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Abstract 

The great achievements in livestock species selection during the last 50 years largely relied on 

quantitative genetic theory and infinitesimal genetic model. In the last 20 years, due to the 

application of advanced techniques in molecular genetics and statistics, several chromosomal 

regions that influence quantitative traits have been discovered. Combinations of molecular and 

classical quantitative information in a composite selection index have been proposed to increase the 

accuracy of selection. Nowadays, many genotyping arrays for thousands of SNPs are available for 

several livestock species, such as: cattle, sheep, pigs, horses, goat and chickens. The overall aim of 

this thesis is the comparison of different GWAS approaches to identify SNPs associated with milk 

production traits in Valle del Belice dairy sheep. In particular different genetic merit indices 

(breeding values and their deregressed and weighted values) and single test day observations will be 

evaluated to identify SNPs associated with milk yield (MY), fat yield (FY), fat percentage (F%), 

protein yield (PY) and protein percentage (P%) using different statistical approaches. The raw 

phenotypes data set included 5,586 observations of 481 ewes for MY, F%, FY, P% and PY traits. 

All animals were genotyped using the Illumina OvineSNP50K BeadChip. A single trait 

repeatability test-day animal model was performed to estimate the breeding values. The EBVs for 

MY, FY, F%, PY and P% estimated with the mixed model were deregressed (DEBV) and weighted 

(DEBVw) to obtain a more accurate estimate of the expected phenotype according to Garrick et al. 

(2009). Genome-wide association analysis was carried out based on regression of phenotypes 

(EBVs, DEBVs and DEBVw) with the genotypes of animals for one SNP at a time. For single-

marker GWAS, we used a three-step approach referred to as genomic GRAMMAR-GC as 

implemented in GenABEL package. Other two approaches for genome wide association study were 

used. The first accounts the covariances between repeated measures for each individual using the 

RepeatABEL package was used. The last approach known as Regional Genomic Relationship 

Mapping or Regional Heritability Mapping (RHM) provides heritability estimates attributable to 

small genomic regions, and it has the power to detect regions containing multiple alleles that 

individually contribute too little variance to be detected by standard GWA studies. Comparison 

among the estimated breeding values and their deregressed and weighted values as responsible 

variables, respect to their influence on our GWAS results, has demonstrated that DEBVs and 

DEBVw allow identifying a greater numbers of SNPs than using EBVs. Several SNPs using 

different approaches were identified and some of these SNPs are mapped within the previously 

reported QTL regions and within candidate genes for milk production traits. The results confirmed 
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the roles of LALBA gene and AQP genes, on OAR 3, as candidate genes for milk production traits 

in sheep. Moreover some genomic regions identified by close SNPs associated with a specific trait 

should be further investigated to verify their effect on the traits. The general consistence of the 

significant SNPs detected herein with the reported QTL and candidate genes for milk traits allow us 

to be confident of the results obtained. The information generated from this thesis has important 

implications for the design and applications of association studies as well as for the development of 

selection breeding programs for the Valle del Belice sheep breeds. 



 

 

 

Chapter 1 

 

General Introduction 



8 

 

1.1. Dairy sheep 

Sheep (Ovis aries) were one of the first livestock species to be domesticated 

along with goat and are believed to have undergone several domestication 

events (Meadows et al., 2007; Pedrosa et al., 2005). Following the 

domestication, a great variety of sheep breeds has been developed during the 

spread of sheep to other regions (Larson et. al. 2014). At first, they were mostly 

kept for meat, but later also for wool and milk (Chessa et al., 2009) and have 

therefore been selected for meat, fiber and milk production. At first glance, the 

economic importance of dairy sheep seems to be low compared to others 

livestock species. Sheep milk production accounts for 4.6% of the total milk 

production in Italy (ISTAT, 2016) and the Mediterranean basin with 60% of 

total world production is the most important area (FAO, 2014). Dairy sheep 

breeding is usually based on local breeds that are very well adapted to their 

production areas, systems and environments. Traditionally this activity has 

occupied less favored areas, using natural resources of low interest for other 

species, and helping to maintain the ecological equilibrium and the natural 

landscape. In addition, it has contributed to sustaining economic activity and 

the population in rural areas. In certain region and for certain breeds, the 

management system varies from semi-extensive to intensive according to the 

economic relevance of the production chain and the specific environment. 

Differences in management condition and good adaptability of the local sheep 

breeds to their specific environments lead to remarkable genetic diversity 

between them. Local breeds are also often linked to "high quality" products 

protected by quality labels. The above factors have resulted in the establishment 

of breeding programs designed to safeguard and improve production traits in 

local breeds against foreign breeds that often are not able to adapt to specific 

environments.  
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1.2 Origin and description of the Valle del Belice dairy breed 

The Valle del Belice dairy sheep (Figure 1) originates from western Sicily and 

its name is derived from the Belice valley, delimited by the Sicilian provinces 

of Palermo, Agrigento and Trapani.  

 

 

Figure 1. Valle del Belice dairy sheep 

 

This breed is considered to originate from a three way cross between the 

Pinzirita, Comisana and Sarda dairy breeds (Portolano, 1987). The Pinzirita 

breed, a native Sicilian sheep found in the western part of Sicily (Portolano et 

al., 1996), was first crossed with the Comisana dairy breed, which originated in 

the south-east of Sicily (Portolano, 1987). Crosses between the Pinzirita and 

Comisana breeds gave birth to individuals having intermediate characteristics 

between parental lines. These animals were crossed with sheep belonging to the 

Sarda dairy breed, imported to Sicily during the Arab domination (~800 A.D.) 

of the island (Portolano, 1987). In the nineties, data collected by the Regional 

Sicilian Breeders Association (ARAS) for milk recording and morphological 

measures collected by the University of Palermo, allowed the development of 

the Valle del Belice breed standard. This was submitted in 1996 to both the 

Dairy Sub-Committee and the Ewes Technical Committee, and in 1997 the 

Valle del Belice breed was given official recognition as local breed. This breed 

is mainly used for milk production and its average milk production is 139±35 
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liters in the first lactation and 210±62 liters for later lactations (AIA, 2006) 

considering a lactation length of 120 days. Fat and protein contents are 6% and 

5.5%, respectively. The head is fine and extended and the trunk well developed 

with good transversal diameters. A white coat covers the entire body with the 

exception of limbs, belly and head. Typical are the reddish brown spots 

surrounding the eyes and on the distal part of the ears. A typical family farming 

system is conducted and the breed is mainly raised under semi-extensive 

grazing conditions. Ewes are milked twice a day (morning and evening), and 

are housed in old storehouses or kept in fenced after the evening milking. Most 

of the farmers milk ewes by hand but some of the farms use a milking machine. 

Furthermore, the lambing system is different from the one adopted in other 

Mediterranean regions (e.g., Carta et al., 1995; Ligda et al., 2000). The lambing 

season of the Valle del Belice breed is all year long, starting in July and 

finishing in the following June, with a reduction in May and June. The 

primiparous ewes usually give birth between December and March. Moreover, 

sheep are fed with natural pastures and fodder crops; supplementation, 

consisting of hay and sometimes concentrates, is occasionally supplied, for 

example at the end of gestation (Cappio-Borlino et al., 1997). The main use of 

the milk from Valle del Belice breed is for the production of traditional raw 

milk cheeses (Pecorino Siciliano and PDO Vastedda del Belice), at farm level 

or by small local dairies or by cheese industries working at regional level. 

