equation of (60) and first equation 
of (50) it follows that: 

 [ ( ) ( ) ( )] [ ( ) ( ) ( )] 0.r lc a r lc am r t t r t Km r t t r tψ ψ− − + − − =   (62) 

By using ( )tε  to indicate the following error: 

 ( ) ( ) ( ) ( ) ,lc at r t t r tε ψ= − −   (63) 

the differential equation (62) can be rewritten as it follows: 

 ( ) ( ) 0 .t K tε ε+ =  (64) 

It appears that, if the value of K  is sufficiently large, then 
the function ( )tε converge to zero rapidly. It gives: 

 lim[ ( ) ( ) ( )] 0 .lc at
r t t r tψ

→∞
− − =  (65) 

It implies that: 

 lim[ ( ) ( )] 0 ,ct
r t r t

→∞
− =  (66) 

so the second component of the vector (44) converges 
asymptotically to zero. Now, by considering that: 

0 0
( ) ( ) ( ) ( ) ( )cos ( )  ,t tu u

l a
v v

m mv t r t u t dt r t u t t dt
m m

ψ= − = −∫ ∫  (67) 

replacing (67) in the first equation of (60), the surge force 
given by the third equation of (23) is calculated by: 

        
 0

( ) ( ) / cos ( ) [ ( ) ( )]

          [ ( ) ( )] ( )cos ( )

         [ ( ) ( )] ( )sin ( ) .

u u l a u l a
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l a l a

u
l a l a

v

t m u t t m r t t

r t t u t t dt

m r t t u t t
m

τ ψ ψ

ψ ψ

ψ ψ

= + − ×

× − +

+ −

∫  (68) 

By choosing the surge torque control that results from the 
second equation of (61), gives:  

 
 0
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(69)                                                                                                           

It follows: 

  
 0

 
 0
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∫

∫

 (70)                          

Since the virtual orientation control converges to the 
fuzzy guidance law (cf. eq. 65), equation (70)  in a steady 
state may be formulated in the following way: 

 2
 0

[ ( ) ( )]cos ( ) cos ( )[ ( ) ( )]

( )cos ( ) ( )[ ( ) ( )]cos ( ) 0 .
u lc l a u a lc l

t
u a lc l a

m u t u t t Km t u t u t

m r t t r t u t u t t dt

ψ ψ

ψ ψ

− + − +

+ − =∫
 (71)                          

From the first equation of (22) it follows that: 

            2
 0

[ ( ) ( )] [ ( ) ( )]

( )cos ( ) ( )[ ( ) ( )] 0 .
u c u c

t
u a c

m u t u t Km u t u t

m r t t r t u t u t dtψ

− + − +

+ − =∫
     (72) 

Since the ROV must track straightlines or arcs of 
circumferences, the steady state value of the actual yaw 
rate is null or constant. Indicating the value above with 
r , the result is: 

  2 2
 0

[ ( ) ( )] [ ( ) ( )]

[ cos ( )] [ ( ) ( )] 0 .
u c u c

t
u a c

m u t u t Km u t u t

m r t u t u t dtψ

− + − +

+ − =∫
     (73) 

Dividing eq. (72) by um , gives: 

            2( ) ( ) [ cos ( )] ( ) 0 ,u u a ue t Ke t r t e tψ+ + =             (74) 

where ( )ue t is given by the first component of the vector 
(44). The eigenvalues given by the following equation: 

                 2 2[ cos ( )] 0aK r tλ λ ψ+ + =                     (75) 

have to be real and negative, so the following constraint   
must be satisfied: 

                           2 0.5  .K r π>  (76) 

If (76) is verified, then the solution of the equation (73) is 
a function which converges asymptotically to zero. Q.E.D. 
Now consider an ROV with two horizontal thrusters (see 
Fig. 2). This topology can be found in a real vehicle 
VideoRay ROV. The problem of the actuator allocation is 
a linear connection between the space of the vehicle’s 
force and moment, i.e.  ( )uc tτ  and ( )rc tτ , and  the space 
of the actuator forces. Indicate the actuator control forces 
with 1( )c tτ  and 2( )c tτ . The result is: 

 
11

2

( ) 1 1 ( )
 .

( )( )
c uc

rcc

t t
b b tt

τ τ
ττ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (77)  

Remark 8. The errors (44) converge for all the values of the 
hydrodynamic masses. 
Remark 9. Here, the fuzzy guidance control laws (47) have 
been converted into low level dynamic control laws (61). 
Therefore the low level control laws have been selected in 
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(60), so that the ROV exhibits the desired behaviour thus 
justifying the choice of the dynamic speeds given by (42). 
Also, by using the first three equations of the model (23), 
the dynamic speeds may be converted into actual 
position and orientation of the ROV. The measurement of 
the actual position and orientation using IMU can be 
affected by Gaussian noises due to the accelerometers and 
gyros. These noises cause non parametric uncertainties in 
the model of the ROV (cf. eq. 45). Therefore a KF in the 
feedback of the fuzzy control system has to be inserted, to 
merge the data provided by IMU and the exteroceptive 
sensors and obtain good estimates of the feedback 
signals. 

