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Abstract: - Mixed and Mixed Hybrid Finite Elements (MHFE) methods have been widely used in the last 
decade for simulation of groundwater flow problem, petroleum reservoir problems, potential flow problems, 
etc. The main advantage of these methods is that, unlike the classical Galerkin approach, they guarantee local 
and global mass balance, as well the flux continuity between inter-element sides. The simple shape of the 
control volume, where the mass conservation is satisfied, makes also easier to couple this technique with a 
Finite Volume technique in the time splitting approach for the solution of advection-dispersion problems. In the 
present paper, a new MHFE formulation is proposed for the solution of the 2D linear groundwater flow 
problem over domain discretized by means of triangular irregular meshes. The numerical results of the 
modified MHFE procedure are compared with the results of a modified 2nd spatial approximation order Finite 
Volume (FV2) formulation [2], as well as with the results given by the standard MHFE method. The FV2 
approach is equivalent to the standard MHFE approach in the case of isotropic medium and regular or mildly 
irregular mesh, but has a smaller number of unknowns and better matrix properties. In the case of irregular 
mesh, an approximation is proposed to maintain the superior matrix properties of the FV2 approach, with the 
consequent introduction of a small error in the computed solution. The modified MHFE formulation is 
equivalent to the standard MHFE approach in both isotropic and heterogeneous medium cases, using regular or 
irregular computational meshes, but has a smaller number of unknowns for given mesh geometry. 
 
Key-Words: - groundwater, finite elements method, mixed hybrid finite elements method, finite volumes 
method, positive-definite matrix, M-property, Raviart-Thomas basis function 
 

1 Introduction 
The numerical solution of  a groundwater flow 
problem, according to the Eulerian approach, yields 
a set of discrete values of potential head or pressure 
and velocity, referred to different points of a mesh 
dividing the computational domain in elements.  

The Partial Differential Equations (PDEs) 
governing system is given by the mass conservation 
equation of the fluid phase and by the Darcy 
formula for the velocity. 

In the past decades, Finite Differences (FD), 
Finite Volumes (FV) and Finite Elements (FE) 
methods have been widely applied for the solution 
of the linear groundwater flow problem, as well as 
of the pollutant and/or heat transport in porous 
media. See for example [12, 11, 13, 16].  

The FD method is the oldest one, is based on a 
homogeneous and regular domain decomposition 
and is easy to implement. The FV and FE methods 
are more flexible in discretizing complex geometry 
domains as well as complex boundary conditions.   

For a correct solution of the transport problem, 
the velocity field needs to preserve mass 
conservation, both locally and globally. Unlike FD 
and FV methods, in FE approach the velocity field 
is calculated by differentiation of the potentials 
inside the elements, the discrete normal fluxes are 
discontinuous across inter-element boundaries and 
the local mass conservation is not warranted.  

One way to circumvent this problem is to proper 
exploit the local subdomains where the mass 
conservation property is satisfied. For example, in 
the Galerkin technique applied on 2D triangulation, 
the subdomains can be defined as the Voronoi (or 
Thiessen) polygons. Application of this approach in 
3D is very complicated and provides a strong 
increment of the computational time. On the other 
hand, the Finite Volume (FV) approach is mass 
conservative because the subdomain where the mass 
balance is applied is the same mesh element.  

The Mixed Finite Element (MFE) methods 
provide and attractive framework for these types of 
problems: by simultaneously approximating the 
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potential head and normal fluxes, the computed 
normal fluxes are continuous across inter-element 
edges and the local and global mass balance is 
automatically achieved. MFE methods have been 
extensively used for the solution of parabolic 
problem in many application fields (groundwater 
flow problems, petroleum reservoir problems, 
potential flow problems, …), but in elliptic 
problems (i.e. steady state problems) the matrix of 
the system becomes ill-conditioned [9, 17].  

An improved technique is represented by the 
Mixed Hybrid Finite Element (MHFE) method. The 
MHFE discretizes spatially the flow equations in a 
set of continuity equations across all the edges of 
the mesh, using the average potentials along these 
edges as unknowns. In time splitting techniques for 
the simulation of advection-dispersion problems, the 
solution of the dispersive component by means of 
MHFE methods can be easily coupled with the 
solution of the convective components obtained by 
means of other formulations (for example [1-4, 6, 
7]).  