 

1.3 The use of the genomic approach to enhance the response to selection 

Most of the traits of economic interest in livestock have a complex quantitative 

expression coded by a large number of genes and affected by environmental 

factors. Statistical analysis of phenotypes and pedigree information allows 

estimating the genetic merit (breeding value) of the animal candidate to 
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selection following the Fischer’s infinitesimal model, according to which 

observed phenotypes are determined by an infinite number of loci, each with an 

infinitesimal additive effect (Goddard et al., 1992). Under this hypothesis, mean 

of a quantitative trait in a population can be modified choosing the best 

genotypes based on the breeding values estimated using Best Linear Unbiased 

Predictors (BLUP) methodology. In the best situation, all sources of 

information on phenotypes and additive relationships among animals are 

included in a BLUP model to estimate a breeding value for all the animals in 

the population. Estimates of genetic parameters such as heritability are needed 

as the basis for description and prediction. Heritability applies to a single trait 

measured on animals in a specific population at a given time point. Estimates of 

heritability for a trait can differ between dairy sheep breeds and may change 

slowly over time. Heritability is estimated from performance records on 

animals and pedigree information used to establish genetic relationships 

between those animals. Heritability helps explain the degree to which genes 

control expression of a trait and is used to calculate genetic evaluations, to 

predict response to selection, and to help producers decide if it is more efficient 

to improve traits through management or through selection. In general 

heritability is estimated using the formula: 

ℎ2 =
𝜎𝐴

2

𝜎𝑃
2 

 

where 𝜎A
2 is the additive genetic variance and 𝜎P

2 is the phenotypic variance. 

Traditional methods such as analysis of variance or regression cannot cope 

adequately with unbalanced data and the complex pedigrees used in the context 

of livestock study. An important generalization has been the development of the 

animal model in which the phenotype of each individual is defined in terms of 

effects and the genetic structure is incorporated in the variances and co-

variances of these effects. For example, a basic model is: 
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𝑦 = 𝑋𝑏 + 𝑍𝑎 + 𝑒 

 

where y is a vector of phenotype of the individual, b is a vector of fixed effects 

(e.g. herd, parity, etc), a is a vector of random animal effects (breeding values), 

e is a vector of random errors, X and Z are incidence matrices for fixed and 

random effects, respectively. Complex mixed model equations can adjust for all 

kind of environmental factors, maternal effects or repeated records and 

simultaneously release the requested individual additive genetic merit. 

Prediction of breeding values is a fundamental component of breeding 

programs as animals with the highest values should be selected for selection. 

For over 50 years, BLUP and related methodology have dominated genetic 

evaluation of dairy cattle, and models have become increasingly complex. The 

great achievements in livestock species selection during the last 50 years 

largely relied on quantitative genetic theory and infinitesimal genetic model 

(Figure 2). 

 

Figure 2. Changes in milk yields of US Holstein cows: phenotypic mean 

yields (P), mean breeding values (A) and environmental effects (E = A − P) 

derived from USDA data. 

Development of methodology continues, particularly of the statistical methods 

required to undertake the BLUP predictions. Standard quantitative selection 
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requires, therefore, field data collection on individual phenotypic performance 

and expected covariate among animals due to relationship between them.  

Recorded traits so far have been mainly limited to production performances. 

But even for "simple" traits like milk yield, there may be regional or national 

differences which make comparison difficult to manage. Phenotypes may be 

also sex-limited (i.e. milk production) and recorded late in the life of an animal 

(i.e. carcass traits). Recording is also quite expensive and in many countries 

costs are largely covered by National Governments. In Italy, for example, the 

total budget for selection granted by the Ministry of Agriculture is around 93 

million euro, 77 of which are dedicated for field phenotype recording. Cost of 

phenotype recording are also quite variable in different species and the value of 

phenotyped animal may not justify the expense. As an example, detection of 

milk composition (fat, protein, lactose, etc) in sheep milk requires the collection 

of a milk sample that, at the end of the lactation, may represent more than 10% 

of the daily released milk. Recording requires also efficient services covering a 

relevant part of the farms, a structure that cannot be created quickly and 

cheaply. Parentage ascertaining is also extremely expensive. In livestock 

species, where artificial insemination (AI) is largely used, the paternity of an 

animal is easily predictable. In species where natural mating is predominant, as 

in sheep, parentage definition is a crucial step in selection and the use of 

molecular markers could be a relevant part in the choice of the best sires. 

Furthermore, a relevant constraint to the genetic progress is represented by the 

inverse relationship between accuracy of breeding values and generation 

interval, kept constant the other variables in the equation of genetic gain. 

Therefore, the more accurate breeding value we want to estimate for a sire, the 

more time we need to wait to collect phenotypic information from progenies.  

The finite amount of DNA in the mammalian genome suggests that must be a 

finite number of loci that controls the expression of quantitative traits (between 

20,000 and 35,000 genes) (Ewing and Green, 2000), in contrast with the 
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infinitesimal gene model. Thanks to the advances in the molecular techniques, a 

large number of genetic markers have been discovered. Possible strategies to 

use and integrate these new sources of information with the aim of enhancing 

the accuracy of selection have been extensively reviewed and proposed from 

different authors (Lande and Thompson, 1990; Meuwissen et al., 2001; 

Dekkers, 2004). In the last 20 years, due to the application of advanced 

techniques in molecular genetics and statistics, several chromosomal regions 

that influence quantitative traits have been discovered. Hayes and Goddard 

(2001) investigated the distribution of the Quantitative Trait Loci (QTLs) 

effects in dairy cattle and swine, enforcing the evidence that there are few genes 

with large effects and many of small effects. How this relevant amount of 

knowledge is going to change the selection of farm animals is still an open 

issue. Combinations of molecular and classical quantitative information in a 

composite selection index have been proposed to increase the accuracy of 

selection (Lande and Thompson, 1990). Several approaches have been 

indicated to integrate molecular information in current breeding programs. The 

first step is to estimate the genetic merit for a candidate to selection for a 

specific trait to associate it with molecular information. An advantage of 

genetic markers is that they are available early in life, so that the accuracy of 

breeding values estimated for young animals can be increased and the 

generation interval reduced. Use of molecular data represents an opportunity to 

enhance the response to selection especially for low-heritability traits, or whose 

phenotype is difficult or expensive to measure or expressed later in age. Sex-

limited traits, such as milk production in dairy breeds, can be objectives of 

selection based on molecular data, in order to reduce the generation interval. 

For such traits, the molecular based breeding value can be available early in life 

and for both genders (Dekkers and Hospital, 2002). Although advances in 

molecular genetics have been able to explain part of the genetic variances due 

to QTLs, the possibility of implement this information in a marker assisted 
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selection (MAS) program has been limited by several reasons. Firstly, only a 

limited number of genes have been identified. Secondly, in most cases the 

marker maps used in the past were sparse, so that the QTLs have been mapped 

with very large confidence interval. 

 

1.4 Genome Wide Association studies  

Molecular markers or genetic markers are small sequences of DNA that reveal 

polymorphism in genomes (Tanksley, 1983). They are powerful tools to detect 

genetic uniqueness of individuals and the diversity of populations (Chauhan and 

Rajiv, 2010). Molecular genetic markers that have been used in genetic 

analyses are allozymes, restriction fragment length polymorphisms (RFLPs), 

random amplified polymorphic DNA (RAPD), amplified fragment length 

polymorphisms (AFLPs), expressed sequence tags (EST), microsatellites (or 

simple sequence repeats, SSR) and single nucleotide polymorphisms (SNPs) 

(Vignal et al., 2002). Single nucleotide polymorphisms (SNPs) are single base-

pair (bp) differences which are widely used as genetic markers and have been 

studied in many species (Figure 3). SNPs have many advantages compared to 

other molecular markers such as availability in high numbers, presence in 

coding and non-coding regions, low-scoring error rates, relative ease of 

calibration between different studies and conformation to simple models of 

mutation (Haynes and Latch, 2012). They also represent the most abundant 

polymorphism in any organism’s genome, adaptable to automation, and reveal 

hidden polymorphism not detected with other markers and methods (Chauhan 

and Rajiv, 2010). SNPs information for many species is available in dbSNP 

online database (https://www.ncbi.nlm.nih.gov/projects/SNP/). 
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Figure 3. Single Nucleotide Polymorphism. 

