ResearchGate

See discussions, stats, and author profiles for this publication at:

Connection among entanglement, mixedness
and nonlocality in a dynamical context

Article /n Physical Review A - May 2010

DOI: 10.1103/PHYSREVA.81.052116 - Source: arXiv

CITATIONS READS
42 30

4 authors, including:

'gﬁ:}’ i Universita degli Studi di Palermo 0 Universita degli Studi di Palermo

T4 PUBLICATIONS 2,380 CITATIONS 118 PUBLICATIONS 2,670 CITATIONS

SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project Dynamics of quantum correlations in open quantum systems

ot identical particles

All content following this page was uploaded by on 23 May 2014.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/228784819_Connection_among_entanglement_mixedness_and_nonlocality_in_a_dynamical_context?enrichId=rgreq-b60a00bbb5925f70a04e7692e2d92328-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4NDgxOTtBUzo5OTgzMzA1ODY5MzEyOEAxNDAwODEzNDY0NTUz&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/228784819_Connection_among_entanglement_mixedness_and_nonlocality_in_a_dynamical_context?enrichId=rgreq-b60a00bbb5925f70a04e7692e2d92328-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4NDgxOTtBUzo5OTgzMzA1ODY5MzEyOEAxNDAwODEzNDY0NTUz&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Dynamics-of-quantum-correlations-in-open-quantum-systems?enrichId=rgreq-b60a00bbb5925f70a04e7692e2d92328-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4NDgxOTtBUzo5OTgzMzA1ODY5MzEyOEAxNDAwODEzNDY0NTUz&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/identical-particles?enrichId=rgreq-b60a00bbb5925f70a04e7692e2d92328-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4NDgxOTtBUzo5OTgzMzA1ODY5MzEyOEAxNDAwODEzNDY0NTUz&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b60a00bbb5925f70a04e7692e2d92328-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4NDgxOTtBUzo5OTgzMzA1ODY5MzEyOEAxNDAwODEzNDY0NTUz&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rosario_Lo_Franco?enrichId=rgreq-b60a00bbb5925f70a04e7692e2d92328-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4NDgxOTtBUzo5OTgzMzA1ODY5MzEyOEAxNDAwODEzNDY0NTUz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rosario_Lo_Franco?enrichId=rgreq-b60a00bbb5925f70a04e7692e2d92328-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4NDgxOTtBUzo5OTgzMzA1ODY5MzEyOEAxNDAwODEzNDY0NTUz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_degli_Studi_di_Palermo?enrichId=rgreq-b60a00bbb5925f70a04e7692e2d92328-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4NDgxOTtBUzo5OTgzMzA1ODY5MzEyOEAxNDAwODEzNDY0NTUz&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rosario_Lo_Franco?enrichId=rgreq-b60a00bbb5925f70a04e7692e2d92328-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4NDgxOTtBUzo5OTgzMzA1ODY5MzEyOEAxNDAwODEzNDY0NTUz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giuseppe_Compagno?enrichId=rgreq-b60a00bbb5925f70a04e7692e2d92328-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4NDgxOTtBUzo5OTgzMzA1ODY5MzEyOEAxNDAwODEzNDY0NTUz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giuseppe_Compagno?enrichId=rgreq-b60a00bbb5925f70a04e7692e2d92328-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4NDgxOTtBUzo5OTgzMzA1ODY5MzEyOEAxNDAwODEzNDY0NTUz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_degli_Studi_di_Palermo?enrichId=rgreq-b60a00bbb5925f70a04e7692e2d92328-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4NDgxOTtBUzo5OTgzMzA1ODY5MzEyOEAxNDAwODEzNDY0NTUz&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giuseppe_Compagno?enrichId=rgreq-b60a00bbb5925f70a04e7692e2d92328-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4NDgxOTtBUzo5OTgzMzA1ODY5MzEyOEAxNDAwODEzNDY0NTUz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rosario_Lo_Franco?enrichId=rgreq-b60a00bbb5925f70a04e7692e2d92328-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4NDgxOTtBUzo5OTgzMzA1ODY5MzEyOEAxNDAwODEzNDY0NTUz&el=1_x_10&_esc=publicationCoverPdf