If the mesh is triangular and the element 
parameters are isotropic, it can be proved [17] that 
the MHFE is algebraically equivalent to a FV 
approach, where the potential gradients are 
computed between the circumcentres of the 
triangles. In the FV approach the unknowns are the 
potentials in the circumcentres, that are less than the 
mesh edges and, if the mesh is regular or mildly 
irregular, the final system matrix is symmetric 
positive-definite with good conditioning properties.  

A 2nd spatial approximation order FV 
formulation (FV2), recently proposed [5] and a new  
modified formulation of the standard MHFE method 
(MMHFE) are presented in the present paper for the 
solution of the 2D linear groundwater flow problem 
discretized over generally unstructured triangular 
meshes.  

Numerical results of the FV2 scheme are shown 
to be equivalent to the results obtained by the 
standard MHFE method in the case of regular and 
mildly regular meshes. In the case of irregular 
meshes, a simple approximation is proposed; the 
approximation is aimed to maintain the good 
properties of the final matrix, even if this 
simplification is paid with a reduction of the 
accuracy provided by the second order spatial 
approximation.  

In the second proposed methodology, the 
standard MHFE formulation is mixed with the FV2 
formulation. The first one is restricted only to some 
of the obtuse triangles, called “degenerate”, the 
second one to all the other triangles. The matrix of 
the resulting linear system is symmetric and 

positive-definite, even though the “M-property” 
could not be guaranteed in the cases of degenerate 
obtuse triangles. Numerical results are the same 
obtained by a standard MHFE formulation, in both 
cases of isotropic and heterogeneous medium, using 
regular or irregular computational meshes.  

A comparison of the computational costs of the 
proposed methodologies is also carried out.  
 
 

2 The Physical Problem 
Consider the following evolutionary problem on the 
domain  R2 of a saturated porous medium (see 
for example [8]): 
 

 0

H
S

t


Q 


G                       (1,a), 

 
K H  G                            (1,b), 

 
with the following boundary conditions: 

 

dH H     on D                         (2,a), 
 

N

H
q K

n


 


   on N                    (2,b), 

 
where n is the outward unit normal to he 
initial condition are:  

 
H(x,0)=H0(x)                       (2,c). 

 
Eq. (1,a) represents the mass balance equation of 

the fluid in the porous medium, where the velocity 
field v is expressed by means of the Darcy law: 

 
K H  v                             (3), 

 
In Eqs. (1)-(3) G is the diffusive flux, equivalent 

to the Darcy velocity v provided by Eq. (3), H is the 
potential head, K the hydraulic conductivity, 
assumed constant in time, S0 is the storativity 
coefficient, assumed constant in space and time, Q 
is the source or sink term. , D and N are 
respectively the boundary of , the part of  with 
given piezometric head Hd (Dirichlet condition) and 
the part of  with given flux qN (Neumann 
condition).  
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3 Formulation of the Problem 
 
 
3.1 The Mixed Hybrid Finite Element 
method formulation 
Let T be a triangulation of  with m triangles Tj (j = 
1,…, m), N nodes and L edges ej, (j = 1,…, L). The 
piezometric head is approximated as: 

 

1
l l

l ,m

H H


                            (4), 

 
where l are P0(Tl) scalar basis function, taking on 
the value one on the triangle Tl and zero elsewhere.  

The velocity v in element l is approximated as: 
 

1 3

      1l jl jl
j ,

FL l ,...,m


 v w                (5), 

 
where FLjl is the flux leaving element l from side j 
and wjl are basis of the lowest-order Raviart-Thomas 
space  XT, defined as: 
 

1

2

jl

jl
jll

x x

y yT

 
   

w 

i



,    j = 1, 2, 3          (6), 

 
with xjl and yjl the coordinate vertices (see figure 1). 

Important properties of the XT space are [10, 15, 
17]:  

 

l  v   is constant on Tl                   (7,a), 
 

l v n   is constant over each edge ei         (7,b). 
 
