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1 Introduction

My PhD research has focused on the empirical analysis of financial complex systems,

with a specific insight in the detection of their relevant structural features through the

adoption of tools and methodologies borrowed from the fields of Physics and Statistics.

The aim of this dissertation is to provide both an exhaustive overview of the methods

and the tecniques adopted and a complete description of the achieved results. This

chapter is intended as a short guide to the epistemological context within which my

research takes place.

In the last few decades humankind has witnessed many groundbreaking revolutions

in several aspects of everyday life. These innovations, both technological and cultural,

are reshaping the way man thinks of himself and his surroundings and of the impact

that he has in shaping the world he lives in. Many brand new ideas in medical sciences,

social sciences, economics, biology and many more fields are radically changing our

lifestyle, but more importantly they are modifying our way of conceptualizing reality.

Despite the high heterogeneity of impulses that are expanding human knowledge in a

large spectrum of different directions, there is a common denominator which is shared by

many of them. Indeed, one of the greatest revolutions that has been carried out in many

disciplines since the second half of the XX century is the shift from the focus on the single

components that contribute to a phenomenon, to an interest in the collective properties

of the phenomenon itself. This awareness lies at the basis of the broad discipline which

is now put under the umbrella term of science of complexity. As it usually happens when

such a big shift in human perspective occurs, this change was not an abrupt process,

breaking out all of a sudden: its seeds had been slowly spread during the previous

decades, or even centuries, before the full awareness of their implications reached the

critical point required to build a new paradigm. What follows is just a very short
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1 Introduction

and not exhaustive description of the most significant steps in the roadmap that has

brought humankind to a more refined idea of complexity. It is not intended as a detailed

chronology of complexity-related developments during human history, but simply as an

introduction to some of the main concepts that will be used in this dissertation.

One crucial moment in the development of modern mathematics, which is most likely

to be found in any textbook of Network Science, is the event that brought the prolific

Swiss mathematician Leonhard Euler to lay the foundations of graph theory almost

three centuries ago. In 1735, while he was visiting the Prussian city of Königsberg,

Euler found the solution to a puzzle which was popular at that time: was it possible

to cross all the seven bridges that connected the four different parts in which the river

Pregel split the city without crossing any of them twice? The answer is no, and in order

to prove it Euler build a graph with four vertices (the pieces of land) and seven links

(the bridges), building a rigorous proof based on the properties of the degree sequence of

the graph [1], [2], as it is shown in Figure 1.1. Although it is impossible to say whether

Euler was aware of the impact that his idea would have had in the following centuries, it

is evident that the full possibilities of graph theory were not explored until last century.

Indeed, one of the most powerful implications of network science, which is based on the

mathematical principles of graph theory, is that no matter which kind of agents and

relations are involved in a given phenomenon, visualizing the set of all interactions as a

graph allows to analyze the structure of the system, underline its weaknesses and predict

its evolution.

An other relevant building block of the science of complexity is the enunciation of

the laws of statistical mechanics, in the late XIX century. The bases of this field were

mainly built by Ludwig Boltzmann, an Austrian physicist that dedicated his life to ex-

panding the embryonic ideas of Daniel Bernoulli and James Maxwell on the motion of

molecules. The principles of statistical mechanics added a fundamental layer of aware-

ness to scientific knowledge, showing that analytically solving the equations of motion

of each single component of a set of interacting particles is not always convenient (nor

possible). Indeed, when the number of these particles grow significantly, writing down

their equation of motions becomes practically impossible. And even if it were possible,

limits in computational power and time make it a huge and much complicated task.
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Figure 1.1: Schematic representation as a graph of the city and the bridges of Königsberg as they looked like at the

time of Euler.

The answer of statistical mechanics is that sometimes it is just more efficient to describe

a process looking at its statistical properties, which can be computed by generalizing,

simplifying and aggregating the behavior of the single parts.

Going further in time, the beginning of XX century saw Jacob L. Moreno, an Austrian-

American psychiatrist and social scientist, lay the foundations of group sociometry. One

of Moreno’s main contributions to social science may be found in his pioneristic work

on social groups and the focus on the role played within them by human interactions.

In fact, among his other merits, Moreno’s is largerly recognized as the founder of social

network analysis [3], which knew a great expansion from the sixth decade of XX century

and contributed to the great interest that has been converging toward network science for

the last decades. The relevance and innovation of his work may be effectively summarized

in the words that he himself addressed to Sigmund Freud after a lecture of the latter,

and that sound as a working manifesto of his beliefs: “Well, Dr. Freud, I start where

you leave off. You meet people in the artificial setting of your office. I meet them on

the street and in their homes, in their natural surroundings. You analyze their dreams.

I give them the courage to dream again. You analyze and tear them apart. I let them

act out their conflicting roles and help them to put the parts back together again.”

Despite their heterogeneous background with respect to discipline and historical pe-

riod, all these developments intuitively add their contribution to shape a modern defi-
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1 Introduction

nition of the concept of complexity. Indeed, all these episodes share a critique towards

the idea of reductionism, i.e. the principle of focusing on the properties on the single

object without looking at its interactions with its surroundings, that dominated western

science for a long time. This conceptual revolution has been greatly enhanced also by

two emerging factors: the exploding increase in computational power and the constant

growth of data availability. Indeed, as Moore’s law, inspired by Ref. [4], famously claims,

the number of transistors in a dense integrated circuit doubles approximately every two

years. This exponential growth has unleashed a surprising potential in data processing,

with the diffusion of increasingly small processors able to perform in a breeze calcula-

tions that decades ago would have required years of manual work. Combined with this,

the considerable developments in the production of cheap, space-saving storage supports

have brought to the increase of the amounts of available data. Data analysis is nowadays

an element with increasingly high impact on our lives: it has created new professional

figures, represents a high source of income for many big corporations, thus reshaping our

economical landscape, and poses new ethical dilemmas about privacy and freedom in

modern society [5]. Moreover, the growth of data availability has dramatically enlarged

the number, the category and the size of systems that can be analyzed by scientific

research.

Along with the opportunities that unleashed, this technological revolution has brought

science to face new complexity-related challenges. Indeed, dealing with huge amount of

data can often lead to confusing or unreadable information, due to the size and the

heterogeneity of the systems under analysis. In such cases, it is required to filter out

redundant noise and detect only relevant, significant information. A working example

of the implications of these challenges can be found in the field of econophysics, which is

aimed to the analysis of finance/economy related systems through the tools of Physics

and Statistics [6]. Indeed, the technological revolution of the last decades has continuosly

enlarged the order of magnitudes of available data, making increasingly difficult the

detection of stable, significant patterns. Moreover, economics well represents the idea

of a world dominated by strong, untouchable dogmas that would greatly benefit from a

scientifical, complexity-driven revolution [7]. To this extent, an increasingly large set of

tools has been developed in order to deal with these challenges. This thesis follows this
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line of research.

This dissertation is organized as follows. Chapter 2 provides both a theoretical back-

ground and a review of the methods that are extensively used in the rest of this work,

with a particular stress on statistically validated networks and their applications [8].

Chapter 3 reports the result obtained in the investigation of the trading strategies of

investors at the Nordic Stock Exchange (NSE), venue of Helsinki. Specifically, the first

part of the chapter is devoted to the description of a method capable to detect clusters of

investors characterized by similar trading activity. Moreover, a comparison with the in-

formation contained in hierarchical trees is made. The second part is about the analysis

of the dynamics of these clusters, with a focus on the features of the ecology of investors

that emerges from the investigation, following a line of research proposed in [9]. These

results help in obtaining a better understanding of characteristics and evolution of the

different types of investors that coexist in the dynamics of a stock market. Chapter 4

presents an analysis of the dynamics of investors approaching the stock market for the

first time during the unfolding of the dot com financial bubble, within the Helsinki venue

of the NSE. The first part of this analysis is about the demographical characterization

of the investors which were buying the Nokia asset for the first time during the bubble.

This characterization is obtained through the tools of statistical validation. The second

part of the chapter introduces an agent based model designed in order to reproduce the

dynamics of the underlying process. In Chapter 5 the tools of statistical validation are

applied to a database of financial transactions with the aim of analysing the impact of

high frequency trading on the structure of the network of investors. Specifically, the ap-

proach has been designed in order to investigate whether high frequency trading affects

the random interaction of traders supposed by considering the anonimity of traders in

the stock market. Finally, in Chapter 6 the results shown in the previous chapters are

discussed, and the conclusions are drawn.
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2 Theory and methods

The outbreak of the concept of complexity in modern science has led to the definition

and implementation of a large set of disciplines and methods, conceived to deal with

its challenging implications. In what follows, a more rigorous definition of complexity is

provided. Afterwards, short reviews of network science and agent based modeling, which

are closely related to the work presented in this dissertation, are presented. Finally,

a detailed overview of the statistical methods and filtering techniques applied in the

following chapters is reported.

2.1 Complexity

Providing a rigorous and widely accepted definition of complexity is not an easy task,

due to its multidisciplinary nature. However, a simple yet hopefully exhaustive charac-

terization of it can be obtained by putting together its most common traits. A system

is considered complex if it is made up of many heterogeneous agents whose interactions

generate a highly nonlinear dynamics, which is characterized by the presence of feedback

among agents and emergent phenomena. In the following list all these ingredients are

analyzed in detail.

• Size. Complex systems are usually made up of a great number of single compo-

nents. The order of magnitude may vary from a discipline to another, but in order

to legitimely speak of complexity usually at least dozens of agents are required.

Empirical examples of the orders of magnitude that can be found in different dis-

ciplines are:

- Biology: one can range from the interactions between different areas of brain

(102) to the dynamics of the cells that constitutes it (109).
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2 Theory and methods

- Ecology: the number of species on Earth is close to ten millions, although

most studies focus only on subsets of this quantity.

- Technology: the amount of sites in the World Wide Web which are known

is already huge (109), although a comprehensive map of its structure is still

missing.

- Society: the analysis of human behavior can range from actual social inter-

actions (10− 102) to state-level scale (106 − 109).

• Heterogeneity. Counting the number of interacting agents within a system is

not enough to account for its complexity. To fully understand its dynamics one

should look at how differently these agents act. Indeed, heterogeneity is one of

the most characterizing features of complexity. This is the case in ecology, with

different species playing different roles (e.g. preys vs predators), in economics,

with different class of investors adopting different trading strategies, in society,

with all the roles that it is possible to have in a social system, and so on.

• Nonlinearity. The key principle of linearity is that a small stimulus generates

a small reaction. However, in nature many examples that contradict this simple

statement are easily found. This happens with the all-or-none law in biology, that

claims that there is a defined threshold that regulates the reaction of nerves to

stimulus: if the stimulus is below the threshold no reaction is triggered, otherwise

the entire impulse is discharged [10]. Other examples are found in society, with

small rumours having a huge impact on elections, in economics, with big financial

shocks that can be triggered by moderate inputs, and so on.

• Feedback. In a complex system, the actions of a class of agents usually have

impact on the others, enforcing relationships of self-regulation and mutual adjust-

ment. To better understand it, one can think of a system of preys and predators:

the wealth of one class is directly related to the state of the other, in a constant

interplay between the two.

• Emergent phenomena. In a system which has the features described so far,

the dynamics is not likely to be a plain, predictable consequence of the aggrega-
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2.2 Network science

tion of its components. In this context, an emergent phenomenon is a large scale,

collective behavior of a system which is not directly explainable from its single

constituents [11]. Examples of emergent phenomenon are social segregation in

cities, viral epidemics, technological failure cascades, political turmoils and revolu-

tions,. . . Actually, the first track of this awareness dates back to the eighth book of

Aristotles Metaphysics, which brought to the famous sentence “the whole is more

than the sum of the parts”.

2.2 Network science

Network science is a discipline that deals with the analysis of complex systems through

the adoption of the formalism of networks, whose mathematical foundation is borrowed

from graph theory [12], [13]. In order to deal with this ambiguity in terminology, in what

follows the term graph will refer to the mathematical object defined by graph theory,

while network will be used to indicate the graph structure of empirical systems found

in society or in nature. Although the origins of network science are rooted in social

network analysis, as witnessed by Moreno’s experience, the very last decades have seen

an explosion of the number of fields in which it has been adopted. A key principle that

lies behind this universality is holism. According to the holistic approach, in order to

understand how a system works it should be analysed as a whole, and not just as the

aggregation of its single parts. This is evident in the approach of network science, since

it focuses on the complete structure of a system by looking at the interactions between

its components, without taking into account their specific nature. This generality allows

networks to represent many different systems, like social networks [14], the cells [15] or

the areas of the brain [16], technological systems [17], financial entities [18] and many

more other examples. In the following paragraphs a brief review of the most relevant

concepts related to network science is provided.

2.2.1 Concepts and definitions

A topological graph G is a mathematical object defined by an ordered pair (V,E), with

V being the set of N vertices (nodes) and E ⊆ V ×V the set of edges (links) that connect
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2 Theory and methods

couples of vertices. A graph G can also be written in form of its N×N adjacency matrix

A which is defined as follows: Aij = 1 if vertices i, j are connected by a link, 0 otherwise.

A self loop is a link that connects a vertex with itself are not allowed. A simple graph

is a graph with no self loops, so its adjacency matrix has zero values in the diagonal.

A directed graph is a graph with directed links, thus (i, j) 6= (j, i). This implies that

the adjacency matrix of a directed graph is not symmetrical in general. A graph can

be weighted, G = (V,E,w), with w : E → R a function that assigns to each link a real

value. In a network, weights can refer to the frequency or the strength of interaction

between the pair of vertices, to their distance,. . .

When the structure of a graph is known, different measures capable to describe its

topological properties can be computed. Among these, the most popular are centrality

measures. A centrality measure is an estimator of the importance of a vertex or a link

with respect to the whole graph [12]. One of the simplest and most common examples

of such a measure is degree centrality. The degree of a vertex i is defined as the number

of vertices connected to i through links. It is quite straightforward to understand why

degree is a centrality measure. Indeed, the higher is the number of neighbors of a vertex,

the more likely it is for it to play a central role in the network structure. The degree

sequence of a network is also connected with more abstract concepts like hierarchy [19],

community structure [20] and the dynamics of processes spreading on the network itself

[21]. Other examples of centrality measures, which rely on different criteria to estimate

centrality, are closeness, betweenness, eigenvalue centrality,. . .

In a graph, a path between a pair of vertices i, j is a sequence of consecutive links that

allows to go from i to j. For any pair i, j, more than a path can exist in general. The

number of links in a path represents its length. The path of minimum length between

two vertices i, j is called the shortest path between i and j. The diameter of a graph is

the shortest path of maximum length among all pairs of vertices of the graph.

2.2.2 From randomness to scalefreeness

Since the end of World War II, network science has witnessed a great development,

boosted by both the advancements in graph theory and the increase in data availability.

One the major outcomes of this line of research is the observation that a huge variety
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2.2 Network science

of systems, despite their completely different nature, share some peculiar structural

properties. Probably the most famous example of this phenomenon is the extent of

the diffusion of scale-free networks. This paragraph follows the process that led to this

achievement.

In the central part of last century, two major actors on the scene of graph theory

were Alfréd Rényi and Paul Erdős, two Hungarian mathematicians. Among their other

contributions, their 1959 work on random graphs [22], is largely recognized as a milestone

in the development of the discipline. In this paper they developed a model for a random

graph conceived as a set of vertices whose links are assigned randomly according to

a fixed probability. Their main goal was to build a class of graphs that reproduce the

feature of real world networks. Nevertheless, although their model is still very popular in

network science, they failed on this particular point. The reasons for this failure emerge

clearly by comparing the features of real world networks with those of Erdős-Rényi

model:

• Degree sequence. It can be easily proved [22] that the degree sequence of an

Erdős-Rényi graph follows a Poisson distribution. This implies that the degree

sequence has a finite variance and is distributed sharply around an average value.

As it will be extensively shown in the following paragraphs, most real networks do

not have this property.

• Clustering coefficient. The clustering coefficient of a graph is a measure of how

much the neighbors of a given vertex tend to be connected among themselves.

Indeed, the local clustering coefficient for a vertex i is defined as Ci = 2Li
ki(ki−1)

,

where Li is the number of links between the neighbors of i and ki(ki−1)
2

it the

number of all possible pairs of neighbors. Many real world networks have high

values of clustering coefficient, which implies that in these systems interactions are

locally correlated. On the other hand Erdős-Rényi graphs, whose links are placed

in a totally random way, fail to reproduce this feature.

Another step towards the faithful description of real world networks was made by

small world graphs, defined by Watts and Strogatz in 1998 [23]. The starting point of

their work is the analysis of regular lattices, which can be represented as graphs in which
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every vertex is connected to a fixed number of neighbors. It is intuitive to understand

why a regular lattice has high clustering coefficients, equals for all its vertices. Indeed,

a fixed fraction of the neighbors of each vertex is always interconnected. However, since

long range interactions are missing, the diameter of such a graph is large, contrary

to what is observed in real networks. Thus, their proposal is to introduce a random

rewiring of the links, occurring with a probability p. For p = 1 an Erdős-Rényi graph

is obtained. For intermediate values, a graph with small diameter and high clustering

coefficient emerges.

Nevertheless, small world graphs still leave unresolved the problem of degree distri-

bution. Indeed, many networks naturally arising in nature and in society have a degree

sequence whose distribution belongs to the same family, i.e. power laws. The general

structure of a power law distribution is

p(k) = ck−γ, (2.1)

with c being a proportional constant and γ the exponent. The first one to detect a

power law in a complex system was the Italian economist Pareto in his observations on

the distribution of wealth in Italy in the XIX century [24], as he noted that income was

not distributed with a typical scale around an average value. Indeed, few individuals

earned great portions of wealth while the majority of population earned small amounts.

Since then, power law distributions in networks have been found in biology [25], in social

systems [14] and almost everywhere. A network with a power law distributed degree

sequence is called scale-free, and it is characterized by the presence of few hubs, with

most of the vertices connected directly to them, and the absence of a typical scale.

Indeed, for power law distributions with exponent γ ≤ 3 all moments of order greater

than one are not finite, and it is not possible to compute their variance. This implies

that there is not a typical scale in which the degree is more likely to be contained.