 

The availability of high-density SNP panels has given a great impulse toward 

the identification of genomic regions associated to complex traits and diseases 

in humans and, recently, in several livestock species (Yang et al. 2010; Hayes 

and Goddard, 2010). Nowadays, many genotyping arrays for thousands of 

SNPs are available for several livestock species, such as: cattle, sheep, pigs, 

horses, goat and chickens. When a dense set of polymorphic markers across a 

genome is genotyped in samples, it is possible to look for common genetic 

variants associated with a specific phenotype. These are so called genome-wide 

association studies (GWAS) and are mainly used to identify genetic risk factors 

associated with diseases in humans (Bush and Moore, 2012) and economic 

traits of animals (Zhang et al., 2013). Therefore, GWAS allows detecting 

associations between markers widely distributed along the genome and 

production or functional traits or diseases. They are considered relatively 

powerful and fast compared to other methods used to identify genetic effects 

(Hirschhorn and Daly, 2005). For example, QTL studies have a large 

confidence interval so the causal genes can be hard to locate within them 

(Zhang et al., 2013). Associations are studied by examining many common 

genetic variants in different individuals and then verifying if any variant is 

associated with a trait of interest. GWAS was first used in the analysis of 

human disease considering case and control group. (The Wellcome Trust Case 

Control Consortium, 2007). GWAS was extended to the field of domestic 
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animal genetics and breeding when genomic sequences were available for 

several domestic species and large numbers of SNPs were discovered as a result 

of sequencing or in subsequent re-sequencing projects. Information about 

phenotypes must also be available in order to find association between 

genotypes and phenotypes. Phenotypes can be either categorical or quantitative. 

Although the application of GWAS to domestic animals has only occurred 

relatively recently, there have been a series of results reported, especially from 

the analysis of the genetic mechanisms of quantitative traits. For example, in 

dairy cattle significant association using genome-wide data were detected for 

milk yield (Hayes et al., 2009; Bolormaa et al., 2010), for milk fat and protein 

contents (Pryce et al., 2010; Schopen et al., 2011), for somatic cell score 

(Meredith et al., 2012). Genome wide-association studies were also carried out 

for carcass weight (Lee et al., 2013), birth weight and size in pigs (Utsunomiya 

et al., 2013). Besides cattle, GWA studies were also performed in other 

domestic animals, including pigs (Ramos et al., 2011; Grindflek et al., 2011), 

sheep (Johnston et al., 2011), goat (Martin et al., 2016), horses (Brooks et al., 

2010), chickens (Gu et al., 2011; Liu et al., 2011) and dogs (Mogensen et al., 

2011). 

 

1.5 GWAS in Sheep 

Few GWA studies have been carried out for sheep data due to limited 

information about the sheep genome. With the recently released assembly of the 

whole sheep genome, the number of GWAS on sheep is growing (Zhang et al., 

2013). The latest assembly of the sheep genome (Oar_v4.0) was generated by 

sequencing the DNA of two animals, a male and a female belonging to the 

Texel sheep breed using Illumina technology. Briefly, the coverage of the 

reference genome is 166 fold with a contig length of ~40kb and a total 
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assembled length of 2.61 gigabase (Gb) (Jiang et al., 2014). Before the release 

of the sheep genome, there were only about 700 genes known in sheep (Zhang 

et al., 2013) but the current release counts 29,110 genes in the sheep genome 

and 43,046 proteins. 

The first study of GWAS in sheep was made on horn types by Johnston et al., 

(2011). This study was conducted using 36,000 SNPs and determined the main 

genetic candidate for horns to be RXFP2, an autosomal gene with known 

involvement in determining primary sexual characteristics in humans and mice 

(Yuan et al., 2010). 

A Chinese GWAS on 329 sheep of different breeds looked for association to 11 

traits related to muscle growth. The study identified 5 candidate genes for 

growth and meat production traits (Zhang et al., 2013). Moreover, multiple 

QTLs using GWAS and the Illumina Ovine SNP50 BeadChip were identified 

containing several candidate genes (e.g., SPP1, MEPE, IBSP, LCORL and 

NCAPG) for bone-related traits and meat quality traits in sheep (Matika et al., 

2016). An association of genomic regions to susceptibility and control of ovine 

Lentivirus has been studied and few candidate genes were found (White et al., 

2012). A GWAS for nematode resistance and body weight was performed in 

Scottish Blackface lambs by Riggio et al. (2013) and strong evidence for 

association was found on chromosomes 14 and 6. The first GWAS for milk 

traits using an OvineSNP50 BeadChip, identified the most likely candidate 

gene (i.e., LALBA) affecting milk protein and fat contents in dairy sheep 

(García-Gámez et al., 2012). Moreover, other strong candidate genes (e.g., 

ABCG2, SPP1, SCD, SOCS2, PKD2, MEPE, and IBSP) associated with milk 

production traits, have been proposed using GWAS (Rupp et al., 2015). 

 



 

19 

1.6 Aim and outline of this thesis 

The overall aim of this thesis is the comparison of different GWAS approaches 

to identify SNPs associated with milk production traits in Valle del Belice dairy 

sheep. In particular different genetic merit indices and single test day 

observations to identify SNPs associated with milk yield (MY), fat yield (FY), 

fat percentage (F%), protein yield (PY) and protein percentage (P%) will be 

evaluated. 



 

 
 

 

Chapter 2 

 

 

Materials and Methods 
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2.1 Population and phenotypes 

In this study, several lactations on a total of 481 ewes belonging to the Valle del 

Belice dairy sheep were considered. Phenotypic data were collected by the 

University of Palermo between 2009 and 2015 in four flocks located in 

Agrigento province. The procedures involving animal sample collection 

followed the recommendation of directive 2010/63/EU. Milk samples were 

collected at approximately monthly intervals, following an A4 recording 

scheme (ICAR, 2016). All ewes were milked manually twice a day and milk 

from morning and evening milking has been weighted and collected to 

determine daily milk yield and composition. For each ewe some information as 

lambing date, number of lambs born and order of parity were registered. Milk 

samples were added with the preservative Bronopol and transferred under 

controlled temperature in the laboratory of Dipartimento di Scienze Agrarie, 

Alimentari e Forestali (SAAF) for chemicals analysis. Milk composition was 

determined by the method of infrared spectrophotometry using Combifoss 6200 

apparatus (Foss Electric Hillerød, Denmark). In particular, fat (F%) and protein 

(P%) percentages were calculated as the weighted average of the morning and 

evening percentages according to the corresponding daily milk yield. Moreover, 

fat (FY) and protein (PY) yield were calculated considering the weighted 

average percentages according to the corresponding milk yield. The raw 

phenotypes data set included 5,586 observations of 481 ewes for MY, F%, FY, 

P% and PY traits. Data editing were performed using S.A.S. version 9.2 (SAS 

v9.2.3, 2012) to guarantee the quality of the data to be analyzed. Ewes with 

lactation longer than 300 days or with less than 3 observations (test-day, TD) 

within lactation were discarded. After editing, the data set consisted of 5,446 
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observations of 481 ewes. Means, standard deviations, and coefficients of 

variation of the test-day traits are given in Table 1 of chapter 3.  