Multiplying both members of Eq. (1,b) for the 

weight function w, integrating over the element Tl 
and applying the Green integration rule, you get: 

 
1

0

l l

l

l l il il

T T

il l

T

K d H d

TP d





   

   

 



v w w

w n
             (8). 

 
Integrating Eq. (1,a) and merging Eq. (1,b) you 

get: 
 

1 1
0 0

k k k k

l l

t t t t

l l

T T

S T H S T H
d Q

t t

 

     
  v d

rT

  (9). 

 
The equivalence of the element fluxes across the 

inter-element edges provides: 

 

0     
l l

l l r r j l

T T

d d e T
 

        v n v n       (10). 

 
The Neumann and Dirichlet boundary condition 

become: 
 

    
l

l l N j N l

T

d b e T


     v n              (11), 

 
       j d jTP H e D                    (12), 

 
where i = 1, 2, 3, l = 1,…, m, j = 1,…, L and TPare 
the  unknown Lagrange multipliers further defined.  

The Lagrange multipliers in Eq. (8) are 
expressed as: 

 

1
j j

j ,L

TP TP


                       (13),  

 
where j is a piecewise constant basis function with 
value equal to one on the edge ej and zero elsewhere 
and TPj represents the average value of the potential 
head on ej. According to the properties expressed in 
Eqs. (7), the flux law (1,b) can be written in 
variational form as:  
 

 
1 3

l l

l

l

l il jl il jl
j ,T T

l il l T

T

FL

K H K H TP



il

  

    

 



v w w w

w
             (14). 

 
Eq. (14) can be written as: 
 

 1

1 3
lil l ij T jl

j ,

FL K A H TP



                 (15), 

 

where ,   
l

ij ij il jl

T

A A     A w w . Using Eq. (15) 

and a fully-implicit time discretization, the mass 
balance Eq. (9) becomes: 
 

1 1

1 3

k k

l l

t t tl s
T i il T

i ,

K Q
H TP H 




   k l

  

j

        (16), 

 
where 1

1 3
i i

j ,

A



   , 0 lS T t   , K     , 

1 3i ,
i    and 

l

l

T

Q dslQ   ; replacing Eq. (16) in 

Eq. (15), one gets: 
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k

k k
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ij jl T

j ,

K
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FL K
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A TP H









   
  
     



 sl







  (17). 

 
The final system to solve is obtained by writing 

the continuity of the fluxes between two adjacent 
elements A and B: 

 
1 1 0k kt t

iA iBFL FL   


For the edge i, the corresponding diagonal term 
is: 

 
2

1,    A B A A i
ii ii ii ii A ii

K
m m m m K A 

     
    (19), 

 
while the off-diagonal term is: 
 

1 A i jA
ij A ij

K
m K A   

   
                (20). 

 
The matrix of the system is symmetric and 

positive-definite and for the solution of the system a 
preconditioned conjugate gradient can be used.  
 
 

wi 
wj 

wk 

i 

 j 

k 

 
Fig. 1. The Raviart-Thomas basis functions 
 
 
3.2 A 2nd order Finite Volume formulation 
(FV2) 
It can be proven [17] that the mixed hybrid finite 
element method is algebraically equivalent to the 
following second order finite volume approach. 

Call HA the potential in the circumcentrum CA of 
the element A and TPAj the potential head in the 
centre A

jmP  of the jth edge of the same element. 

Assume a linear variation of the potential inside the 

element and a potential continuity along the edges; 
according to these hypotheses the change of the 
potential between the CA and the point A

jmP  is given 

by (see figure 2): 
 

A
j

A Aj Aj A
A j

h
H TP FL

K b
                    (21), 

 

where FLAj is the edge flux,  in the length of edge 

j and 

A
jb

A
jh  is the minimum distance of  CA from the 

edge j. If the distance A
jh  is taken positive or 

negative according to the position of CA with respect 
to edge j, oriented in counterclokwise direction. 
Relationship expressed by Eq. (21) still holds if the 
angle in vertex j is greater than 90 degrees and the 
point CA falls outside the triangle. Assuming m to be 
the local index of the same edge in the element B 
next to A, it is possible to cancel the unknown TPAj 
by summing Eq. (21) with the similar equation 
holding for the edge m in element B, that is:   
 

B
m

Bm B Bm B
B m

h
TP H FL

K b
                 (22). 

