
 
Dottorato in Scienze Economiche, Statistiche, Psicologiche e Sociali 

Dipartimento di Scienze Economiche, Aziendali e Statistiche  
& 

Istituto di Biomedicina ed Immunologia Molecolare “Alberto Monroy” 
SECS-S/01 – Statistica 

 
 
 
 

 

 
 

Induced smoothing in LASSO regression 
 
 
 

 
 
 
 
 
 
 
 

IL DOTTORE      IL COORDINATORE 
                      Giovanna Cilluffo            Prof. Vito M. R. Muggeo 
 
 
 
 
 

IL TUTOR   IL CO TUTOR 
               Prof. Vito M.R. Muggeo      Prof.ssa Stefania La Grutta 
 
 
 
 
 
 
 
 
 
 
 
 

CICLO XXX 
ANNO CONSEGUIMENTO TITOLO 2018 

 



ii



iii

Università degli Studi di Palermo

Abstract

Induced smoothing in LASSO regression

by Giovanna CILLUFFO

The thesis is being carried out with the National research Council at the
Institute of Biomedicine and Molecular Immunology "Alberto Monroy"
of Palermo, where I am a fellow, under the supervision of MD Stefania
La Grutta. Our research unit is focused on clinical research in allergic
respiratory problems in children. In particular, we are interested in to
assess the determinants of impaired lung function in a sample of outpa-
tient asthmatic children aged between 5 and 17 years enrolled from 2011
to 2017. Our dataset is composed by n = 529 children and several covari-
ates regarding host and environmental factors.

This thesis focuses on hypothesis testing in lasso regression, when
one is interested in judging statistical significance for the parameters in-
volved in the regression equation. To get reliable p-values we propose a
new lasso-type estimator relying on the recent idea of induced smoothing
which allows to obtain appropriate covariance matrix and Wald statistic
relatively easily. In addition, we discuss the score statistic to carry out
interval estimation on the regression coefficients in LASSO regression.
Some simulation experiments reveal our approaches exhibits better per-
formance when contrasted with the recent inferential tools in the lasso
framework. Finally, we analysed data regarding asthmatic out-patient
children which motivated our project.
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Chapter 1

Motivating problem

Asthma is a common and potentially serious chronic disease that imposes
a substantial burden on patients and their families. It causes respiratory
symptoms, limitation of activities and exacerbations that sometimes re-
quire urgent health care (GINA, 2017). Objective assessment of asthma
is related to the degree of airways obstruction measured by spirometry.
Spirometry is needed to monitor children with asthma for signs of in-
creasing airway obstruction (Strunk et al., 2006). The long-term goals of
asthma management are symptom control and risk reduction. Impaired
lung function risk can be minimized by optimizing asthma medications
and by identifying and treating modifiable risk factors. In this frame-
work we are interested in to assess numerous risk factors of impaired
lung functions. Classical tools could not be easy applicable when the
number of variables increases and if applied can cause regression coeffi-
cients and p-values to be misleading.

This thesis focuses on hypothesis testing and interval estimation in
lasso regression, when one is interested in judging statistical significance
for the parameters involved in the regression equation. The proposed
method will be applied in order to assess the determinants of impaired
lung function in a sample of outpatient asthmatic children aged between
5 and 17 years enrolled from 2011 to 2017. Our dataset is composed by
n = 529 children and several covariates regarding host and environmen-
tal factors.

Our methodology enjoys many advantages. Firstly, it quantifies the
uncertainty of the estimates; secondly, p-values and confidence inter-
vals are easily derived with usual inferential tools. In medical research,
a common practice consists in to adjust regression models for possible
confounders since they can influence the magnitude of the relationship
between the independent variable and outcome. Our proposal, allows
to consider all measured information simultaneously even if the number
of variables overcomes the sample size. A possible disadvantage of our
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method is that it does not return exactly zero estimates, but actually the
resulting p-value can be used to discard or not the covariates. Another
drawback of the method is that estimates are biased, however, when the
sample size is greater than the number of variables the bias can be per-
fectly computed and estimates can be corrected.

Existing methods are reported in the next sections of this chapter.

1.1 The Least Absolutes Shrinkage and Selection Op-
erator

Regression models are widely used and well-established statistical tools
in many fields of applied research. A linear regression model assumes
that

y = X� + ✏

where y is the response vector, X is n ⇥ p matrix of covariates, � is the
vector of unknown parameters and ✏ is the erratic component normally
distributed.

The ordinary least squares estimator (Dismuke and Lindrooth, 2006;
McCullagh, 1984) is obtained minimizing the least square objective func-
tion:

�̂ = argmin
�

||y �X�||22 (1.1)

which leads to
�̂ = (XT

X)�1
X

T
y

Typically all of the least-squares estimates will be nonzero and unique,
however, when the sample size is smaller than the number of parameters
(n  p) solutions are not unique and these solutions almost surely overfit
the data.

Tibshirani (1996) proposed the Least Absolutes Shrinkage and Selec-
tion Operator (LASSO) which is a very elegant and relatively
widespread solution to carry out variable selection and parameter esti-
mation simultaneously when n  p. The LASSO objective function to be
minimized at fixed � is

1

2
||y �X�||22 + �||�||1

where �||�||1 is the L1 penalty, � parameter controls the amount of pe-
nalization. The larger �, the more shrunken the estimate. To illustrate,
Figure 1.1 shows LASSO estimation from geometrical point of view. The
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ellipses represent the contours of the objective functions, the diamond
(blue square) is the LASSO constraint and the dot is the point where
contours is “tangent” to the constraint, i.e., the penalized estimate. The
LASSO performs L1 shrinkage, so that there are "corners" in the con-
straint, if the sum of squares "hits" one of these corners, then the coef-
ficient corresponding to the axis is zero.

−0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

β1

β 2

●

FIGURE 1.1: LASSO estimation, the blue square represents the con-
straints area |�1|+ |�2|  c, while light blue ellipses are the contours of
the least square errors function.

Typically the LASSO estimator is biased and its distribution is highly
non-normal, as shown in Figure 1.2, posing issues to valid inference (Knight
and Fu, 2000; Pötscher and Leeb, 2009; Kyung et al., 2010; Jagannath and
Upadhye, 2016). Point estimation can be performed quite efficiently with
current algorithms. Efron et al. (2004) proposed an efficient algorithm
for computing LASSO estimate based on the entire regularization path,
i. e. the entire path of the coefficient estimates as � varies. Friedman
et al. (2010) develop fast algorithms for estimation of generalized linear
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FIGURE 1.2: Sampling distribution of a zero coefficient in a simulation
study

models with L1 penalty using cyclical coordinate descent along a regu-
larization path. Augugliaro et al. (2013) proposed a method based on
the geometrical structure underlying the generalized linear model which
allows to define a generalization of the equiangularity condition. Other
methods have been proposed yet for the LASSO during the last decade
(Meinshausen and Bühlmann, 2006; Zhang and Huang, 2008; Beck and
Teboulle, 2009; Candes and Plan, 2009; Tutz and Gertheiss, 2016). A possi-
ble actual limitation of LASSO method is computation of standard errors
and consequently inference, a literature review on uncertainty estimation
and on inference is presented in section 1.1.2.

1.1.1 Theoretical conditions

In the last years, it has become clear that some theoretical conditions play
a central role to guarantee model consistency (Zhao and Yu, 2006), de-
fined as a correct amount of regularization that selects the true model,
and for sparsity pattern recovery (Wainwright, 2009) of the LASSO. In
particular, let � = (�1, . . .�q,�q+1, . . . ,�p) where �j 6= 0 for j = 1, . . . q
and �j = 0 for j = q + 1, . . . p, X1 the first q column of the X matrix and
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X2 the last p� q; we define a block matrix C = X
T
X/n obtained by set-

ting C11 = X
T
1 X1/n, C12 = X

T
1 X2/n, C21 = X

T
2 X1/n, C22 = X

T
2 X2/n.

The strong irrepresentable condition states that there exists a positive con-
stant vector ⌘:

|C21C
�1
11 sign(�)| < 1� ⌘

where 1 is a p� q vector of one’s and the inequality holds element-wise.
In other word, LASSO selects the true model consistently if and (almost)
only if the predictors that are not in the true model are “irrepresentable”
by predictors that are in the true model. Regarding the sparsity pattern
recovery the number of nonzero coefficients has to be �1, . . . ,�k (out of p
covariates) such that k  n/(2 log p) having magnitudes at least �min =
c�

p
2 log p for some unspecified numerical constant c.