The universal presence of scale-free networks has arosen much interest in the phe-

nomenon lying behind their formation. A successful modelization of scale-free graphs

was presented by Barabasi et al. in 1999 [26]. In this paper the author showed that a

scale-free graph with exponent γ = 3 emerges when adopting preferential attachment.

In fact, in their model a set of vertices is added to a starting graph; each time that a

vertex is added, m additional links that connect it with the old vertices are put. The
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2.2 Network science

new links are added with probabilities that are proportional to the degree of existing

vertices. Thus, this work proves the existence of a link between preferential attachment

and scale-free networks: the tendency to connect to the most influential vertices when

entering a network produces a power law distribution. An alternative explanation, that

deals with a different class of processes, is provided in [27], according to which power

laws naturally arise from processes in which the dynamics follows a progressive reduc-

tion of the sample space. Additional examples are presented in Ref. [28], which provides

a review of processes that produce a power law distribution, such as phase transitions

and critical phenomena. Despite the variety of its conclusions, this line of research has

helped to spread more light on the concepts of randomness and disorder in nature. In-

deed, although many processes naturally arising in nature are generally conceived as

truly random, the presence of scale-free networks reveals that this is not the case. In-

deed, all these processes imply the existence of a precise direction in the evolution of

systems that end up with a power law distribution. This means that in nature and in

society interactions between elements do not spread out randomly, but instead follow

well defined self-regulating laws.

2.2.3 Applications

Following its increasing popularity, network science has experienced the development of

a considerable amount of applications and research areas. What follows is a short review

of the most significant, mainly related to the subject of the present dissertation.

Community detection

The diffusion of scalefreeness has underlined that the degree sequence of real world

networks often lacks a typical scale. However, a dishomogeneity in the distribution of

links may be observed also locally. This dishomogeneity is associated with the presence

of communities, which are observed at a mesoscopic scale. Indeed, although a unique,

universally accepted definition does not exist, communities (or modules) are usually

referred to as subsets of the vertices of a network which are more closely connected

within themselves than they are with all the others. The community structure may be

related to different aspects, like segregation/homophily or functional diversity, but it is
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one key aspect in understanding the global structure of the network.

Community detection has witnessed the development of a large number of different

techniques, borrowed from different fields and aimed to consider different aspects of the

problem [29].

• Clustering. The first methods developed for community detection were just an

extension of methods adopted in traditional clustering, such as graph partitioning,

hierarchical and partitional clustering.

• Modularity optimization. Modularity first appeared as a quality function for

clustering algorithms in [30]. Simply put, it measures the fitness of a partition on

a given network in comparison to a null model of random allocation of links. Thus,

the point is to find the partitions with the highest scores of modularity. This task

is not trivial, due to the ragged landscape that modularity usually has [31] and

the computational problems related to a full exploration of the space of partitions.

This complexity has led to the introduction of many different methods.

• Random walks The idea behind this class of methods is that, in the presence of

a defined community structure, a random walker that goes through the links of a

network would not spend his time homogeneously on all the nodes, but it would

be temporary trapped in the different modules. Infomap [32], which is one of the

most popular community detection algorithms, belongs to this class.

Multiplex networks

In many complex systems the interaction between agents is not limited to only one kind

of action, but can be expressed through different channels. Examples of this aspect

are (i) ecological systems, in which animals can interact through fight, reproduction

or cooperation, (ii) social networks, in which people are exposed to different types of

interaction (work, leisure time, family,. . . ). One possibility is to collapse all different

layers of interaction to an unique one, but this is not always the most rigorous and

efficient possibility. For this reason a specific formalism has been developed to deal with

these multilayered networks, also called multiplex [33].
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Bipartite networks

The usual representation of networks, with a set of vertices in which anyone can virtually

interact with anyone else, is in many cases limiting and misleading. Indeed, it often

happens that the structural connections within a system naturally arise in a bipartite

form. Bipartite graphs are designed to account for these systems. In them, vertices

belong to two distinct sets, with no links allowed between vertices of the same set.

Examples are the actor-movie IMDB network, in which the two sets are made up of

actors and movies, with links representing the presence of the actor in the cast of the

movie, or the network of scientific collaboration, in which the first set contains authors

and the second papers. Classical “unipartite” networks can always be obtained by

a bipartite one through a procedure called projection. The projection of one of the

two sets is obtained by putting a link between all pairs of vertices that share at least a

common neighbor in the other set. Although applying the tools designed for “unipartite”

networks on projections is often reliable [34], bipartite networks contains additional

layers of information. For example, looking only at the projection on actors of the IMDB

network hides part of the information on the activity of single actors. An alternative to

projection which takes into account the level of co-occurrent activity of the projected set

is provided by the formalism of statistically validated networks (SVN) [8], which plays

a central role in the present dissertation.

2.3 Agent based models

When dealing with a complex system, its evolution can be history dependent. Indeed, it

is not possible to repeat the dynamics behind the social links that an individual builds

during his lifetime, or to observe in a closed environment the interactions that animals

usually develop on large space and time scales. In this context, building a toy model

that describes computationally these interactions through autonomous agents that act

according to a simplified sets of rules is often the only way to study the dynamics of

such systems in depth. This opportunity is nowadays provided by agent based modeling

(ABM). Indeed, according to Nigel Gilbert, “agent-based modeling is a computational

method that enables a researcher to create, analyze, and experiment with models com-
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posed of agents that interact within an environment”, [35]. Although ABM is generally

regarded as a branch of computational social science, its connection with physics and

natural sciences has been strong since its birth. Indeed, many have stressed how the

Ising model [36] can be considered an early implementation of agents based modeling.

In fact, the atoms that align their spin/magnetic moment according to the temper-

ature of the system and the state of neighbors behave like basic agents of an ABM.

Moreover, the formalism of Ising model has been often extended to the description of

social/economical system. This was achieved by generalizing the concept of magneti-

zation in order to represent many different processes, like opinion polarization [37] or

metastability in a financial system [38]. Thus, it emerges how one of the major outcomes

of ABM is to allow social/ecological sciences to adopt the paradigm of natural science.

In fact, thanks to ABM it is possible to implement a system that follows a defined set

of rules and create and observe multiple realizations of it.

Although an excessive simplification of interactions in ABM design may result in a loss

in accuracy and predictive power, its careful adoption can help in effectively identifying

the key actors of an emergent phenomenon, without being misleaded by non-relevant

factors. In this sense, a well known example is provided by the model developed by

Schelling in 1969, [39], which is one of the first implementations of an ABM. Schelling

adopted a very simple framework to describe demographic related dynamics in a social

environment. He modeled two different sets of agents, “red” and “blue”, as points

that lie on a bidimensional lattice; at t = 0 the agents are distributed homogeneously

with respect to the two sets. When the simulation starts, they follow a “homophily

rule”. This means that, if an agent is not surrounded by a fixed fraction p of nearest

neighbors of the same set, he can relocate to a random site. Running the model brought

to an unexpected result. Indeed, the system ends up with segregation between the two

groups even with values of p well below 0.50 (the critical threshold for the emergence

of segregation is 0.37). This result is somehow surprising, since it stresses out that no

active dislike or racism is required to make segregation emerge, but only a slight degree

of homophily.

Since these first examples, ABMs have become more complex and sophisticated. This

is reflected in the design of agents that, despite the great heterogeneity of models and
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developed techniques, shares some common traits:

• Perception. The agents have the ability to detect the changing properties of the

environment and the behavior of neighbors.

• Performance. They can perform a set of actions, like moving, communicating,

collecting resources, being born/dying,. . .

• Memory. They store information on their previous actions and states.

• Policy. They are assigned a set of rules that, taking into account their memory

on previous states of the system, makes them follow a strategy compatible with

their goals.

All these features contribute to make agents heterogeneous entities that (i) follow differ-

ent individual strategies, (ii) are strongly reactive to environmental changes and to the

interaction with neighbors and (iii) are able to learn (both individually and as whole

species). This heterogeneous characterization makes ABMs a flexible and suitable tool

that allows to model complex systems. An interesting example is provided by El Farol

bar problem [40]. In this ABM, the goal of all agents is to go to the El Farol bar on

Thursday in order to enjoy the “Irish music night”. However, if the bar is too crowded,

no one will enjoy it. Thus, agents are left with the elaboration of a strategy that let

them go to the bar only when they expect that few others are going. After the orig-

inal introduction this problem was formalized in terms of the so-called minority game

[41]. One first evidence is that if all agents shared the same expectation for the night

attendance a paradoxical result would be obtained. Indeed, if everyone is expecting the

bar to be crowded no one will go, leaving it empty; otherwise, if all expect the others

to stay at home, everyone will go to the bar, making it too crowded. Thus, the best

way to face this problem is to make the agents elaborate different strategies. In [41] this

is achieved by providing all agents with a memory on the outcome of previous nights

and making them elaborate randomly a fixed number of strategies that produce a de-

cision for the incoming night from the history of past ones. Then all the agents rank

their own strategies on the basis of the successful decisions that they produce over time.

The observation of this ABM shows that for some values of the model parameters some
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agents perform better than they would if taking random decisions night by night. Thus

this model, despite its simplicity, allows to observe agents acting through sub-optimal

heuristic rules of bounded rationality, which is something that happens also in other so-

cial systems like financial ones [9]. Indeed, the stock market can be seen as an example

of minority game, in which it is convenient to sell when everyone else is buying, and

viceversa. To this extent, the El Farol bar problem is an empirical proof that contrasts

with the classical economic paradigm of the Efficient Market Hypothesis [42], that im-

plies that all investors behave in an optimal rational way by efficiently exploiting all

available information.

Chapter 4 of this dissertation will introduce a financial ABM, designed to describe

the trading decisions of investors buying an asset for the first time during a bubble.

2.4 Statistical methods

The abundance of data and the increasing power of the available computational tools

have greatly affected the scale of systems that it is possible to analyze with the approach

of complexity. In this framework, the adoption of statistical methods has become crucial

in order to detect stable, significant trends out of the huge amount of available informa-

tion. Econophysics is one of the fields in which this line of research has helped in the

detection of patterns that show great universality and validity across different datasets

and systems, the so-called stylized facts [43]. This section is a short review of some of

such methods.

2.4.1 Hierarchical clustering

Cluster analysis is a branch of statistical data analysis aimed to the detection of groups of

elements (clusters) that partition the whole system. The criterion used in the detection

of clusters is similarity. This means that elements within the same cluster should be very

similar while elements belonging to different clusters should be distinct. Cluster analysis

is characterized by a huge variety of different branches, tecniques and algorithms; this

section is dedicated to hierarchical clustering. Hierarchical clustering is a branch of

cluster analysis whose aim is to detect groups of elements with a nested hierarchical
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(a) (b)

Figure 2.1: Figure 2.1a shows the dendrogram of a simple system of 4 variables. The corresponding correlation matrix

is plotted in Figure 2.1b. In the tree, the first elements to be connected are the most similar, a and b, at

a distance of about 0.5. Then c and lastly d, which is the most dissimilar element, are added.

.

structure [44]. Hierarchical clustering algorithms can belong to two different categories:

divisive and agglomerative. Divisive algorithms, also called top down, start from a

partition in which all elements are grouped together and procede iteratively to split

them in different clusters. On the other hand, agglomerative algorithms (bottom up)

proceed the other way around. At the beginning all element are assigned to a different

cluster; through iteration they are then aggregated according to their distance pattern.

Hierarchical clustering is associated with dendrograms. A dendrogram is a tree-like

diagram that shows the hierarchical relationships between elements, together with the

levels of distance at which they are merged in the same cluster. An example of dendro-

gram obtained from a simple system is shown in Figure 2.1.

Similarity measures

A fundamental building block of clustering analysis is the concept of (dis)similarity.

Indeed, once the similarity pattern of a set of elements is obtained, in most cases the

original data sample is not required anymore when applying the clustering algorithm.

A similarity measure is a monotonic estimator of the extent to which two elements are

alike. Thus, the more they are similar, the higher are the values taken by similarity.
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Dissimilarity measures, instead, are monotonic estimators of the difference between pairs

of elements. The term proximity is often used to refer to both similarity and dissimilarity.

A similarity measure s must have the following properties:

• Symmetry

s(x, y) = s(y, x) ∀ x, y

• s(x, y) = 1 only if x = y

However, in most cases clustering algorithms are more efficient if a different class of

proximity measures is used [45]. This class is refered to as distances and it is a subset

of dissimilarity measures (although this notation is not always respected, as in some

cases the term distance is used simply as a synonym for dissimilarity). The reason for

which distance is preferable to similarity is the presence of an additional property that

holds for the former, the so-called triangle inequality. Indeed, the properties that define

a distance d are

• Symmetry

d(x, y) = d(y, x) ∀ x, y

• Positivity

(a) d(x, y) ≥ 0 ∀ x, y

(b) d(x, y) = 0 only if x = y

• Triangle inequality

d(x, z) ≤ d(x, y) + d(y, z) ∀ x, y, z

A similarity measure can be easily converted to a distance through a suitable trans-

formation rule.

Agglomerative algorithms

The set of agglomerative techniques is the most popular in hierarchical clustering. The

general scheme of an agglomerative algorithm is summed up in Algorithm 1.

Thus, agglomerative algorithms require the introduction a criterion that regulates the

computation of distances between clusters. Three of such criteria are the most used:
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Algorithm 1 Agglomerative algorithms

Compute the distance matrix

All elements are assigned to different clusters

while More than a cluster exists do

Merge the pair of clusters with minimum distance

Update the distance matrix taking into account the new formed cluster

end while

• Single linkage. According to single linkage, the distance between two clusters is

obtained by taking the minimum distance between all possible pairs belonging to

the two clusters. This method has an analogy with graph theory. In fact, if all the

data points are seen as vertices of a graph, applying single linkage is equivalent

to inserting links, ordered according to increasing distance, until the system is all

connected in a single component. The connected components that emerge during

this procedure are the clusters detected at the level of distance of the last link

inserted. Single linkage is quite sensitive to noise and outliers.

• Complete linkage. When using complete linkage, distance between clusters is

computed as the maximum distance between all the pairs belonging to the two

clusters. Looking at it through the perspective of graph theory, a cluster is high-

lighted by the complete linkage approach when all its elements are connected one

with the other, i.e. when they form a clique. Complete linkage has the tendency

to split larger clusters.

• Average linkage. The average linkage is an approach that lies between single and

complete linkages. The distance between two clusters is computed as the average

of all the distances between pairs that belong to the two clusters.

2.4.2 Minimum spanning tree

As shown in the previous section, hierarchical clustering provides the partitioning of a

system into hierarchically nested clusters. Although the information contained in the

associated dendrogram is highly informative on the structure of the system, there is no
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clear indication on its level of statistical significance. Indeed, the output of clustering

algorithms can be affected by noise, whose origin in general can belong to a heterogeneous

set of factors (mistakes in the transcription of data, random noise inherently linked to

the observed process,. . . ). This problem can be solved by cutting the dendrogram at a

distance threshold at which the emerging partition is statistically significant. However,

there is not a self consistent and universally accepted method to obtain this threshold,

and several different methods are proposed [29], [46]. In this context, the problem can

be seen from another perspective. In fact, if all information but the most essential is

filtered out, the most unreliable connections between elements are dropped and what

remains can be expected to be a robust, although minimal, description of the system.

This is the approach adopted with minimum spanning trees (MST).

A tree is a fully connected graph that does not contain loops. The absence of loops

implies that it is not possible to find paths that start and end in the same vertex without

crossing any link twice. If visualized as graphs, the dendograms produced by hierarchical

clustering algorithms are trees. Thus, trees have well defined topological constraints; in

particular, a tree can be seen as the most compact way of connecting N vertices, since

it has only N − 1 links. With minimum spanning trees, this compactness is linked with

its hierarchical structure. Indeed, there is a direct relationship between the construction

procedure of the MST and the single linkage hierarchical clustering procedure. One

possible implementation of MST is obtained by applying Prim’s algorithm, which is

described in Algorithm 2. The MST approach is an effective tool to detect the essential

backbone of a set of multivariate variables, with a particular focus on financial systems,

[47]. Indeed, when building a MST only the N − 1 links associated with the lowest

values of distance that maintain the graph as a tree are considered, discarding all the

rest. The same formalism has been extended to different topological constraints [48],

and bootstrap has been proposed as a tool to verify the reliability of links in MSTs [49].

2.4.3 Statistically validated networks

As seen in section 2.2.3, bipartite networks allow to represent systems whose structural

functionality is linked to the interaction between two different types of elements. Their

adoption is particolarly useful when the focus is on the detection of clusters of elements
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Algorithm 2 Prim’s algorithm

Initialize V , list of vertices

Initialize C, list of vertices priority

Assign INFINITY to all element of C

select a vertex v randomly and set its priority to 0

while V is not empty do

Select u, vertex with minimum priority

V discard u

for p in V do

if distance (p, u) < C[p] then

C[p]=distance (p, u)

p is chosen as neighbor of u

end if

end for

end while

which tend to be linked to the same elements of the other set. As an example, in bi-

ology the analysis of the relationships between genes and diseases can help in a better

understanding of the latter. However, due to the large amount of interactions in these

systems, these clusters rarely emerge clearly from the components of the projected net-

work. Thus, a method capable to extract only the connections that share a statistically

significant amount of information is required. However, this result cannot be achieved

simply by fixing a threshold on the minimum number of shared neighbors. Indeed, since

heterogeneity in the activity of each element is a characterizing feature for these systems,

such a threshold could be too strict for elements with few interactions or too permissive

for elements with many. A solution to this problem has been proposed with the formal-

ism of statistically validated networks (SVN) [8]. The SVN approach is based on the

formulation of a null hypothesis that properly takes into account the heterogeneity of

the system. In fact, if the degree distribution of set B is homogeneous, one can model

the random allocation of links between elements of set A and B as a series of random

draws with replacement. Since the random draw problem is well known in statistics, the

prediction of the corresponding null hypothesis can be expressed analytically. Indeed,
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for each pair (i, j) of vertices of set A, one can compute the probability of having X

common neighbors after a draw with replacement through

H(X|N, di, dj) =

(
di
X

)(
N−di
dj−X

)(
N
dj

) , (2.2)

where N is the number of elements of set B, di(j) is the degree of vertex i(j) and H is the

hypergeometric distribution. From this probability it is possible to compute a p-value

by using the cumulative distribution,

p = 1−
X−1∑
a=0

(
di
a

)(
N−di
dj−i

)(
N
dj

) . (2.3)

The p-value in Eq. 2.3 is the probability that i and j share X or more neighbors

after a random draw. Thus, a small p-value indicates that i and j are having more

co-occurrences than those expected by the null hypothesis. In this context, the adoption

of a significance threshold α allows to highlight the links between the elements whose

co-occurences not statistically significant. However, since the test is repeated for each

link of the projected network, the significance threshold must be corrected for multiple

comparisons, in order to keep the rate of false positives low. The strictest correction pos-

sible is the Bonferroni one [50], which assumes that all performed tests are independent.