From the pedigree data available online on Associazione Nazionale della 

Pastorizia (http://www.assonapa.com), the relationship information of the 

individuals under study was extracted. To verify the identities of the fathers, 

mothers and their progenies Pedigree Viewer software was used (Kinghorn, B. 

and Kinghorn, S. 1999). Pedigree was composed of 5,175 animals of which 180 

rams and 2,549 dams. The 481 ewes with phenotypes were distributed in 9 half-

sib families with an average size of 50 daughters per ram (ranging from 11 to 

173 animals per half-sib family). 

 

2.2 Genotyping  

Blood samples from the 481 ewes were collected. The use of animals was 

performed followed the recommendation of directive 2010/63/EU. Genomic 

DNA was extracted from blood samples using a salting out method (Miller et 

al., 1988).The concentration of extracted DNA was assessed with NanoDrop 

ND-1000 spectrophotometer (NanoDrop Technologies,Wilmington, DE). All 

animals were genotyped using the Illumina OvineSNP50K Genotyping 

BeadChip and the HiScanSQ platform, (Illumina Inc., San Diego, CA, USA) 

following standard operating procedures recommended by the manufacturer. 

Genotyping was performed by Dipartimento SAAF (Figure 4). The 

OvineSNP50 BeadChip, developed by Illumina in collaboration with the 

International Sheep Genomics Consortium (ISGS), is a genome-wide 

genotyping array for the ovine genome that has different applications such as 

identification of QTLs, GWAS, characterization of genetic variability among 

breeds and genomic selection. This chip contains 54,241 SNPs chosen for being 

uniformly widespread across the ovine genome (with an average gap size of 

around 50.9 kb) and for their evident polymorphism in the evaluated animals. 

http://www.assonapa.com/
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Raw signal intensities were converted into genotype calls using the Illumina 

Genome Studio Genotyping Module v2.0 software (Illumina Inc., San Diego, 

CA) by applying a call threshold of 0.15. In particular, the software was used to 

generate ped and map files that containing genotypes and the genomic 

coordinates of the markers, respectively. Several quality controls of genotypic 

data were applied to investigate the SNPs integrity and usefulness. Genotyping 

data were initially tested for quality using PLINK (Purcell, 2007) software. 

Chromosomal coordinates for each SNP were obtained from the latest release 

of the ovine genome sequence assembly Oar_v4.0. SNPs were filtered to 

exclude loci assigned to unmapped contigs and to sex chromosomes. After 

quality control, 46,827 SNPs, distributed across 26 autosomes were retained. 

 

 

Figure 4. HiScanSQ platform and the Ovine50K BeadChip of Illumina. 

 

2.3 Quality Control 

Data cleaning is the first and essential step for data analysis. Whether the goal 

is prediction of the outcomes or to discover new biology underlying the trait of 

interest, the inference of GWAS depends upon the overall quality of the data 

(Anderson et al, 2010). Even simple statistical tests of association are 

compromised in the context of GWAS with data that have not been properly 
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cleaned, potentially leading to false-negatives and false-positive associations. 

Hence, we followed the common steps for quality control in genome-wide 

association studies to prevent these issues. The SNPs’ assays that failed on a 

large number of samples are poor assays, and are likely to result in spurious 

data. Hence, SNPs with low call rate must be discarded. A recommended 

threshold for removing SNPs with low call rate is approximately 90−99%, 

although this threshold may vary from study to study and it should be decided 

by researcher. For our data and analysis a call rate greater than 95% was 

chosen. Another important issue in quality control is to exclude SNPs with low 

variability for minor allele so called rare SNPs. This filtering step helps to 

improve statistical power. So, removing extremely rare SNPs including any 

monomorphic SNP has been recommended. The choice of threshold depends on 

the size of study and the impact of SNP-effects in priori (Anderson et al., 

2010). In our study, SNPs with minor allele frequency (MAF) > 0.02 was used. 

Checking for Hardy-Weinberg Equilibrium (HWE) is the final step in the 

quality control analysis of markers in genome-wide association studies. Under 

Hardy-Weinberg assumptions, allele and genotype frequencies can be estimated 

from one generation to the next. Typically, HWE deviations toward an excess 

of heterozygotes reflect a technical problem in the sample, such as non-specific 

amplification of the target region. If no technical errors are detected then a 

number of biologically plausible explanations exist for HWE deviations such as 

population stratification, assortative mating and inbreeding. In animal studies 

and some human population, Hardy-Weinberg equilibrium check, may not be 

as usual due to inbreeding and not random mating in the sample population. 

Not random mating and inbreeding are two conditions that violate crucial 

assumption of HWE because inbreeding increases the frequency of 

homozygous, and decreases the frequency of heterozygous genotypes. In our 

data, samples in the same farms are likely to share the same alleles, inherited 

from common ancestors. Therefore, their progeny has an increased chance of 

being autozygous that refers to inherit a copy of exactly the same ancestral 
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allele from both parents. In our analysis, markers and animals with no extreme 

deviation from Hardy-Weinberg proportions (P > 0.001, Bonferroni corrected) 

were kept in the analysis. Quality control was performed with GenABEL 

packages in R (GenAbel Project Developers, 2013; R core Team, 2013) using 

the check.markers function. SNPs that did not satisfy these quality criteria were 

discarded. After filtering, the final number of samples and SNPs retained for 

analyses were 469 and 37,228 respectively. 

 

2.4 Population structure 

After quality control of phenotypes and genotypes, a major practical issue for 

studying complex traits or disease is to identify population structure in the data 

as ignoring this step reduces the power of genetic studies. Populations can be 

divided into subpopulations which are more or less distinct breeding groups in 

limited areas. Allelic frequency is one of the factors used to study populations 

which should be representative for the whole population. If the population is 

divided into subpopulations then the allelic frequencies can be different 

between the subgroups (Hartl, 1994). Therefore, it is important to reveal all 

possible sub-populations before genetic analysis of population is performed. If 

we do not account for population structure, we will identify spurious 

associations due to differences in ancestry rather than true association of alleles 

with the traits. There are many algorithms and programs designed to study the 

populations’ structure. Common methods are principal component analysis 

(PCA) (Lee et al., 2009) and multidimensional scaling (MDS) (Purcell et al., 

2007) which are both multivariate statistical techniques. In PCA, the principal 

components are constructed from a linear combination of the genotypes of 

genetic markers such as SNPs. Each principal component should maximize the 

variance between the samples used in the analysis. MDS is used to analyse 

genetic distance matrices and places samples on a graph so that the distances 
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between them represent their true genetic distances. Population structure based 

on genetic markers is often viewed on a two-dimensional graph plotting two 

components of MDS or PCA. The results from these two methods are generally 

quite similar to each other (Wang et al., 2012). However this can be done using 

kinship coefficients estimated from genomic data where the genomic estimate 

of kinship for a pair of individuals i and j is obtained using the formula 

(Leutenegger et al., 2003) 

 

𝑓𝑖,𝑗 = ∑ (
(𝑥𝑖,𝑘 − 𝑝𝑘)(𝑥𝑗,𝑘 − 𝑝𝑘)

(𝑝𝑘(1 − 𝑝𝑘))
)

1,𝑁

𝑘

 

 

where fi,j is the genomic kinship (identical-by-state) between animal i and j, k 

ranges from 1 to N (number of autosomal SNPs), xi,k or xj,k is the genotype of i
th

 

or j
th

 animal for k
th

 SNP (coded as 0, 1/2 and 1) and pk is the allele frequency at 

the k
th

 SNP. The kinship matrix was transformed to a distance matrix (0.5–fi,j) 

and principal components (PCs) of variation of the genomic distance matrix 

were calculated using the cmdscale function. The first two PCs (PC1 and PC2) 

were used to obtain the classical multidimensional scaling (MDS) plot (Figure 

5). 
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Figure 5. Multi-Dimensional Scaling plot. 