1.1.2 Inference in LASSO regression

Tibshirani (2011) reports ‘we need better tools for inference with the LASSO

and related methods. More basically, we need reliable ways to assess the sam-

pling variability of the LASSO estimates’. In fact just few proposals to com-
pute standard errors, have been discussed in literature. Tibshirani (1996)
proposed to use

P
|�j | ⇡

P
�
2
j /|�j | which is a sort of ridge-like approx-

imation of the absolute value function. Fan and Li (2001) exploited, in-
stead, the sandwich formula in more general likelihood settings. Unfor-
tunately such approximations are unsatisfactory in practice, since they
lead to a zero standard error for a zero point estimate which prevents to
quantify uncertainty for the variables left out of the model. Osborne et al.
(2000) derived a covariance matrix ensuring positive standard errors for
all coefficient estimates, but the proposal does not quantify appropriately
variability of the estimators (Kyung et al., 2010). A bootstrap approach
was also discussed, but it has been shown to be inconsistent (Beran, 1982;
Kyung et al., 2010). Several are the proposal to make inference in high
dimensional setting, recently (Bühlmann et al., 2013) proposed a method
for constructing p-values for general hypotheses in a high-dimensional
linear model, based on Ridge estimation with an additional correction
term. Wasserman and Roeder (2009) suggested to randomly split the
data into three parts, the first part is used to estimate different models
for each �, the second part is used to select one model by cross-validation
and the third part is used to find least squere estimate and to eliminate
some variables using hypothesis testing. Zhang and Cheng (2017) and
Dezeure et al. (2016) proposed a method based on bootstrap, Lan et al.
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(2016) developed a new testing procedure introducing the correlated pre-
dictors screening method to control for predictors that are highly corre-
lated with the target covariate. Meinshausen and Bühlmann (2009) used
a multisplit method, related to Wasserman and Roeder (2009), for as-
signing statistical significance and constructing conservative p-values for
high-dimensional problems. Minnier et al. (2012) proposed a perturba-
tion resampling based procedures to approximate the distribution of a
general class of penalized parameter estimators along with their covari-
ance matrix. Regarding interval estimation, Meinshausen (2015) showed
that a "group-bound" confidence interval can be derived without making
any assumptions on the design matrix.

Desparsified or debiased LASSO has been proposed by Van de Geer
et al. (2014), Zhang and Zhang (2014), and Javanmard and Montanari
(2014) aimed at desparsifying the regularized solution, namely to correct
the estimates returned by LASSO. These authors use a debiased version
of the LASSO estimator

�̂
d = �̂� + 1/n⇥X

T (y �X�̂�)

where �̂� is the LASSO estimate at �, and ⇥ is an approximate inverse of
⌃ = X

T
X/n. When n > p then ⇥ is invertible and �̂

d would be exactly
unbiased, however when n < p, ⇥ is not invertible and it needs to find
an approximate inverse. The authors suggest different approximation of
⇥, in particular Van de Geer et al. (2014) use a neighborhood-based meth-
ods to impose sparsity on the components and Javanmard and Montanari
(2014) solve a convex program, Boot and Nibbering (2017) use diagonally
scaled Moore-Penrose pseudoinverse. Related works can be found in Bel-
loni et al. (2014) which consider a single main regressor and multidimen-
sional control covariates. Janková et al. (2015) proposed a desparsified es-
timator based on the graphical LASSO to build confidence intervals. The
desparsified LASSO methods (Hdi) return both single testing p-values as
well as multiple testing corrected p-values, and the confidence intervals
for individual parameters (Dezeure et al., 2015).

More specifically for hypothesis testing problems, Lockhart et al. (2014)
have discussed the covariance test (covTest) for a newly added coefficient
along the LASSO regularization path, based on the difference between
the fitted values of the models with and without the relevant covariate
entering the active set at proper lambda value. While p-values are re-
turned for each covariate, the procedure assumes that all signal variables
enter the LASSO solution path first; moreover covTest does not allow to
obtain results at the same given value of the tuning parameter �, such as
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the ‘optimal’ one as returned by cross validation or any other criterion.
Formally, let the path �̂� is a continuous and piecewise linear function
of �, with knots at values �1 � �2 � . . .�k � 0, the covariance test is
defined:

Tk =
�
y
T
µ̂(�k+1)� y

T
µ̃A(�k+1)

�
/�

2

where A indicates the active set just before �k; µ̂ and µ̃A are the fitted
values at �k+1 given by including and leaving out the j-th predictor into
the current active set, respectively, and �

2 is the square of dispersion pa-
rameter. Under the null hypothesis, Tk is asymptotically distributed as a
standard exponential random variable, i.e.

Tk
d�! Exp(1)

Finally, yet another approach to inference in LASSO regression is the
so-called selective inference (hereafter postSel) discussed in Lee and Tay-
lor (2014); Lee et al. (2016); Tibshirani et al. (2016). The authors con-
sider post-selection inference, namely inference given the selected model,
which use the truncated Normal distribution for the parameter estima-
tors with a fixed � value. This approach, however, critically depends on
ability of LASSO to screen, i.e. to pick up a model including all non-
noisy variables. If the interest variable does not enter the model, no cor-
responding inference measure can be obtained. Formally, starting from
the usual least squares problem with an additional L1 penalty on the co-
efficients, the authors define an F statistic, given by the polyhedral set
{Ay � b}. Assuming y ⇠ N(✓,⌃), with ✓ ✏ Rn unknown and ⌃ ✏ Rn

known, for a fixed ⌘ ✏ Rn the aim is to make inference for ⌘T
✓. The dis-

tribution of any linear function ⌘
T
y, given the polyhedral set {Ay � b},

can be written as the conditional distribution:

⌘
T
y | V low  ⌘

T
y  V

up
, V

0  0

where V
low and V

up are bound functions independent of ⌘T
y. Since ⌘

T
y

has Gaussian distribution, the bounded quantity is a truncated Gaussian
distribution. The Cumulative density function of a generic N(µ,�2) ran-
dom variable truncated to lie in [a; b], is

F
[a,b]
µ,�2(x) =

�((x� µ)/�)� �((a� µ)/�)

�((b� µ)/�)� �((a� µ)/�)
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where �(·) denotes the standard normal cumulative distribution func-
tion. The statistic F

[V low,V up]
⌘T ✓,⌘T⌃⌘

(⌘T y) is a pivotal quantity and leads to con-
ditional p-values for hypothesis testing, and consequently, to conditional
confidence intervals.

1.1.3 Tuning parameter selection

Another important topic, which we not will explore in depth, in penal-
ized methods is the choice of the tuning parameter. Different approaches
have been proposed in literature, the most famous being cross-validation
and generalized cross-validation (Craven and Wahba, 1978), Akaike In-
formation Criteria (AIC) (Akaike, 1998), Bayesian Information Criteria
(BIC) (Zou et al., 2007) and Generalized Information Criteria (GIC) (Zhang
et al., 2010). Their formulation are given as follows:

CV(�) =
kX

s=1

X

(xk,yk)2T�s

(yk � x
T
k �̂�)

2

GCV(�) =
||y �X�̂�||22
n(1� df/n)2

AIC(�) =
log(||y �X�̂�||22)

n
+

2df
n

BIC(�) =
log(||y �X�̂�||22)

n
+

log(n)df
n

GIC(�) = log(||y �X�̂�||22) + cn log(p)dfn�1

almost all criteria require the degrees of freedom in theri formulation. df
are often used to quantify the model complexity of a statistical modeling,
in LASSO regression the number of nonzero coefficients is an unbiased
estimate of the df (Zou et al., 2007; Tibshirani and Taylor, 2012). How to
choose the criterion is not our topic, however, Zou et al. (2007) suggested
to use BIC as the model selection criterion when the sparsity of the model
is the primary concern, Fan and Tang (2013) proposed to select the tuning
parameter by optimizing the GIC, many authors suggested to use CV
(Park and Hastie, 2007; Friedman et al., 2007; Breheny and Huang, 2011).

1.1.4 The adaptive LASSO

Zou (2006) proposed a variant of the LASSO, called the adaptive LASSO,
where adaptive weights are used for penalizing different coefficients in
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the L1 penalty. In this context the objective function becomes:

1

2
||y �X�||22 + �||w � �||1

where||w��|| =
Pp

j=1 |�jwj | and typically w = 1/�̂OLS. It is well known
the LASSO penalty shrinks all coefficients towards zero causing impor-
tant bias for the nonzero estimates, and the adaptive LASSO tries to at-
tenuate such bias by introducing the ws understood to weight the impor-
tance of the coefficients. Also in this case, the finite-sample distribution
of the adaptive LASSO estimates in not normal, in particular Pötscher
and Schneider (2009) showed that it is a mixture of a singular normal
distribution and an absolutely continuous nonnormal distribution .

The thesis is structured as follows: Chapter 2 describes our proposal
into detail, Chapter 3 reports results of some simulation studies, Chapter
4 focuses on data analysis and finally some conclusions are reported in
Chapter 5.
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Chapter 2

The induced smoothing in LASSO

2.1 The induced smoothing

The idea of ‘natural’ or induced smoothing (hereafter IS) has been intro-
duced by Brown and Wang (2005). The authors focus on the estimation
of standard errors or covariance matrices to deal with non-smooth es-
timating equation which prevents the usual estimating algorithms and
asymptotics to be applied, the method can be employed to any statistical
estimation. We focus on linear regression, considering the following lin-
ear model y ⇠ X� + ✏ with ✏ ⇠ N(0,�), where y = (y1, . . . , yn)T denote
the vector of observed response, X be the n⇥p design matrix with regres-
sion coefficients � and let U(�) be a vector of estimating equations for �.
The resulting estimator �̂ is obtained by solving U(�) = 0. When U(�) is
smooth standard errors can be obtained by using the usual sandwich for-
mula V = Ũ

0�1 I Ũ
0�1, with I indicating the Fisher information matrix.