When applying this correction, the resulting threshold is

tb = α/Nt, (2.4)

where Nt is the total number of tests. Despite its high precision, in most cases the

Bonferroni correction is not statistically accurate, because it increases the number of

false negatives. A less rigid correction is the control on the False Discovery Rate (FDR)

[51]. With FDR, the rate of true positives is taken into account when fixing the threshold.

Indeed, the threshold increases linearly with the number of rejected hypothesis. Since

the starting point for the FDR correction is the Bonferroni threshold, the validated

graph obtained through the former is always included in the latter. Although in the

current context the statistical test of random draws has been presented following its

application to bipartite networks, it can be applied also to detect the over-expression of

attributes inside communities [52], or to study the evolution in time of a set of clusters
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[53]. Moreover, when looking at the structure of communities of a projected networks,

SVNs have been proven to be highly precise [54]. Indeed, although in some cases the

accuracy is low due to the excessive severeness of the multiple hypothesis test correction,

the detected communities are robust against noise and highly informative on the real

structure of the system.
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financial market

Financial markets are essential economic institutions that shape our economic world,

with stock markets being one of the most important ones. A stock market is an in-

frastructure where equities, bonds and other kinds of financial products are issued and

traded among investors. A stock market can be considered as a paradigmatic exam-

ple of complex systems. Indeed, its dynamics is the result of the actions of a large

set of agents, that (i) belong to different classes of investors, (ii) may have different

purposes and (iii) follow different strategies. This huge degree of heterogeneity affects

the process of price formation, and makes practically impossible to study its dynamics

by considering analytically all its components. This calls for an approach that exploits

the knowledge of physics and statistics in order to spread light on its regularities and

fundamental laws [43]. In this context, a frequently explored (but still open) problem

is the characterization and classification of investors on the basis of their trading ac-

tivity. This is also an interesting field with respect to the change of perspective that

the world of economists has witnessed in the last decades. Indeed, it is now recognized

that investors who differ with respect to their institutional role, biographical details,

economic wealth and available information will adopt rather different trading strategies

on the stock market. This observation, despite its apparent triviality, hides powerful

implications, in a field which has been dominated for a long time by the Efficient Mar-

ket Hypothesis (EMH) [55]. This theory, proposed for the first time by E.F. Fama in

his groundbreaking PhD thesis, affirms that the price of an asset instantly reflects all

the information available about its intrinsic value. This simple statement implies a key

concept: the stock market works as a fair game. This means that according to EMH
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there is no place for arbitrage nor other ways of beating the market, and that all in-

vestors behave in a fully rational way. Although the effectiveness of this implication had

been doubted even before its first enunciation [56], EMH has been partially overcome

only quite recently, with the development of the Adaptive Market Hypothesis (AMH)

[9], [55]. AMH recollects and organically integrates many of the arguments that have

been opposed to EMH. It starts from Herbert Simon’s observation [57] that the full

rationality required by neoclassical economists is hardly reachable in reality. Indeed,

real investors often adopt strategies which are typically only sub-optimal, and follow a

bounded rationality, limited by the amount of information that they are able to con-

sistently process and the interplay of emotivity and behavioral issues during trading

decisions. Once the paradigm of a fully rational behavior is dropped, an evolutionary

approach can be adopted in order to describe the dynamics of different strategies within

different groups of investors [9]. Moreover, the survival or extinction of these strategies

is linked to their success, i.e. the amount of profit that they are able to provide when

adopted. In this context, econophysics can play an useful role in the characterization

of investors behavior in a statistically significant way, in order to extract evidence of

different strategies from the trading decisions adopted by all active agents. The present

chapter of this dissertation goes in this direction, and it is organized as follows: i) Sec-

tion 3.1 provides a short overview of the existing literature about the ecology of different

trading strategies; ii) Section 3.2 provides a description of the features of the database

used in this analysis; iii) Section 3.3 introduces to the formalism of categorical variables

adopted in order to apply the approach of statistically validated network; iv) Section 3.4

describes the detection of clusters from the statistically validated networks of investors,

and compare these clusters with those contained in the hierarchical trees obtained from

the same system; v) Section 3.5 exploits the approach of SVNs to characterize the long

term ecology of investors trading the Nokia stock at the Helsinki venue over a time span

of 15 years.
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3.1 Background

In this wide area, the literature about the investigation of investors behavior is rich

and detailed. What follows should be considered only a partial review of some of these

works, useful for the purposes of introducing the main subject of this chapter but with-

out claims of exhaustiveness. It is now broadly accepted that trading strategies can be

divided into two main groups, fundamentalist and chartist [58], which are characterized

by the different philosophies that lie behind their trading decisions. Fundamentalist

investors base their strategy on the analysis of the economic indicators (called funda-

mentals) of quoted companies, together with other macroeconomic estimators that refer

to the condition of overall economy. Fundamentalist traders usually base their analysis

on variables such as the capitalization, the number of employees or the production rate

in order to understand whether the value of a company is being under or overestimated

on the market, and act accordingly. On the other hand, a chartist investor does not try

to estimate the value of the assets he/she is interested in trading, but relies exclusively

on the recent behavior of their price series in the stock market. There are many different

kinds of instruments that can be used to extract trading signals from the time series of

prices, which go under the umbrella term of technical analysis. A further distinction can

be made between contrarian and momentum investors, [59], [60], with both strategies

being well represented among the tools of technical analysis. The two categories differ

with respect to the timing of their trading decisions. Indeed, momentum traders buy

assets whose price is growing and sell those whose price is selling, while contrarian act

the other way around in an attempt to beat the market. Going further, a crucial role

in shaping the strategy of investors is played by available information, making the dis-

tinction between informed and uninformed investors [61] particularly meaningful. Other

relevant works include the analysis of Barber et al., [62], on the Taiwanese stock market.

The authors found out that household investors, due to their aggressive attitude when

placing orders, obtain significant losses from their trading decisions, while institutional

investors have significantly higher profit. The same database presented in this chapter

has also been investigated by Grinblatt and Keloharju in a series of studies [63, 64] on

the trading characteristics of individual and institutional investors, and on behavioral

aspects of individual trading. Lastly, Tumminello et al. in [65] investigated the same

33



3 Long term ecology of investors in a financial market

dataset adopting the approach of statistically validated network to obtain clusters of

investors with similar trading activity. This formalism will be extended in this chapter,

bringing to the detection of different collective strategies shared by large sets of investors.

3.2 Database

The database used for this work is maintained by the Euroclear Finland (previously

Nordic Central Securities Depository Finland) which is the central register of sharehold-

ings for Finnish stocks and financial assets in the Finnish Central Securities Depository

(FCSD). The register contains the shareholdings in stocks of all Finnish investors and

of all foreign investors asking to exercise their vote right, both retail and institutional.

The database records official ownership of companies and financial assets on a daily

basis according to the Finnish Book Entry System. The records include transactions,

i.e. operations that are executed in stock exchanges and change the ownership of the as-

sets. The database has associated a certain amount of metadata; specifically, it classifies

investors into six main categories: a) non-financial corporations, b) financial and insur-

ance corporations, c) general governmental organizations, d) non-profit institutions, e)

households, and f) foreign organizations. The database is collected since January 1st,

1995.

The database covers all the stocks traded at the Helsinki venue of the Nordic Stock

Exchange. For legal reasons, the database treats Finnish domestic investors (or foreign

investors asking to exercise their vote right) in a different way from foreign investors. In

fact, while the database contains very detailed information about the Finnish domestic

investors, foreign investors can choose to use nominee registration. In this last case, the

investor’s book entry account provider, for example a bank, aggregates all the transac-

tions from all of its accounts. This implies that a single nominee register coded identity

contains the holdings of several foreign investors. 1

1If an institution can trade both for itself and also on behalf of nominee registered investors, in the

current analysis its trading activity is split in two distinct IDs, one regarding its activity as a Finnish

investor and one regarding its activity on behalf of nominee registered investors (labeled as NR).
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3.3 Nominal variables characterizing the trading activity

The high degree of heterogeneity that characterizes the activity of investors calls for

methods of analysis that are robust with respect to this aspect. This necessity provides

the motivation to analyze the trading activity of individual investors in terms of categor-

ical variables. Specifically, the adopted nominal variables have been introduced in Ref.

[65]. These variables are defined as follows: for each investor i, each stock k, and each

trading day t, the volume sold Vs(i, k, t) and the volume purchased Vb(i, k, t) of stock k

by the investor at day t are computed. For each stock and for each day, this information

is then converted into a nominal variable with 3 states: primarily buying b, primarily

selling s, buying and selling bs such that all positions will be essentially closed before

the market closes. The nominal variables are obtained by considering the ratio

r(i, k, t) =
Vb(i, k, t)− Vs(i, k, t)
Vb(i, k, t) + Vs(i, k, t)

. (3.1)

For each stock k, an investor is assigned a primarily buying state b when r(i, k, t) > θ,

a primarily selling state s when r(i, k, t) < −θ, and a buying and selling state bs when

−θ ≤ r(i, k, t) ≤ θ with Vb(i, k, t) > 0 and Vs(i, k, t) > 0. Throughout this chapter the

threshold value is fixed to θ = 0.01.

3.4 Trading profiles of investors

The first step of the current analysis concerns the detection of clusters of investors on

the basis of their trading profiles. Specifically, the investigation is performed on the

investment decisions related to 23 of the 25 stocks that compose the OMXH25 market

index in 20032. The total number of investors is 105, 005, and the trading activity of

different investors is highly heterogeneous. The information about the complete set of

investors is summarized in Table 3.1.

In the following analyses done with similarity measures, a threshold was put on the

minimum activity of investors. The motivation for this choice is the need to be able

to estimate a similarity measure which is minimizing the discretization role associated

2The original plan was to investigate all the 25 stocks that were used to compute the index but finding

the time history of stock price for two of them was impossible to us.
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with the presence of a very limited number of attributes. Specifically, in the similarity

based tests only the investors who have traded one of the OMXH25 stocks at least 5

times during 2003 are considered. The summary statistics of these investors is given in

Table 3.2

3.4.1 Clustering of trading profiles by correlation

The degree of similarity in the trading profile of investors is evaluated by constructing

for each selected investor and for each stock of the OMXH25 a vector of trading actions.

This vector has a number of components equal to three times the number of trading days

of 2003 (which is 253x3=759). The first 253 components carry the information whether

the investor was buying (b state) on a specific day, the second 253 components carry the

information whether the investor was selling (s state) on a specific day, and the third 253

components carry the information whether the investor was buying, selling and closing

the position (bs state) on a specific day. The final vector is therefore a binary vector of

1s and 0s. To investigate these vectors a similarity measure which is robust with respect

to the asymmetric presence of the two attributes (1s are rarely present whereas 0s are

highly observed in most of the cases) is needed. Thus, the Jaccard coefficient is used as

similarity measure because it is known to be robust for asymmetric binary vectors [66].

The Jaccard coefficient is defined as the ratio between the size of the intersection on the

size of the union of two sets. In the case of two binary vectors i and j, this definition

leads to

J(i, j) =
M11

M11 +M01 +M10

, (3.2)

where Mab is the number of components in which the first vector has value a and the

other has value b.

Fig. 3.1 show the hierarchical tree obtained with the average linkage algorithm with

a dissimilarity measure defined as di,j =
√

2(1− Ji,j). Nokia has 7824 investors trading

at least five times during 2003 and therefore the complete visualization of a hierarchical

tree of so many elements is not simple in a limited space. Fig. 3.2 plots a region of the

hierarchical tree involving 1419 investors. This level of details allows to appreciate the

hierarchical structure of the similarity of investment profiles.

A similar behavior is observed also for the other stocks. Thus, the use of categorical
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3.4 Trading profiles of investors

Figure 3.1: Average linkage hierarchical tree of the trading profile similarity of investors trading Nokia in 2003. The

selected investors have performed at least 5 transactions of the Nokia stock during 2003. The presence of

large clusters comprising hundreds of investors is clearly detected (see the region of the hierarchical tree

highlighted in red). The investors labeled with red lines belong to clusters obtained by setting a cutting

threshold equal to d = 1.09 (see Sect. 3.4.3 for details).
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3 Long term ecology of investors in a financial market

Figure 3.2: Regions of the average linkage hierarchical tree of Fig. 3.1 that are selected by using the threshold

d = 1.09 (see Sect. 3.4.3 for details). All remaining investors are removed from the present tree. The two

big clusters seen in the right part of the figures are the two clusters highlighted in red in the right part of

Fig. 3.1.
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3.4 Trading profiles of investors

variables together with the choice of the Jaccard coefficient allow to detect the hierar-

chical clustering structure of the trading profile of the different investors.

3.4.2 Over-expressed trading profiles

In a previous study [65] a different approach based on statistically validated networks

[8] was used to detect clusters of investors characterized by a similar trading profile

when trading the Nokia stock over a time period longer than 5 years. In this chapter

the idea is to compare the clusters obtained through the approach of Ref. [65] with the

information obtained from the hierarchical tree of the same system.

The method of the statistical validation of the co-occurrence of categorical variables is

the same as in Ref. [65] and works as follows. The bipartite network used as a starting

point for the statistical validation is made by a set of investors and a set of days, with a

link put between investor i and day t if i was active on t. When testing the null hypothesis

of random co-occurrence of activity presented in Section 2.4.3, the size of the urn from

which investors i and j draw their days of activity is not chosen equal to the total number

of days N , but to the length of the intersection of the corresponding activity periods,

NT . This choice has been made in order to make the null hypothesis more appropriate

to the trading dynamics. Indeed, one of the aspects of the high heterogeneity that

characterizes this system is that the activity of investors is often sharply localized only

in defined time windows which are a subset of the trading year. Thus, using NT instead of

N fits in a better way the description of this system. Moreover, since the hypergeometric

distribution for the same value X of co-occurrence assumes higher values if the size of

the urn N is larger, this choice makes the test more severe. Thus, if NA (NB) is the

number of days when investor i (j) is in the state A (B) and NA,B is the number of days

in which there is a co-occurrence of state A for investor i and state B for investor j the

p-value for the pair of investors in the states A and B is

p(NA,B) = 1−
NA,B−1∑
X=0

H(X|NT , NA, NB). (3.3)

The nine possible combinations of the three trading states between investor i and j are

(ib,jb), (ib,js), (ib,jbs), (is,jb), (is,js), (is,jbs), (ibs,jb), (ibs,js) and (ibs,jbs).
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3 Long term ecology of investors in a financial market

As presented in Section 2.4.3, both Bonferroni and the control of False Discovery Rate

have been used as multiple test corrections. In this context, the Bonferroni correction

for each stock k is fixed to 0.01 ∗ 2/(9Nk(Nk − 1)), where Nk is the total number of

investors active for at least 5 different days on the stock k.

Table 3.3 reports the number of investors characterized by at least one validated co-

occurrence for each investigated stock when adopting the Bonferroni correction. The

largest number of investors characterized by co-occurrence in the trading profile is de-

tected for the Nokia stock. This is not surprising because the Nokia stock was in 2003

the most traded (as it can be verified in Table 3.1) and liquid stock of the OMXH25 in-

dex. The results can also depend on the power of the statistical test that decreases when

the number of tested hypotheses increases when adopting the Bonferroni correction, as

it will be investigated more in detail in Section 3.5.1.

Table 3.4 instead reports the results for the multiple hypothesis test correction based

on the FDR correction. As expected the number of investors showing statistically val-

idated co-occurrences is increasing and the accuracy of the test is improved although

the level of precision might slightly decrease. The sets of investors with statistically

validated co-occurrences of Table 3.3 are of course always included in the corresponding

entry of Table 3.4. Fig. 3.3 shows the statistically validated network of Nokia investors

obtained with the Bonferroni correction. The network consists of 576 investors, the ma-

jority of whom are Households although also investors of the other categories are present.

Specifically, in the network there are 142 Non financial corporations (Violet node), 18

Financial and 1 Financial NR (Grey node), 5 Foreign organizations (Yellow node), 16

Governmental (Black node), 378 Households (Blue node) and 16 Non-profit (Red node)

investors. Direct inspection of the network shows that there is a large connected compo-

nent of 346 investors and that all validations of co-occurrences concern ib,jb (Blue link),

is,js (Red link), and the simultaneous validation of ib,jb and is,js (Black link).

As summarized in Tables 3.3 and 3.4 the largest detected statistically validated net-

works are those that contain Nokia investors. For this stock the Bonferroni (i.e. the

statistically validated networks obtained with the Bonferroni correction) and FDR (i.e.

the statistically validated networks obtained with the Benjamini-Hochberg correction)

networks have 576 and 1518 nodes respectively. In the case of the other OMXH25 stocks
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3.4 Trading profiles of investors

the Bonferroni and FDR networks are always populated but with a much smaller number

of nodes. In fact the second largest statistically validated network is the one of Stora

Enso comprising 67 investors, obtained with the FDR correction (see Table 3.4).

This last statistically validated network is shown in Fig. 3.4. In this case the majority

of investors are Governmental organizations, with the different categories represented

in the following way: 11 Non financial corporations (Violet node), 15 Financial (Grey

node), 17 Governmental (Black node), 16 Households (Blue node) and 8 Non-profit (Red

node) investors. As in the case of the previous example, most of the validations of co-

occurrences concern ib,jb (Blue link), is,js (Red link), and the simultaneous validation

of ib,jb and is,js (Black link). The largest connected component has only 21 nodes, so

it does not cover the majority of nodes.