arXiv:1003.5153v1 [quant-ph] 26 Mar 2010

Connection among entanglement, mixedness and nonlocality in a dynamical context
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We investigate the dynamical relations among entanglement, mixedness and nonlocality, quanti-
fied by concurrence C, purity P and maximum of Bell function B, respectively, in a system of two
qubits in a common structured reservoir. To this aim we introduce the C-P-B parameter space
and analyze the time evolution of the point representative of the system state in such a space. The
dynamical interplay among entanglement, mixedness and nonlocality strongly depends on the initial
state of the system. For a two-excitation Bell state the representative point draws a multi-branch
curve in the C-P-B space and we show that a closed relation among these quantifiers does not hold.
By extending the known relation between C' and B for pure states, we give an expression among
the three quantifiers for mixed states. In this equation we introduce a quantity, vanishing for pure
states which has not in general a closed form in terms of C', P and B. Finally we demonstrate that
for an initial one-excitation Bell state a closed C-P-B relation instead exists and the system evolves
remaining always a maximally entangled mixed state.

PACS numbers: 03.67.Bg, 03.65.Yz, 42.40.-p, 03.65.Ud

I. INTRODUCTION

Entanglement, mixedness and nonlocality are among
the main properties describing the quantum features of
a composite system. Entanglement is linked to quantum
correlations [1] and for a two-qubit state can be quan-
tified, e.g., by concurrence C' [2], while for a multipar-
tite system its characterization remains an open problem.
Mixedness, namely how much the state of a quantum sys-
tem is far from being pure, can be quantified by the purity
P (linked to the linear entropy) or by the Von Neumann
entropy [3]. Nonlocality describes the part of quantum
correlations which cannot be reproduced by any classical
local model [4]. Tt is typically characterized by combi-
nation of correlations averages, named Bell function, vi-
olating some Bell inequality [5]. The value obtained for
the Bell function depends on the state of the system and
on some parameters determined by the experimental set-
tings. It may happen that, for some of these settings, the
value obtained for the Bell function does not violate the
Bell inequality. It is therefore appropriate, in general,
to fix the external parameters to obtain the maximum
possible value B for the Bell function. In this sense, the
maximum of the Bell function B individuates at best the
presence of nonlocality [6]. All of these quantifiers may
be obtained by measurements on the system. The prop-
erties they represent play an important role in quantum
information science, such as in the realization of device-
independent and security-proof quantum key distribution
protocols [3, [7, I8]. In applicative contexts, it has been
shown that also states nonviolating any Bell inequality
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can be used for teleportation [9] and that every entan-
gled state shows some hidden nonlocality [10] which may
be exploited using local filtering [11].

The values of the three quantities C', P and B, are
related and connections among pairs of them have been
widely investigated. These connections are far from be-
ing trivial. For example, although for pure states the
presence of entanglement implies nonlocality [12], on the
contrary for mixed states a given amount of entangle-
ment does not necessarily guarantee violation of a Bell
inequality [13415]. In particular, for bipartite systems, a
range of possible Bell inequality violations corresponds to
a certain amount of entanglement [16], while states with
a different degree of entanglement can violate a Bell in-
equality of the same amount [17].

The connection between entanglement and mixedness
has been investigated often in the concurrence-purity
plane and maximally entangled mixed two-qubit states
for assigned mixedness have been identified [18]. Their
dependence on the quantifiers has also been pointed out
[19]. Moreover, the entanglement-mixedness relation has
been analyzed for some dynamical systems in the pres-
ence of environmental noise |20, [21].

For what concerns the connection among entangle-
ment, mixedness and nonlocality, it has been conjectured
that the more mixed a system is, the more entanglement
is needed to violate a Bell inequality to the same amount
[22]. However, there are states having the same amount
of entanglement and mixedness but different values of
the Bell function [23]. Relations between entanglement,
mixedness and Bell function have been given analytically
for a restrict [24], and numerically for a more general
[25] class of states. In particular, there are regions of
the concurrence-linear entropy plane where, given con-
currence and linear entropy, two families of states can
be discriminated: all states from one family violate the
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Clauser-Horne-Shimony-Holt (CHSH) form of Bell in-
equality while all states from the other family satisfy it.
One may therefore ask if more general relations involving
all these quantities may be put forward.