However, the estimating function U(�) is often non-smooth, as a conse-
quence, standard error computation for �̂ represents a challenging issue.
The idea behind the elegant IS approach allows to overcome this issue,
assuming a limit multi-normal distribution for �̂ with covariance matrix
V that allows to write V

�1/2(�̂��) ⇠ z or equivalently �̂ ⇠ �+V
1/2

z,
where V

1/2 is the ’square root’ matrix of V , and z ⇠ N(0, Ip) are p-
dimensional multi-normal standard realizations. Roughly speaking, be-
cause of the relationship between � and �̂, the idea is to consider the es-
timating equation in terms of perturbations, i.e. U(�+V

1/2
z). Formally,

the IS estimating equation is defined as expectation over multi-normal
random perturbations, namely

eU(�) = Ez[U(� + V
1/2

z)], (2.1)

where Ez[ · ] represents expectation over z ⇠ N(0, Ip), standard multi-
normal random perturbations. In this way, eU(�) is smooth, thus the
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slope matrix eU 0(�) exists and the usual sandwich formula applies to com-
pute the covariance matrix of estimator �̂. Induced smoothing can be
applied in several contexts for example in quantile regression in order
to smooth the first derivative of the quantile objective function, or in
weighted rank regression for the accelerated failure time model (Brown
and Wang, 2007).

2.2 The induced smoothing in LASSO

It is well known that LASSO problem in equation (1.1) can be expressed
using the sub-gradient definition (Tibshirani and Taylor, 2012). Con-
versely, we express the estimating equation in LASSO, using the Heavi-
side step function (Bracewell and Bracewell, 1986) as follows:

U(�) = X
T (y �X�) + �{2 I(� > 0)� 1p}, (2.2)

where I(·) is the usual indicator function equal to one when its argument
is true. U(�) is clearly non-smooth thus preventing application of usual
asymptotic theory for computing covariance matrix and carrying out in-
ference. The IS paradigm replaces (2.2) with the naturally smoothed
counterpart: to define it, as previously proposed by Knight and Fu (2000)
and Pötscher and Leeb (2009), we recognize that the distribution of �̂ can
be seen as a mixture of a standard Normal and a singular Normal distri-
bution with a pointmass at zero. We assume a standard Normal for the
continuous part and a Normal distribution with negligible variance for
the zero mass for the other, it is possible to write for the LASSO estimator

v
�1/2(�̂ � �) ⇠ ⌫ where f(⌫) ⇡ c �(⌫) + (1� c) �✏(⌫). (2.3)

�(·) is the pdf of a standard Normal, �✏(·) the pdf of a zero-mean Normal
with very small variance (✏ = 10�6, say), and c is the (unknown) mixture
weight. Application of the IS exploits perturbations from the aforemen-
tioned mixture distribution,

Ũ(�) = E⌫ [U(� + v
1/2

⌫)] =

Z
U(� + v

1/2
⌫)f(⌫)d⌫

=

Z
U(� + v

1/2
⌫) {c�(⌫) + (1� c)�✏(⌫)} d⌫

= c

Z
U(� + v

1/2
⌫)�(⌫)d⌫ + (1� c)

Z
U(� + v

1/2
⌫)�✏(⌫)d⌫.
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Thus, assuming the aforementioned 2-components mixture, the over-
all smooth penalty turns out to be

P(�, v; c) = c{2�(�/v1/2)� 1}+ (1� c){2�✏(�/v
1/2)� 1},

where �(·) and �✏(·) are the Normal cumulative distribution functions.
The mixture weight c depends on several factors, including the true sig-
nal, the error variance and covariate scale. However its value is unknown
in practice and to account for that, we propose to consider the penalty av-
eraged over the range of c according to its distribution function F (c),

P(�, v) =

Z 1

0
P(�, v; c) dF (c). (2.4)

To reflect uncertainty in c, we assume c ⇠ unif(0, 1), and therefore an
empirical version of resulting average penalty (2.4) is simply

P(�, v) =
KX

k=1

P(�, v; ck)/K (2.5)

where c1, c2, . . . , cK are K equispaced values in (0,1). Note the averaged
penalty is independent of c but still depending on � and v. P seems to
be a rational trade-off which balances the 2-component mixtures. Simu-
lation study, in next chapter, shows that the choice of c is negligible.

The IS estimating equation turns out to be

eU(�) = X
T (y �X�) + �P(�,v) (2.6)

where P(�,v) = K
�1P

k P(�,v; ck) and P(�,v; ck) = ck{(2�(�/v1/2)
� 1p)} + (1 � ck){(2�✏(�/v1/2) � 1p)}. In the penalties, v is the main
diagonal of V = var(�̂), and a/b means the element-wise ratio of vec-
tors a and b; Figure 2.1 compares the estimating equation in LASSO, OLS
and in IS-Lasso for a nonzero coefficient (left panel) and for a zero coef-
ficient (right panel). For a non zero coefficient, IS-Lasso and LASSO are
overlapped, conversely for a zero coefficient LASSO is exactly zero while
IS-Lasso is different from zero even if very close to the LASSO estimate.

eU(�) is smooth, thus the slope matrix eU 0(�) = @
@�

eU(�) exists and it
is found to be

fH(�) = eU 0(�) = X
T
X + � P 0(�,v) (2.7)
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●●

U(β)LASSO
U(β)ISLASSO
U(β)OLS

●●

U(β)LASSO
U(β)ISLASSO
U(β)OLS

FIGURE 2.1: Comparison of estimating equation for IS-Lasso (red solid
line), OLS (gray dotted line) and LASSO (black dashed line). Left panel
reports an example for a nonzero coefficients, right panel reports an
example for a zero coefficient.

where the penalty derivative P 0(�,v) = @
@�P(�,v) is

P 0(�,v) =
1

K

X

k

{ckdiag(2�(�/v1/2)/v1/2)+(1�ck)diag(2�✏(�/v
1/2)/v1/2)},

and diag(·) means a diagonal matrix.
Existence of fH(�) allows to apply the sandwich formula to compute

the covariance matrix (e.g. Royall, 1986) of �̂, i.e.

V = fH(�̂)�1 I fH(�̂)�1
, (2.8)

where �̂ is the final value at convergence, and I = X
T
X/�

2 is the usual
Information matrix independent of �̂.

Clearly eU requires V (via the main diagonal v, see (2.6)), and in turn
V needs eU (via the first derivative fH , see (2.8)). Hence an iterative proce-
dure is called for, alternating computation of eU and V . More specifically:

0. Initialize: fix initial guesses for V and �; in particular, we set V (0) =
Ip/n;

1. compute eU(�) according to (2.6) and solve eU(�) = 0 to get a new
update of �;

2. compute fH at the current � value, and then update V according to
(2.8);
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3. update the guesses for V and � and repeat steps 1. and 2. till
convergence.

The IS-Lasso algorithm appears quite straightforward, it just needs a few
Newton-Raphson steps:

�̂ = �̂
0 � fH(�̂0)�1 eU(�̂0)

where �̂
0 is the initial guess for �. Moreover, as discussed in Brown and

Wang (2005), convergence is reliable and rapid; in the proposed IS-Lasso
framework, we have experienced convergence in less than 10 iterations
when n > p, and somewhat slower when n  p. IS-Lasso substantially
replaces the non-smooth absolute value function with a smooth approxi-
mation depending on the estimate standard error. As an example, Figure
2.2 portrays the effect of the induced smoothing on the LASSO penaltyP2

j=1 |�j | for two different standard error estimates.

β1

β 2
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FIGURE 2.2: Contrasting the plain LASSO penalty (diamond, black
thin lines) with the induced smoothed counterpart (thick gray lines).
The amount of smoothing at kink depends on the variance of the cor-
responding estimator and it is determined automatically by data.

The smaller the standard error, the closer the approximation. For
sample size with n independent units, the elements of V decrease at
n
�1/2 rate indicating that the IS-Lasso is asymptotically equivalent to the

LASSO; however in finite sample the estimating functions (2.6) will be
smoothed enough to compute the derivative (2.7) and then the covari-
ance matrix via the sandwich formula (2.8). The IS-Lasso estimator is
biased, it is possible to obtain an unbiased version of the estimator, as de-
picted in Figure 2.3, through the light blue triangle we derive a measure
of the bias as follows bias� = �̂0 � �̂� = (XT

X)�1[U(�̂�)� eU(�̂�)] where
eU(�̂�) = 0.



16 Chapter 2. The induced smoothing in LASSO

When n > p we perfectly quantify the bias, for n < p decomposition
techniques can be applied in order to obtain (XT

X)�1 and approximate
the bias.

β̂0β̂λ

λ

U~(β)

U(β)

β

U

FIGURE 2.3: Bias of the estimator from the geometrical point of view.
�̂� is the biased estimator, �̂0 is the value of the estimator when � = 0,
using the light blue triangle is possible to obtain the unbiased estima-
tor.

2.2.1 The IS-Lasso Wald statistic

For the hypothesis of main interest H0 : � = 0, given the IS-Lasso point
estimate �̂ and corresponding standard error SE(�̂) coming from (2.8),
the Wald statistic under H0 is defined as

W0 =
�̂

SE(�̂)
. (2.9)

In usual inferential problems, the p-value is obtained assuming that W0
d�!