Most of the remaining OMXH25 stocks have statistically validated networks of the

type observed for Stora stock, i.e. a network of small disjoint clusters. As in Ref. [65]

the clusters of investors with similar trading profile were obtained by applying a widely

used community detection algorithm, the Infomap one [32], to the weighted version of

the SVNs. The weight of each link is the number of co-occurrences validated between

the two investors (for example in the case when the co-occurrences ib,jb and is,js are

validated, the weight of the link is set to two). In most cases the components observed

in the networks are not further partitioned by the algorithm. However, in the case

of presence of a highly populated large connected component (as for Nokia) the large

component is partitioned into smaller clusters.

By using the detected partitions it is possible to visualize the trading patterns of

investors belonging to the different clusters. Fig. 3.5 shows the trading profile of Nokia

and Stora investors associated with the clusters of the SVNs shown in Fig. 3.3 and 3.4.

In the figure a red spot indicates a buy action, a green spot a sell action, and a white

spot a buy/sell action, while a black spot represents absence of trading for the specific

investor and trading day. Fig. 3.5 clearly shows the presence of different trading profiles

among the different clusters, while each cluster is rather homogeneous.
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3 Long term ecology of investors in a financial market

Figure 3.3: Network of 576 individual investors having statistically validated co-occurrences of trading decisions about

the Nokia stock in 2003. The multiple hypothesis test correction is the Bonferroni correction. The category

of investor is labeled as follows: Corporations (Violet), Financial (Grey), Foreign organizations (Yellow),

Governmental (Black), Households (Blue) and Non-profit (Red). The type of statistically validated co-

occurrence is labeled as follows: ib,jb (1075 Blue links), is,js (2468 Red links), and the simultaneous

validation of ib,jb and is,js (10353 Black links).
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3.4 Trading profiles of investors

Figure 3.4: Network of 67 individual investors having statistically validated co-occurrences of trading decisions about

the Stora Enso stock in 2003. The multiple hypothesis test correction is the FDR correction. Links are

coded as follows: ib,jb (6 Blue links), is,js (210 Red links), and the simultaneous validation of ib,jb and

is,js (26 Black links)
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3 Long term ecology of investors in a financial market

Figure 3.5: Color code representation of the trading profile of investors trading the Nokia (left) and the Stora (right)

stocks. In the horizontal axis we order different investors whereas the vertical axis is time (in number

of trading days). The left panel shows trading profiles of the 576 Nokia investors whose trading co-

occurrences were statistically validated with the Bonferroni correction whereas the right panel shows to

the 67 Stora investors validated with the FDR correction. A red spot indicates a buy action, a green spot

a sell action and a white spot a buy/sell action. Black spots indicate absence of trading. The investors

are ordered according to the membership of the clusters detected with Infomap algorithm.
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3.4 Trading profiles of investors

3.4.3 Comparison of partition methods

In the previous sections it has been shown that both a correlation analysis and a statisti-

cal validation procedure provide information about (i) the clusters of different investors

(in the case of the statistical validation approach jointly used with the community de-

tection procedure), and (ii) about the hierarchical structure of the trading profiles. This

section is dedicated to investigating whether the two types of information overlap or are

rather providing complementary types of information; in case of overlap, the aim is to

estimate its extent.

One difficulty in the comparison of the two sets of information is that whereas a

partition is provided in the case of statistically validated networks, the hierarchical

clustering just provides a hierarchical structure that needs to be processed to obtain a

partition. A basic way to obtain a partition from a hierarchical tree is to cut it at a

given value of the dissimilarity (or similarity) measure. The corresponding clusters are

the groups of elements that are connected at distances lower that the cutting threshold.

The method is simple and effective but its drawback is that there is no simple and widely

accepted optimal way to select the threshold level.

For this reason the choice of the distance threshold has been guided by the detection

of the degree of maximal overlapping between the partition of the SVN and the ones

obtained from hierarchical trees. Thus, first a hierarchical clustering procedure is se-

lected and the hierarchical tree of the 7824 investors active on Nokia stock in 2003 is

obtained. In particular, single, average and complete linkage [45] have been applied. For

each hierarchical tree, a partition is obtained by fixing a distance threshold and extract-

ing clusters. The single cluster is made up of all the investors whose relative distance

is less then the threshold. The investors linked at higher distances are considered as

isolated nodes. The obtained hierarchical tree partition is then shrunk to the 576 in-

vestors that are also present in the Bonferroni network. At this point the two partitions

of 576 investors can be compared by computing the Adjusted Rand Index (ARI) [67],

a measure which is widely used as an estimator of the similarity of two partitions. It

is a normalized indicator and assumes a value equal to one when the two partitions are

identical and a value close to zero when the two partitions are randomly assigned. Fig.

3.6 shows the Adjusted Rand Index between the partition obtained through the SVN
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3 Long term ecology of investors in a financial market

Figure 3.6: Adjusted Rand Index (vertical axis) between the partition of Nokia investors obtained from the Bonfer-

roni statistically validated network partitioned by the Infomap algorithm with the partition of the same

investors obtained by performing hierarchical clustering algorithms on the dissimilarity measure of Nokia

investors at different values of the cutting threshold (horizontal axis). The comparison is performed for

the single (black circles), average (red circles) and complete linkage (blue circles).
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3.4 Trading profiles of investors

approach (Bonferroni correction) and the partition obtained from hierarchical clustering

algorithms at different values of the cutting threshold (horizontal axis). The comparison

is performed for the single (black circles), average (red circles), and complete linkage

(blue circles). In all three cases a bell shaped curve of the ARI as a function of the

threshold is observed. Therefore in all three cases a single maximum exists for a specific

value of the threshold. Although the figure shows the values of the ARI computed by

varying the threshold in steps of 0.1, in the proximity of the maximum the calculations

have been made by increasing the threshold by steps of 0.01. With this resolution the

highest value of the ARI are observed for threshold distances equal to 0.80, 1.09 and

1.31 for the single, average and complete hierarchical tree respectively, with the highest

values being 0.806, 0.923, and 0.795. These are quite high values and therefore for the

optimal threshold values the partitions of the hierarchical trees are pretty similar to the

partitions obtained by applying Infomap on the Bonferroni SVN. The highest similarity

is observed for the average linkage hierarchical clustering.

To provide a visual comparison of the similarity of the two partitions, Fig. 3.7 shows

the color code representation of the trading profile of Nokia investors grouped both as

defined by the Bonferroni SVN and as defined by the average clustering hierarchical

tree when a threshold obtained by maximizing the ARI is used. In the specific case the

threshold value is set to 1.09 and the ARI is 0.923. The figure shows the high overlap

quantified by the high value of the ARI index. It also shows that the hierarchical tree

approach extends the information available to a larger number of investors. In fact

when a threshold of value 1.09 is used 1419 Nokia investors are detected in 319 clusters

of at least 2 investors. The number of investors of the hierarchical tree partition is

significantly larger than the number of 576 Nokia investors observed by the Bonferroni

statistically validated network. There is empirical evidence that the highest values of

ARI are typically observed for the average clustering. The use of the single linkage is

increasing the probability of observing large clusters whereas the complete linkage selects

clusters or relatively smaller size. The average linkage provide an intermediate behavior.

Fig. 3.8 shows the probability density function of the size (in number of investors)

of clusters observed for the Bonferroni partition, and for the three partitions obtained
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3 Long term ecology of investors in a financial market

Figure 3.7: Color code representation of the trading profile of investors trading the Nokia. The left part of the figure

(limited by a blu vertical bar) shows trading profiles of the clusters of 576 Nokia investors in the Bonferroni

statistically validated network (same plot as in the top panel of Fig. 3.5) while the right part are the

clusters obtained from the hierarchical tree of the average clustering by using the 1.09 threshold. The

overlapping clusters are ordered with the ordering of Fig. 3.6.
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3.4 Trading profiles of investors

Figure 3.8: Probability density function of the cluster size of the partitions obtained with the Bonferroni statistically

validated network partitioned by the Infomap algorithm (light blue diamond), single linkage (red circle),

average linkage (green triangle), and complete linkage (blue square). The stock is Nokia.

with the hierarchical clustering algorithms. All the three hierarchical clustering methods

reproduce well the behavior observed for the Bonferroni partition. The number of par-

titions and the number of investors present in the partitions are higher for the complete

linkage, intermediate for the average linkage and lower for the single linkage. In the case

of the complete linkage partition, the broader covering of investors is probably obtained

at a cost of a lower precision of the partitioning. In the present system and in the

present example the average linkage provides the best choice for partitioning a number

of investors larger than the Bonferroni partition which is maintaining approximately the

same precision as the Bonferroni approach.

The observation that the Bonferroni SVN is providing highly precise but not necessar-

ily accurate clusters is not surprising. In fact it is known that the Bonferroni correction

is too restrictive. This choice ensures a high level of precision (because the number

of false positive is minimal) but on the other hand it might be associated with a high

number of false negatives and therefore be characterized by a relatively low level of sta-

tistical accuracy. The cluster detection based on the correlation measure is therefore
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3 Long term ecology of investors in a financial market

providing results which might be a bit less precise but more accurate. The problem

with the correlation approach is that the thresholding process is not supported by any

theoretical indication.

The observation of a significant overlap of the clusters obtained with the two distinct

approaches suggests the effectiveness of a new methodology using SVNs partitioned

with an efficient community detection algorithm together with a hierarchical clustering

procedure. Within this approach the optimal threshold to be used in the hierarchical

clustering procedure can be determined by using the precise information obtained with

the Bonferroni approach. Finally, when the threshold is determined, one obtains the

partition from the hierarchical tree.

3.5 Time evolution of clusters

The second part of our analysis is devoted to the study of the dynamics of investors

active on the Helsinki venue of the Nordic Stock Exchange (NSE) over a time span of

15 years, from 1995 to 2009. For this purpose, the set of investors has been limited to

those active on the stock Nokia, which in the previous section was proven to be the most

liquid stock of the Helsinki venue. The starting point of the analysis is the set of clusters

detected through the approach of SVNs year by year. The aim of this investigation is to

map the ecology of investment profiles over the years, in order to detect whether different

sets of investors adopting different strategies coexist in the NSE over long time spans.

Such an evidence would represent a significant empirical confirmation of the claims of

the adaptive market hypothesis.

Table 3.5 reports the number of Nokia investors making at least one transaction during

the reported calendar year. The information is reported for all investors and category

by category, while Table 3.6 reports the same information for the investors active in at

least five different days. In addition, Table 3.6 reports also the number of links of the

projected network of investors. A link is present between two investors when they are

active in a period which is overlapping for at least one day, even if they do not have

days of co-occurrence in trading decisions. The density d of the edges in the network of

investors is given by d = E
n(n−1)/2

, where E is the number of links and n is the number
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3.5 Time evolution of clusters

of vertices. The average density of edges for the network of investors is ranging from a

minimum value 0.042 observed in 2006 to a maximum value 0.090 observed in 2003.

In what follows the dynamics of investors is analyzed starting from the clusters ob-

tained from the FDR statistically validated networks. The motivation for this choice is

related to the power of the statistical test used to obtain the SVNs and it is explained

in the next section.

3.5.1 Power of test

Table 3.6 shows that the sizes of the projected networks of investors differ sharply within

the considered period. This heterogeneity calls for a test on the power of the method

of statistical validation. In fact, when comparing results obtained from networks of

different sizes, one should verify that the power of the statistical test is not affected by

the number of tested links. One first proof that this is not the case is given by the

comparison between the ratios of validated links on total links for the different years.

This ratio is shown by the orange lines of figure 3.9, both for the Bonferroni and the FDR

correction. Although 2002 is the year in which the highest number of links is observed,

the highest value of this ratio occurs in 2005. In order to track this information in a more

rigorous way a suitable test on the power of the statistical validation has been designed.

The test works as follows: year by year the statistical validation is applied on samples of

links that are drawn from the projected network of investors. When drawing the samples

the proportion of links between investors of the different categories is maintained. Figure

3.9 plots the ratios of validated links on total links both for the samples and the whole

system. The left panel is related to the Bonferroni correction, while the right panel

shows the results for the FDR correction. The samples contain 1,000,000 links. For

each year, the sampling procedure was repeated 10 times. The figure shows that, when

using the FDR correction, the power of the test remains constant on systems of different

size. This suggests that the difference in the size of SVNs observed at different years are

due to the underlying dynamics of financial markets and investors activity and not to

different power of the methodology. However, this is not true when using the Bonferroni

correction. In this case the larger the system is, the less powerful the test performs.
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3 Long term ecology of investors in a financial market
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3 Long term ecology of investors in a financial market

Figure 3.9: The left panel plots the ratios of validated links in the whole systems (orange line) and the average value

of the same ratio on 10 samples of size 1,000,000 (blue line) with the Bonferroni correction. The error

bars of the blue line plots the standard deviation on the set of 10 samples. The right panel plots the

corresponding figure when using the control of the False Discover Rate as a correction for multiple tests.

This is a known issue for family wise error correction methods such as the Bonferroni

one [68]. It is worth noting that the patterns shown in Fig. 3.9 are obtained by fixing

the Bonferroni threshold b as b = 0.01/Nl, with Nl the total number of links reported in

Table 3.6. The quantity Nl considers all the possible combination of trading states to

be tested. This choice was motivated by the observation that, when considering all the

couples of investors active in a calendar year, some of them are active in time periods

that do not overlap. Thus, testing these couples is not meaningful and they are discarded

when computing the Bonferroni threshold. Since this method of setting the Bonferroni

threshold is slightly different from the one adopted in section 3.4.2, the results of Table

3.4 do not match with the outcome of this validation, which is reported in Table 3.7.

Specifically, since the old method takes into account all possible couples of investors

active in a year (b = 0.01∗2
9Nk(Nk−1)

, with Nk the number of investors active at least 5 days)

the corresponding threshold is more severe, producing a SVN with about 40% the nodes

of the SVN described in Table 3.7.
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3.5 Time evolution of clusters

Figure 3.10: Number of investors (blue circles), number of active investors (green triangles down), number of investors

included in the FDR network (red triangles up) as a function of the different calendar year. Each

panel refers to a category of investors. In the top row we have households, financial institutions, and

governmental organizations (from left to right), whereas in the bottom row we have foreign organizations,

non-profit organizations, and companies (from left to right).

3.5.2 Statistically validated networks of investors over a 15 years

time interval

In order to discriminate among the behavior of different categories of investors, Fig.

3.10 shows the number of investors active at least one day, the number of those active

at least five days and the number of those that have at least one link in the FDR SVN

as a function of the calendar year for each of the six categories of the database. The

figure shows that households are controlling the unconditional statistics of the number of

investors present in statistically validate networks. Moreover, non financial corporations

show an overall profile which is similar to the one observed for households whereas the

remaining categories show a much less time pronounced pattern.
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3 Long term ecology of investors in a financial market

Figure 3.11: Minimum spanning tree of the similarity matrix associated with the trading activity of clusters for 2005.

Each cluster is labeled by a number. Symbols in colors indicate the over-expression of one or more

category of investors.

Table 3.7 reports a summary statistics of the clusters of investors detected in the FDR

networks, obtained with the approach described in Section 3.4.2. The number of clusters

and their size (in number of investors) is varying over time. The size of the clusters of

investors observed is ranging from the minimum value of 2 to the maximal value of 425

(observed in 2005). Clusters of size bigger than 100 are observed during the period from

2002 to 2005 and in 2008.

For each cluster of investors the overall buying, selling, and buy-selling activity for each

trading day of the year can be computed. With this approach a vector of approximately

750 records for each cluster is obtained (each trading day contributes to three different

records, i.e. one for buying, one for selling and one for buying-selling). The similar-

ity between each pair of clusters is evaluated by estimating the Pearson’s correlation

coefficient between the activity vectors of the two clusters. A simple and efficient way
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3.5 Time evolution of clusters

Table 3.7: Summary statistics of the clusters detected in the FDR statistically validated

networks with the Infomap algorithm during the reported calendar year. The

column FDR nodes gives the number of investors present in the FDR network.

The column Clusters gives the number of clusters detected by Infomap. The

column Clusters 5 gives the number of clusters with a number of nodes higher

than five. The Size biggest column gives the number of investors present in

the biggest cluster. The smallest clusters have always size two.

Year FDR nodes Clusters Clusters 5 Size biggest

1995 66 28 0 4

1996 100 33 3 12

1997 174 60 5 12

1998 301 81 12 26

1999 444 115 17 31

2000 602 172 23 22

2001 1082 282 34 39

2002 1760 333 75 163

2003 3618 509 186 309

2004 2803 419 121 216

2005 2505 313 109 425

2006 542 123 23 31

2007 622 136 30 54

2008 1053 206 46 101

2009 1361 277 57 92
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3 Long term ecology of investors in a financial market

to highlight the main similarities present between the investment activity of different

clusters is through the minimum spanning tree (MST) associated with the correlation

coefficient matrix of all clusters of a given calendar year [47]. Fig. 3.11 shows the MST

of clusters of 2005. It has also been investigated whether each cluster presents the over-

expression of the number of investors of a given category. The statistical test used to

perform this kind of analysis is described in Ref. [52]. It should be noted that the

result of this statistical test is not simply pointing out the categories of investors with

maximal number of investors in a given cluster. In fact, the test detects whether a given

category is significantly over-represented in a cluster with respect to a null hypothesis

that takes into account the heterogeneous size of the different categories. When the

over-expression is detected (always by taking into account the correction for multiple

tests), the symbol of the cluster is labeled with a given color. For example the cluster

0 05 has an over-expression of households (cyan color) and of non financial corpora-

tions (green color). Other clusters showing over-expression of some category of investors

are clusters 1 05 (households over-expression), 3 05 (households over-expression), 6 05

(governmental over-expression, label in grey color), and 27 05 (financial over-expression,

label in red color). The MST shows that the investment activity of some clusters is quite

dissimilar. For example clusters 0 05, 1 05, and 3 05 are located in distinct branches of

the MST suggesting a high degree of dissimilarity among them (the first number of the

cluster label is an arbitrary numeric label and the second number are the last two digits

of the calendar year), although they are all over expressed in the same category, i.e.

households. Fig. 3.12 shows the trading profile of Nokia investors belonging to the six

clusters with over-expression of investors’ categories detected in 2005. The horizontal

axis orders distinct investors of each cluster whereas the vertical axis is time (in number

of trading days). In the figure a red spot indicates a buy action, a green spot a sell action

and a white spot a buy/sell action, while a black spot indicates absence of trading for

the specific investor and trading day. Visual inspection of Fig. 3.12 suggests that the

trading strategy of the different clusters is rather different under many aspects. The

most evident ones concern the frequency of trading, the number of investors, and the

specific sequence of buy, sell, and buy-sell trading decisions. For example, clusters 0 05

and 2 05 are characterized by a low frequency of trading. On the contrary, 27 05 and
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1 05 are characterized by a high frequency of trading whereas 3 05 and 6 05 show an

intermediate level. Similarity of the profile is often related to synchronous buying (red

lines) and selling (green lines) decision. However also this synchronicity has a character-

izing role for some clusters. Examples are clusters 27 05 and 1 05. Up to now, it was not

possible to associate a specific trading strategy to a each cluster of investor. However

in the following sections each cluster will be characterized with a number of indicators

concerning the profile of trading and some attributes that characterize the investors.