Finally, the variety of relations among entanglement,
mixedness and nonlocality in the state space has not yet
been examined in a dynamical context, e.g., by following
them in time for a quantum system interacting with its
surroundings. In this case their time evolution, as char-
acterized by the quantities C, P and B, can be rather
complex, depending on the structure of the environment
and on the form of the interactions. In fact, typically de-
cay of both entanglement and nonlocal correlations are
expected, even though revivals or trapping of them may
occur as a consequence of memory effects [26, 127] and/or
of interactions among parts of the system [28]. On the
contrary, mixedness typically increases during the evolu-
tion tending to different asymptotic values.

The aim of this paper is to investigate the possible
connections among quantifiers C'; P, and B in a dynam-
ical context, and discuss them for a wide class of two-
qubit states. To this purpose we introduce the three-
dimensional C-P-B parameter space as a tool to analyze
the dynamics of these relations, choosing the paradig-
matic open quantum system of two qubits in a common
structured reservoir. The C-P-B space appears to be
particularly suitable to describe the dynamical richness
of entanglement, mixedness and nonlocality relations in
such a system.

II. DYNAMICS IN C-P-B SPACE FOR
COMMON RESERVOIR

Here we investigate the complex relation among en-
tanglement, mixedness and nonlocality in a specific dy-
namical context. As said before, we introduce a tool:
the concurrence-purity-Bell function (C-P-B) parameter
space. The state of the system and its evolution are rep-
resented, respectively, by a point of this space and the
trajectory it draws with time. To begin with, we give
the expressions of concurrence, purity and Bell function
for a wide class of quantum states.

A. C, P and B for X states

Here, we report the dependence of C', P and B on the
density matrix elements for the class of two-qubit states
whose density matrix px, in the standard computational
basis B = {|1) = |11), |2) = |10}, |3) = |01),]4) = |00)},
has a X structure of the kind
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This class of states is sufficiently general to include the
two-qubit states most considered both theoretically and
experimentally, like Bell states (pure two-qubit maxi-
mally entangled states) and Werner states (mixture of
Bell states with white noise) [l 13, 29]. Such a X struc-
ture for the density matrix moreover arises in a wide
variety of physical situations |[30-34]. A further remark-
able aspect of these X states is that, under various kinds
of dynamics, the initial X structure is maintained during
the evolution [26, [29]. In particular, this is the case for
the model we shall investigate hereafter; this justifies our
choice of this class of quantum states.

For X states of Eq. () concurrence C, equal to 1 for
maximally entangled states and to 0 for separable states,
is given by

C= 2H1&X{O,K1,K2},
Ky = |p1a| — V/P22p33, Ko = |p23] — /p11paa.  (2)

The purity P, equal to 1 for pure states and to 1/4 for
completely mixed states, results to be

P="Te{p*} = pb+2(pasl* + [pra®).  (3)

Using the Horodecki criterion [6], the maximum of Bell
function can be expressed in terms of three functions
u1, uz and ug of the density matrix elements as B =
2y/max;>r{u; +ux}, where j,k = 1,2,3. When B is
larger than the classical threshold 2, no classical local
model may reproduce all correlations of these states. The
three functions u; are [25]

w1 = 4(|pra| + |p23])?, w2 = (p11 + paa — p22 — ps3)?,
uz = 4(|P14| - |p23|)2- (4)
Being u; always larger than ug, the maximum of Bell
function for X states results to be
B = max{Bl, Bg},
Bl = 2\/’[1,1 + Uz, BQ = 2\/11,1 + us. (5)

B. The model

The paradigmatic system we examine consists of
two identical qubits interacting with a common zero-
temperature leaky cavity. The Hamiltonian of the total
system is H = Ho + H;py with (A =1)