N (0, 1), and thus good performance of W0 depends on how much reli-
able the Normal approximation is for W0. For the LASSO estimate, the
Wald statistic is useless as the sampling distribution has a positive prob-
ability mass at zero (Knight and Fu, 2000; Pötscher and Leeb, 2009), and
no appropriate measure of standard errors are available as discussed in
Introduction. However, as it is intuitive from the replacement of the in-
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FIGURE 2.4: Contrasting plain LASSO (gray circles) and IS-Lasso
(black triangles) Wald statistics. Panel (a) refers to QQ-plot and panel
(b) to the cumulative distribution functions. The dashed lines corre-
spond to the N (0, 1) distribution. At each replicate the optimal lambda
has been obtained via cross validation.

dicator function with the normal cumulative distribution function, the
IS-Lasso estimator has no probability mass, but an obvious smooth peak
around zero, as showed in Figure 2.4. Moreover the returned sandwich
formula appropriately quantifies the estimator variability. More specifi-
cally, the studentized form (2.9) is adequately close to the standard Nor-
mal -noticeably with variance less than one- making it a valid tool for
hypothesis testing.

However, the regression coefficient estimator is still biased for nonzero
coefficient, that prevents the proposed Wald statistic to be used for inter-
val estimation. In the next section we discuss an approach based on Score
statistic to build confidence intervals.

2.2.2 The IS-Lasso Score statistic

The quantity eU(�) and fH(�) depend on �, for simplicity from now we
indicate eU(�) = eU and fH(�) = fH . We partition the regression vector
of coefficients � in �1 2 Rp

1 and �2 2 Rp
2 as the interest and nuisance pa-

rameters, respectively and indicate with eUj , fHjk and Ijk (j, k = 1, 2) the
corresponding blocks of the Score vector, and of the Hessian and Infor-
mation matrices. It is well know that score inference on �1 relies on the
profiled score, obtained through Taylor expansion

eU1|2 = eU1 � fH12
fH�1

22
eU2, (2.10)
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with:
eU =

"
eU1
eU2

#
=


X

T
1 (y �X1�1) + �P1(�1,v)

X
T
2 (y �X2�2) + �P2(�2,v)

�

a standardize form of eU1|2 can be used to make inference on �1 (Boos,
1992; Hu and Kalbfleisch, 2000). Equation (2.10) can be expressed in ma-
trix notation via

eU1|2 = A eU = [ I,�b][ eUT
1 , eUT

2 ]T (2.11)

where I is the identity matrix, and b = fH12
fH�1

22 . Unlike the usual
inferential contexts where the regularity conditions are met, in our case,
E[ eU ] 6= 0 since E[fU1] = �P1 and E[fU2] = �P2 and the expected value of
(2.10) can be written as:

E[ eU1|2] = E[ eU1] + b( eU2 � E[ eU2]) = �P1 � b�P2 (2.12)

Starting from equation (2.11), the variance is easily obtained as:

V( eU1|2) = AV( eU)AT = AIAT = �
2
A(XT

X)AT (2.13)

Consequently, the studentized Score statistic has to centred in order to be
used for inference and it takes the form:

eS1|2 = [ eU1|2 � E[ eU1|2]]
TV( eU1|2)

�1[ eU1|2 � E[ eU1|2]]
d! �

2
p1 , (2.14)

where p1 is the dimension of the interest parameter �1. The proposed
studentized Score statistic eS1|2 can be employed both for hypothesis test-
ing and interval estimation. In hypothesis testing problem, we refer to
the usual aforementioned hypotheses H0 : �j = 0 versus H1 : �j 6= 0. For
interval estimation a (1� ↵) confidence interval for �1 is given by:

CI1�↵ = {�̄1 : eS1|2(�̄1)  �
2
p1;1�↵}.

From a practical point of view, once profiled score is computed CIs are
obtained through inversion. To illustrate, Figure 2.5 portrays an example
of profile score for two coefficients in a toy dataset.

2.2.3 Some extensions

The extension to non-normal responses is very easy, the strategy is to
replace the Newton-Raphson step with a IWLS step wherein the contin-
uous response is the working response and proper weights depending
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FIGURE 2.5: Illustrating the profile score with corresponding point esti-
mate and 95% confidence intervals in a simulated dataset. The left and
right panels refer to a non-zero and zero coefficient respectively. In the
right panel the functions have been shifted to guarantee S1|2(�̂) = 0
(thus the dashed horizontal lines do not correspond to quantiles z.025

and z.975).

on family and link function have to be accounted for. In addition, the
IS-Lasso allows to define a pseudo hat matrix at convergence, namely
A = X(fH)�1

X
T . The j = 1, . . . , p leading elements of A, hj say, could

be used to quantify the amount of penalization of each estimate such that
hj = 1 for unpenalized coefficient, hj . 1 for weakly penalized coeffi-
cients, and hj ⇡ 0 for strongly penalized (almost null) coefficients. The
coefficient-specific hj could be also used to set weights in the adaptive
LASSO penalty introduced in section (1.1.4). Since to use the estimates
from a preliminary unpenalized fit is not always available, an alternative
within the IS-Lasso would be to use wj = 1/hj which are always com-
putable even when n < p.
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Chapter 3

Simulation studies

We present some simulations carried out to assess the finite sample be-
havior of our proposed framework.

3.1 Point estimation

In this section, we investigate the finite sample behavior of our lasso-
type estimator in terms of bias and variability. We generate 500 replicates
from a linear regression model y ⇠ N (X�, In) for different scenarios:
two sample sizes n = 100 or n = 200 and number of parameters p with
ratio p/n = (0.5, 0.8, 1.2, 2) for each n; the fixed p covariates come from
a multi-normal distribution with identity covariance matrix, and the 20
coefficients different from zero are a sequence from �1.5 to 1.5 by 0.16.
Table 3.1 reports summary of sampling distributions for 10 coefficients in
comparison with lasso, IS-lasso and lasso report estimates very close. In
addition, IS-lasso estimators are biased if the corresponding coefficient
is nonzero and SE always tend to slightly underestimate uncertainty for
non-zero coefficients.

Table 3.2 reports the means and standard deviations of the sampling
distributions at different values of c from a simulation study. We generate
500 replicates from a linear regression model y ⇠ N (X�, In) with n =
100 and p = 30, 150 and 5 non zero coefficients. Estimates and standard
deviations are very similar both for p = 30 and p = 150, the choice of c,
therefore, does not affect the estimates and its variability.



22 Chapter 3. Simulation studies

TABLE 3.1: Mean (M) and standard deviation (SD) of the sampling
distributions in the simulation study of IS-Lasso. SE is the average of
the standard errors. Lasso is the average of the lasso estimates. The
tuning parameter is chosen by cross validation.

TRUE VALUE

-1.50 -1.34 -1.18 -1.03 -0.87 0 0 0 0 0

n = 100, p = 50

Lasso -1.434 -1.275 -1.121 -0.955 -0.834 -0.008 -0.025 -0.008 -0.014 0.001
M -1.431 -1.268 -1.114 -0.952 -0.828 -0.014 -0.032 -0.009 -0.018 0.003
SD 0.111 0.133 0.111 0.130 0.123 0.066 0.067 0.069 0.064 0.068
SE 0.114 0.116 0.116 0.122 0.119 0.069 0.080 0.080 0.075 0.089

n = 100, p = 80

Lasso -1.432 -1.284 -1.162 -0.867 -0.752 -0.007 -0.004 0.004 0.001 0.023
M -1.426 -1.278 -1.157 -0.841 -0.749 -0.012 -0.005 0.002 0.004 0.027
SD 0.123 0.115 0.116 0.129 0.135 0.039 0.043 0.044 0.040 0.046
SE 0.118 0.119 0.127 0.125 0.122 0.057 0.058 0.060 0.056 0.064

n = 100, p = 120

Lasso -1.359 -1.246 -1.062 -0.902 -0.746 0.010 -0.005 -0.001 0.012 -0.037
M -1.308 -1.222 -1.047 -0.872 -0.730 0.015 -0.010 -0.002 0.018 -0.055
SD 0.122 0.126 0.137 0.132 0.122 0.028 0.023 0.030 0.030 0.046
SE 0.114 0.118 0.120 0.117 0.111 0.044 0.036 0.042 0.057 0.069

n = 100, p = 200

Lasso -1.137 -1.214 -1.020 -0.965 -0.908 0.003 0.007 -0.018 0.015 -0.003
M -1.033 -1.180 -0.966 -0.940 -0.928 0.005 0.015 -0.026 0.028 -0.002
SD 0.131 0.125 0.131 0.117 0.115 0.020 0.023 0.024 0.028 0.016
SE 0.132 0.121 0.119 0.123 0.127 0.034 0.033 0.042 0.041 0.025

n = 200, p = 100

Lasso -1.394 -1.287 -1.070 -0.971 -0.782 -0.009 0.006 -0.004 0.004 -0.008
M -1.390 -1.282 -1.069 -0.960 -0.775 -0.016 0.012 -0.007 0.009 -0.011
SD 0.083 0.071 0.078 0.080 0.084 0.027 0.028 0.028 0.028 0.026
SE 0.076 0.076 0.078 0.078 0.078 0.034 0.038 0.038 0.037 0.035