3.5.3 Dynamics of statistically validated networks of investors

The investors’ composition and investment profile of clusters are changing year after year.

In order to put in relation investors of a cluster of a given year with investors of clusters

of the successive year a suitable statistical test has been used. This test looks at the

over-representation of the number of investors that are present in both clusters against

a null hypothesis that takes into account the heterogeneity of the size of the clusters.

The test was performed as described in Ref. [18]. Several pairs of clusters (m.l) detected

in consecutive years (k, k + 1) present over-expressed intersections of investors. When

this is the case cluster mk is connected with an arc to cluster lk+1. Fig. 3.13 shows the

time evolution of several clusters of FDR networks. The time duration of the observed

cluster evolutions ranges from a minimum of 2 years to a maximum of 12 years (see the

cluster evolution starting from 7 98 and ending at 34 09). The coalescence of several

clusters is also observed (see, for example, the coalescence of clusters 2 02, 3 02, 6 02,

22 02 and 34 02 into the cluster 0 03 in the middle of the figure), together with the

splitting of a cluster in two clusters (e.g. the splitting of 1 05 into 1 06 and 5 06). For

several clusters, their dynamics presents regularities with respect to the type of investors

composing them. Fig. 3.13 shows also those clusters that present an over-expression of

the number of investors of a given category (or categories). It is evident that several

chains of clusters show a persistent over-expression of specific categories of investors.

The most prominent example is the cluster evolution starting from 7 98 and ending at

34 09. In this chain all clusters are over-expressed in governmental organizations (nodes

with grey color) with the additional over-expression of non-profit institutions (nodes with

yellow color) in some years. It is possible also to observe chains of clusters characterized
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Figure 3.12: Color code representation of the trading action of Nokia investors for clusters 0 05 (top left panel), 2 05

(top right panel), 3 05 (middle left panel), 6 05 (middle right panel),27 05 (bottom left panel), and 1 05

(bottom right panel). The horizontal axis orders different investors whereas the vertical axis is time (in

number of trading days from top to bottom). A red spot indicates a buy action, a green spot a sell

action and a white spot a buy/sell action. Black spots indicate absence of trading.
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3.5 Time evolution of clusters

Figure 3.13: Time evolution of the clusters detected in the FDR networks. Clusters are represented by a node labeled

with a numerical index and the year of the FDR network. The size of the node is proportional to the

logarithm of the number of nodes of the cluster. A link is set between two nodes when the overlap

between the number of nodes presents in a community at year i with the number of nodes presents

at year i + 1 is over-expressed with respect to a null hypothesis of random partitioning maintaining

the heterogeneity of cluster size observed for the considered years. Paths of cluster evolution lasting

several years (up to 12 years) are observed. Splitting and merging of clusters are also observed. Colored

nodes are nodes characterized by an over-expression of one or more categories of investors. Colors refer

to the different categories as follows: a) non-financial corporations (green), b) financial and insurance

corporations (red), c) general governmental organizations (grey), d) non-profit institutions (yellow), e)

households (cyan), and f) foreign organizations (brown).

by over-expression of households (see, for example, the chain from 11 02 and 61 02 to

2 07 and 3 07 and the chain from 0 02 to 5 06 and 1 06), households and non financial

corporations (see the chain from 13 00 to 0 05), financial corporations (starting from

22 03 and ending at 42 05 and from 46 04 to 27 05), non-profit institutions (see the

chain from 13 07 to 10 09), or some other combinations of the different categories.

3.5.4 Long-term ecology of clusters

For each year, four different attributes were investigated for each individual cluster

(when the chain is involving just a single cluster per year) or group of clusters (when

many clusters are part of a chain in a year, see for example clusters 8 01, 10 01 of the

chain from 7 98 to 34 09). The four considered attributes are (i) the average pairwise

distance between vectors of individual trading decisions of investors d(i, j) belonging to

a cluster or to a group of clusters. The distance between investor i and j is measured
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Figure 3.14: Scatter plots of six attributes characterizing a cluster or a group of cluster for each year. Each segment

covers the values from the first decile to the last one. Crosses shown in color refer to the cluster chains

from 7 98 to 34 09 (red crosses), from 13 00 to 0 05 (yellow crosses), and from 0 02 to 1 06 and 5 06

(green crosses)

first as a Jaccard similarity ρJ(i, j) and then transformed to a distance according to

d(i, j) =
√

2(1− ρJ(i, j)), (ii) the average value of the ratio of the number of trading

during quantitative earning days divided by the total number of trading days, (iii) the

average value of the number of stocks each investor of the cluster (or group of cluster) is

investing on, and (iv) the average trading frequency of investors of the cluster (or group

of cluster). A trading frequency equals to one indicates trading activity for all trading

days of the year.

The average distance gives information about the degree of dissimilarity observed

between the activity of pairs of investors of a cluster. The average value of the rate of

quantitative earning trading days provides information concerning the relevance of these

special days in the trading decisions. A high value highlights attention to fundamental

news and/or trading decisions associated with market trading days typically character-

ized by over-reaction of the market. The average number of stocks owned by investors is

a proxy of their knowledge about basic financial concepts as the one of investment diver-

sification. The average trading frequency gives information about the average number of
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3.5 Time evolution of clusters

trading days of investors during the year. Fig. 3.14 shows six scatter plots of the average

values of the 6 pairs of the above indicators. In addition to the average value observed for

each cluster (or group of clusters) for each year, two segments indicate the interval from

the first decile to the last one. All points and segments are provided in grey with the

exception of three groups of clusters referring to three specific chains that are provided

with crosses drawn in color. The six panels of the figure show that the chain from 7 98

to 34 09 (red crosses), which is characterized by over-expression of governmental and

non-profit institutions, presents attention to diversification (high value of the average

number of stocks), low average frequency of trading (with two years of exception when

an intermediate frequency of trading was adopted), moderate trading involvement dur-

ing days of quarterly earnings, and relatively homogeneous trading among investors, as

testified by a low value of the average distance between the vectors of trading activities.

The points associated with this chain of clusters are quite distinct from the other two

selected chains. In fact the chain of clusters from 13 00 to 0 05 (yellow crosses), which is

characterized by over-expression of households and non-financial corporations, presents

less attention than the previous one to diversification (the average number of stocks is

around 15), very low average frequency of trading, high trading involvement during days

of quarterly earnings, and relatively low average distance between investment decisions.

The third chain of clusters from 0 02 to 1 06 and 5 06 (green crosses), although also

characterized by over-expression of households, is characterized by attributes that are

quite different from the ones of the previous chain. Specifically, investors of this third

chain present moderate attention to diversification, relatively high average frequency of

trading, low trading involvement during days of quarterly earnings, and a high average

distance between investment decisions (i.e. the trading decisions are rather heteroge-

neous in this case). Thus, this analysis underlines the presence of investment profiles

that are typical of groups of investors, are different one from the other and are present

in the market with a time scale of many years or even decades. These types of strategies

are typically over-expressed among investors belonging to a specific category or to few

categories.

In order to quantify the average similarity of investors belonging to each category, the

average Jaccard correlation between the binary vectors of trading activity concerning
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3 Long term ecology of investors in a financial market

Figure 3.15: Average Jaccard correlation between the binary vectors of trading activity for the six category of the

database as a function of the calendar year. Governmental organizations (G), Financial companies (F),

Households (H), Non Financial companies (NF), Foreign organizations (R), and Non profit organizations

(NP).

the three possible choices for each trading day of a calendar year has been computed.

Fig. 3.15 shows the average Jaccard correlation for the six categories of the database

as a function of the calendar year. In particular the figure shows that investor cate-

gories characterized by lower similarity among their trading activity are the categories

of households (H) and foreign organizations (R). On the contrary, categories with higher

global similarity are governmental organizations (G) and, to a lesser degree, financial

corporations (F) and non-profit institutions (NP). The amount of similarity is rather

persistent and stable over the years.

A last investigation concerns the relationship between the logarithmic ratio of vali-

dated links and the average daily volatility computed each calendar year. Fig. 3.16 shows

the logarithmic ratio of validated links as a function of the average daily volatility for

all the investigated years. The figure shows that the two quantities are anti-correlated:

in fact, the Pearson’s correlation coefficient between them is -0.59. In other words the

rate of similar investment profiles observed between pairs of investors is exponentially

sensitive to the volatility of the market. Periods of low volatility are associated with
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3.5 Time evolution of clusters

Figure 3.16: Logarithmic ratio of validated links as a function of the average daily volatility estimated for all inves-

tigated years.

high values of the logarithmic rate and viceversa. Since the ratio of validated links can

be seen as an estimator of the extent to which the activity of investors is synchronized

during a year, this value of correlation suggests that the more volatile is the market, the

less likely is that investors are organized in stable, synchronized groups. Fig. 3.16 also

shows that on top of the role of volatility some other variable (or variables) is crucially

affecting the logarithmic rate. This second effect seems to be of bimodal type clustering

together years(i) 2001, 2002, 2003, 2004, 2005, and 2008 and (ii) 1995, 1996, 1997, 1998,

1999, 2000, 2006, 2007 and 2009. Although it was not possible to find a clear explanation

for this bimodal organization of the scatter plot, it is worth noting that all the years of

the onset of the financial bubble are in the second group.

69





4 Demographic trends and social

dynamics of a speculative bubble

In the study of financial systems, a widely adopted assumption is the stationarity of the

underlying processes [6]. For a time series, stationarity implies that the distribution of

elements of the series does not vary if it is shifted in time. Thus, a set of logarithmic

returns rt1 , rt2 , . . . rtn will have the same distribution of the set rt1+T , rt2+T , . . . rtn+T ,

for any T . The idea behind this assumption is that financial processes do not change

significantly over time, and their dynamics is affected equally by the same trends and

phenomena. Although this assumption was proven to be valid across several markets in

different periods, with the identification of many stable patterns and trends in financial

processes [43], there is also strong empirical evidence of different behaviors. Indeed, the

search for stable, stationary phenomena is only one aspect of the dynamics of financial

systems. Often, the collective behavior of agents interested in making money out of

temporary trends brings to the development of unstable, bursty processes that may

contradict some of the assumptions of financial theories. Speculative bubbles are a

significant example of these processes. In finance, a bubble can be defined as “a situation

in which temporarily high prices are sustained largely by investors’ enthusiasm rather

than by consistent estimation of real value” [69]. Indeed, one frequent observation on

speculative bubbles is that, during their inflation, the price of the involved assets is

detached by its real value and has no relationship with common financial tools like

fundamentalist estimations. In bubbles, a common mechanism is the large diffusion

of momentum strategies of investors that focus on consistently buying an asset with a

growing expectation of making a profit due to the increase in its price. When the price is

pushed too much by the action of investors, the bubble bursts, and a momentum strategy
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of opposite direction is adopted by the majority of investors, leading to a dramatic

drop in the price. In the context of the present dissertation, it is worth translating

the definition of speculative bubbles in the language of complex systems. From this

perspective, a bubble is the effect of an emergent phenomenon strongly related to the

feedback among investors. In fact, the bubble continues to grow until a large number

of investors consistently invest money on the inflating asset. Specifically, the feedback

among investors is indirectly delivered through the price of the asset, that increases as

an effect of the collective behavior of buyers.

Historically, the first recorded occurrence of a speculative bubble was observed in

Holland in the XVII century, as it was documented by Charles Mackay in 1841, [70]. At

that time, Dutch merchants began to import tulips from the Ottoman Empire. Due to

their brightly colors and peculiar shapes, the tulip became a popular item all over the

country, leading to an increase in demand and thus in their price. Moreover, the exchange

of contracts that worked as modern futures, giving the right to own a given amount of

tulips at the fulfilment of extablished conditions, fueled the enthusiasm of customers,

since they were allowed to trade with no actual exchange. According to Mackay, the

commerce of tulips became so wildly spread that “the rage among the Dutch to possess

them was so great that the ordinary industry of the country was neglected”. Eventually,

the bubble popped when, while taking arrangements for a big purchase, a buyer was

not found. This event opened the eyes of traders on the unsustainability of the increase

in the price of tulips, which fell to a very small fraction of its previous value. Even

though the accuracy of Mackay’s account have been recently discussed, [71], this event

contributed to introduce the awareness on the occurrence of periods in which a (set of)

asset(s) can be strongly mispriced on financial markets due to the collective action of

investors. Indeed, recent history is full of examples of speculative bubbles: from the

Japanese asset price bubble of late 80’s to the housing bubble that led to the outbreak

of the big financial crisis of 2008, this phenomenon seems to reiterate regularly over

time. Particular interest in the context of this dissertation is going to be put on the dot

com bubble, which developed in most industrialized countries in the last years of the

XX century and affected the assets linked to companies that belonged to the tech sector.

Despite the diffusion of studies on the causes and the features of a bubble, an exhaustive
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comprehension of its dynamics is still missing, together with a clear understanding of

the methods to be implemented to reduce or control such a phenomenon.

The existing literature has focused on several aspects of the dynamics of a bubble.

One big branch is about the description and characterization of the features of the time

series of assets involved in an inflating bubble. In this direction, some studies have

applied recursive regression methods to detect signals that may lead to the outbreak of

a bubble, in order to provide an early warning on bubbles’ development [72], [73]. In

other works, an attempt to model the time series of the price of assets involved in a

bubble has been carried out by associating the mainly monotone price series with strict

local martingales [74]. In [75], instead, a classification of speculative bubbles on the

basis of the associated volatility was proposed. Specifically, a distinction is introduced

between fearful bubbles, associated with a significant increase in volatility during its

inflation and fearless ones, in which no significant changes in volatility are detected.

Other works try to estimate the impact that different factors have on the dynamics of a

bubble. Caginalp et al., in [76], have investigated the relationship between liquidity and

the maximum levels of price reached by an asset during a bubble. They found out that

the two quantities are positively correlated, and as a consequence deferring dividends

(thus reducing liquidity) during the inflation may reduce the size of the bubble. Another

work by Lux, [77], instead stresses how the variable that mostly affects the social diffusion

of trading decisions among investors during a bubble is the series of return of the involved

asset. The fluctuations in this variable are enough to shape a collective behavior that

shows herding characteristics.

Other directions involve the characterization of the social demographic attributes of

investors entering the market during the inflation of a speculative bubble. For example,

Grinblatt et al., in a paper that investigates the same dataset on Finnish investors which

is used extensively in this dissertation, characterize the timing of the trading decisions

of investors on the basis of their IQ score during the dot com bubble in Finland [78].

The analysis performed in this chapter goes in this direction. Indeed, by combining the

dataset presented in the previous chapter with a second dataset that records demographic

information on the whole population of Finland, a socio-demographic characterization

of the sets of investors entering the market in order to buy the Nokia asset for the first
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time in different moments of the dynamics of the dot com bubble has been performed.

Moreover, an attempt of modelling the process of buying Nokia on the basis of an opinion

dynamics of reservation prices among the Finnish population is proposed in the following

sections. This chapter is organized as follows: section 4.1 describes the investigated

datasets, section 4.2 presents the methodology and the results for the socio-demographic

investigation of investors, and section 4.3 introduces the model for reservation prices as

a variation of the Deffuant model.

4.1 Datasets

For the current investigation, the same dataset described in the previous chapter has

been used. Indeed, its structure allows to extract the time series of investors at a daily

time scale. For this analysis, the focus has been put on the investors that entered the

market for the first time in order to buy the Nokia stock. We chose Nokia because at the

time was the leading tech company traded in Finland (and it was also the most traded

asset in general), and is one of the assets which were most affected by the bubble. Fig.

4.1 plots the closing prices of Nokia during the years 1995-2009. The figure shows the

rapid increase in price experienced in the years 1999-early 2000, and the abrupt drop at

the end of 2000. In 2007, years after the burst of the bubble, there is another moderate

increase in the price which falls back to lower values during 2008.

The second dataset used in this chapter was collected by the Statistics Office of Fin-

land, and contains demographic information on the population of the Finnish country.

Specifically, it records information on age levels, income, education and job demographic.

For each field, the information is reported at the level of single postal code. For the postal

codes whose population is below 50 individuals only the total number of inhabitants is

reported.
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Figure 4.1: Closing price of the Nokia asset in the years 1995-2009. The effects of the inflation of a speculative bubble

are evident from 1999 to early 2000. The end of 2000 is characterized by a dramatic drop in the price,

associated with the burst of the bubble.

4.2 Characterization of new investors

4.2.1 Time series of new entries

The first step of the present investigation is the detection of the time series of investors

accessing the stock market for the first time in order to buy Nokia. We chose to track only

investors that had never had ownership of stocks different from Nokia in order to stress

the idea that these investors were completely new to a financial investment and were

attracted into the market by the performance of Nokia. Moreover, the investigation has

been limited only to households in order to focus on the decision of individual investors

that acted on behalf of themselves or their families. The top panel of Fig. 4.2 plots

the number of newcomers buying Nokia for the first time in the investigated period at

a daily scale. The first half of the time series is strongly bursty, with high peaks of

new entries occurring in very narrow time windows, often of just one day. An inset,

drawn in red color, focuses on the period in which the the inflation process was stronger,

1999-2000, in order to highlight the shape and the dynamics of peaks. The highest peak

was observed on the 28th of July in 2000. It is worth noting that the previous day, the
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27th, a quarterly earning announcement was released. These announcements, released

by the company at regular intervals (four per year) play a significant role in the trading

history of an asset because they are usually characterized by the very intense activity

of investors reacting to the news. Moreover, as a consequence of this trading activity,

the price of Nokia had experienced a very significant drop in price, falling to about the

79% of its precedent value. Thus, the huge peak of the 28th of July is the result of

the decisions of a large number of investors that saw in the low price of Nokia a good

opportunity to start their investment. This process is at the basis of the model that

will be introduced in the following sections. The period that goes from 2005 to 2007 is

characterized by a very small rate of new investors. The dynamics becomes again bursty

in 2008 and 2009.