Hy Zwo(Ufo—i—an?)—i—ZwkaLak, (6)
k
Hint = (Uf + af) ngak + h.c.. (7)
k

Here, aﬁ and o are, respectively, the Pauli raising and
lowering operators for atoms A and B, wg is the Bohr



frequency of the two atoms, a; and az are the annihila-
tion and creation operators for the field mode k, and
mode k is characterized by the frequency wy and the
coupling constant gi. Since the atoms are identical and
equally coupled to the reservoir, the dynamics of the two
qubits can be effectively described by a four-state system
in which the three states of the triplet, |00), the super-
radiant state [+) = (]10)+[01))/v/2 and |11), are coupled
to the vacuum in a ladder configuration, and the singlet
state, |—) = (]10) — |01))/Vv/2, is completely decoupled
from the other states and from the field [35]. In particu-
lar, the super-radiant state is coupled to both states |00)
and [11) via the electromagnetic field.

The reservoir is modeled as an infinite sum of har-
monic oscillators and its properties are described through
a Lorentzian spectral distribution

1
27 (w —wp)? + A2’

J(w) (8)
where the parameter A defines the spectral width of the
coupling and T' is related to the decay of the excited
state of the qubit in the Markovian limit of flat spec-
trum (spontaneous emission rate). The ideal cavity limit
(no losses) is obtained for A — 0. The dynamics of this
system has been solved exactly (with no perturbation
theory or Markov approximation) in Ref. [36]. Entangle-
ment dynamics has been studied for a large class of initial
states in Ref. [35,136]. Such a system exhibits a rich dy-
namics due to the memory effects of the non-Markovian
environment and the reservoir-mediated interaction be-
tween the qubits.

It is thus interesting to investigate the C-P-B dynami-
cal relation in this physical configuration. The dynamics
of the representative point in the C-P-B parameter space
shall allow one to visualize the relations between these
three physical quantities. We shall consider initial states
with an X form which results to be maintained during
the evolutions so that we can use equations of Sec. [TAl
to compute C, P and B. For a given system and fixed
initial state the point in the C-P-B space, representing
the state of the system, draws a certain path individuat-
ing the dynamical evolution. The flow of time shall be
represented by arrows. We shall consider a very narrow
Lorentzian distribution to emphasize the memory effects.

C. |¥) state dynamics in C-P-B space

We start our investigation considering as initial state
the two-excitation Bell-state |¥)

) = (|00) + [11))/V2, )

whose dynamics is displayed in Fig. [I, where a nontrivial
dynamical interplay among C', P and B is shown. Such
a plot in the C-P-B space consists of many branches
along which the system moves during the evolution. The
separation between the branches depends on the losses

FIG. 1: (Color online) C-P-B space curve drawn by the sys-
tem starting from the initial two-excitation Bell state |¥) for
X = 1073T". The arrows indicate the time evolution and the num-
bering from 1-to-7 indicates the different branches (multi-branch
behavior) raising from the dynamics. A one-to-one correspondence
among the three quantities is not possible here.

of the system. In fact, it can be shown that for a
wider Lorentzian spectral distribution (worse cavity) the
branches become more separated and they reach lower
values in the B axis. Differently, they tend to coincide
for a perfect cavity (single mode reservoir). The trajec-
tory drawn by the system is obtained by sampling C-P-B
triplets up to a certain time (200I't) allowing us to bring
to light the main features of the dynamics. Arrows and
numbers facilitate the reading of the plot. The state of
the system is initially pure (P = 1), maximally entangled
(C = 1) and maximally nonlocal (B = 2v/2). C, P and
B deteriorate with time until the representative point has
a value of B which satisfies the Bell inequality (branch
1 of Fig. ). Now, a completely new dynamical feature
appears: the curve surfaces from the B = 2 plane in a
region of small concurrence and high purity (branch 2).
This behavior follows from the fact that when the system
is almost pure even a small amount of entanglement in-
duces the appearance of nonlocality. After such a revival
of purity and nonlocality, the curve sinks again and reap-
pears on the space region with smaller purity (branch 3).
However, the system does not pass through the same C-
P-B points of the first branch, but it traces a new branch
close to the first one (branch 3). Successively, once again
decoherence effects due to the environment lead to de-
terioration of C', P and B, and a new branch appears
(branch 4). The high non-Markovianity of the reservoir
again causes Bell violation on the high purity/small con-
currence region of space (branch 5). The behavior con-
tinues in a similar way and the point draws new branches
until a time after which no violation occurs anymore.