n = 200, p = 160

Lasso -1.469 -1.264 -1.079 -0.928 -0.826 -0.013 0.003 -0.001 -0.005 -0.001
M -1.468 -1.251 -1.065 -0.916 -0.823 -0.022 0.003 -0.006 -0.007 -0.002
SD 0.070 0.082 0.088 0.084 0.082 0.023 0.013 0.016 0.015 0.018
SE 0.076 0.077 0.078 0.077 0.077 0.036 0.020 0.025 0.025 0.033

n = 200, p = 240

Lasso -1.406 -1.217 -1.094 -0.936 -0.755 0.002 -0.001 0.004 0.000 0.001
M -1.386 -1.203 -1.078 -0.929 -0.739 0.004 0.002 0.006 0.001 0.002
SD 0.077 0.081 0.082 0.080 0.080 0.013 0.009 0.010 0.011 0.010
SE 0.077 0.076 0.078 0.077 0.081 0.027 0.022 0.024 0.026 0.021

n = 200, p = 400

Lasso -1.378 -1.250 -1.071 -0.904 -0.741 0.002 0.000 -0.003 -0.003 -0.006
M -1.353 -1.232 -1.049 -0.882 -0.719 0.003 0.002 -0.005 -0.006 -0.011
SD 0.080 0.079 0.080 0.080 0.082 0.006 0.005 0.006 0.006 0.009
SE 0.075 0.076 0.078 0.077 0.078 0.015 0.014 0.017 0.016 0.021
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TABLE 3.2: Summary of sampling distributions: Mean (M) and the
standard deviation (SD) for different value of c. The tuning parameter
is chosen by cross validation. Only 4 non zero and 4 null coefficients
are reported.

TRUE VALUE

3 3 3 3 0 0 0 0
p = 30 M c = 0.12.854 2.905 2.896 2.913 -0.005 -0.001 -0.013 0.007

c = 0.9 2.845 2.904 2.892 2.908 -0.007 -0.003 -0.017 0.008
c = c̄ .849 2.905 2.894 2.911 -0.007 -0.002 -0.015 0.008

SD c = 0.1 0.123 0.110 0.111 0.108 0.048 0.046 0.055 0.049
c = 0.9 0.128 0.112 0.111 0.110 0.055 0.052 0.059 0.054
c = c̄ 0.126 0.110 0.109 0.109 0.053 0.051 0.058 0.052

p = 150 M c = 0.1 2.759 2.765 2.834 2.814 -0.004 0.003 0.001 0.002
c = 0.9 2.735 2.738 2.821 2.797 -0.007 0.003 0.001 0.002
c = c̄ 2.736 2.737 2.822 2.797 -0.007 0.003 0.001 0.001

SD c = 0.1 0.113 0.111 0.105 0.113 0.022 0.020 0.020 0.020
c = 0.9 0.115 0.112 0.105 0.111 0.027 0.021 0.023 0.022
c = c̄ 0.114 0.113 0.106 0.113 0.025 0.020 0.022 0.022

3.2 Hypothesis testing

In the second batch of simulations we assessed performance of the IS-
lasso Wald statistic in actual hypothesis testing problems maintaining the
same scenarios of section 3.1. The hypothesis of interest is H0 : �j = 0
for any coefficient �j in the regression equation. We compare the Wald
statistic (2.9) with two competitors covTest and postSel discussed previ-
ously and implemented in the R packages covTest (Lockhart et al., 2013)
and selectiveInference (Tibshirani et al., 2017). covTest does not require
a fixed � value as it returns results across the path, and it uses a stan-
dard Exponential distribution to get p-values. postSel carries out selec-
tive inference, namely it returns p-value using a reference truncated nor-
mal distribution only for the covariates in the selected active set. When
the covariate is not included in the model no inference measure is given;
however the traditional null hypothesis, H0 : �j = 0, would have not
been rejected, and thus we fix p-value=1. That appears to be a sound rule,
when in practice one is interested in returning a p-value for each candi-
date covariate. At each replicate, the tuning parameter � was optimized
through 5-fold cross validation for postSel and IS-lasso.
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3.2.1 Power function under violation of the theoretical condi-
tions

Comparisons in terms of power functions are reported in Figure 3.1 for
n = 100, 200 for different number p of covariates. The empirical rejection
rates under the null hypothesis are averaged among all zero coefficients.
When the true coefficient is non-null, some differences are noteworthy:
the Wald statistic based on IS-lasso appears to provide the most power-
ful test in all scenarios, with a quite negligible difference when n = 100,
p = 200 and true � = ±0.08. Overall covTest appears to provide some-
what wiggly patterns at n = 100, especially when the number of covari-
ates is large. All tests exhibit correct sizes, with values lower than 0.05,
to better understand the differences Figure 3.2 zoom the Figure before in
the interval from -0.08 to 0.08. CovTest is the most conservative test, Post-
sel is the closest to the nominal level and IS-wald represents a trade-off
between the two test.
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FIGURE 3.1: Power functions (at 5% level) of different tests, n = 100
(upper panels), n = 200 (lower panels) and number p of covariates on
the top: IS-Wald (black circles), covTest (dark gray squares) and postSel
(light gray triangles). At each replicate the optimal lambda employed
by IS and postSel has been obtained via cross validation.
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FIGURE 3.2: Size of different tests, n = 100 (upper panels), n = 200
(lower panels) and number p of covariates on the top: IS-Wald (black
circles), covTest (dark gray squares) and postSel (light gray triangles).
At each replicate the optimal lambda employed by IS and postSel has
been obtained via cross validation.
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3.2.2 Power function with correlated covariates

Generating X ⇠ Np(0,⌃) with covariance matrix following Toeplitz struc-
ture ⌃j,k = 0.5|j�k| (Figure 3.3), again IS-Wald test shows the highest
power and adequate size, CovTest presents a wiggle trend and postSel
has the lowest power, in addition, the latter two tests gain in power with
respect the previous scenario.

3.2.3 Power function conditionally to the selected model

Inferences by postSel are conditional to the the selected model, namely
postSel returns p-values only for the selected covariates. To make (uncon-
ditional) comparisons with IS-lasso and covTest, we have set p-value=1
for the unselected variables, which appears pretty sound from a practical
viewpoint. However for the sake of completeness, we have also com-
pared the three tests conditionally, namely computing the rejection rates
for the hypothesis H0 : �j = 0 only when the corresponding variable Xj

entered the selected model. Comparative performances of the three tests
was unchanged with respect to the unconditional context.

3.2.4 Power function under theoretical conditions

In the third batch of simulations we assessed performance of the IS-lasso
Wald statistic under theoretical conditions namely (Section 1.1.1). We
generate 500 replicates from a linear regression model y ⇠ N (X�, In)
for different scenarios: two sample sizes n = 100 or n = 200 and number
of parameters p with ratio p/n = (0.5, 0.8, 1.2, 2) for each n and the num-
ber of active set k  n/(2 log p) = 8 with magnitude at least of |4|; the
fixed p covariates come from a multi-normal distribution with identity
covariance matrix, and the 8 coefficients different from zero take values
in a sequence from �5 to �4 and from 4 to 5 by 0.33.

All tests exhibit very good performance (Figure 3.4 ) with a power
� 95% and a size close to the nominal level.
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FIGURE 3.3: Power functions (at 5% level) of different tests, n = 100
(upper panels), n = 200 (lower panels) and number p of covariates
on the top: IS-Wald (black circles), covTest (dark gray squares) and
postSel (light gray triangles). At each replicate the optimal lambda
employed by IS and postSel has been obtained via cross validation,
and X ⇠ Np(0,⌃) with covariance matrix following Toeplitz structure
⌃j,k = 0.5|j�k|.
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FIGURE 3.4: Power functions (at 5% level) of different tests under the-
oretical conditions, n = 100 (upper panels), n = 200 (lower panels)
and number p of covariates on the top: IS-Wald (black circles), covTest
(dark gray squares) and postSel (light gray triangles). At each replicate
the optimal lambda employed by IS and postSel has been obtained via
cross validation.
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3.2.5 Power function of Score statistic

As discussed in Section 2.2.2 the Score statistic can be applied for hy-
pothesis testing problem, Figure 3.5 shows the power function of two
simulation studies adding Score test. IS-Score is overlapped to IS-Wald
in all scenarios. Focus on size, as depicted in Figure 3.6 , we observe that
IS-Score is closer to nominal level than IS-Wald, and the two test come
closer when p increases.