3.4. KF in feedback of the Fuzzy control system for ROV 
localization 
The discrete time KF deals with the case governed by the 
sampled stochastic odometric model given by (35). From 
output data provided by the IMU sensors, i.e. the 
accelerometer and the gyros, information about the actual 
positions and orientation feedback can be obtained. Since 
these information is corrupted by noises, a KF has to be 
introduced into the hierachical control system of the 
previous subsection. From the data provided by the GPS, 
USLB and IMU sensors, the KF estimates a filtered 
position and orientation signal for the feedback. The first 
equation of (35) gives the sampled state model to 
elaborate the data provided by the IMU sensors. 
Furthemore, the second equation of (35) gives GPS and 
USLB position and orientation measurements. Given the 
sampled model (35), we want estimates ˆ ( )kχ  of the state 

( )kχ based on observation of the output ( )kξ alone. The 
task of the Kalman’s filtering is to determine a set of 
Kalman gains K to minimize the variance of the 
estimation error, which is represented by P(k): 

     { }ˆ ˆ( )  ( ) ( )   ( ) ( )  k E k k k k= − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
TP χ χ χ χ .  (78) 

Note that ˆ ( )kχ  is the feedback estimated state which is 
the output of the KF. Let us consider a state estimate ( )kχ  
before measurement. The estimate ( )kχ  is found from 
ˆ ( 1)k −χ using the first equation of (35) with w(k-1)=0. 

Thus it can be write: 

              ˆ( ) ( 1) ( 1) ( 1) ( 1) .k k k k k= − − + − −χ A χ B u   (79) 

We also define the “a priori” error covariance: 

 { }( )  ( ) ( )  ( ( ) ( )  .k E k k k k= − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
TN χ χ χ χ   (80) 

The function (80) is the solution of the following 
equation: 

 ( 1) ( ) ( ) ( )  ,k k k k+ = +T
wN A P A R  (81) 

where  wR  is given by (31). 
Now we seek the optimal gain: 

                  
( )

( ) arg  min  trace( ( ))o k
k k=

K
K P  (82) 

Equation (82) minimizes the sum of the variance of the 
estimation errors given by: 

       
( )

( ) ( )

ˆtrace( ( )) var ( ) ( )

ˆ ˆvar ( ) ( ) var ( ) ( )l l

k x k x k

y k y k k kψ ψ

⎡ ⎤= − +⎣ ⎦
⎡ ⎤ ⎡ ⎤− + −⎣ ⎦ ⎣ ⎦

P
 (83) 

Differentiating (83), it follows that: 

                    
( )

( )

 trace ( ( )) 2 ( ) ( )
( )

2 ( ) ( ) ( )( ( ))

d k k k
d k

k k k k

= − +

+ +

T

T
ρ

P C N
K

K C N C R
 (84) 

where ρR  is given by (32). Setting equation (84) to zero 
and solving for K(k) leads to: 

         ( ) 1
( ) ( ) ( ) ( ) ( )( ( ))o k k k k k k

−
= +T ρK N C C N C R  (85) 

Calculating the function (78) in relation to the optimal 
gain given by (82), it follows that: 

                ( ) ( ( ) ( )) ( )o ok k k k= −P I K C N  (86) 

Based on the output observation, the following state is 
estimated: 

            ˆ ( ) ( ) ( )( ( ) ( ) ( ))ok k k k k k= + −χ χ K ξ C χ   (87) 

Let us summarize the discrete time recursive KF 
algorithm so far. The initial conditions (0)χ  and (0)N  
have to be fixed. The steps are as follows: 
1. evaluation of the optimal gain using the equation  (85); 
2. solving the equation of measurement update (87); 
3. updating the error variance by using (86); 
4. prediction of the future state using the equation (79); 
5. prediction of the covariance error (cf. eq. 81) 
6. updating the time and returning to step 1. 
The KF gives ˆ ( )kχ  i.e. the estimated location of the ROV 
filtered by the noises. A digital to analogical converter 
(DAC) is able to obtain a time continuous variable ˆ ( )tχ , 
where a zero-order hold (ZOH) will produce a piecewise 
constant feedback state.  