Further information can be found when examining the
projections of the whole curve on the B-C', B-P and C-
P planes. We show these projections in the case of a
Lorentzian spectral distribution having a width ten times
larger than that in Fig.[Il Such a choice allows to distin-
guish more clearly the different curves. All the panels of
Fig. 2l show that there is no one-to-one correspondence



between any two of the quantities B, P and C. It is in-
teresting to notice that this behavior does not depend on
the losses of the cavity, but it remains true also when the
environment reduces to a single mode, as seen from the
insets of Fig. The absence of one-to-one correspon-
dence between any two of the quantities C, P and B
is truly a consequence of the reservoir-mediated interac-
tion between the qubits; in fact, if one examines the dy-
namics starting from the same initial state, but with the
two qubits embedded in independent reservoirs, one-to-
one correspondences between these quantities are found.
Considering the plot in the B-C' plane, displayed in panel
(a), it is possible to see that the system passes through
states, for example like those individuated by points A;
and Ag, such that C; > C5 but By < Bs. This inver-
sion of entanglement ordering has been in general shown
for different quantifiers, as between entanglement of for-
mation and either negativity [37] or relative entropy of
entanglement |38]. Indeed, there is a region character-
ized by small values of concurrence (0.30 < C' < 0.35)
but where the Bell inequality is violated up to values
~ 2.1. The B-P plot of panel (b) gives a justification of
this behavior. In fact, as already noticed from Fig. [l in
the C-P-B space, to these small values of concurrence,
there correspond high values of purity. In particular,
when P =~ 0.95 the maximum of Bell function reaches
B~ 2.1 (point Az). This correspondence between small
C and high P values is finally confirmed by the C-P plot
of panel (c). Moreover, it is possible to note that the
system crosses the point A; in the B-C' plane two times
(within the time interval we are considering), in corre-
spondence of which two different values of P occur, as
individuated by the points A; and Ag in the C-P plane
displayed in panel (c¢). This means that at the same cou-
ple of values C, B, there correspond two different values
of P (Py < Ps). As a final remark, we note that if one
considers the part of plots where B > 2 the multi-branch
behavior of Fig. [l is retrieved.

For a lossy cavity, the analytic solution for the density
matrix element is cumbersome as shown in Ref. [35]. In
the following we give these expressions in the simpler case
when the common cavity has no losses.

1. Perfect cavity

For a lossless cavity (single mode reservoir) the den-
sity matrix elements of the system can be expressed as
function of the population p4 . of the super-radiant state
and of piy4

p11 = 2|p1al®,  pa2 = paz = pas = pi+/2. (10)
p++ and py14 are oscillating functions with different peri-
ods (the first being the half of the second one) and their
expression is |35]

piy = sin?(V6Q)/6, pia = [2 + cos(v6)]/6, (11)

(b) —
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FIG. 2: (Color online) Projections of the C-P-B space curve start-
ing from the two-excitation Bell state |¥) on the planes B-C (a),
B-P (b) and C-P (c) for A = 1072T". Arrows indicate the time evo-
lution and multi-branch behaviors are clearly shown. The panel (a)
displays that quantum states with inversion of entanglement order-
ing are crossed (for example, points Ay and Az where C1 > Co
but B1 < B2). The plots of the insets are related to the case of per-
fect cavity (single-mode reservoir). No one-to-one correspondence
among couples of quantifiers exists in this case as well.

where 2 is the coupling constant between the qubits
and the mode of the cavity. The interaction between
the qubits, mediated by the common reservoir, makes
the coherence pi4 never vanish, as instead happens in
the case of independent reservoirs. From the insets of
Fig. 2 one sees that there is not a one-to-one correspon-
dence between any two of the quantities C', P and B.
Due to the absence of losses in the cavity, the system
goes back and forth through the entire curve, meaning
that at certain times the qubits recover the pure maxi-



mally entangled state of preparation. When dissipation
is taken into account and a more complex environment
than a single mode is considered this picture becomes
more complex and the multi-way behavior in the C-P-B
parameter space of Fig. [l and in the projection planes of
Fig. 2] arises.