 
Because TPBm = TPAj  and FLBm = -FLAj, you get: 
 

 
A B

Aj B j AF m
A B A

A Bj

L K h K
H H

K Kb


 

h 
  
 

         (23). 

 
Summing the fluxes through the three edges of 

element A, you get the finite volume equation 
(assuming zero source term): 

 

0
1,3

AA A A jm E A
j

H
T S H H

t







             (24), 

 
where S0A and AT  are respectively the storage 

coefficient and the area of element A, E is the index 
of the element next to the jth edge of element A and: 
 

A
j A BA

mj
AB

b K K

Kh
                         (25,a),     

          
B

AB A BKh K h K h  A                   (25,b). 
 

After time discretization, Eqs. (24)-(25) form a 
linear system of order NE, if NE is the element 
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number. If the quantity ABKh  always satisfies the 
condition: 

 
0ABKh                             (26), 

 
the linear system, coupled with the proper boundary 
conditions, has always the so called M-property (a 
non-singular matrix where the diagonal terms are 
always positive and the off-diagonal terms are 
negative or null); the M-property guarantees that 
local maxima or minima not appear in the solution 
in a domain without sinks or sources [17]), as well 
as  the positive definite condition. In this hypothesis, 
the FV formulation is easier than the MHFE 
formulation, because it requires the solution of a 
system smaller than in the MHFE formulation, with 
a matrix that always satisfy the M-property.  

Unfortunately, if the maximum angle is greater 
than 90 degrees in one or more elements the positive 
sign of ABKh  cannot be guaranteed. To overcome 
this difficulty, the following procedure is proposed: 

Call A and B two elements sharing the same 
edge, numbered with index j in element A and index 
m in element B (see figure 2). If condition expressed 
in Eq. (26) is originally not satisfied, it can be met 
by changing the location of points CA and CB. 
Compute first the quantity 

 
max

0
B

AB A BKh K h K h  0
A                   (27), 

 
that is the value of KhAB attained when the points CA 
and CB have a distance from the edge j of element A  

equal to the heights 0
Ah  and of the elements A 

and B with respect to the common edge. This 
distance from edge j is the maximum possible for 
points CA and CB to avoid negative distances from 
the other two sides of each element. In a second step 

compute the distances of the new points 

0
Bh

' AC  and 

. A possible choice is to find the root β of the 
following equation: 

'BC

 

     0 0

max

1 1A A B B
B

AB

h h K h h K

Kh

       

 

A
(28), 

 
where ε is a small quantity (say 0.001). The new 
distances are obtained by setting: 
 

 '
0 1A A Ah h h                       (29,a), 

 

 '
0 1B B Bh h h                      (29,b). 

 
The increment of the distances hA and hB  from 

the common edge can be obtained by reducing the 
distance of  CA and CB from the nodes Pj and  Pm, 
opposite (respectively in element A and B) to the 
common edge. To guarantee that distances from the 
other edges of the same elements A and B remain 

positive, for any possible angle values, ' AC  and  

must be kept respectively on the lines 

'BC
A

jP C  and 

B
mP C .   

The proposed strategy is equivalent to assume 
the equality TPBm = TPAj even if the projections of 

' AC  and on the same edge are not the same, as 
happens for the circumcentres. For this reason, the 
use of a very small ε in Eq. (8) implies very small 
extradiagonal coefficient and a slower convergence, 
but the use of a much larger value could affect the 
quality of the solution.  

'BC

The adopted approximation is similar to the one 
adopted in the first order finite volume formulation 
to relate the fluxes with the variation of the average 
potentials from one element to the next. Its effect on 
the final solution is to shift locally the accuracy of 
the solution from the second order to the first order 
size. 