 

 

2.5. Estimated breeding value (EBVs) 

The most common phenotypes used in genome-wide association studies and 

other genomic based analyses are individual measurements. Another possibility 

is to use the estimated breeding values (EBVs) of the individuals (Pausch et al., 

2011). This has been done in several GWAS. Estimated breeding values are 

usually based on information about individuals, their offsprings and their 

relatives (depending on available information and the model used to calculate 

the value). In this study, the phenotypes analysed as response variables were 

MY, F%, FY, P% and PY. A single trait repeatability test-day animal model 

was performed to estimate the breeding values as follows: 

 

yijklmno=µ + htdi + OPj + LSk + STGl + FIMm + an + pen + pejn + eijklmno 
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where yijklmno was the test-day measurement for the considered traits; μ was the 

population’s mean; htdi was the random effect of herd by test-day interaction i 

(180 levels); OPj was the fixed effect of the parity (5 levels); LSk was the fixed 

effect of litter size class k  (2 levels, single or multiple born lambs); STGl was 

the fixed effect of season of lambing l (2 levels), where the season of lambing 

was coded as 1 if a ewe gave birth in the period January through June, 

otherwise it was coded as 2 (Riggio et al., 2007); FIMm was the fixed effect of 

fourteen days in milk m (22 levels);  an was the random animal additive genetic 

effect n (481 levels); pen was the general random permanent environmental 

effect of individual n across lactations (481 levels); pejn was the random 

permanent environmental effect on the individual n within parity class j (2,405 

levels); eijklmno was the random residual effect. The estimating genetic variances 

were carried with the pedigree information available for the last three 

generations that included 1,304 animals of which 101 rams and 823 ewes. 

Variance components, genetic parameters and estimated breeding values for 

each trait were estimated using ASReml (Gilmour, 2009). 

 

2.6 Deregressed and weighted breeding values 

Genetic evaluation of animal population results in EBVs that are a weighted 

function of the parent average EBV, any information on the individual, adjusted 

for fixed effects, and a weighted function of the EBV of offspring, adjusted for 

the merit of the mates (Garrick et al., 2009). In the study of Garrick et al. 

(2009), it has argued the removal of parent average effects in constructing 

information for genomic analyses and that information from genotyped 

descendants should also be removed to avoid double-counting. Simulation in 

the study of Garrick et al. (2009) suggests that the double-counting of 

descendants’ performance has negligible impact on genomic predictions. A 
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logical approach was suggested by these authors which demonstrated the 

appropriate weights for analyzing observations with heterogeneous variance 

and explained the need for and the manner in which EBVs should have parent 

average effects removed, be deregressed and weighted. The simplest form of 

deregression of EBVs was obtained dividing each EBV by its reliability (r
2
) 

(Garrick et al., 2009). When DEBVs are corrected for information of relatives, 

this also means that weights of the DEBVs are on average expected to be lower 

than the corresponding weights of the original EBVs. Whether or not 

deregression of EBVs and computation of appropriate weights has an (large) 

effect on the results in subsequent analyses depends on differences between 

reliabilities of EBVs across animals due to different amounts of information per 

individual.  

The EBVs for MY, FY, F%, PY and P% estimated with the mixed model were 

deregressed according to Garrick et al.(2009) to obtain a more accurate 

estimate of the expected phenotype as follows: 

DEBV =
EBV

r2
 

where EBV is the estimated breeding value of each individual considering each 

milk production trait and r
2
 is the reliability of that EBV. 

To account for the heterogeneous variance of deregressed breeding values due 

to differences in breeding value accuracy of individual belonging to different 

populations, a weighting factor (wi) should be used. Then following the 

approach of Garrick et al.(2009), a weighting factor (w) was estimate based on 

the reliability and heritability of each trait as follows: 

 

w =
1 − h2

[c +
1 − 𝑟2

𝑟2 ] h2
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where h
2
 was the heritability of the traits, r

2
 was the reliability of the EBV, and 

c was the fraction of genetic variance not explained by markers assumed to be 

0.1. 

Weighted deregressed breeding values (DEBVw) were then estimated applying 

weighting factor (w) to DEBVs. 

 

2.7 Genome Wide Association analysis 

Genome-wide association analysis was carried out based on regression of 

phenotypes (EBVs, DEBVs and DEBVw) with the genotypes of animals for 

one SNP at a time. For single-marker GWAS, we used a three-step approach 

referred to as genomic GRAMMAR-GC (Genome-wide Rapid Association 

using Mixed Model and Regression-Genomic Control) (Aulchenko et al., 2007; 

Amin et al., 2007). The advantage of this approach especially in livestock is 

that it accounts for cryptic population structure caused by the presence of 

closely related animals (Aulchenko et al., 2007) inferring relationships through 

genomic marker data. Following this approach in the first step, phenotypes 

were corrected by accounting for familiar dependence among individuals using: 

 

𝑦𝑖
∗ = 𝑦𝑖 − (𝜇̂ + 𝐺̂𝑖) 

 

where 𝑦𝑖
∗ is the so-called ‘‘environmental residual’’,𝑦𝑖 is the phenotype of i

th 

animal, 𝜇̂ is the overall mean, 𝐺̂𝑖 is the estimated polygenic contribution. In the 

second step, these familiar correlation-free residuals were used as dependent 

quantitative traits for association analysis of each SNP using a linear regression 

model: 

𝑦𝑖
∗ = 𝜇 + 𝛼𝑗𝑔𝑖 + 𝑒𝑖 
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where 𝑦𝑖
∗ is as defined before, 𝑔𝑖 is the genotype of the i

th
 individual at the 

marker under study, 𝛼𝑗 is the effect of j
th

 SNP and 𝑒𝑖 is the random residual for 

the i
th

 individual. In the third step, genomic control (GC) is applied to correct 

the test statistic using a deflation factor (ζ) calculated by: 

 

𝜁= Median( T1
2
+  T2

2 
+,…,  Tj

2
)/0.465 

 

where Tj
2
 is the observed chi-squared (X

2
) statistic for the j

th
 SNP and 0.465 is 

the expected median of X
2

(1) distribution with a non-central variance. T
2 

for 

each SNP is calculated by: 

 

𝑇𝑗
2 = 𝛼𝑗

2/𝑣𝑎𝑟(𝛼̂𝑗) 

 

where 𝛼𝑗
2 is the effect of  j

th
 SNP. T

2
/ζ̂ is compared with X

2
(1) to determine 

whether the locus is significantly associated with the quantitative trait. The 

deflation factor is estimated in the same way as inflation factor (λ) in 

conventional GC method (Bacanu et al., 2002) with the difference that ζ<1 in 

contrast to λ that is constrained to be >1. This difference is due to the regression 

of residuals instead of original trait on n loci in step 2. Polygenic (Thompson et 

al., 1990) and qtscore (Aulchenko et al., 2007; Amin et al., 2007) functions 

implemented in the GenABEL package of R software were used for association 

analysis. 