The bursty behavior of the time series of new entries reveals also another aspect: the

activity of investors in the investigated period was highly heterogeneous, with strong

differences in the numbers of investors entering the market before, during and after the

bubble. This heterogeneity is summaryzed in the bottom panel of Fig. 4.2, that shows

the numbers of household investors entering the market year by year. Thus, in order to

characterize the fluxes of new investors, a tool able to deal with such heterogeneity is

required. The characterization method adopted in this context, which is taken from the

formalism of statistical validation, is presented in next section.

4.2.2 Statistically expressed sets of new investors

The demographic characterization of the dynamics of the dot com bubble is based on

the detection of those attributes that are over-expressed among the new investors with

respect to the whole population. Since both the numbers of investors and the distribution

of attributes in the Finnish population are highly heterogeneous, the tool selected for

this purpose is again the statistical validation of attributes. In this context the null

hypothesis represents a process in which new investors are randomly drawn from the

whole population. If in a year the number of inhabitants of Finland is N , with Ni being

the new investors and NA the amount of people in Finland characterized by the attribute

A, one can test whether Ni,A, i.e. the number of investors buying Nokia for the first

time that have the attribute A, is compatible with the null hypothesis. This is obtained
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Figure 4.2: Time series of the numbers of investors accessing the stock market for the first time in order to buy the

Nokia stock. The top panel plots the time series at a daily scale, with an inset that zooms the peaks in

the years 1999 and 2000. The bottom panel plots the same time series aggregated on an yearly scale.
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by computing the corresponding p-value,

p1(Ni,A) = 1−
Ni,A−1∑
X=0

H(X|N,Ni, NA). (4.1)

As already discussed in the previous chapter, Eq. 4.1 represents the probability of finding

a quantity equal or larger than Ni,A investors with the attribute A with a random draw

from the whole population. Thus, testing this p-value allows to detect whether the

attribute A is over expressed among the investors, i.e. whether it occurs more than

expected according to the null hypothesis. Thus, an over expressed attribute identifies a

category of people in the whole population whose rate of entrance was so high to deviate

from the heterogeneity of the system. In this context, it is interesting to detect also the

attributes that are under expressed among the investors, i.e. those attributes that occur

less than expected according to the null hypothesis. Indeed, under expressed attributes

represent the categories of investors that were entering the market at rates so low to

deviate from heterogeneity. Thus, considering both kinds of expressions allows to obtain

a clearer demographic characterization of the categories of investors more/less involved

in the bubble. In order to detect the under expressed category, one should look at the

other tail of the hypergeometric distribution, as shown in [79]. Specifically, the p-value

for testing under expressions is computed according to

p2(Ni,A) =

Ni,A∑
X=0

H(X|N,Ni, NA). (4.2)

The p-value p2 represents the probability of finding a quantity equal or smaller than Ni,A

investors with the attribute A with a random draw from the whole population. Thus,

a small value of p2 indicates that the attribute A is observed among investors less than

expected according to the null hypothesis. Once the two-tail p-values are computed,

they are tested taking into account the corrections for multiple comparisons, with a

significance threshold of 0.01. Specifically the correction used is the control for the False

Discovery Rate (FDR) [51].

The motivation for such a test can be found by looking at Fig. 4.3. The top panel of

the figure plots the heatmap of the ratios of the number of new investors of different age

levels on the total number of Finnish people of the same age levels, for different years.

The bottom panel instead plots the ratios of the number of new investors of different age
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levels on the total number of investors, for different years. Thus, the top panel shows that

the fractions of Finnish people of different ages entering the market grow significantly in

the years of the bubble, reaching a peak in 2000, but it does not contain information on

the distribution of age levels between all the investors. On the other hand the bottom

panel shows that the youngest and oldest population groups are less represented among

investors, but it does not take into account how this relationship evolves with respect to

the global population. The test on over/under expressions, instead, focuses on the age

levels more/less involved in the bubble dynamics by naturally taking into account both

sources of heterogeneity. Fig. 4.5 plots the outcomes of the statistical validation of age

levels in the investigated period. In the figure, each dot is red if the corresponding age

level was over expressed in the corresponding year, it is blue if it was under expressed and

it is white otherwise. A careful investigation of the figure reveals that people younger

than 18 years and those older than 70 are almost always under expressed, while, people

between the age of 25 and 45 are almost always over expressed. However, in 2005, 2006

and 2007, which were year characterized by small rate of new investors, the pattern

of over/under expression is less pronounced. Moreover, it is interesting to observe the

behavior of the remaining age groups: people of 18-19 years are under expressed only in

a part of the investigated period, which broadly overlap the complete dynamics of the

bubble. People of 20-24 years instead are also under expressed only in 2000 and 2001,

which were the years in which the bubble popped, while they were over expressed in

1995. Thus, people of this age level proved to be moderately interested in trading, but

on average more aware of the risks of the bubble once it was bursting. On the other

hand, people of age between 45 and 65 had an opposite behavior. Indeed, they are over

expressed only in a set of year that broadly covers the dynamics of the bubble, and

continued to enter at significant rates also when it popped. The case of people of age

between 60 and 64 is meaningful: these investors were over expressed only in the worst

years, 2000 and 2001, in which the price of Nokia dropped dramatically. Before going

on, it is worthwhile comparing the pattern of the top panel of Fig. 4.3 with those of

Fig. 4.4. Indeed, the latter plots the ratios of all the investors with an open position

on the Nokia stock at a yearly scale. Thus, Fig. 4.4 shows the distribution in age of all

investors that are active on Nokia in a given year, not only those that start investing in
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that year. From the comparison, it is evident that the two patterns are quite different,

and the peak observed in 2000 for the new investors did not affect significantly the whole

distribution of investors. This is an additional evidence of the extraordinary nature of

the dynamics of the bubble, whose patterns deviated significantly from those observed

during the whole period.

Fig. 4.6 instead plots the pattern of over/under expressions of gender among investors

in the investigated period. In this case the situation does not show an evolution, since

the number of male investors is always greatly larger than the number of female ones.

This evidence shows that the dynamics of the bubble did not affect significantly the role

of gender in characterizing the interest towards a financial investment.

The other attributes of the census data (education, income and job) required addi-

tional work in order to be investigated. Indeed, gender and birth date are included in

the metadata on investors of the Euroclear dataset. This implies they can be extracted

directly from the data. Instead, the Euroclear data does not contain information on

education, income and job; thus, it is not possible to obtain directly the distribution of

investors with respect to these attributes. In order to overcome this issue, the follow-

ing procedure has been followed: we first extracted from the census data the empirical

probability distribution of attributes conditioned on postal codes. These empirical prob-

abilities are then conditioned also on age levels, according to the principle of maximum

entropy, which assumes the prior distribution to be uniform between age levels. When-

ever it is possible, linear constraints on age are assigned to the prior distributions. For

example, when dealing with job information, people younger than 65 years are never

classified as retired. Since the adoption of constraints can alterate the normalization of

the conditioned probabilities, each discrete probability is then corrected by dividing it

for the overall sum. Thus, once the conditioned probabilities for the whole population

are computed, they can be used to obtain the number of investors with the investi-

gated attributes for each postal code and age level (both information are present in

the Euroclear data). Then, aggregating on postal codes and age levels one obtains the

distributions of investors with respect to the investigated attributes. Thus, by applying

this methodology, one is able to reconstruct the profiles of investors belonging to a cate-

gory of attributes by taking into account their distribution in space and in age. If many
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4.2 Characterization of new investors

Figure 4.3: Heatmaps of the distribution of age levels among new investors as a function of time. The top panel plots

the ratios of new investors of different age levels to the total number of Finnish people of the same age.

The bottom panel plots the ratios of new investors of different age levels to the total size of the set of

investors.
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Figure 4.4: Heatmaps of the distribution of age levels among all investors with an open position on the Nokia stock.

For each investor, the age is computed when he opens the position and remains constant in the following

years. The panel plots the ratios of investors of different age levels to the total number of Finnish people

of the same age.
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Figure 4.5: Heatmap of over and under over expressions patterns for age levels as a function of time. Each dot is red

in the presence of over expression, blue in the presence of under expression and white in the presence of

neither.

Figure 4.6: Heatmap of over and under over expressions patterns for gender as a function of time. Each dot is red

in the presence of over expression, blue in the presence of under expression and white in the presence of

neither.
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Figure 4.7: Heatmap ofver and under over expressions patterns for education (top panel), income (center panel) and

job (bottom panel) as a function of time. Each dot is red in the presence of over expression, blue in the

presence of under expression and white in the presence of neither.

investors come from a postal code and have an age which are strongly characterized

by a given attribute, this will be properly reflected in the distribution of that attribute

among all the investors.

Fig. 4.7 plots the over/under expressions patterns for these attributes. The top panel

shows the statistical expressions for education levels. People with a master are over

expressed in 1995, in the years of the bubble, from 1997 to 2002 and later in 2004

and 2007-2008. People with high school education are over expressed in 1997, 1998,

1999, 2000, 2002, 2008 and 2009. People with a bachelor result over expressed only in

1999, signaling an increase in investment decisions for this category strongly localized

in the period in which the bubble was steadly growing. People with the lowest level of

education, indicated as basic studies, are always under expressed in the period from 1997

to 2002, showing a low interest in investing in the bubble, and then again in 2008 and

2009. People with a technical education instead never deviate from the heterogeneity of

the system apart from the last two years, in which they are under expressed. The panel

in the center plots the pattern of statistical expression for income levels. The levels are

computed looking at the global distribution of income in Finland. The high (low) level
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refers to people with an income that lies above (below) the 80th (20th) percentile of the

nationwide distribution of income, while all the other investors belong to the medium

level. The panel shows that newcomers with a high income are always over expressed

from 1997 to 2001, in 2004 and in the years 2008-2009. In the years from 1997 to 2000,

investors with medium level of income are always under expressed. Low income investors

instead never deviate from heterogeneity. The bottom panel instead plots the patterns

of over/under expressions for the different job groups reported in the census data. In

this case, employed investors are always over expressed with the exception of 2005, while

people younger than 14 are always under expressed, signaling that these two category

are permanently more and less represented among investors with respect to the whole

population. Retired people instead were over expressed only in the period from 1998 to

2001, proving to be more sensitive to the dynamics of the bubble. Students were over

expressed only in 1999 and in 2000, which were the years in which the bubble dynamics

was more pronounced, and again in 2009. Unemployed people instead never deviated

from heterogeneity.

4.2.3 Characterization of postal codes

The last step in the characterization of new investors involves their geographical dis-

tribution, indicated by the postal code of their residence address. Finland has 3200

single postal codes of five digits that span the whole country. In this case, the statistical

investigation of investors has been performed by looking at the over/under expression

of investors living in different postal codes with respect to the whole population living

in the same area. Since a large number of postal codes, especially those in the North

of the country, are inhabited by small numbers of people, the postal code grid has been

aggregated in order not to reduce the power of the statistical test. Specifically, the

aggregation was performed by putting together all the postal codes that share the first

three digits. This aggregation produces 839 groups of postal codes located in areas

which are geographically close. For example, the aggregated postal code 001** contains

all the single postal codes of the central area of Helsinki. Thus, the over/under expres-

sion of a given postal code in an year represents the deviation from heterogeneity of the

numbers of investors living in it when taking into account the size of the population in
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4 Demographic trends and social dynamics of a speculative bubble

the same area, the size of the whole Finnish population and the global number of new

investors. Table 4.1 provides a summary of the numbers of over and under expressed

postal codes detected in the investigated period. The table shows that the number of

statistical expressions is rather limited, ranging from 0.2% to 3% for over expressions,

while under expressions never occurs, with the only exception of 2000, in which only

one under expression is detected. In order to understand the results of such a statistical

characterization, the existence of a relationship between over expression and average

income has been investigated. However, since the fraction of over expressed postal codes

is always very small, a test on the statistical significance of such an investigation has

been conducted. Specifically, for each year, a bootstrap sampling of the income values

of postal codes without an over expression has been made. The adopted bootstrap pro-

cedure is based on obtaining random samples (allowing replacement) of a given set, in

order to obtain several realizations of the investigated variable. In this case, the sizes

of the bootstrap samples were fixed equal to the number of over expressed postal codes

in the corresponding year, in order to compare sets of the same size. Then, for each

realization, the average income of the bootstrap sample is compared with the average

income of the set of over expressed postal codes. The meaning of this test is to detect

whether the incomes of the two sets come from the same distribution or not. Table 4.2

reports some statistics about the bootstrap procedure. The table reports year by year

the percentiles at 2.5% and 97.5% for the distributions of the average income on 100,000

bootstrap realizations, the average income of the over expressed postal codes and the

fraction of times in which the average income of the bootstrap realizations was larger

than the corresponding quantity for the over expressed postal codes. The last column

thus indicates the p-values of a test that detects whether distributions of income in the

two sets are different or not. The p-values are so low that the null hypothesis of equal

distribution is always rejected with a significance threshold of 0.05, properly corrected

on the total number of tests. The results of this bootstrap procedure is summarized

also in the top panel of Fig. 4.8. The blue line in the panel plots the average value

of income for the set of over expressed postal codes. The orange band instead plots

the intervals between the percentiles at 2.5% and 97.5% for the average income of the

bootstrapped samples. It is evident how the line and the band never overlap, revealing
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Table 4.1: Summary statistics of the amount of over and under expressed postal codes

in the different years. The total number of postal codes is 839 and remains

stable over time.

Year OE UE

1995 5 0

1996 2 0

1997 6 0

1998 10 0

1999 17 0

2000 24 1

2001 10 0

2002 6 0

2003 2 0

2004 3 0

2005 2 0

2006 2 0

2007 2 0

2008 12 0

2009 14 0

how the distributions in the two sets remain always distinct, with the over expressed

postal codes always characterized by a higher level of income.

In order to quantify the extent of the difference in income between the over expressed

postal codes and the others, a modified version of the Goodman and Kruskal gamma

indicator [80] has been used. The measure was computed in the following way: the set

of postal codes is splitted into two sets, the over expressed ones and the others. Then

all the couples between elements of the two sets are considered, distinguishing between

Na, the couples in which the over expressed postal code has a higher income and Nb,

the couples in which the opposite hypothesis holds. The gamma is then computed as

γ =
Na −Nb

Na +Nb

. (4.3)
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The Goodman and Krukal gamma can take values between -1 (over expressed postal

codes have always a lower income) and 1 (over expressed postal codes have always a larger

value), with 0 signaling no relationship between income and over expression. The bottom

panel of Fig. 4.8 plots the values of the gamma as a function of different calendar years.

The figure shows that the over expressed postal codes are always associated with higher

income, as already shown by the bootstrap procedure. However, the Goodman and

Kruskal gamma adds some information. Indeed, although over expression and average

income of a postal code are always positively correlated, during the bubble the magnitude

of this correlation decreased. The gamma starts with values very close to one at the

beginning of the investigated period, it decreases in the following years until it reaches

its minimum in 2000, and then it gradually recovers to its previous values. This pattern

is an evidence of the fact that investing during the bubble was a social phenomenon that

strongly affected also regions associated with lower levels of income, that usually do not

show high rate of new investors. The same phenomenon occurs also in 2008 and in 2009,

that were characterized again by pronounced, bursty series of new investors.

4.3 Modeling the inflation of a bubble

In the previous section it was shown that the largest wave of investors buying Nokia for

the first time during the bubble dynamics occurred the day after a quarterly earning

announcement. Specifically, immediately after the announcement the price fell signifi-

cantly, closing at 45.00 euro (the opening price in the same day was 57.15 euro). Thus,

the large number of investors entering the market after the announcement saw in this

drop in price an opportunity to start their investment on Nokia at a convenient price.

This event suggests the presence of a class of potential investors that, before entering

the market during the inflation of a bubble, monitorate the price of the involved assets

waiting for a temporary drop. Indeed, since their expectation is that afterwards the price

will keep growing at its usual rates, they see in the drop a possibility to beat the market,

i.e. to maximize their profit by entering the market at a price which is lower than usual.

In financial literature, this process is associated with the fixing of a reservation price.

A reservation price is a threshold fixed by an investor that represents the maximum
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4.3 Modeling the inflation of a bubble

Table 4.2: Summary statistics of the bootstrap procedure on the income variable. The

table reports the year, the percentiles at 2.5% and 97.5% for the distribution

of average income in the samples bootstrapped from the postal codes without

an over expression, the actual average income for the over expressed postal

codes and the fraction of times in which the average income of the bootstrap

sample was higher than the actual value. The performed bootstrap replicas

are 100,000.

Year 2.5 Perc. BS 97.5 Perc. BS Average OE p-value

1995 8155.1 9517.4 11500.7 0.00000

1996 7897.2 10245.3 11963.3 0.00011

1997 10156.1 11805.3 14537.0 0.00000

1998 10659.9 12118.1 14490.9 0.00000

1999 11292.3 12610.7 15270.2 0.00000

2000 11719.0 12872.3 16035.1 0.00000

2001 12291.9 14448.5 17662.0 0.00003

2002 11451.9 13861.6 18466.6 0.00007

2003 12245.4 16881.3 21465.1 0.00002

2004 13865.2 18635.5 26889.2 0.00000

2005 13944.3 19893.7 28735.1 0.00003

2006 14243.5 20964.2 27419.9 0.00209

2007 15389.4 22456.7 29932.7 0.00010

2008 17621.7 20499.5 26073.5 0.00000

2009 17897.3 20425.1 25327.6 0.00000
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4 Demographic trends and social dynamics of a speculative bubble

Figure 4.8: The top panel plots the average income of the over expressed postal codes (blue line) versus the intervals

between the 2.5% and the 97% percentiles of the average incomes on the bootstrap samples (orange band)

as a function of time. The line and the band are never intersect, showing that the distribution of income in

postal codes with and without an over expression is different. The bottom panel plots the Goodman and

Kruskal ranking correlation gamma between over expression and income as a function of time. Although

the gamma is always positive, it shows a decreasing dynamics in the years in which the bubble is inflating,

recovering to its precedent values after the bubble bursts. It decreases again in 2008 and 2009.
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price he/she is willing to pay in order to buy a given asset. If the price goes below the

reservation price, the investor will buy a certain amount of stocks of that asset. This

mechanism belongs to the class of strategies related to the concept of realization utility,

as shown in [81]. Specifically, the adoption of a reservation price can be connected to

the evidence that the majority of individual investors have a greater propensity to sell

stocks whose price has grown since purchase. This mechanism is known as disposition

effect. In order to understand whether the presence of a distribution of reservation prices

in a population could contribute to the bursty behavior of investors entering the market

during the dot com bubble observed in Fig. 4.2, the relationship between the rate of

new entries and the variations of the price has been investigated. Specifically, for dif-

ferent time windows τ , the moving average of logarithmic returns has been computed,

and the Pearson coefficient of correlation with the time series of new investors has been

evaluated. This measure investigates whether large variations in the price at different

time scales affect the entrance rate of investors. Fig. 4.9 plots the Pearson correlation

coefficient as a function of the time window τ at which the moving average is computed.