 
 

0
Ah

0
Bh

 A 
 B 

CA 

CB 

C’A C’B 

  Pj

Pm

 
Fig. 2. Modification of the circumcentrum position 
for the proposed FV procedure 
 

In the non-linear case, with storativity and 
hydraulic conductivity parameters changing in time 
as function of the potential heads, the procedure 
expressed by Eqs. (27)-(29) has to be repeated at 
each time step. 
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3.3 A modified Mixed Hybrid Finite 
Element method formulation (MMHFE) 
Define a set of obtuse triangles, that we call 
“degenerate” (DG), such that: 
 

 
 

0  and   or

0  and 

DB

A
j

Kh B DG

h B DG

 

 
              (30), 

 
where B is the index of the jth triangle next to D and 
condition (30) holds for any value of j = 1, 2, 3.  

Observe that the partition of the all element set in 
DG and not DG triangles is not unique. A simple 
partition is given by putting in DG all the obtuse 
triangles, but a strong reduction of the size of DG 
can be obtained with a simple coding. 

Observe that Eq. (23) can be written in the form: 
 

AA B
Aj j A B

AB

K K FL b H
Kh

 H              (31), 

 
where A is the index of any element and B is the 
index of the jth element close to A. 

The same left hand side, according to Eq. (21), 
can be written in the form: 

 


A

A j
Aj A AjA

j

K b FL H
h

 TP             (32). 

 
This implies that the mass balance equation, in 

the finite volume formulation, can be written for the 
not DG elements in the form (assuming zero source 
term): 

 

0
1,2,3

A
Aj A A

j

H
FL S T

t




                 (33), 

 
where FLAj is computed according to Eq. (31) if 
element B is not DG, according to Eq. (32) if 
element B is DG. 

The flux continuity equation (Eq. (18)), in each 
side of the DG elements, can also be written using 
the same flux formulation (31) or (32). 

The final system will be given by a number of 
continuity equations (33) equal to the size of the not 
DG set, plus a number of equations equal to the 
number of sides of the elements in the DG set. 

After time discretization, the unknowns of the 
final system are the average potential in each side of 
the DG elements, plus the potentials in the 
circumcentrum of the not DG elements. The results 
obtained by the solution of Eqs. (33) and (18) are 
equal to the results obtained solving the all system 

of Eqs. (18) in the original MHFE formulation, and 
the matrix properties are the same, but the number 
of equations can be much smaller.  

In the non linear case the partition of all the 
elements in DG and not DG elements has to be 
updated after each time step, because the optimal 
partition depends on the parameter values.  

To reduce the total computational time, it is 
convenient to renumber the elements, in order to 
leave all the obtuse ones in the same index range.  

Observe for example  in figure 3,a an acute 
triangle with two adjacent obtuse triangles. 
Triangles initially numbered as 1,3,2 (triangle 1), 
3,5,4 (triangle 2) and 1,5,3 (triangle 3) become 1,5,3 
(triangle 1), 1,3,2 (triangle 2) and 3,5,4 (triangle 3) 
(see figure 3,b).  

 

1

2
3

4 
1

2 
3

5 
 

Fig. 3,a. An example of irregular mesh with acute 
and obtuse triangles 
 

4 

2
3

5 

2

3 

1

1

 
Fig. 3,b. The mesh of figure 3,a after the reordering 
of triangles 

 
In figures 4,a and 4,b the axes of triangles 1 and 

2 with distances 1
jh and 2

jh  are shown. Since the 

element sides are counterclockwise oriented, 
distances are positive if circumcentres are on the left 
of the side, negative otherwise.  
 

WSEAS TRANSACTIONS on FLUID MECHANICS Costanza Arico, Tullio Tucciarelli

ISSN: 1790-5087 50 Issue 2, Volume 4, April 2009



3 

1 

3 
2 

1 4 

 2 

5 
Fig. 4,a. Axes of the acute triangle 1 
 

4

2
3

5

1

3 
2 

1  
Fig. 4,b. Axes of the obtuse triangle 2 
 

Assume condition 1 2
12 1 2 2 1 0Kh K h K h   holds.  