3.2.6 Conclusions

Simulation studies on hypothesis testing show very good performance of
both IS-Wald and IS-Score test. The size is adequate and under the nom-
inal value for all tests. When theoretical conditions are fulfilled covTest
and postSel gain and achieve a good power level, unfortunately in real
case theoretical conditions hardly are satisfied.
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FIGURE 3.5: Power functions (at 5% level) of different tests under the-
oretical conditions, n = 100 (upper panels), n = 200 (lower panels)
and number p of covariates on the top: IS-Wald (black circles), IS-Score
(medium gray square), covTest (dark gray squares) and postSel (light
gray triangles). At each replicate the optimal lambda employed by IS
and postSel has been obtained via cross validation.
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FIGURE 3.6: Size of different tests under theoretical conditions, n = 100
(upper panels), n = 200 (lower panels) and number p of covariates on
the top: IS-Wald (black circles), IS-Score (medium gray square), covTest
(dark gray squares) and postSel (light gray triangles). At each replicate
the optimal lambda employed by IS and postSel has been obtained via
cross validation.
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3.3 Interval estimation

We compare confidence intervals of the IS-Score statistic (2.14) with two
competitors Hdi and postSel discussed previously and implemented in
the R packages hdi (Dezeure et al., 2015) and selectiveInference (Tibshi-
rani et al., 2017). Hdi for the choice of tuning parameter uses an internal
procedure denoted by Zhang and Zhang (2014). postSel returns confi-
dence intervals only for the covariates in the selected active set for a fixed
�. Again, when the covariate is not included in the model no CI is given;
however we fix CI=0 which means not significant interval estimation.
At each replicate, the tuning parameter � was optimized through 5-fold
cross validation for postSel and IS-lasso.

We compare CIs in terms of coverage and median width of the Score,
postSel and Hdi. The reason of the median width , and not average for
example, is linked to postSel, because most of the time it returns infinity
upper or/and lower bound.

3.3.1 Confidence intervals under theoretical conditions

Table 3.3 shows results based on 300 runs, respectively in low and high
dimensional settings, wherein the tuning parameter � has been selected
via 5-fold cross validation at each replicate. The Score test shows good
performance with CIs coverage � 95% in all scenarios, postSel is very
close to 95%, while Hdi has the lowest performance specially for non-
zero coefficients. Figure 3.7 depicts the median upper and lower bound
of the CIs of the first 20 coefficients of simulation studies reported in Table
3.3, Hdi (green line) seems to have smaller CIs than Score, conversely
postSel has larger CIs than Score and Hdi, indeed from Table 3.3 we know
that even if Hdi has the lowest width its coverage never achieves the
nominal level. Moreover, since postSel makes inference conditionally to
the selected model and most of the time zero coefficients are not included
in, CIs show a zero width.

3.3.2 Confidence intervals under violation of the theoretical con-
ditions

We also consider scenarios in which the �min condition is not met, namely
with same combinations of n and p and � = (�1,�0.5, 0.65, 0.88,
1, 0, . . . , 0)T . Table 3.4 reports results of the simulations in which the
�min condition is violate. Score shows again the best coverage, postSel
achieves a good coverage at expense of a large median width and Hdi
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TABLE 3.3: Coverage levels and median widths (in italic) of 95% CIs
from Score, Hdi and postSel for 10 selected parameters. Results are
based on 300 replicates in low and high dimensional setting, � is equal
to 1 and the optimal � has been obtained via cross validation.

TRUE VALUE

(n, p) 3.0 -3.1 4.0 3.5 -5.0 0.0 0.0 0.0 0.0 0.0

Score 0.96 0.98 0.97 0.96 0.98 0.98 0.96 0.96 0.97 0.97
0.68 0.75 0.75 0.78 0.69 0.85 0.80 0.74 0.81 0.71

(50, 40) Hdi 0.95 0.87 0.91 0.86 0.90 0.90 0.87 0.88 0.96 0.91
0.63 0.57 0.53 0.59 0.53 0.55 0.54 0.56 0.53 0.56

postSel 0.94 0.94 0.94 0.93 0.95 0.99 0.99 0.99 1.00 0.98
0.92 1.14 1.14 1.20 0.99 0.00 0.00 0.00 0.00 0.00

Score 0.98 0.98 0.99 0.98 0.99 0.99 0.98 0.98 0.98 0.98
0.79 0.74 0.83 0.87 1.00 0.95 0.86 0.78 1.02 0.83

(50, 60) Hdi 0.82 0.87 0.91 0.88 0.70 0.93 0.95 0.95 0.88 0.95
0.54 0.63 0.56 0.58 0.57 0.51 0.56 0.56 0.54 0.56

postSel 0.92 0.93 0.93 0.94 0.93 0.99 0.98 0.99 1.00 0.99
1.37 1.30 1.51 1.75 1.74 0.00 0.00 0.00 0.00 0.00

Score 0.98 0.96 0.98 0.99 0.97 0.98 0.99 0.97 0.97 0.98
0.57 0.55 0.60 0.62 0.56 0.53 0.56 0.57 0.58 0.54

(100, 80) Hdi 0.82 0.90 0.86 0.74 0.95 0.85 0.96 0.96 0.73 0.89
0.42 0.42 0.43 0.42 0.43 0.41 0.41 0.41 0.42 0.40

postSel 0.95 0.94 0.95 0.95 0.96 0.98 1.00 0.99 0.98 0.99
1.28 1.18 1.37 1.53 1.18 0.00 0.00 0.00 0.00 0.00

Score 0.99 1.00 0.98 0.99 0.99 0.97 0.99 1.00 0.98 0.97
0.57 0.67 0.61 0.57 0.51 0.56 0.60 0.70 0.56 0.66

(100, 120) Hdi 0.97 0.96 0.93 0.91 0.97 0.97 0.97 0.95 0.91 0.97
0.46 0.44 0.42 0.43 0.42 0.44 0.42 0.41 0.42 0.44

postSel 0.91 0.94 0.93 0.94 0.93 0.99 0.99 0.99 0.99 1.00
1.45 1.67 1.58 1.47 1.13 0.00 0.00 0.00 0.00 0.00
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has the lowest coverage. Figure 3.8 graphically reports the median width
for the first 20 coefficients of the considered method, again, postSel has
the largest CIs, Hdi the shortest and Score is near to Hdi when n increases.

TABLE 3.4: Coverage levels and median widths of 95% CIs from Score,
Hdi and postSel for 10 selected parameters. Results are based on 300
replicates in low and high dimensional setting, � is equal to 1 and the
optimal � has been obtained via cross validation.

TRUE VALUE

(n, p) -1.0 -0.5 0.65 0.88 1.0 0.0 0.0 0.0 0.0 0.0

Score 0.97 1.00 0.96 0.99 0.98 0.98 0.98 0.97 1.00 0.97
0.80 0.97 0.86 1.02 0.79 1.06 0.99 0.88 1.12 0.80

(50, 40) Hdi 0.89 0.91 0.91 0.90 0.95 0.90 0.92 0.92 0.93 0.92
0.56 0.58 0.56 0.56 0.63 0.53 0.61 0.56 0.59 0.61

postSel 0.95 0.95 0.93 0.95 0.95 1.00 0.99 0.98 0.99 0.99
1.92 2.94 2.56 2.64 2.05 0.00 0.00 0.00 0.00 0.00

Score 0.99 0.98 1.00 1.00 0.99 1.00 0.99 0.99 0.99 0.99
1.02 0.85 1.09 1.11 1.43 1.23 1.03 0.95 1.38 0.97

(50, 60) Hdi 0.88 0.90 0.90 0.86 0.95 0.96 0.96 0.96 0.95 0.91
0.58 0.56 0.56 0.57 0.60 0.55 0.57 0.64 0.60 0.57

postSel 0.96 0.94 0.96 0.95 0.96 1.00 0.99 0.99 0.99 0.98
2.73 2.62 2.68 3.60 3.47 0.00 0.00 0.00 0.00 0.00

Score 0.98 0.98 0.99 0.99 0.98 0.98 0.99 0.98 0.99 0.98
0.57 0.54 0.60 0.62 0.55 0.53 0.56 0.57 0.58 0.54

(100, 80) Hdi 0.89 0.92 0.94 0.89 0.93 0.96 0.90 0.96 0.93 0.96
0.40 0.43 0.47 0.43 0.41 0.40 0.40 0.42 0.40 0.40

postSel 0.94 0.94 0.96 0.94 0.93 0.98 0.99 0.98 0.99 0.99
1.41 1.46 1.69 1.87 1.46 0.00 0.00 0.00 0.00 0.00

Score 0.99 1.00 0.99 0.99 0.99 0.98 0.99 1.00 1.00 0.98
0.63 0.78 0.67 0.63 0.54 0.61 0.65 0.78 0.62 0.73

(100, 120) Hdi 0.93 0.92 0.85 0.95 0.91 0.97 0.91 0.96 0.97 0.95
0.42 0.41 0.43 0.42 0.44 0.42 0.40 0.42 0.42 0.42

postSel 0.93 0.91 0.90 0.90 0.94 0.99 0.97 0.99 0.98 0.99
2.32 2.80 2.40 2.12 1.76 0.00 0.00 0.00 0.00 0.00
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3.3.3 Conclusions

Simulation studies show good performance of Score, which achieves in
all scenarios a very high coverage, Hdi has not very well performance,
postSel shows not bad performance under theoretical condition. All tests
are not comparable in terms of width, however, Hdi has the lowest width
but also the lowest coverage than other tests, postSel reports the largest
width, Score seems to be a good trade-off between the tests.
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Chapter 4

Modelling lung function in asthmatic
children

4.1 Motivating data

Between September 2011 and 2017, n = 529 asthmatic children, aged
5–17 years, were recruited as a part of the ‘Childhood Asthma and Envi-
ronment Study’ (CHASER, clinicaltrials.gov NCT02433275) an ongoing
cross-sectional study at the outpatient clinic of research unit of Pediatric