 

2.8 Genome Wide Association analysis using repeated measures 

So far, one of common denominator is that association analyses are made for 

phenotypic data where single record per individual is collected. This 

represented a problem for longitudinal data, in particular in dairy sheep the 
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phenotypic data for milk production traits are measured at different time points 

during a life cycle. Analyzing such kind of data affords us an opportunity to 

investigate the heterogeneity of traits over time and early prediction of 

longitudinal traits. It is, therefore, essential that a method for GWAS includes 

the process of repeated sampling. In a GWAS, the effects of thousands of SNPs 

need to be fitted and any model development is constrained by the 

computational requirements. Until now, GWAS software was not able to 

analyze repeated records for an individual. The only one method that accounts 

for repeated measures is the R package RepeatABEL (Husby et al., 2015; 

Rönnegård et al., 2016) that fits fixed SNP effects in a linear mixed model that 

can include both random polygenic effects and permanent environmental 

effects. In this way, the model can correct for population structure and model 

repeated measures. The covariance structure of the linear mixed model is first 

estimated and, subsequently, used in a generalized least squares setting to fit the 

SNP effects. Before carried out the analysis with RepeatABEL, we performed a 

quality control with the package GenABEL of R software, in this way we 

considered animals and markers that passed the quality criteria. RepeatABLE 

involves two steps: in the first one a linear model with all explanatory variables 

included (fixed and random) except the SNPs’ effects, is fitted to estimate 

variance components.The linear model was performed with the function 

preFitModels that include the same random and fixed effects described 

previously. In the second step, these variance component estimates are used in 

the GWAS where, one a time, each marker was fitted with the rGLS function. 

The rGLS function is the main function of the package and by default fits a 

linear mixed model including permanent environmental effects (p) and 

polygenic effects (g) with correlation matrix given by the genomic relationship 

matrix in: 

 

𝑦 = 𝑋𝛽 + 𝑍𝑔 + 𝑍𝑝 + 𝑒 
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where the vector y was the studied trait, β was the vector of fixed effect, g and p 

are the effects defined above, and e was the residual random effect, X and Z 

incidence matrix for fixed and random effects, respectively. The random effects 

were assumed to have a multivariate normal distribution such that g ~ N(0,G𝜎𝑔
2) 

where G is the genomic relationship matrix construct using the genotypic 

information of animals; p ~ N(0,I𝜎𝑝
2) where I is an identity matrix of proper 

order and e~N(0,𝜎𝑒
2 ). Thus, the estimated (co)variance matrix for this model 

was: 𝑉̂ = ZGZ
T𝜎̂g

2
 + ZZ

T𝜎̂p
2
 + I𝜎̂e

2
.  

Finally, a linear model is fitted (using generalized least square, GLS) for each 

marker where the covariate xSNP is coded as 0, 1, 2:  

𝑦 = 𝑋𝛽 + 𝑥𝑆𝑁𝑃 + 𝑒 

Where: 

 

𝑒~𝑁(0, 𝜎𝑒
2𝑉̂) 

2.9 Statistical Inference  

Bonferroni method was adopted to adjust for multiple testing from the number 

of SNPs detected using the EBVs and their weighted measures (DEBVs and 

DEBVw) or longitudinal data as response variable. After Bonferroni correction, 

we considered a significant SNP at the genome-wide or suggestive levels, if a 

raw p-value <0.05/N and 1/N, where N is the number of SNP loci tested in 

analyses, was obtained. Significance thresholds were P < 1.34x10
-6 

and P < 

2.68x10
-5

 for genome-wide and suggestive levels, corresponding to -log10(P) 

5.87 and 4.57, respectively. The results of GWAS were plotted using 

Manhattan plot based on the obtained P-value of each SNP. The p-values of the 

association test were transformed to -log10 (P-values) for each SNP versus its 

chromosomal location. Manhattan plot shows locations of statistically 

significant SNPs across the chromosomes (horizontal axis) associated with their 
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effects (vertical axis) on the traits of interest. The black and red lines 

correspond to genome-wide and suggestive levels respectively.Quantile-

quantile (Q-Q) plots were used to analyze the extent to which the observed 

distribution of the statistic test followed the expected (null) distribution. This 

was done to assess potential systematic bias due to population structure or 

analytical approach. 

 

2.10 Regional Heritability Mapping 

The Ovine SNP50k chip has already been demonstrated as providing the ability 

to map causal mutations for traits showing simple patterns of inheritance 

(Becker et al., 2010). However, in sheep, as well as in other species including 

humans, answers have not been so definitive for complex traits and GWA 

studies have generally failed to explain most of the known genetic variation 

influencing complex diseases or production traits (Manolio et al., 2009; 

Kemper et al., 2011). These studies typically test each marker independently 

for an association with the trait. The expectation is that the variance explained 

by each marker is proportional to the size of the effect of the (unobserved) 

polymorphism on the trait, the degree of association between the marker and 

the polymorphism, and the experimental error associated with the measurement. 

Attempts to increase the power of association studies have focused either on 

increasing the number of markers or the number of observations for a trait. Few 

authors have attempted to formally estimate the distribution of marker effects 

with dense SNP markers (Hayes and Goddard., 2010; Kemper et al., 2011) and 

thus the required power of experiments for complex disease traits, such as 

nematode resistance, is still unknown. An alternate approach exploiting dense 

SNP chip data, known as Regional Genomic Relationship Mapping or Regional 

Heritability Mapping (RHM) (Nagamine et al., 2012), has been advanced as a 

better approach to capture more of the underlying genetic effects. This method 
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provides heritability estimates attributable to small genomic regions, and it has 

the power to detect regions containing multiple alleles that individually 

contribute too little variance to be detected by standard GWA studies. To do 

this we used genome-wide SNP data to estimate the genetic relationships 

between all pairs of individuals in the population, both at the level of the whole 

genome and for each region within the genome. We then employed these 

relationships to estimate the trait variance contributed both by the genome as a 

whole (the genomic heritability) and by short regions of the genome (the 

regional heritability). The genomic heritability provides an estimate of the 

overall heritability but also controls for population structure. Studies by other 

authors have demonstrated that using the pedigree or genomic relationship 

matrix in a mixed model to estimate single SNP effects in pedigree structured 

data proves a powerful and unbiased analysis (Aulchenko et al., 2007; Kenny et 

al., 2011). Thus inclusion of the genomic relationship means that the regional 

heritability is unbiased by overall population structure and hence provides a 

metric that indicates local genomic regions contributing to trait variation. 

 

2.11. Procedures 

To handle with repeated measurements a modification of the methodology was 

applied. Each chromosome (OAR) was divided into windows of a pre-defined 

number of SNPs, and the variance attributable to each window estimated. In 

this study, a window size of 100 adjacent SNPs was used to construct a regional 

relationship matrix and the window was shifted every 50 SNPs. Therefore, first, 

second and third regional matrix, for example, used from 1
th

 to 100
th

, 51
th

 to 

150
th

 and 101
th

 to 200
th

. 
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A linear mixed model accounting for the same fixed and random effects, as 

reported in the previous analyses was used: 

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝑍𝑣 +  𝑒 

 

In this case the additive genetic effects were fitted as both regional genomic and 

whole genomic effects. 