The analysis above shows that a quite complex inter-
play occurs among C, P and B. It is known that in
general, given two of these quantities, this does not de-
termine the third [25]. However, one may ask if it may
happen that some explicit connections among them exist,
which can be expressed in a closed form for some class of
states.

III. C-P-B RELATION

In this section we seek an equation among C, P and B
that may be usefully adopted to quantify their connection
in a general context. To this purpose we shall generalize
a relation valid only for pure states. It is known that in
this latter case, a relation between C' and B holds [16],

B=21+C2 (12)

In the attempt to generalize this equation to mixed
states, we notice that the former equation can be written
as B = 2/ P + C? with P = 1. Therefore, it is rather
natural to connect the three quantities C, P and B, for
any state, as

B?/4—P—C? =R, (13)

where the “remainder” R is a quantity expressed in terms
of density matrix elements that vanishes for pure states.
In particular, four different regions can be distinguished
on the basis of K1, K3 and us, uz defined in Egs. (@) and

@):
e Region 1: us > usz and K1 > Ko
B=B, C=2K, R=R
Ry = 2[|pasl® — |p1al? + p11pas — papss + 4|p1apas]
+ 4|p14|\/p22p33 — (p11 + paa)(p22 + ps3)].  (14)

e Region 2: us > us and Ko > K;

B:Bl, C:2K2, R:R2:R1(1H2,3(—)4)

(15)
e Region 3: ug > ug and K7 > K
B=B, C=2K,. R=Rs
Rs = 2|p14|® + 6|pas|® — 4p22p33 + 8|p1aly/P22p33
— Pl — Po — Pis — Pla- (16)
e Region 4: us > us and Ko > K;
B = Bs,

C:2K2, R:R4:R3(1(—>2,3(—)4),

(17)

where the symbol ¢ <> j means that index ¢ must be
changed into j and viceversa. The introduction of a re-
mainder in Eq. (I3) allows us to express the Bell func-
tion as a function of concurrence and purity and may ex-
plain why states characterized by the same concurrence
and purity can have different values of the Bell function.
Such a remainder might contain some unknown proper-
ties qualifying the state of the system.

Even if in the general case a closed equation between
C, P and B does not exist, it may be useful to look for
classes of states for which the remainder can be expressed
as a function of these same quantities. In the following we
show that this occurs in the case of maximally entangled
mixed states.

A. Application to maximally entangled mixed
states

As an example to which to apply the considerations
and the formulas above we now consider the case of max-
imally entangled mixed states (MEMS), defined as those
states possessing the maximal amount of entanglement
(quantified by tangle 7 or concurrence C) for a given
degree of mixedness (quantified by linear entropy S or
purity P) [18,[19]. MEMS have been generated in labo-
ratory by parametric down conversion [39]; their density
matrix depends on the quantifiers chosen for entangle-
ment and mixedness. Typically, tangle 7 = C? is used to
quantify entanglement and linear entropy S = %(1 - P)
to quantify mixedness. Since the quantities 7-C' and S-
P are monotonically related each other, the use of C
and P instead of 7 and S does not affect the structure
of MEMS density matrix. For these quantifiers the ex-
plicit form of MEMS, in the standard computational ba-
sis B = {|11),|10), |01), |00)}, is given (up to local unitary
transformations) by [18]

g(v) 0 0 v/2
R . 0 O 0 0
v/2 0 0 9(7)

where the parameter v coincides with the concurrence C'
(for any value of v the state is entangled) and

={1s 62123

According to the parametric regions identified by
Eqs. (I4)-7) and the C-P-B relation of Eq. ([I3]), we
obtain the following expressions of C', P, B and R for
various ranges of :

e 0 <+ < 1/3 corresponds to region 1 with

2 2
BT L e p
+2, —9+F)/7 -

O: P:
7 2

Wl =



e 1/3 <+ < 2/3 corresponds to region 3 with

2 2 2
v B 2 Y
C=~, P= L= =2y R=-——4+ . (21
v, +t 5 v, +5 (21)

Wl

e 2/3 <~ <1 again corresponds to region 3 with

B2
C=v, P=1-2y+2y", — =29", R=—(1-1).