4. Experimental simulations  

In this section simulation experiments are developed in a 
Matlab environment to show the performance of the 
proposed closed loop control system. The high level 
Fuzzy guidance control laws and the low level kinetic 
controller (cf. eqs. 47, 61) have been implemented. The KF 
algorithm has been implemented using C language with 
sequential acquisition and filtering of information 
provided by the IMU and the external sensors which 
have been simulated in a Matlab environment. Figs 9 and 
10 show the block scheme of the hierarchical architecture 
proposed in this paper without and with KF. In case of 
hierarchical Fuzzy control without KF, the feedback 
signals are given by  ( )nx t ,  ( )ny t  and ln ( )tψ (cf. eqs. 27) 
(i.e. data provided by the IMU only), while in case of the 
same control strategy with KF, the feedback one is given 
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Fig. 9. Hierachical Fuzzy dynamic control system without 
KF. 

 

 
Fig. 10. Hierachical Fuzzy dynamic control system with 
KF. 

by (87) (i.e. estimate of the filtered position of the ROV by 
using data of the IMU, GPS and USLB).  
The simulation results are obtained using nominal 
parameters of a real ROV (Ridao P. et al., 2004), that is: 

                           2

2

30 ,
29.4462 ,

1.5423 ,

0.27 .

u v

r

z

m kg
X Y kg

N kg m

I kg m

=
= =

= ⋅

= ⋅

 (88) 

The initial conditions of the KF are the following: 

          

0.9 0 0
(0) 0 0.7 0   ,

0 0 0.7

0.00005 0 0
0 0.00005 0  ,
0 0 0.00005

0.2 0 0
0 0.2 0  .
0 0 0.2

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

w

ρ

N

R

R

 (89) 

The sample time of the discretization is: 

            46 10T s−= ⋅ .  (90) 

The numerical values of the fuzzy memberships are 
shown in Figs. 3 and 4. 
Two simulation studies are developed. In the first 
simulation we compare the following cases: 
1. hierarchical Fuzzy control with on-line KF (see Fig. 10); 
2. hierarchical Fuzzy control without on-line KF (see  

Fig. 9). 
Note that, if ( ( )), ( ( ))f t g te e  and ( ( ))h te  are linear 
functions, then the properties given by (48)-(53) are 
verified. For this reason, second simulation compares the 
performances of the hierarchical control system in two 
cases: 
- guidance laws (47) where ( ( )), ( ( ))f t g te e  and ( ( ))h te  

are obtained by using the fuzzy inference system with 
and without KF; 

- guidance laws (47) where ( ( )), ( ( ))f t g te e  and ( ( ))h te  
are obtained as it follows : 

                              
1

2

3  

( ) ( ),
( ) ( ),
( ) ( ).

x

y

l

f e k abs e
g e k abs e
h e k abs eψ

=
=

=

 (91) 

     with and without KF. 
Case a) The following values are chosen for the reference 
speeds: 

                             
( ) 3 / ,  ,
( ) 3 / ,  .

rl

rl

u t m s t
r t rad s t

= ∀
= ∀

 (92) 

Fig. 11 shows the reference and the actual motion of the 
ROV by using the hierarchical control architectures 
shown in Fig. 9 and 10 respectively.  
Remark 10. The circular trajectory of Fig. 11 does not 
violate the kinematic equations given by (37) and it is 
feasible when the ROV must inspect a limited area or an 
environment near the structure of interest. 
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Fig. 11. Reference motion, actual motion of the ROV with 
and without KF 
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Fig. 12. Longitudinal motion error with and without KF. 
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Fig. 13. Lateral motion error with and without KF. 

Figs. 12 and 13 show the longitudinal motion errors in 
case of Fuzzy hierarchical control with and without KF. 
Remark 11. Figs. 12 and 13 show that the motion errors are 
very small. It appears that the KF filters the 
measurements noises in a good way and improves the 
transient performance. It implies high accuracy in the 
horizontal motion control. Aleatory disturbances due to 
the marine environment have been introduced between 0 
and 2s. Since they are not with Gaussian distribution, 
they are not filtered by the KF, but are compensated by 
the closed loop fuzzy control system.  

0 2 4 6 8 10
0

5

10

0 2 4 6 8 10
0

5

10

15

20

t[s]

u lc
[m

/s
]

Surge speed with KF

Surge speed without KF

 
Fig. 14. Fuzzy linear speed control with and without KF. 
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Fig. 15. Fuzzy yaw rate control with and without KF 
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Fig. 16. Surge force control with and without KF 

In figs. 14 and 15 the high level fuzzy guidance control 
laws are plotted with and without KF (cf. eqs. 47). 
Remark 12. In Fig. 14 the linear control speed appears 
positive in all the times. Consequently (cf eqs. 21, 22), the 
surge speed control is a forward command. Also the on-
line KF reduces the discontinuities of  the signals above. 
Note that both the linear control velocity (cf. Fig. 14) and 
the yaw rate control (cf. Fig. 15) converge to the reference 
values given by (92).  
Figs. 16 and 17 show the low level control signals with 
and without KF (cf. eqs. 61). 
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Fig. 17. Yaw torque control with and without KF 
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Fig. 18. Surge speed, yaw rate error and sideslip angle 
without KF 
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Fig. 19. Surge speed, yaw rate error and sideslip angle 
with KF 