In this case a possible DG set is given by the only 
element number 3. The unknowns of the problem 
are the three average potential of the sides of 
element 3, plus the potentials in the circumcentres 
of elements 1 and 2 (see figure 5). 
 

2 
3 

4

5 

3

2 1

1  
Fig. 5. The unknown locations of the problem 

 
 

4 Numerical Tests 
A computational domain 1 m x 1 m has been 
assumed for the numerical simulations. Two meshes 
have been used. The first is structured with 153 
equilateral or rectangular triangular elements (see 
figure 6,a), the other one is unstructured with 128 
elements (see figure 6,b). The unstructured mesh 
has been found in [14]. On the right vertical 
boundary of the domain the potential head is 
assumed equal to 1 m (Dirichlet condition); the 
bottom boundary is assumed impervious to fluxes, 

while on the other two boundaries an incoming flux 
is assumed (Neumann condition), equal respectively 
to 0.12 m2/s and 0.125 m2/s for the two meshes.  

Two series of simulations have been carried out, 
assuming homogeneous and heterogeneous 
hydraulic conductivity. The storage coefficient S0 is 
assumed equal to 0.1 s-1; in the homogeneous case 
the conductivity K is equal to 0.1 m/s, while in the 
second heterogeneous case the value of K inside 
element i is given by: 

 

10
2 2

gi gix y
sin sin /

x y

iK e

     
            


                  (34), 

 
where xgi and ygi are the coordinates of the centers of 
mass of the element and parameters x = y are 
assumed equal to 1/8; in figure 7 the contour lines of 
the points with the same value of K are shown for 
the unstructured mesh.  

Numerical results of the standard and modified 
MHFE schemes, as well as of the previously 
proposed FV2, for the two meshes and both 
homogeneous and heterogeneous conductivity cases 
have been compared. The time step t used for the 
simulations is 1.25 s and 2.5 s, respectively for the 
structured and unstructured mesh. See also [5]. 

In figures 8-9 the equipotential contours are 
shown for the cases of structured and unstructured 
meshes and heterogeneous K at the simulation time 
T = 500 s: observe that for both meshes, the contour 
lines obtained with all the three methods are 
undistinguishable. A similar behavior occurs in the 
test-cases for homogeneous medium, but for brevity 
results are not reported here.  

The effect of the mesh size has been also 
investigated. Starting from the meshes used before, 
at each refinement level i + 1, each triangle of the 
previous ith mesh is subdivided in 4 equal triangles 
connecting the midpoints of the three sides (see 
figure 10) and t is halved.  

In figures 11-14 results of the proposed 
numerical procedures are shown for the case of 
homogeneous and heterogeneous conductivity for 
the 2nd mesh refinement level (2448 elements for the 
structured mesh and 2048 elements for the 
unstructured one). Numerical results of both MHFE 
formulations and those ones of the FV2 formulation 
are the same, in the case of structured meshes; for 
the unstructured meshes results of the FV2 
formulation differ from the MHFE and the MMHFE 
formulation near the boundaries and in the zones 
with higher mesh irregularity (see for example the 
contour lines values 2.6 or 2.4).  
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In tables 1,a and 1,b the RMS errors with respect 
to the solutions of the MHFE method are shown for 
the proposed FV2 procedure and the standard 
Galerkin FE formulation. Of course, RMS errors of 
the proposed MMHFE formulation are zero. In the 
Galerkin approach, the potential head in the element 
has been computed as the mean value of the 
potentials at the three nodes..  

The RMS errors are computed as: 
 

  2

1,

1
RMS i i

MHFEFV GA
i NE

H H
NE 

        (35). 

 
Generally, the error of the Galerkin approach is 

greater than the one of the FV2 scheme. This is due 
a) to some difference in the discretization of the 
boundary conditions, that are assigned to the edges 
in both the FV2 and MHFE schemes and to the 
nodes in the Galerkin scheme, and b) to the smaller 
degree of freedom (the number of nodes) of this last 
one with respect to the others (respectively the 
number of elements for FV2, the number of edges 
for MHFE and an intermediate value for MMHFE). 
FV2 scheme provides a much smaller error, with 
respect to the Galerkin scheme, in the case of 
heterogeneous domain, due to the strong effect of 
the flux continuity at the line where the parameter 
change occurs. We can also observe that the error 
increases in the FV2 method for the more refined 
unstructured meshes. This is because the adopted 
refinement provides a proportional increment of the 
irregular elements, that could be avoided using more 
sophisticated mesh generation techniques. 