 

𝑣𝑎𝑟(𝑢) = G𝜎𝑢
2, 𝑉𝑎𝑟(𝑣) = Q𝜎𝑣

2, 𝑉𝑎𝑟(𝑒) = I𝜎𝑒
2 

 

where the vector y represents the phenotypic values, X is the design matrix for 

the fixed effects, and Z is the design for random effects . The remaining vectors 

are, u: whole genomic additive effect, v: regional genomic additive genetic 

effect, e: residual, and β: fixed effect. Matrices G and I area whole genomic 

relationship matrix using all SNPs for whole genomic additive effects and a 

unit matrix for residual, respectively. Q is regional genomic relationship matrix 

obtained using 100 SNPs for regional genomic additive effects. Whole 

genomic, regional genomic and residual variances are 𝜎𝑢
2,𝜎𝑣

2 and 𝜎𝑒
2 

respectively. Phenotypic variance, 𝜎𝑝
2 is 𝜎𝑢

2 + 𝜎𝑣
2 + 𝜎𝑒

2. Whole genomic 

heritability and regional heritability are hu
2
= (𝜎𝑢

2/𝜎𝑝
2), and hv 

2
= (𝜎𝑣

2/𝜎𝑝
2), 

respectively. 

 

2.12 Statistical inference for RHM analysis 

A likelihood ratio test (LRT) was used to test for the differences in regional 

variance, comparing a model fitting variance in a specific window (fitting both 

whole-genome and region-specific additive variance) against the null 
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hypothesis of no variance in that window (whole-genome additive variance 

only). The test statistic was assumed to follow amixture of 
1

2
𝜒(1)

2  and 

1

2
𝜒(0)

2 distributions (Self and Liang, 1987). In total 827 windows were tested, of 

which half was used in the Bonferroni correction, to account for the 

overlapping windows. Hence, after Bonferroni correction to account for 

multiple testing, the LRT thresholds were 13.48 and 9.20, for genome-wide and 

suggestive significance levels, respectively. As for the other methods, 

Manhattan plots were used to graph the results. 

 

2.13 Significant SNPs location on OAR4.0 genome assembly 

To investigate the gene location of the significant SNPs associated with milk 

production traits, detected in this study, we interrogated dbSNP in NCBI 

Database(https://www.ncbi.nlm.nih.gov/projects/SNP/). Gene content of 

significant regions of heritability was assessed using Sheep RefSeq in the 

Genome Data Viewer genomebrowser in NCBI Database 

(https://www.ncbi.nlm.nih.gov/genome/gdv/browser/?acc=GCF_000298735.2

&context=genome). Finally, both for significant SNPs and regions of 

heritability, SheepQTL database(https://www.animalgenome.org/cgi-

bin/QTLdb/OA/index) was interrogated and QTL for milk production traits 

reported. 
 

https://www.ncbi.nlm.nih.gov/projects/SNP/
https://www.ncbi.nlm.nih.gov/genome/gdv/browser/?acc=GCF_000298735.2&context=genome
https://www.ncbi.nlm.nih.gov/genome/gdv/browser/?acc=GCF_000298735.2&context=genome
https://www.animalgenome.org/cgi-bin/QTLdb/OA/index
https://www.animalgenome.org/cgi-bin/QTLdb/OA/index
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Results and Discussion 
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3.1 Results using EBv, DEBV, and DEBVw 

Quality control for SNPs was described in Chapter 2. Classical Multi 

Dimensional Scaling identified no outlier in our sheep breed indicating the 

absence of genetic substructure. After filtering, the final number of samples and 

SNPs retained for analyses were 469 and 37,228, respectively. Moreover, the 

final dataset for GWAS contained more than 5,400 records for MY, FY, F%, 

PY and P% (Table 1). 

 

Table 1. Milk production traits descriptive statistics. 

Traits N Mean±SD CV(%) Min-Max 

MY (g) 5,446 1,367±532 38.91 100-3,924 

FY (g) 5,437 94.80±33.91 35.76 6-277 

F% (%) 5,437 7.08±1.06 14.94 2.53-15.78 

PY (g) 5,436 78.93±29.32 37.15 6-239 

P% (%) 5,436 5.82±0.65 11.20 2.32-11.60 
MY: Milk Yield; FY: Fat Yield; F%: Fat percentage; PY: Protein Yield; P%: Protein percentage; SD: standard 

deviation; CV: coefficient of variation; Min-Max: minimum and maximum value 

 

Among the traits MY, FY and PY showed the highest variability with a 

coefficient of variation of 38.91%, 35.76% and 37.15%, respectively. In some 

cases, milk production and fat and protein content were very high (3,924 g, 277 

g, and 239 g, respectively) revealing a good performance of this breed for milk 

production. The mean phenotypic values were in agreement with previous 

studies on the same sheep breed (Riggio et al., 2007). Additive genetic 

variance, residual variance, phenotypic variance, repeatability within and across 

lactation, and heritability for milk production traits, estimated using an animal 

model with REML algorithm, are showed in Table 2.  

 

Table 2. Genetic parameters estimates and heritability for milk production 

trait. 

Traits 𝛔𝐚
𝟐 𝛔𝐫

𝟐 𝛔𝐏
𝟐 rwit±SE racr±SE h

2
±SE 
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MY 15,356.2 254,794.8 256,330 0.266±0.039 0.169±0.021 0.060±0.037 

F% 0.0107 1.1150 1.1250 0.065±0.022 0.177±0.017 0.009±0.021 

FY 70.0003 1,003.6 1,073.6 0.293±0.040 0.162±0.021 0.065±0.039 

P% 0.0124 0.3676 0.3800 0.100±0.032 0.240±0.020 0.033±0.032 

PY 54.4695 753.96 808.43 0.276±0.038 0.148±0.020 0.067±0.037 
σa

2: additive genetic variance; σr
2: residual variance; σP

2: phenotypic variance; rwit: repeatability within lactation, racr: 

repeatability across lactation; h2: heritability; SE: standard error. 

 

Heritability estimates for milk yield and milk composition traits were low and 

ranged between 0.009 to 0.067 with standard error ranging from 0.021 to 0.039. 

In a previous study, Riggio et al. (2007) considering a single lactation of 

primiparous ewes of the Valle del Belice breed, reported slightly higher 

estimates for these traits. These differences are due probably to different data 

set and model used. In fact in our data set, several lactations of the same 

individual are considered and a second permanent effect within lactation in the 

animal model was added. The heritability of milk production in sheep is 

estimated to range from 0.13 (Gutierréz et al., 2007) to 0.35 (Baro et al., 1994), 

but other studies estimate the value of heritability of test-day milk production 

data from 0.18 (e.g. El-Saied et al., 1998a) to 0.25 (e.g. Barillet and Boichard, 

1994). Heritability values for milk yield, fat and protein content were lower 

than those reported by Othmane et al. (2002) in Churra sheep breed. 

Heritability estimates depends on the population sampled and statistical model 

used. These estimates were lower than those frequently reported in dairy cows 

where selection programs are more advanced and the production levels are 

higher. Furthermore, our results were influenced by the differences of milking 

practices and management for Valle del Belice breed respect to dairy cows 

(e.g., hand vs machine milking, feeding practices). Repeatability within 

lactation estimates for all milk production traits ranged between 0.06 and 0.29, 

while repeatability across lactation estimate ranged between 0.16 and 0.24. The 

standard errors were around 0.3 for the repeatability across lactation and 0.2 for 

the one within lactation. The lowest estimates for heritability and repeatability 

within lactation were found for F%. Repeatability estimates for milk 

composition traits were lower than those reported for dairy ewes (Riggio et al., 

2007; Othmane et al., 2007). 
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3.1.1 Significant SNPs 

The total number of SNPs associated with milk production traits considering 

different breeding value estimations are reported in Table 3. As described 

above, p values (in term of –log10(P)) of tested SNPs for the five traits are 

shown using a Manhattan plot with a suggestive and a genome-wide threshold 

levels specific for each test statistics association (Figures 6-8). The quantile-

quantile (Q-Q) plots (scatter plot of the observed vs. expected values of test 

statistics derived from the GWAS analyses) were also inspected providing extra 

evidence for true associations of the GWAS analyses (Supplementary Figure 

S1).  