Remark 13. From Figs. 16 and 17 it is possible to observe 
the remarkable improvement obtained by using the on-
line KF. In case of absence of KF, there are high 
frequencies of the surge force and torque control, because 
a random noise of the IMU is present which perturbs the 
dynamics of the fuzzy control system. By using the KF, 
the control system is able to offset this noise more easily 
than in case of absence and the high frequencies of the 
low level control signals are reduced. In other words, by 
merging Fuzzy control and KF, the control system is able 
to compensate the motion errors by lower torque and 
surge force values than in absence of KF. 
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Fig. 20. KF errors covariances  
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Fig. 21. Longitudinal motion error with perturbation 

Figs. 18 and 19 show the speed errors (44) and the 
sideslip angle given by (20) with and without KF. 
Remark 14. Figs. 18 and 19 show that the speed errors due 
to the application of the low level control laws plotted in 
Figs 16 and 17, converge to zero, as proved in Theorem 2. 
The sideslip angle is in the range given by (21). The on-
line KF improves both the transient and the steady state.  
Indicate with   ( )i in k  (i=1,2,3) the functions of the 
principal diagonal of the error covariance matrix given by 
(80).  Figs. 20 shows the values of the covariance above in 
all the times. 
Remark 15. The low covariance errors shown in Fig. 20 
confirm the goodness of the feedback state estimation.  
Now, consider outside disturbance violating the nominal 
motion of the ROV. Fig. 21 shows the performance of the 
fuzzy control systems with and without KF. The 
disturbance can be caused by impact of the ROV with the 
external marine environment. So the simulation tests 
consist of generating a step disturbance at the time 4s.     
Remark 16. From fig. 21 it is evident that the KF filters the 
sensorial noises with good performances, but it does not 
filter the step disturbance. However the disturbance 
above is compensated by the closed loop fuzzy control 
both in case of presence of KF and in case of absence. 
Case b)  In this simulation experiment, results obtained 
by applying the high level control laws (47), where the 
functions ( ( )), ( ( ))f t g te e  and ( ( ))h te  are obtained using 
the fuzzy inference mechanism and the analytical 
functions given by (91), are compared.  
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The initial conditions of the reference and ROV’s 
positions and orientations are the following: 

              
(0) 0 ,
(0) 0 ,
(0) 3.48

r

r

lr

x m
y m

radψ

=
=
=

  
(0) 30
(0) 20
(0) 5.68l

x m
y m

radψ

= −
=
=

 (93) 

In case of control law (47), where the functions are given 
by (91), it is: 

                          1 2 3 5k k k= = =  (94)  

The planar reference trajectory and the actual horizontal 
motion of the ROV are shown in Fig. 22.  
In Figs. 23 and 24 one considers the longitudinal and 
lateral motion errors for showing the transient state 
performances, in case of hierarchical control with Fuzzy 
inference (see Fig. 10) and in case of the same control 
system with functions given by (91). 
Remark 17. Figs. 23 and 24 show the performance of the 
initial transient, where there is a lower response time of 
the motion errors in case of Fuzzy approach than in case 
of control system using the functions given by (91). 
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Fig. 22. Reference planar trajectory and ROV’s actual 
motion using Fuzzy hierarchical architecture with KF 
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Fig. 23. Longitudinal error using functions given by (91) 
and fuzzy approach 
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Fig. 24. Lateral error using functions given by (91) and 
fuzzy approach 

5. Conclusions  

In this paper a new Fuzzy/Kalman closed loop motion 
control system for underactutated ROVs has been 
developed. A merging of new high level fuzzy guidance 
commands, a new low level kinetic controller and an on-
line KF has been presented. The fuzzy guidance 
commands ensure forward surge speed, saturation of the 
speeds control signals, robustness with respect to the 
perturbations due to the marine environment and lower 
response time of the motion errors than the hierarchical 
control without fuzzy. The asymptotical stability of the 
motion errors has been proved by using the Lyapunov’s 
theorem and the properties of the fuzzy maps. The low 
level kinetic controller also ensures the convergence of 
the ROV’s speeds to the fuzzy guidance commands. 
However the actual position and orientation of the ROV 
are corrupted by the sensorial noises of the IMU. 
Therefore a KF has been inserted in the feedback of the 
hierarchical fuzzy control. The KF filters the gaussian 
noises and improves the dynamical performance of the 
control system in terms of the motion errors and of the 
surge force and torque controls. Non-gaussian 
disturbances due to the marine environment and possible 
impacts of the ROV, can cause high values of the motion 
errors, but they have been compensated by the closed 
loop fuzzy control system with good transient and steady 
state performances, both in case of presence of KF and in 
absence. 
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