The mean values per element of the CPU times 
are reported in tables 2,a-2,d for the four numerical 
procedures. An Intel Core 2 E 6850 3.00 GHz 
processor has been used for the numerical 
simulations. In 15,a-15,d the mean CPU times are 
reported for the four procedures, as well as for a 
standard 1st spatial approximation order FV 
formulation.  

The mean required CPU time is mainly related to 
the number of unknowns. The CPU time of the 
MMHFE scheme is lower than the one of the 
standard MHFE for all the investigated tests, and 
very close to the FV2 CPU time for the structured 
meshes. In this last case, because the number of 
unknowns is the same for the two methods, the CPU 
difference is due to the time required in MMHFE 
for the partition of the elements in DG and not DG 
elements (even if the DG set comes out to be 
empty). The computational cost required by the FV2 
method is approximately twice the one required by 
the FE Galerkin scheme, but it is always smaller 

than the ones of both the MHFE methods for the 
case of unstructured mesh.  

The partition cost depends on the complexity of 
the adopted procedure. If the chosen DG set is given 
by all the obtuse triangles, the cost is basically zero; 
in our case, a simple partitioning procedure with a 
cost almost proportional to the number of elements 
has been adopted.  Finally observe that, increasing 
the order of the refined mesh, the growth of the 
computational costs is less than linear for all the 
numerical procedures. 

 
 

 
Fig. 6,a. The equilateral elements of the structured 
mesh 

 

- 0.5 0.5

0.5

 
Fig. 6,b. The unstructured mesh 
 

 
Fig. 7. Spatial distribution of K in the heterogeneous 
case 
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Fig. 8. Equipotential contours – heterogeneous 
medium, structured mesh (dashed lines: MHFE and 
MMHFE methods, dotted lines FV2 method) 
 

 
Fig. 9. Equipotential contours – heterogeneous 
medium, unstructured mesh (dashed lines: MHFE 
and MMHFE methods, dotted lines FV2 method) 
 

 
Fig. 10. Mesh refinement 
 

 
Fig. 11. Equipotential contours – homogeneous 
medium, structured mesh 2nd refinement level 
(dashed lines: MHFE and MMHFE methods, dotted 
lines FV2 method) 
 

 
Fig. 12. Equipotential contours – heterogeneous 
medium, structured mesh 2nd refinement level 
(dashed lines: MHFE and MMHFE methods, dotted 
lines FV2 method) 
 

 
Fig. 13. Equipotential contours – homogeneous 
medium, unstructured mesh 2nd refinement level 
(dashed lines: MHFE and MMHFE methods, dotted 
lines FV2 method) 
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Fig. 14. Equipotential contours – heterogeneous 
medium, unstructured mesh 2nd refinement level 
(dashed lines: MHFE and MMHFE methods, dotted 
lines FV2 method) 
 
Table 1,a. RMS errors; homogeneous medium 

NE FV2 FE Galerkin 

Unstructured mesh 

128 4.71E-04 2.02E-02 

2048 7.15E-03 6.63E-03 

Structured mesh 

153 0.00E+00 2.01E-02 

2448 2.41E-05 6.37E-03 

 
Table 1,b. RMS errors; heterogeneous medium 

NE FV2 FE Galerkin 

Unstructured mesh 

128 4.97E-04 8.14E-02 

2048 5.18E-03 1.28E-02 

Structured mesh 

153 1-06E-12 6.62E-02 

2448 2.39E-05 1.01E-02 

 
Table 2,a. CPU mean values, homogeneous medium 

NE FV2 mod. MHFE FE Ga MHFE 

Untructured mesh 

128 6.10E-06 7.32E-06 2.44E-06 1.34E-05 

2048 3.01E-05 4.04E-05 9.06E-06 4.75E-05 

Structured mesh 

153 5.11E-06 6.12E-06 2.04E-06 1.43E-05 

2448 2.97E-05 3.22E-05 9.06E-06 4.78E-05 

 
 