The τ can be seen as the memory of the previous price history that the investors take

into account when making trading decisions. The figure shows that the Pearson coeffi-

cient is always negative, signaling that the investors are more likely to enter when the

price decrease. A possible explanation for this mechanism is the adoption of reservation

prices by new investors. Moreover, the Pearson correlation changes with the adopted

memory. In fact, it shows a negative peak for τ = 8, and it ranges from -0.13 to -0.22.

Thus, the reaction time to the variations of price vary between the investors.

In the present context, observing this aspect of the dynamics of the bubble gave

support to the idea that the diffusion of increasing reservation price among investors is

one of the factors that fuel the inflation of a bubble. Indeed, as an effect of the significant

increase in price shown by an asset during a bubble, an increasing number of potential

investors start to became interested in the possibility of an investment. Due to the

steady increase in price, they adjust their reservation prices over time, waiting for the

right occasion. As soon as there is a drop in the price that goes below their reservation

prices, they massively enter the market. In order to reproduce this dynamics, an agent

based model that describes the diffusion of increasing reservation prices among investors
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4 Demographic trends and social dynamics of a speculative bubble

Figure 4.9: Pearson correlation between the time series of new investors buying Nokia for the first time and the moving

average of logarithmic returns of Nokia in the investigated period as a function of the time window at

which the moving average is computed.

has been designed. This model takes inspiration from the Deffuant model, an ABM

developed at the beginning of the XXI century [82].

4.3.1 The Deffuant model

In a paper published in 2000, Deffuant et al. introduced a model to describe the opinion

dynamics within a society. Their ABM followed a vein of similar models, most of whom

were developed as a modified version of the Ising model, such as, for example, in [83]. The

Deffuant model was the first attempt to describe an opinion not just as a binary variable,

that can oscillates only between two states, but as a continuous variable that can take

any value in the range [0,1]. Moreover, the model exploits networks in order to model

actual social structures. Indeed, in the original version of the Deffuant model, social

interactions are mimicked using a regular lattice. The moderately high and constant

values of the local clustering coefficient assure that in a regular lattice the nodes are

organized in locally correlated groups that are able to mimick the existence of cohesive

group of friends. Thus, in a Deffuant model, after fixing an initial distribution of opinion
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that is assigned to all the nodes, the discussion between nodes is carried out by selecting

random couples of nodes that are connected in the underlying network. Each single

discussion works as follows: if the absolute difference between the opinions of the two

nodes is below a given threshold ε, which is a parameter valid for all couples, then the

two nodes end out with an opinion which is the average of their initial ones. Otherwise,

they maintain their starting opinions. For high values of ε, consensus is reached in the

lattice and almost every individual converge to the same opinion. For smaller values

of ε, polarization of opinions in few groups or complete fragmentation are observed. In

the present dissertation, the Deffuant model has provided the inspiration for an ABM

capable to describe the dynamics of an inflating bubble. Indeed, in this context the

opinions represent the reservation prices of the pool of potential investors. However,

some effects which are peculiar to speculative bubble, such as an increasing interest in

the involved assets and a constant increase of the reservation price itself have been added

to the model, making it significantly different from the original Deffuant model. In fact,

the former effect is related to the increasing focus that is put on an asset by media

and society once its price performance becomes evident. The latter instead relates to

the fact that investors are pushed to continuously update their reservation prices as a

consequence of the increasing price of the asset. This model can be put in relation to

that of Barberis et Xiong, [81]. Indeed, both focus on the implications of the disposition

effect. However, the model of Barberis and Xiong is based on the predictions that

investors make on the dynamics of the price when starting an investment, while the

current model focuses on the effect of social dynamics on the rate of new investors.

4.3.2 A model for reservation prices

The model has been designed in order to reproduce the dynamics of people buying Nokia

for the first time in the period from 01/01/1997 to 31/12/2000, which is the interval in

which the price continued to grow before starting to significantly decrease. In the present

model, small world networks [23] have been chosen in order to mimick social interaction

among investors. Indeed, while maintaining high values of local clustering coefficient,

small world networks are more realistic than regular lattice because they have a small

diameter. In fact, in a small world network, given any couple of nodes, the shortest path
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that connect them will be relatively small. Specifically, a small world network with 4

neighbors and a rewiring probability of p = 0.05 has been chosen. The next step was to

fix the initial reservation prices of all investors. This step was performed by extracting

values from an exponential distribution with exponent γ = P0/4, where P0 is the real

price of Nokia on the first day of the investigated period. A value p∗ = 0.95P0 was

fixed as the threshold at which the distribution of starting reservation prices is cut. This

step has been made in order to prevent investors from starting with a reservation price

which is higher than the real price. The exponential distribution was chosen in order

to describe an initial situation in which Nokia still obtained small interest by investors.

Indeed most of the investors at the beginning have a reservation price close to 0, which

can be interpreted as the total absence of interest in investing in the asset. After the

initial setup, the dynamics of reservation price starts by iterating the same procedure

several times. The time step t represents a day of trading activity. The sequence of

actions for each time step is:

• Update of the tolerance parameter. Before the actual discussion between in-

vestors starts, the tolerance parameter ε is updated. This is a significant difference

from the original Deffuant model. Indeed, in this context the tolerance parameter

is not constant in time but evolves with respect to price dynamics. This feature

has been included in order to reproduce the significant increases experienced in

the time series of new entries. If the price grows significantly, investors are more

willing to change their reservation price. Specifically, the tolerance parameter is

updated according to εt = c0 ∗Pt ∗ (1 + 4∆P (t,τ)
Pt−τ

), where c0 is a parameter that can

range from 0 to 1, Pt is the price of Nokia at time t and ∆P (t, τ) is the variation

of price experienced in [t − τ, t]. Thus, after a significant price increase εt can be

equal to a significant fraction of the price of Nokia.

• Discussion. Once the tolerance is updated, all the investors that are not in the

market yet select randomly one node from their neighbors and “discuss” their

reservation price in couples. Here the discussion is different from what observed in

the Deffuant model. If the difference between the two reservation prices is below

the tolerance ε, the investor with the lowest reservation price takes the highest

value, while the other investor leaves its reservation price untouched. Otherwise,
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nothing happens. This asymmetry in the discussion was introduced in order to

describe the intense expectations of investors during the dynamics a bubble. In

fact, the system is biased toward higher values because many investors expect a

further increase in the price.

• Entrance in the market. After the discussion, the reservation prices are com-

pared with the real price of Nokia at time t. At this point, the process of entering

the market is then modelled in the following way: each investors has a probability

p = α∗pin(t)+(1−α∗pin(t))∗pr to enter the market, with α = 1 if the reservation

price of the investor is lower than the real price and 0 otherwise. In p, pin(t) is the

probability to enter the market when the real price is lower than the reservation

price. The probability pin(t) is a function of time and follows the same dynamics

of the tolerance parameter εt: indeed, pin(t) = pin(0) ∗ (1 + 4∆P (t,τ)
Pt−τ

), with pin(0)

a parameter fixed in the setup in the model. Thus, the probability of following

the indication of reservation price is positively correlated with the recent history

of the price of Nokia. This choice also contributes to shaping a more pronounced

dynamics of people entering the market when the increase in price is stronger. In-

stead, pr represents a random probability of entering at any time, without taking

into account the reservation price. The probability pr does not depend in time

and it was introduced in order to reproduce the small waves of new investors that

enter the marke in absence of big drops in the price.

• Update of reservation prices. The last action of each time step is to update

the sequence of reservation prices of all investors according to the recent dynamics

of price. Indeed, once the starting distribution of reservation prices is assigned

when the model is set up, the dynamics of discussions among investors leaves the

price with the superior bound represented by the price of Nokia at t = 0, P0. Since

the time series experiences a sharp overall increase during the investigated period,

there is the need of regularly redefining the reservation prices towards the recent

values. In order to do this, each τ/2 time steps the reservation prices RP of all

investors is updated according to RPi(t) = RPi(t− 1) ∗ (1 + ∆P (t,τ/2)
Pt−τ/2

), only when

∆P (t, τ/2) > 0.
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The overall dynamics of the model is thus based on a key principle: the variation in

the price of the asset strongly influence the intensity of the actions of investors. Indeed,

sharp increases in the price of Nokia are reflected in a larger tolerance, making investors

change more easily their reservation prices for higher ones, and in a larger probability of

entering the market when the reservation price is higher than the real price. Table 4.3

reports a list of all the values assigned to the parameters used in the model. Fig. 4.10

plots the cumulative density functions (cdf) of new entries in the investigated period,

both the real one and the one obtained by the model. Looking at the figure it is evident

that, although the model cdf is less smooth than the real one, the model is able to produce

a bursty time series with a profile similar to the one observed in the real process. Indeed,

both curves appear as strongly convex, as a result of the combination of a first period in

which the investors entered at low rates and a second period in which the dramatic rise

in the price of the asset drove increasingly large waves of investors to enter the market,

producing a steep curve. Thus, by modeling the entrance of investors in the market as

the result of a process determined by the diffusion of reservation price, whose intensity

grows with the price, it is possible to properly fit the real time series, characterized by

peaks of increasing size.
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Table 4.3: The table reports the parameters used to set up the model. N is the total

number of investors of the model. Its choice does not affect the proportions

of the final time series of investors, but only its absolute values. The param-

eter τ , which represent the time window at which the investors monitor the

variation of price, was set to 21 days, which is the number of trading days in

a month. The parameter c0 represents the fraction of price which is set at the

beginning as the tolerance threshold. The tolerance εt is proportional to c0

but changes in time according to εt = c0 ∗Pt ∗ (1 + 4∆P (t,τ)
Pt−τ

). The parameters

pin and pr are respectively the probability for an investor of entering the mar-

ket when his/her reservation price is above the real price and the probability

of randomly entering the market at any time. The latter was fixed to a value

which is several orders of magnitude smaller than the first one, since in the

model the dynamics of reservation price is the predominant one.

Parameter Value

N 10000

τ 21

c0 0.01

pin 0.01

pr 2.5 10−5
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Figure 4.10: Cumulative density function of the time series of investors entering the market obtained in the real

process (blue line) and by using the model (orange line).
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networks and high frequency trading

A key principle in the operation of modern stock markets is guaranteeing a high degree of

anonymity to investors. Indeed, each investor approaching the market for a transaction

should not know who is going to be his/her counterparty. This is meant to minimize

the amount of adverse selection, i.e. to minimize the release of information associated

with the decision of an investor to trade. Thus, anonymity is a common fundamental

characteristic of modern stock exchanges. It should ensure that financial markets are

not networked markets. A market is networked when its participants have a constrained

number of possibilities for potential counterparties. In fact, networked markets are

markets with constrained intermediaries and/or markets where the underlying network

of interactions is crucial for the outcome of the trading transaction (a classic example

of networked market is the job market [84]). This type of interconnections should be

avoided in stock markets in order to minimize the inhomogeneity in the distribution

of information among investors, that usually has a large impact on the trading process

[61]. However, the modern evolution of financial markets has created a new type of

heterogeneity among investors, that can be be divided in two categories: the first is the

category of investors having access to high frequency trading, whereas the second is the

one without this access. In the present context, high frequency trading is intended as the

act of operating in the market at high speed, on the basis of algorithmic computation

and on time intervals below human reaction time.

In this chapter we investigate if and how the introduction of high frequency trading

implicitly induces the establishment of preferential or avoiding networked relationships

among market members. In what follows, the expression market member will be used
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to refer to the traders that are registered in the market. The registration allows them

to access directly the market in order to perform a transaction.

The landscape of high frequency trading platforms and technologies is changing fast

(nowadays, the completion time of a market activity of computer trading algorithms has

reached the time scale of microseconds [85]), and the percentage of transactions per-

formed in this way covers more than 50% of market transactions. The research question

is whether the heterogeneity of strategies and performances of investors reinforces the

presence of statistically persistent preferential/avoiding relationships between market

members trading in a financial market. The presence of these statistically detectable

relationships would therefore characterize a fully electronic anonymous financial market

as a “de facto” networked market.

In order to properly study the dynamics of a stock market at such short time scales,

the order book of the market has to be considered. An order book is an electronic register

that contains information on each event occurring at the stock market. Specifically, it

stores and continuously updates a list of all the orders that are placed by investors. The

information contained in the order book can be very useful when trading, since knowing

the price level and the type of the orders that are currently being placed can help in

forecasting the direction in which the price of a given asset is going. The orders placed

in the order book can belong to two different categories: i) limit orders if they express

the will to buy (sell) a specified amount of shares at a given price. These orders stay

in the order book until they are matched by ii) market orders, which express the will to

buy (sell) a specified amount of shares at the current best ask (bid). The ask (bid) level

is set by limit orders, and is the lowest (highest) amount of money that is being asked by

other investors to buy (sell) a share. Each time a market order is issued, a transaction

occurs between the placer of the market order (called aggressor) and the placer of the

limit order (called counterpart).

The analysis of order books and high frequency trading is characterized by some

specific aspects:

• Large data size. Since the time resolution of order books nowadays goes down to

the level of microseconds, [86], the amount of data available for even a single day

of trading can require a large amount of computer memory. This poses challenges
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5.1 Database

on computational time and power.

• Irregularity in the temporal spacing of events. At this time scale, the events

are not occurring on a time grid, and they are tracked one by one. This makes the

sequence of events irregular with respect to temporal spacing, and provides the

motivation to adopt an approach based on discrete temporal scales.

• Intraday patterns. When looking at the dynamics within a single day of trading,

stationarity cannot be assumed to be valid anymore. Indeed there is evidence of

intraday patterns, like the U-shaped form shown by volatility during the day [87].

• Temporal correlation. Another peculiar feature of the intraday dynamics of

price is the presence of short lasting non negligible negative values of autocorre-

lation for the returns, the so-called bid-ask bounce [88], that again contradict the

empirical evidence found at larger time scales.

5.1 Database

The data used for this investigation is taken from a database maintained by Nordic

Nasdaq, a local subsidiary of Nasdaq that provides financial services and infrastructures

in the Baltic area and in Scandinavia. The dataset consists of a coded data stream

containing the unfolding of the order book of Nordic Stock Exchange, from February 2010

to December 2011. From this data stream it is possible to reconstruct the information

about each order inserted in the book, together with the resulting transactions. In the

present investigation only the activity of the venue of Stockholm has been considered.

For each order, it is possible to extract the time at which it had been placed, with

a resolution of one millisecond. Other available information is the asset the order is

related to, its size and its price. The information on the identity of the issuer is not

reported. Whenever a market order is placed, a transaction is reported, and the identity

of the two market members is recorded. Moreover, from the information reported for the

transaction it is possible to compute the time to fill, i.e. the time that passes between

the placement of the limit order and its execution through a market order. It is worth

noting that in this database the information about aggressor and counterpart is an
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5 Networked structure of trading networks and high frequency trading

exact information and, differently from other studies, it is not obtained by using a proxy

associated with the presence of the transaction price at the best bid or best ask.

5.2 Summary statistics of orders and transactions

In the current investigation, orders and transactions have been investigated on a monthly

basis before being analyzed. This implies that the analysis on the effects of high fre-

quency trading has been conducted on 23 sets of data which contained all the orders

and transactions performed in a calendar month (usually 21 trading days). Table 5.1

reports the number of transactions occurring each month. Additional information con-

cerns the number of market members active on the market on each time span, the

number of ISINs1 for which at least one transaction was performed and the number of

transactions performed for the most and the least traded ISINs. The table shows that,

month by month, there are fluctuations in the numbers of market members, ISINs and

transactions.

Table 5.2 reports the summary statistics related to the order being placed in the

same time intervals. Specifically, it reports the overall number of orders, the number of

orders which are deleted before their execution, the number of ISINs with at least one

order, and the number of orders placed for the most recurring ISINs. For the orders,

the information on market members is not available. It is worth noting that, for each

month, at least 97% of orders are deleted without being fulfilled. Moreover, it can be

checked that the number of ISINs present in this table does not match the corresponding

column of Table 5.1. This happens because for some ISINs (mainly warrants), all the

placed orders are deleted and no related transactions occur.

Whenever a transaction occurs, the corresponding time to fill can be computed. The

time to fill can be seen as an indicator of the possibility of a market member to operate at

high frequency scales. In fact, if one looks at the dynamics of transactions from the point

of view of market members, the distribution of time to fill of the transactions in which

a given market member operates as aggressor contains information on the time scale at

1ISIN is an acronym for International Securities Identification Number, and is a code that uniquely

identifies a specific security. It may refer to stocks, warrants, bonds and all kinds of financial assets.
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5.2 Summary statistics of orders and transactions

Table 5.1: Summary statistics of the transactions performed month by month at the

Nordic Stock Exchange, venue of Stockholm. For each month, the number

of overall transactions, the number of active market members, the number of

traded ISINs and the number of transactions for the most traded ISIN are

reported. The number of transactions for the least traded ISIN is always 1.