4
(22)

Regions 2 and 4 are excluded because for MEMS K; >
K, for any value of . From the last three equations, it
follows that Bell inequality violation occurs only for v >
1/\/5 It is worth to note that in this region of violation
the maximum of Bell function assumes the lower bound of
violation, Biow = 2v/2C, for a given concurrence. This
fact can be considered as a further characterization of
MEMS [16]. For any value of 7 the remainder R results
to be a function of only concurrence and vanishes when
P = 1 according to the considerations that follow the
C-P-B relation of Eq. (I3). We recall that, by varying
v, the MEMS individuate an upper bound curve in the
C-P plane under which all the two-qubit quantum states
are confined [1§].

In the following we come back to our dynamical case,
showing that choosing properly the initial state, the
dynamics of the system flows along this upper bound
MEMS curve.

IV. SUPER-RADIANT STATE DYNAMICS IN
C-P-B SPACE AND MEMS GENERATION

Here, we investigate the dynamics of the two qubits in
the same model of Sec. [IB] in the case they are initially
prepared in the one-excitation (super-radiant) Bell state

[+) = ([10) +[01))/V2. (23)

The trajectory of the representative point of the system
in the C-P-B space is shown in Fig. Bl This path is ob-
tained by a dense sampling of triplets of C-P-B values at
different times (up to the time 200T't). One sees that the
dynamics starts from the pure maximally entangled state
(C =1, P =1), thus maximally violating the CHSH in-
equality (B = 2v/2). Due to the interaction with the
environment, C, P and B all decrease and at a certain
time the CHSH inequality is not violated anymore. Af-
ter this time the curve goes below the B = 2 plane but
after a while the memory effects of the non-Markovian
environment makes those three quantities simultaneously
revive. When the representative point raises above the
B = 2 plane, giving revivals of B, it follows again the
same curve but runs only a part of it. This is related
to the fact that the system is open and environmental
noise deteriorates the coherence properties of the state
of the system, with a corresponding decrease of the max-
imum values of C' and B with time. Hence, the dynamics

FIG. 3: (Color online) C-P-B space curve drawn by the sys-
tem starting from the initial one-excitation Bell state |+) for
X = 1073T. The arrows indicate the time evolution and the point
A the maximum point reached after the first ascent. A one-to-one
correspondence among the three quantities is clearly shown.

passes through cycles of revivals and collapses until, after
a certain time, the CHSH-Bell inequality is not violated
anymore.

This behavior can be clearly seen by examining the
explicit evolution of the two-qubit density matrix. All
the density matrix elements at a given time ¢ depend
only on the population of the super-radiant state p; at
that time,

p11 =0, pa2=p33=ps1/2, puu=1—pry,
p23 = p++/2, pra=0. (24)

Varying the ratio between the spontaneous emission rate
and the spectral density width, I'/\, two different regimes
in the time behavior of py; can be distinguished. For
I' < A\/2 (weak coupling) there is a Markovian exponen-
tial decay controlled by T'; for T' > A/2 (strong coupling)
non-Markovian effects become relevant. In this latter
regime the function py assumes the form [40]

2
pPiy = e A [cos (%) + gsin (%>:| , (25)

where d = v/2I'A — A2, In this strong coupling regime
p++ presents damped oscillations while in the weak
coupling regime Markovian-like decay occurs (harmonic
functions in p4 4 are replaced with the corresponding hy-
perbolic ones and d with «d). In the ideal cavity limit,
A — 0, p44+ becomes a purely oscillating function.

We point out that Eq. [24]) corresponds to the den-
sity matrix form of MEMS of Eq. (I8) (for p14+ > 2/3)
where, after a local unitary transformation on one of the
two qubits (changing |0) in |1) and viceversa), p4+ plays
the role of a time-dependent parameter -y, whose behav-
ior depends on the values of spectral density parameters.
This means that, starting from the super-radiant state,
the two-qubit system evolves along the MEMS curve. As
a consequence, the physical configuration of two qubits
in a lossy common cavity is suitable for a dynamical cre-
ation of MEMS (see also other proposals for MEMS gen-
eration [41, 142]).