 
 
 
 
 

Table 2,b. CPU mean values, heterogeneous 
medium 

NE FV2 mod. MHFE FE Ga MHFE 

Unstructured mesh 

128 5.49E-06 8.54E-06 3.05E-06 1.40E-05 

2048 3.14E-05 3.92E-05 8.74E-06 4.63E-05 

Structured mesh 

153 5.11E-06 6.12E-06 2.04E-06 1.33E-05 

2448 3.03E-05 3.05E-05 8.52E-06 4.67E-05 
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Fig. 15,a. Mean CPU times – structured mesh, 
homogeneous medium  
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Fig. 15,b. Mean CPU times – structured mesh, 
heterogeneous medium  
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Fig. 15,c. Mean CPU times – unstructured mesh, 
homogeneous medium  
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Fig. 15,d. Mean CPU times – unstructured mesh, 
heterogeneous medium  
 
 

5   Conclusion 
A modified formulation of the standard MHFE 
scheme (MMHFE) has been proposed in this paper 
for the solution of the linear groundwater flow 
problem over irregular triangular meshes, along 
with a modified second order finite volume 
approach. The formulation is based on the partition 
of all the elements in two sets, called “degenerate” 
(DG) and non DG.  

The governing equations are: 1) the mass 
conservation equation for each non-degenerate 
obtuse triangle and 2) the continuity of the edge-
fluxes through each side of the degenerate triangles. 

A linear system, with a number of unknowns 
equal to the number of the non DG triangular 
elements plus a limited number of unknowns, one 
for each edge of the DG triangles, is obtained. The 
matrix system is symmetric and positive-definite; 
the “M-property” could not be satisfied for any of 
the DG triangles.  

Numerical results of MMHFE are equivalent to 
the ones computed by the standard formulation, for 
all types of meshes and parameters distribution.  

Results have also been compared with the results 
of a 2nd spatial approximation order Finite Volume 
formulation (FV2), recently proposed [5]. The 
classical FV2 formulation is changed by modifying 
the position of the circumcentrum for the obtuse 
triangles; this allows to maintain the “M-property” 
and the positive definite condition for all the obtuse 
triangles, but also provides an error with respect the 
MHFE and the MMHFE solutions.   

The CPU time of the numerical methods have 
been investigated. Due to the lower number of 
unknowns, the mean CPU time required by the 
MMHFE scheme is lower than the one of the 
standard MHFE for all the investigated tests, 
specially for the structured meshes. The 
computational cost required by the FV2 method is 

always smaller than the ones of both the MHFE 
methods for the unstructured mesh. For the 
structured mesh, the CPU mean times of FV2 and 
MMHFE schemes are very similar, and the 
difference is due mainly to the CPU time required in 
MMHFE for the partition of the elements in the DG 
and not DG set. 

For structured meshes, results of the new FV2 
procedure are very close to the ones provided by the 
MHFE scheme in both homogeneous and 
heterogeneous medium. For unstructured meshes, 
results of the new procedure differ from the ones of 
the MHFE methods, specially for very refined 
meshes, in the zone characterized by higher mesh 
irregularity.  

It is important to underline that results provided 
by FV2 in cases of unstructured mesh, are much 
closer to the results of the MHFE methods than the 
ones computed by a standard Finite Volume 1st 
spatial approximation order, as shown in figures 16 
and 17 (respectively for homogeneous and 
heterogeneous medium), in the case of the 2nd mesh 
refinement level. 

 

 
Fig. 16. Equipotential contours – homogeneous 
medium, unstructured mesh 2nd refinement level 
(dashed lines: MHFE and MMHFE methods, small 
dotted lines FV2 method, large dotted lines 1st order 
FV method) 
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Fig. 17. Equipotential contours – heterogeneous 
medium, unstructured mesh 2nd refinement level 
(dashed lines: MHFE and MMHFE methods, small 
dotted lines FV2 method, large dotted lines 1st order 
FV method) 
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