Month Year All transactions Market Members ISIN Max ISIN

2 2010 2112543 75 1196 118745

3 2010 2932648 72 1258 153313

4 2010 3180196 72 1450 170222

5 2010 3966700 73 1468 161784

6 2010 3111806 72 1380 152399

7 2010 2886504 74 1467 149161

8 2010 2947415 74 1517 128933

9 2010 3134295 74 1491 143201

10 2010 3203359 76 1578 181046

11 2010 3065697 80 1513 134826

12 2010 2908710 79 1612 122183

1 2011 3279643 78 1742 173092

2 2011 3592409 80 1656 154490

3 2011 3741057 79 1503 167537

4 2011 2770656 83 1522 144484

5 2011 3512017 81 1545 154938

6 2011 3322234 79 1309 162460

7 2011 3159236 83 1435 166391

8 2011 6238368 83 1754 450914

9 2011 4951353 85 1375 309365

10 2011 4659666 86 1468 270822

11 2011 4613463 83 1313 235156

12 2011 3598750 87 1125 181707
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5 Networked structure of trading networks and high frequency trading

Table 5.2: Summary statistics of the orders submitted month by month at the Nordic

Stock Exchange, venue of Stockholm. For each month, the number of overall

orders, the number of deleted ones, the number of ISINs for which at least

one order was submitted and the number of orders for the most traded ISIN

are reported. The number of orders for the least traded ISIN is always 1.

Month Year All orders Deleted orders ISIN Max ISIN

02 2010 80183507 78471547 2539 3319910

03 2010 85750874 83341336 2699 2484291

04 2010 99788039 97262359 2594 2388965

05 2010 182443507 179296066 2951 6353257

06 2010 186214540 183639747 3138 4759539

07 2010 179279654 176804280 3040 4388838

08 2010 191142502 188630743 3307 4401413

09 2010 179201653 176548176 3184 4450367

10 2010 184497855 181859901 3358 4990035

11 2010 184198881 181616060 3598 5058352

12 2010 157258377 154860344 3889 4035948

01 2011 182295350 179620325 3763 6308408

02 2011 174137163 171190872 3831 6205200

03 2011 209725983 206641919 3554 5610651

04 2011 136269268 133962124 3669 4296711

05 2011 167620037 164725937 3870 4525160

06 2011 171414745 168708426 3775 5338413

07 2011 212321422 209715733 3777 6648121

08 2011 435489001 430384111 3708 12605615

09 2011 312579682 308491781 3721 7857166

10 2011 235694315 231917347 3437 6134586

11 2011 256873721 253095077 3168 7563479

12 2011 176806487 173673030 3314 5908463
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5.2 Summary statistics of orders and transactions

which it is able to react to the updates of ask and bid inside the order book. Indeed, if

an aggressor consistently places market orders few milliseconds after the corresponding

limit order is inserted in the order book, this is a strong indicator that he is operating

through algorithmic trading below human reaction time. Fig. 5.1 shows the pdf for the

time to fill of the transactions occurring on January 2011. Similar pdfs have already

been investigated for different stock markets in [89] and [90]. The x axis, whose scale is

milliseconds, ranges from less than one to about 3·107, i.e. approximately the number of

milliseconds contained in 8 hours, which is the duration of the opening of stock market

at the Stockholm venue. The pdf is close to a power law, with the lowest values of time

being by far the most frequent. Moreover, between ∼10 and ∼100 there is a local peak

in the pdf. This is likely to be associated with the fixed time scales at which the trading

algorithms are set to operate. Although Fig. 5.1 does not provide information on the

distribution of time to fill at an individual level, a closer look to the individual behavior

of the various market members reveals a pronounced heterogeneity. Fig. 5.2 shows the

cumulative pdf of time to fill for two different market members, Citadel Securities Ltd

(CDG) on the right and Svenska Handelsbanken AB (SHY) on the left. Data refers to

January 2011. From the figure it is evident that these two market members operate at

rather different time scales. Indeed, while about 10% of the transactions for which CDG

operates as aggressor have a time to fill within 1 ms (and about 25% have a time to fill

smaller than one second), SHY never operates as aggressor with a time to fill smaller

than 100 ms, with far less than 1% of transactions with a time to fill smaller than ten

second.

Fig. 5.3 shows the cumulative density function of the 5th percentiles of time to fill

for each market member active in January 2011. This figure spreads light on the extent

of the heterogeneity of the system. In fact, the 5th percentiles spans four orders of

magnitude, from 10 to ∼10,000 ms. It is evident that about 40% of the market members

are almost never active below a time to fill of 200 ms, which is a typical human reaction

time.
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5 Networked structure of trading networks and high frequency trading

Figure 5.1: Probability density function of the time to fill of all transactions performed in January, 2011. A peak in

the range [10,100] signals the potential presence of algorithmic trading at fixed time scales.
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Figure 5.2: The left panel shows the cumulative distributions of the time to fill of the transactions in which the market

member Svenska Handelsbanken AB (SHY) was involved as aggressor on January, 2011. The dashed red

line points to the minimum value of the time to fill. The right panel shows the same information for the

market member Citadel Securities Ltd (CDG). It is worth noting that in the investigated period the two

market member were operating as aggressors at radically different time scales.

Figure 5.3: Plot of the cumulative density function of the 5th percentiles of time to fill for each market member active

in January 2011.
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5 Networked structure of trading networks and high frequency trading

5.3 Statistical characterization of a networked market

The first step in this investigation is to detect whether there is empirical evidence of

networking effects in the market. In order to do this, each couple of market members

operating in the stock market has to be tested against a null hypothesis of random pairing

that takes into account the heterogeneity of their activity. The test is designed as follows:

given two market members A and B active on an ISIN i, the number of transactions NA

in which A is active as an aggressor with any counterpart and B is active as a counterpart

NB with any aggressor are computed. Then the number of transactions made by the

ordered couple of market members (A,B), with A aggressor and B counterpart, NAB

is computed. At this point, given N the total number of transactions made on the

ISIN i one can compute the probability that the NAB transactions made by the couple

(A,B) are compatible with a null hypothesis of random co-occurrence. The random

pairing is intended as a draw. This implies that, according to the null hypothesis,

for each transaction the aggressor select randomly its counterpart from the pool of all

market members. A significant divergence from this random behavior would mean that

the pairing of market members is biased, and would represent empirical evidence for a

networked stock market. Thus, given the numbers N , NA, NB and NAB one can compute

two p-values, according to what seen in [79],

p1(NA,B) = 1−
NA,B−1∑
X=0

H(X|N,NA, NB), (5.1)

p2(NA,B) =

NA,B∑
X=0

H(X|N,NA, NB). (5.2)

The p-value p1 represents the probability that A and B operate together according to

the null hypothesis NAB times or more. If this probability is low, then the occurrence

of the couple (A,B) is over-expressed with respect to the activity of A and B. The

other p-value measures the opposite effect. In fact, p2 is the probability that A and B

operate together according to the null hypothesis NAB times or less. If p2 is low, it means

that the couple (A,B) is under expressed and market members A and B are avoiding

each other on the stock market. In both cases the null hypothesis is violated, and the

trading pairing is not compatible with a random matching. In order to rigorously detect
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5.3 Statistical characterization of a networked market

the over/under expressed couples of market members, all the p-values should be tested

against a significance threshold, suitably corrected for multiple comparisons, as shown

in the previous chapters. In order to detect whether high frequency trading plays a role

in the networking process, one should first identify the couples of market members that

operate significantly at high frequency time scales. A preliminary step in this direction

is the identification of high frequency transactions. In order to discriminate between

transactions associated to high frequency trading and the rest, in this analysis time to

fill has been used. The classification works as follows: a temporal threshold t is chosen

and all transactions whose time to fill is below t are labelled as high frequency ones.

The threshold was set to 200 ms, which is a typical human reaction time, in order to

be sure that trading activity could not be associated with a human decision. All the

tests performed have been repeated trying different thresholds, ranging from 50 to 200

ms, and the results did not show significant changes. Fig. 5.4 plots the ratios of high

frequency transactions for each of the 20 most traded ISINs. Each point represents the

ratio averaged on the 20 ISINs, with the error bars spanning from the first to the last

decile. A clear increasing trend is evident at the end of the investigated period, showing

how the relevance of high frequency trading was steadily growing in late 2011.

In order to detect the couples of market members that operate significantly through

high frequency trading a statistical test has been designed. The idea behind the test is

to check whether each pair of market members is acting on a given stock homogeneously

through both high frequency and “low” frequency trading. In fact, if this is not happen-

ing then the couple of market members is showing over or under expression with respect

to the participation in trading labeled as of high frequency trading to a statistically

significant extent. Thus, if N is the total number of transactions performed on an ISIN

i, NAB is the number of transactions made by the aggressor A and the counterpart B

and NHF is the number of transactions performed in high frequency mode on i by all

market members, by computing NAB,HF , i.e. the number of transactions performed by

the couple (A,B) in high frequency mode, one can apply the formalism of over/under

expressions and compute the p-values

p1(N12) = 1−
NAB,HF−1∑

X=0

H(X|N,NAB, NHF ), (5.3)
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5 Networked structure of trading networks and high frequency trading

Figure 5.4: Plot of the fractions of high frequency transactions performed on the 20 most traded ISINs as a function

of the trading month. Each point represents the average between the ISINs, with the error bars going

from the first to the last decile.
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5.3 Statistical characterization of a networked market

p2(N12) =

NAB,HF∑
X=0

H(X|N,NAB, NHF ). (5.4)

Testing p1 and p2 with a statistical threshold allows to detect over/under expressed

couples. Here the over (under) expression of a couple represents the fact that their

transaction are labeled more (less) in high frequency mode than what expected if the high

frequency transactions were homogeneously distributed among all the couples taking into

account their heterogeneous levels of activity.

Table 5.3 reports the outcome of the two tests on the 20 ISINs which were most

traded at the venue of Stockholm in the period 2010-2011. The tests were performed on

a monthly basis. The table reports the total number of couples which were active at least

once on one of the 20 ISINs, and the number of couples with at least one over/under

expression in the two tests. From the table it is evident that the number of couples

over/under expressed in the test on the networking of the market is always larger than the

corresponding amount for the test on high frequency trading. However, the information

in Table 5.3 is not enough to assess whether the two phenomena are correlated. Fig.

5.5 plots the Jaccard coefficient between the couples of the two test, both for over (left

panel) and under expressions (right panel). Each point represents the averaged Jaccard

coefficient on the ISINs, with the error bars spanning from the first to the last decile. The

figure shows that the Jaccard coefficient increases significantly during the last months of

2011. Moreover, this effect is more pronounced for over expressions. Even if this result

does not imply causality between the two phenomena, it shows that the probability

that a couple over/under expressed in its high frequency activity is also networking the

market increases over time. Thus, although high frequency trading is probably not the

unique factor that contributes to building a networked market, its impact grows over

time, especially when establishing preferential relationships, represented by the over

expressions.

Table 5.4 reports the outcome of the two tests from the perspective of the 25 most

active market members, for January 2011. The table reports the number of times in

which each market member appears in a over/under expressed couple in the two tests

performed on the 20 most traded ISINs. The case in which the market members act

as aggressors and the case in which they act as counterparts are considered as dis-
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5 Networked structure of trading networks and high frequency trading

tinct cases. A detailed investigation of Table 5.4 confirms the connections between the

networking of the market and the heterogeneous adoption of high frequency trading.

Indeed, the Pearson coefficients between the sequence of over/under expressions as ag-

gressor/counterpart in the two tests is always statistically significant, ranging from 0.51

(for the over expressions as counterpart) to 0.77 (for the over expressions as aggres-

sor). This result indicates that the market members that have the higher number of

reinforcing (avoiding) relationships in the stock market have a high probability of be-

ing strongly involved also in adopting high frequency trading more (less) than expected

according to the null hypothesis, and viceversa. However, Table 5.4 spreads light also

on the differences between the two phenomena. Indeed, when looking at the test on the

networking of the market, the Pearson coefficient between over and under expression

is high (0.62 for if one considers over and under expressions as aggressors and 0.74 for

the case of counterparts), signaling that the process of networking is symmetrical: a

market member that establishes an high number of enforcing relationships has an high

probability of establishing also an high number of avoiding relationships, and viceversa.

This is not true for the test on high frequency trading: in this case, the two sequences

are anticorrelated for aggressors, with a Pearson coefficient of -0.31, and are not corre-

lated for counterparts (Pearson coefficient of 0.05). This result can be seen as an other

confirmation of the fact that, in the investigated period, high frequency trading was not

homogeneously distributed among market members.
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5.3 Statistical characterization of a networked market

Figure 5.5: The left panel shows the Jaccard coefficient between the sets of couples over expressed in the test on the

networked structure of the market and those over expressed in the test on the adoption of high frequency

trading as a function of the trading month. The right panel shows the same plot for the under expressed

couples.
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6 Conclusions

This dissertation presents different statistical investigations of social and financial sys-

tems from Finland and Sweden. Specifically, the focus has been put on detecting the

presence of significant deviations from the heterogeneity naturally present in such sys-

tems. Indeed, since heterogeneity is a peculiar and ubiquitous feature when dealing with

complex systems, it should be properly taken into account when looking for statistically

significant patterns in the activity of agents. In the context of the present dissertation,

this result has been achieved by adopting and expanding the formalism of statistically

validated networks (SVN). The approach of SVN is applied to bipartite networks in

order to obtain a projection where only the links that are detected as the outcome of a

non-random process are left. The random process is modeled as a random draw from

the pool of all possible neighbors, whose size is equal to the degree of each agent. In this

way the significance of each link is considered by taking into account the heterogeneous

activity of the corresponding couple of agents.

In this thesis, the formalism of statistical validation has been applied to three different

systems: i) a series of bipartite networks that describe the trading decisions in time of

investors active at the venue of Helsinki of the Nordic Stock Exchange during the period

1995-2009, ii) the sets of investors entering the market to buy Nokia stock in the same

venue during the evolution of the dot com speculative bubble and iii) the network of

market members active at the order book of the venue of Stockholm of NSE in the years

2010 and 2011.

In the first case, statistical validation has been used to obtain clusters of investors

characterized by similar trading patterns. Indeed, after applying Infomap to the SVN,

a partition of clusters is obtained. This method detects partitions of clusters which are

overlapping with the hierarchical structure of the system obtained from the dissimilarity
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matrix computed from vectors that describe the trading profile of a pair of investors. It

is possible to combine the two methods to extract additional information from the data.

In fact the method based on statistically validated network and community detection

is giving results of high precision but of unknown accuracy. The combination of the

approach of statistically validated networks with the correlation-based approach expands

the set of information available about the clusters of investors providing an increase of

the statistical accuracy at a minimal cost of decrease in terms of precision (i.e. in

terms of increase of false positive). Thus it is proposed the use of a combination of the

two methods when there are indications that the accuracy of the statistical validation

network approach is too limited to properly describe the system of interest. Moreover,

by expanding the formalism of SVN, the characterization of the clusters of investors

with respect to the category they belong to has been performed. A different version of

the same approach was used to detect the evolution of clusters of investors active on

Nokia in different years. The combination of these methods leads to the observation of

an ecology of groups of investors presenting a multiplicity of time scales that can last

up to more than one decade. These groups are characterized by attributes that clearly

distinguish them and their trading. The groups are often showing an over-expression

of investors of specific categories, with this type of over-expression being observed over

many years. Moreover, the similarity of investment actions between pairs of investors is

exponentially sensitive to the level of market volatility. Further lines of research could

focus on an extensive investigation of the factors that determine the different strategies

followed by investors, such as technical analysis, release of news on the traded company,

etc.

When dealing with the dynamics of the dot com speculative bubble, the statistical

validation approach has been adopted in order to characterize the fluxes of household

investors entering the market in order to buy the Nokia stock during the period 1995-

2009, at a yearly time scale. The characterization is based on the census data collected

by the Statistics Office of Finland, that includes information on age levels, education,

income and job demography. In this context, the investigation has focused both on over

and under expression of investors with specific attributes, in order to detect the categories

which were involved in the bubble more and less than expected if taking into account
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the heterogeneity of new investors and of the Finnish population. The characterization

on age levels reveals that people between 25 and 64 years are likely to be over expressed

while younger and older investors tend to be under expressed. Moreover, there are

significant cases in which an age level is under expressed only in the years of the most

intense bubble dynamics (20-24 year cohort) or viceversa is over expressed in the same

period (60-64 year cohort). Further investigation reveals that people with higher income

and education are more likely to be over expressed as newcomers in the market, although

this pattern is less pronounced in the years in which the bubble was inflating, as shown

in the bottom panel of Fig. 4.8. Thus, our approach allows to detect the categories

of investors which were more and less reactive during the dynamics of the bubble. A

further line of research could focus on estimating the impact that factors such as focused

marketing or the presence of cultural biases have in shaping such patterns of over/under

expressions.

This dissertation presents also an attempt to model the process of entrance in the

market of investors that are attracted by an asset that is experiencing a bubble-driven

inflation. This result was obtained by defining a modified version of the Deffuant model

that describes the spreading dynamics of reservation price. In order to reproduce the

highly bursty time series of investors entering the market in the model, the intensity of

the process depends on the recent history of the price of the asset. After incorporating

this feature, the model is successful in reproducing the cumulative density function

of new investors entering the market. Additional work should be done to develope a

rigorous method to calibrate the model, and applying it to multiple assets, belonging or

not to the technology sector, in order to see if a clear pattern or clusterization emerge

from the sets of parameters of the different assets.

The investigation of the activity of market members active at the venue of Stock-

holm was focused on detecting the impact of high frequency trading on the process of

networking of the market. Observing a networked market means detecting strong rein-

forcing/avoiding relationships between market members. In this context, the approach

of statistical validation was first applied to the couples of market members active on

a given ISIN, in order to detect whether the number of transactions performed by a

couple is compatible with a random matching process that takes into account the global
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activity of its components. The results of this statistical test reveals that the market

is networked. Indeed, for multiple ISINs there are several couples of market member

which are over and under expressed. A similar test was employed to detect the couples

of market members that are over/under expressed with respect to a trading activity

characterized by the condition that at least one of the two market members is per-

forming high frequency trading. The overlap between the two phenomena proved to be

significant and increasing during the investigated period, especially when looking at the

patterns of over expressed couples. Thus, algorithmic high frequency trading played a

significant and increasing role in networking the market, although it was also proved that

it cannot be considered as the only cause of the networking phenomenon. The current

investigation has been performed considering each traded ISIN separately. A potentially

more complete approach should involve the analysis of the multiplex networks obtained

by putting together the over/under expressed couples detected on different ISINs.
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