Allergology & Pulmonology. The parents or legal guardians were inter-
viewed by means of a modified version of the SIDRIA (Italian Studies on
Respiratory Disorders in Children and the Environment) questionnaire
(Simoni et al., 2005; Migliore et al., 2009), including questions regarding
socio-demographic characteristics, parental history of asthma, early and
current outdoor and indoor environmental exposures, child’s history of
wheeze and presence of co-morbidities. Asthma severity level (Intermit-
tent Asthma, IA; Mild Persistent Asthma, MPA; Moderate/Severe Per-
sistent Asthma, MSPA) and asthma control status (Well Controlled, WC;
Partially Controlled, PC; Uncontrolled Asthma, UA) were retrospectively
performed according to GINA (Global Initiative for Asthma) (GINA, 2017).
Pulmonary function tests were performed through a portable spirometer
(Pony FX, Cosmed, Rome, Italy). FVC, FEV1, and FEF25�75% were mea-
sured according to ATS/ERS guidelines (Miller et al., 2005). The observed
spirometric values were transformed in z-score and in percent of pre-
dicted value, according with the Global Lungs Initiative (GLI) (Quanjer
et al., 2012). Allergic sensitization were defined upon a positive skin re-
sponse after 15 min (i.e., a wheal � 3 mm larger than the negative control
test) (Bernstein et al., 2008) to any of the following allergens: indoor (der-
matophagoides mix, dog and cat dander), outdoor (grass mix, parietaria
judaica, cupressus, olive) and alternaria (ALK SQ extracts). Positive Skin
Prick Tests (SPT+) were defined as at least one positive SPT. None of the
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patients were on drug treatment at the time of the enrollment. All chil-
dren were caucasic.

4.2 Exploratory analysis

Table 4.1 shows demographic characteristics of the 529 subjects. No dif-
ference is found between the asthmatic groups, except for pre-term born,
GINA and maternal education. MSPA are more frequently pre-term born
and uncontrolled than the other two groups, in addition MSPA mothers
are less educated than intermittent and mild asthmatic group.

TABLE 4.1: Subject characteristics by asthma severity level (Intermit-
tent Asthma, IA; Mild Persistent Asthma, MPA; Moderate/Severe Per-
sistent Asthma, MSPA)

IA MPA MSPA p-value⇤⇤

n=229 n=212 n=88

Gender 0.583
Female 91 (40%) 75 (35%) 31 (35%)
Male 138 (60%) 137 (65%) 57 (65%)

Age, (years) 8.97 (2.83) 8.51 (2.91) 9.02 (2.84) 0.174
Weight, (kg) 35.65 (14.64) 33.96 (14.43) 35.83 (16.13) 0.416
Height, (cm) 132.97 (16.75) 130.46 (16.75) 132.62 (17.21) 0.269
Birth weight, (kg) 3.23 (0.48) 3.24 (0.51) 3.09 (0.61) 0.057
Preterm born (<37 years) 13 (6%) 27 (13%) 14 (17%) 0.006
Caesarean section 124 (55%) 123 (59%) 56 (66%) 0.2448
Breast feeding (> 3 months) 152 (70%) 140 (71%) 56 (68%) 0.922
Age at weaning (years) 5.18 (1.02) 5.21 (1.11) 5.36 (1.36) 0.464
GINA Uncontrolled, n(%) 49 (21%) 110 (52%) 60 (68%) <0.001
Maternal education 0.014

<8 years 39 (17%) 59 (28%) 25 (29%)
�8 years 186 (83%) 152 (72%) 62 (71%)

Paternal education 0.742
<8 years 54 (24%) 56 (27%) 20 (24%)
�8 years 170 (76%) 152 (73%) 65 (76%)

Paternal history of asthma 43 (19%) 36 (17%) 25 (29%) 0.075
Maternal history of asthma 47 (21%) 37 (18%) 17 (20%) 0.689

Data are expressed as n (%) or mean (SD); ⇤⇤p-value comes from a X2 test for categorical variables
and form ANOVA for continuous variables.

Subjects are equally exposed to traffic, smoke, pet and mold (Table
4.2), however MSPA children live < 500 meters to an industry more fre-
quently than the others.

MSPA has more frequently food allergy than the other two groups
and IA has less frequently history of wheezing than persistent (Table 4.3).

For all spirometric indices both in absolute values, Z-score and pre-
dicted values, MSPA shows lung functions significantly lower than IA
and MPA (Table 4.4).
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TABLE 4.2: Indoor and outdoor exposure by asthma severity level
(Intermittent Asthma, IA; Mild Persistent Asthma, MPA; Moder-
ate/Severe Persistent Asthma, MSPA)

IA MPA MSPA p-value⇤⇤

n=229 n=212 n=88

Maternal smoke in pregnancy 23 (10%) 20 (10%) 13 (15%) 0.349
Paternal smoke in pregnancy 79 (35%) 67 (32%) 36 (42%) 0.275
Early Exposure*
Maternal smoke early exposure 27 (12%) 19 (9%) 15 (18%) 0.114
Paternal smoke early exposure 76 (34%) 70 (33%) 33 (38%) 0.699
Early mold exposure 55 (25%) 72 (35%) 25 (29%) 0.056
Early dog exposure 16 (7%) 18 (9%) 9 (10%) 0.605
Early cat exposure 11 (5%) 5 (2%) 5 (6%) 0.277
Current Exposure
Passive smoke exposure 66 (29%) 70 (33%) 33 (38%) 0.318
Current mold exposure 52 (23%) 47 (22%) 21 (24%) 0.953
Current dog exposure 33 (15%) 30 (14%) 18 (20%) 0.361
Current cat exposure 15 (7%) 10 (5%) 4 (5%) 0.634
Intense traffic level 190 (84%) 179 (84%) 70 (80%) 0.573
Proximity to landfill 4 (2%) 4 (2%) 4 (5%) 0.302
Proximity to industry 10 (4%) 11 (5%) 11 (12%) 0.023
Proximity to continuously vehicular traffic 192 (85%) 176 (83%) 74 (85%) 0.869
Proximity to high traffic road(<50m) 84 (37%) 67 (32%) 22 (25%) 0.109

⇤Early exposure means during the first year of life, data are expressed as n (%); ⇤⇤p-value comes
from a X2 test for categorical variables and form ANOVA for continuous variables.

TABLE 4.3: Co-morbidities distribution by asthma severity level (Inter-
mittent Asthma, IA; Mild Persistent Asthma, MPA; Moderate/Severe
Persistent Asthma, MSPA)

IA MPA MSPA p-value⇤⇤

n=229 n=212 n=88

Eczema 54 (24%) 50 (24%) 30 (34%) 0.120
Rhinitis 142 (62%) 123 (58%) 56 (64%) 0.550
Conjunctivitis 56 (25%) 66 (31%) 26 (30%) 0.333
Oral syndrome 7 (3%) 7 (3%) 1 (1%) 0.567
Acute urticaria 47 (21%) 29 (14%) 13 (15%) 0.129
Angioedema 13 (6%) 8 (4%) 6 (7%) 0.476
Anaphylaxis 6 (3%) 7 (3%) 4 (5%) 0.690
Food allergy 20 (9%) 20 (9%) 19 (22%) 0.003
Otitis 38 (17%) 34 (16%) 17 (19%) 0.784
Laryngospasm 73 (32%) 75 (36%) 27 (31%) 0.666
Upper respiratory infection 75 (33%) 65 (31%) 28 (32%) 0.867
Sinusitis 29 (13%) 32 (15%) 11 (12%) 0.716
Snoring 102 (45%) 93 (44%) 42 (48%) 0.823
Wheezing 157 (69%) 171 (81%) 72 (82%) 0.004

Data are expressed as n (%); ⇤⇤p-value comes from a X2 test for categorical variables
and form ANOVA for continuous variables.
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TABLE 4.4: Spirometric indices by severity level (Intermittent
Asthma, IA; Mild Persistent Asthma, MPA; Moderate/Severe Persis-
tent Asthma, MSPA)

IA MPA MSPA p-value⇤⇤

n=229 n=212 n=88

FEV1 1.83 (0.68) 1.68 (0.62) 1.49 (0.54) <0.001
Z-FEV1 0.06 (1.14) -0.2 (1.07) -1.37 (1.06) <0.001
FEV1% 100.6 (13.55) 97.56 (12.94) 83.48 (12.7) <0.001
FVC 2.1 (0.83) 1.99 (0.79) 1.85 (0.72) 0.041
Z-FVC 0.17 (1.28) 0.18 (1.15) -0.75 (1.18) <0.001
FVC % 102.27 (15.94) 102.48 (14.49) 91.17 (14.19) <0.001
FEF25�75% 2.12 (0.84) 1.79 (0.69) 1.47 (0.62) <0.001
Z-FEF25�75% -0.34 (1.26) -0.84 (0.83) -1.63 (0.99) <0.001
FEF25�75%% 93.08 (32.28) 81.4 (18.15) 65.41 (19.56) <0.001
FEV1/FVC 87.84 (6.16) 85.4 (7.05) 81.9 (8.83) <0.001
Z-FEV1/FVC -0.18 (1.05) -0.62 (1.06) -1.01 (1.22) <0.001
FEV1/FVC % 98.23 (7.09) 95 (7.69) 91.65 (9.89) <0.001

Data are presented as mean (SD). FVC, forced vital capacity; FEV1, forced expiratory
volume in 1 second; FEF25�75, forced inspiratory flow 25-75%; ⇤⇤p-value comes from a

X2 test for categorical variables and form ANOVA for continuous variables.