Because of Eq. (28], clearly C, P and B do also depend
only on p;. In particular for the range of values 0 <
pi+ < 1/3 wearein the region 2 (see Sec.[[Tll) and CHSH-
Bell inequality is never violated; for 1/3 < p;4 < 1 we
are in region 4 where C, P and B assume the form

B=2V2p,, C=pivt,
(26)
the CHSH-Bell inequality being violated for p;; >
1/+/2. This form of C, P and B implies a closed relation
among these three quantities which can be analytically
expressed as

P=1=2p (1 -ps+y),

B?/4—P—-C?=—(1-C), (27)

where the remainder R of Eq. ([3) is given by R =
—(1 = C)?. Eq. 1) corresponds to what obtained in
Eq. 22) for MEMS. It is worth to stress that, differently
from the general case where no closed relation among C,
P and B exists, here we deal with a dynamical case where
a closed relation is available. This analytical relation be-
tween C, P and B explains why the system draws with
time back and forth on the same trajectory in the C-P-B
space. Moreover the explicit expressions of Eq. (24) al-
lows to understand why this trajectory remains unaltered
when changing the width of the Lorentzian distribution.
Indeed, this is a consequence of the fact that each C-P-
B point is determined by only one specific value of p4 ..
In the case of a Lorentzian distribution, p; exhibits
damped oscillations between 0 and 1, so that repeated
equal values of py; give the same C-P-B points and
thus in turn the system dynamics draws back and forth
the same trajectory in the C-P-B space. On the other
hand, the width of the Lorentzian affects the oscillatory
behavior of py, therefore influencing only the number
of times and how high the system can come back on the
same curve in the C-P-B space. We emphasize once more
that this is true only for this particular initial state.

V. CONCLUSIONS

In this paper the relation among entanglement, mixed-
ness and nonlocality in a two-qubit system has been in-
vestigated. The nontrivial connection among the quanti-
fiers of these properties, namely concurrence C, purity
P and the maximum of Bell function B in the state
space has been studied in a dynamical context. Two
qubits have been assumed to be embedded in a non-
Markovian common reservoir at zero temperature. Com-
mon reservoir-mediated interaction and memory effects
induce, with different intensities, revivals of all the three
quantities. The C-P-B “parameter” space has been in-

troduced and exploited for the description of the relations
among C, P and B for the two-qubit reduced dynamics.

For an initial two-excitation Bell state, it has been
shown that the system draws a multi-branch curve in
the C-P-B space. Projection of this curve on two-
dimensional spaces clearly shows the absence of one-to-
one correspondence between couples of the quantifiers C,
P and B [25]. This dynamical feature is maintained even
in the limit of perfect cavity suffering no losses. A com-
parison with the case of independent reservoirs, where
this correspondence between couples of the quantifiers
occurs, has been made evidencing the role of the common
reservoir-mediated interaction between qubits as respon-
sible of the lack of such correspondence.

The search of classes of states where a closed relation
among C, P and B holds, has led us to look for gen-
eral connections among these quantifiers. On the basis
of known relations between concurrence and maximum
of Bell function in the pure state case, an extended re-
lation between all the three quantifiers for a wide class
of mixed states has been given. A remainder, vanishing
in the limit of pure state, has been introduced and its
explicit form given for four different regions identified by
the quantum state under investigation. This term could
play a role to explain the complex and not well under-
stood relation among all these quantities. Moreover we
have shown that, for the class of maximally entangled
mixed states (MEMS), a closed relation among C, P and
B exists.

In the final part of the paper we have reconsidered
our dynamical model, showing that if the two qubits are
initially prepared in the one-excitation Bell state (super-
radiant state), differently from the two-excitation case,
a one-to-one correspondence between any couple of C,
P and B occurs. This results in a single-valued relation
represented by a one-branch curve in the C-P-B space
which is drawn back and forth by the system. In this case
we have a physical configuration in which a closed ana-
lytical relation among C', P and B can be written. We
have moreover shown that the system evolves maintain-
ing the MEMS density matrix structure. Therefore this
physical configuration may be seen as a suitable setup for
MEMS generation.
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