4.2.1 Regression analysis

Table 4.5 shows IS-lasso model for FEV1% with Gamma family and iden-
tity link. The model includes p = 82 covariates and the response vari-
able is FEV1%. Male have higher FEV1% than females, children with
persistent asthma have a lower FEV1% predicted than intermittent. Age
could be interpreted as a proxy of the asthma duration, indeed, FEV1%
predicted decreases by 0.51 if age increases by one unit. Environmental
factors result to be risk factors for impaired lung function, in particu-
lar a main adverse role on FEV1% is recorded for proximity to landfill,
industry and high traffic road. 95% CIs obtained through Score, are rep-
resented in Figure 4.1, in appendix is possible to find a table which reveal
the names of the variables associated to the number reported in the fig-
ure.
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TABLE 4.5: IS-lasso model for FEV1% with Gamma family and identity
link. The model is estimated including 82 covariates, table shows only
significant covariates, � = 0.94 is chosen by AIC.

�̂ SE p-value

Male 7.634 0.853 0.000
Persistent -5.273 0.861 0.000
Age -0.507 0.137 0.000
Paternal history of asthma -3.598 1.046 0.001
Proximity to landfill -6.982 2.701 0.010
Proximity to industry -4.166 1.717 0.015
Proximity to continuously vehicular traffic -2.931 1.192 0.014
Proximity to high traffic road(<50m) -1.923 0.903 0.033
Cough (>4 days/week) -1.923 0.898 0.026

Table 4.6 reports IS-lasso model for FVC% in logarithmic scale. Male
have higher FVC% than females, children with persistent asthma have
a lower FVC% predicted than intermittent, FVC% predicted decreases if
age increases by one unit and finally current cat exposure has a protec-
tive effect on FVC%. 95% CIs obtained through Score, are represented in
Figure 4.2, in appendix is possible to find a table which reveal the names
of the variables associated to the number reported in the figure.

TABLE 4.6: IS-lasso model for FVC% with Gamma family and logarith-
mic link. The model is estimated including 82 covariates, table shows
only significant covariates, � = 5 is chosen by AIC.

�̂ SE p-value

Male 0.130 0.012 0.000
Persistent -0.022 0.010 0.020
Current cat exposure 0.054 0.024 0.024
Age -0.003 0.002 0.027
Number of cohabitant -0.008 0.004 0.045
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Results on FEF25�75% are reported in Table 4.7. Covariates with a sig-
nificant effect on FEF25�75% are Paternal hisory of asthma, asthma sever-
ity and proximity to continuously vehicular traffic, these variables have a
negative effect on the lung function. 95% CIs obtained through Score, are
represented in Figure 4.3, in appendix is reported a table which reveal the
names of the variables associated to the number reported in the figure.

TABLE 4.7: IS-lasso model for FEF25�75% with Gamma family and
logarithmic link. The model is estimated including 82 covariates, table
shows only significant covariates, � = 2.2 is chosen by AIC.

�̂ SE p-value

Paternal history of asthma -0.082 0.033 0.012
Persistent -0.152 0.027 0.000
Proximity to continuously vehicular traffic -0.103 0.041 0.011

4.2.2 Comparisons with other proposal

Since both covTest and postSel don’t allow to use a Gamma family, in
this section we provide a model on FEV1 with Gaussian family in order
to compare the IS-Lasso p-values with the other two competitors. Inter-
estingly, the third and fourth variable are significant with IS-Wald and
not significant for the other two tests (Figure 4.4).
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Chapter 5

Conclusion

In this thesis we have introduced the Induced Smoothed lasso, a new
framework for regression models with the lasso penalty. Induced
smoothing is a relatively new idea that has been successfully employed
in some contexts to cope with non-smooth estimating equations, for in-
stance rank regression (Fu et al., 2010). We have applied IS to the lasso
regression: in the end the L1 penalty is replaced by its smooth coun-
terparts wherein the amount of smoothing acting on each coefficient is
tuned by the corresponding standard error computed by data. As the
sample size increases and the standard error decreases, the IS-lasso gets
closer to the original lasso, making the IS-lasso asymptotically equivalent
to the lasso. However in finite samples the estimating equations will be
always smooth permitting to compute the estimates covariance matrix
via the sandwich formula. Reliable standard errors allow to build the
usual Wald statistic to test for a non-zero regression coefficient. In addi-
tion to the Wald statistic who is useless in interval estimation, we have
also assessed Score test. Both the proposed IS-lasso Wald and Score seem
to be a good inferential tools in LASSO regression. Simulation experi-
ments for different scenarios discussed in section 3 have showed good re-
sults when compared to the other competitors. The coverage levels of the
interval estimators are pretty close to the nominal level in different sce-
narios, even when the theoretical conditions are not met. Implementation
of the proposed IS-lasso methods is available in a R package islasso
with some C++ source code making the R implementation pretty stable
and fast. For instance, with p = 250 covariates our fitter function re-
quires about 0.38 seconds for n = 100, and about 0.66 seconds if n = 1000
to achieve convergence (averages on 10 fits) on a McBook Pro Intel(R)
Core(TM) i7 CPU at 2 GHz on a macOS Sierra 64 bit machine with 8 GB
of RAM. In addition, binomial, poisson and Gamma families have al-
ready been implemented. The main function of the package is islasso:

islasso(formula, family = gaussian(), lambda, data,
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weights, subset, offset, unpenalized,
control = list())

function is very familiar and requires a formula and family for speci-
fying the model and family, the lambda parameter allows to set a value
for the tuning parameter. In addition, control allows to choose several
option already implemented, as for example the adaptive
method. Since asthma is a multi-factorial disease could be important con-
sider several factor simultaneously, only one study (Pescatore et al., 2014)
used the LASSO regression to predict asthma at school age in preschool
children with wheeze or cough using 38 covariates. However, no infer-
ence measure were reported in Pescatore et al. (2014). We have assessed
several environmental and host risk factor for impaired lung function
in a sample of a asthmatic children, but in addition the development of
IS-Lasso model allow us to provide standard errors, p-values and confi-
dence intervals. Our results are in line with other studies, for instance see
Table 4.5, Calderón-Garcidueñas et al. (2003) showed that a lifelong ex-
posure to urban air pollution causes respiratory damage in children. Fur-
thermore exposures to significant concentrations of air pollutants could
be a risk factor for neurodegenerative diseases (Calderón-Garcidueñas
et al., 2007). In addition, as suggested from other studies (Perzanowski
et al., 2002; Gaffin et al., 2012), we found a protective effect of cat expo-
sure.
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Appendix A

Appendix

TABLE A.1: Variables included in the IS-Lasso model.

1 Male 42 Maternal smoke current exposure
2 Persistent 43 Kindergarten
3 Age 44 Breastfeeding
4 Paternal history of asthma 45 Angioedema
5 Proximity to landfill 46 Current dog exposure
6 Proximity to continuously vehicular traffic 47 Smoke in the car
7 Proximity to industry 48 Maternal smoke in pregnancy
8 Cough (>4 days/week) 49 Uncontrolled asthma
9 Proximity to high traffic road(<50m) 50 Early mold exposure
10 Number of cohabitants 51 Paternal food allergy
11 Sinusitis 52 Family current smoke exposure
12 Early cat exposure 53 SLIT
13 Tonsillectomy 54 Rhinitis diagnosis
14 Paternal smoke in pregnancy 55 Maternal history of asthma
15 Windows opened in summer 56 Paternal education (� 8 years)
16 Maternal food allergy 57 Maternal history of angioedema
17 Conjunctivitis 58 Paternal history of allergy
18 Maternal smoke early exposure 59 Maternal history of eczema
19 Oral syndrome 60 Maternal education (� 8 years)
20 House change 61 Swimming
21 Food allergy 62 Maternal history of bronchiolitis
22 Proximity to bus stop 63 Paternal history of bronchiolitis
23 Proximity to continuously truck traffic 64 No disease at born
24 Caesarean delivery 65 Weaning age (months)
25 Atopy 66 Paternal history of angioedema
26 Laryngospasm 67 Paternal early smoke exposure
27 Paternal history of rhinitis 68 Windows opened in winter
28 Current cat exposure 69 Eczema
29 Maternal history of allergy 70 Weight gain in pregnancy
30 Wheezing 71 Snoring
31 Anaphilaxis 72 Intense traffic
32 Upper respiratory infection 73 Current mold exposure
33 Exercise induced bronchoconstriction 74 Proximity to power plant
34 Pollution bother 75 Passive smoke exposure
35 Early dog exposure 76 Maternal history of rhinitis
36 Broncholitis 77 Rhinitis
37 Paternal history of eczema 78 Order of birth
38 Birth weight 79 Otitis
39 Paternal current smoke exposure 80 Weight
40 Pre-term born 81 Catarrh
41 Adenotonsillectomy 82 Physical activity (� 3 times at week)
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