 

Table 3. Total number of SNPs associated with milk production traits. 

Traits EBV DEBV DEBVw OVERLAPDEBVvsDEBVw 

MY - 30 11 1 

F% 1 6 1 - 

FY 1 19 30 16 

P% 4 22 22 21 

PY - 3 3 3 
EBV: Estimated breeding value; DEBV: deregressed breeding value; DEBVw: weighted deregressed breeding value. 

OVERLAPDEBVvsDEBVw: N of SNPs overlaps between DEBV and DEBVw 

 

A total of 153 SNPs using EBV, DEBV and DEBVw as response variables for 

the five milk production traits were found. DEBV and DEBVw allowed 

identifying the largest number of markers associated with the traits. Since some 

of these SNPs are associated with more than one trait, the total number of 

distinct identified SNPs was 6, 80, and 67, for EBV, DEBV, and DEBVw, 

respectively. No SNPs found with EBV approach overlaps with the two other 

approaches (DEBV and DEBVw). Between DEBV and DEBVw, a total of 41 

SNPs overlapped and a total of 14 SNPs were in common among traits, 

therefore, 28 and 23 distinct SNPs were detected by DEBV and DEBVw, 

respectively. Thirty-four SNPs (42.5%) reached the genome-wide threshold 
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level of significant using DEBV as response variable, whereas 24 SNPs 

(35.8%) using DEBVw. Among the identified SNPs only one (rs422391756) 

located on chromosome (OAR) 2 was found at genome-wide threshold level 

associated with P% trait using EBV. 

The details of these SNPs associated with milk production traits, including their 

raw P values, the position in the genome and the known genes within they laid, 

are given in Tables 4 through 8. 

 

3.1.2 Milk Yield 

As showed in Table 4 and Figure 6, significant associations for MY were 

identified on 14 different chromosomes (1, 2, 3, 4, 5, 7, 8, 10, 11, 14, 16, 17, 

18, 20). Most of these SNPs were mapped on OAR2. SNPs identified on 

OAR2, located between 162.16 and 178.47 Mb (rs424490890, rs403122982, 

rs419432879 and rs429723758) laid into the region that have been reported to 

harbour QTL (ID=13992) by Raadsma et al. (2009) for milk production. 

Moreover, other two SNPs (rs416541416 and rs424204447) very close to each 

other (0.03 Mb) were located in a genomic region which have been reported to 

harbour QTL (ID=14147) for MY (Maatescu et al., 2010). In the same study 

two QTLs (ID=14149 and ID=14150) on OAR18, in the same region of the 

identified SNP rs424842019 for MY, were reported. Garcia-Gamez et al. 

(2013) identified several QTLs on OAR 2, 16, 17 for MY. In our study, SNPs 

rs403120738 and rs408758615 on OAR2 between 55.60 and 61.13 Mb, where 

QTL for MY (ID=57737) is located, have been detected. On OAR16 we 

identified SNP rs405662186 that laid in the region of QTLs IDs 57730 and 

57752, both for MY. The SNP rs424648601e rs423013684 on OAR17 between 

19.38 and 25.08 Mb reported a QTL (ID=57756) for the same trait.  

Markers associated with milk yield are mapped within 15 known potential 

candidate genes identified in different species. Studies have shown that lipin 

proteins, particularly LPIN1, play crucial roles during adipose tissue 
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development and triacyl–glycerol accumulation (Phan and Reue, 2005). 

Furthermore, the expression levels of the lipin genes have been shown to 

influence lactation, with LPIN1 predominating during lactation. Thus, this gene 

is clearly involved in modifying the composition of milk during lactation. Finck 

et al. (2006) demonstrated that LPIN1 is essential for PPAR (peroxisome 

proliferator activated receptor) activation, suggesting that LPIN1 may be 

involved in regulating the transcription of other genes involved in milk fat 

synthesis.  



 

44 

 

Table 4. Genome-wide and suggestive significant SNPs for MY 

SNPs with superscript a are detected by EBVs, SNPs with superscript b are detected by DEBVs, SNPs with superscript 
c are detected by DEBVw, SNPs with superscript bc are detected by both DEBVs and DEBVw; SNPs in italic are 

located within QTL regions. Names of SNPs are in standard reference name format from the NCBI database 

(http://www.ncbi.nlm.nih.gov). 

 

 

SNPs Chr Position P-value Genotype Gene 

rs423676435
c
 1 239181622 8.72E-07 A/G  

rs407841431
b
 1 265454228 1.88E-09 A/G  

rs422253848
c
 1 54156664 2.40E-05 A/C  

rs425325353
c
 1 57356494 4.93E-07 A/G  

rs429625897
b
 1 15875818 2.90E-06 A/G HIVEP3 

rs422638951
b
 2 28678758 8.28E-06 C/T ASPN/CENPP 

rs424490890
b
 2 162163064 6.85E-06 A/G  

rs403122982
b
 2 162207791 1.31E-05 A/G  

rs419432879
bc

 2 177265054 1.33E-05 A/G NCKAP5 

rs429723758
c
 2 178476225 2.19E-06 C/T  

rs403120738
b
 2 55605381 4.39E-08 C/T  

rs416541416
b
 2 78960640 5.18E-06 C/T  

rs424204447
b
 2 78996919 1.97E-06 A/G  

rs418285319
b
 2 177378334 3.44E-06 A/G GPR39 

rs408758615
b
 2 61134963 8.40E-06 A/T  

rs418431341
b
 3 102980403 2.56E-11 C/T TMEM131 

rs415464905
b
 3 114017582 1.33E-05 C/T  

rs422404167
b
 3 20508250 7.01E-07 A/G LPIN1 

rs420925403
b
 4 101796199 2.98E-07 C/T  

rs423430191
b
 5 672391 2.27E-07 A/G MAPK9 

rs160014503
c
 5 5308939 6.44E-06 A/G SLC27A1 

rs430152343
b
 7 5066465 1.55E-05 A/G CPLX2 

rs423026263
c
 7 96755821 1.09E-05 C/T KCNK10 

rs422503523
b
 8 9741235 7.36E-06 A/G  

rs404623015
b
 8 11199454 2.54E-07 C/T RSPO3 

rs426563184
c
 10 35067247 2.75E-05 A/G  

rs415562533
c
 10 37081632 4.03E-06 A/G  

rs407468867
b
 11 54447900 1.91E-05 A/G RNF157 

rs430744508
b
 11 45685462 6.69E-07 A/G  

rs413395758
b
 14 2788578 1.73E-07 A/G CNTNAP4 

rs404689394
b
 14 3812997 5.88E-07 C/T  

rs411845712
b
 14 1783532 1.36E-06 C/T ZNRF1 

rs405662186
b
 16 11964131 9.40E-06 C/T  

rs424648601
c
 17 19385183 1.86E-05 C/T  

rs423013684
b
 17 25087697 1.35E-06 C/T  

rs424557837
b
 17 58827476 1.71E-06 C/T  

rs414091996
b
 17 59065347 9.49E-08 G/T  

rs424842019
b
 18 23087969 2.68E-06 A/G ADAMTSL3 

rs405048880
b
 20 44900188 3.97E-11 G/T  
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Figure 6 Manhattan plot for MY using EBV, DEBV and DEBVw 

 

NCKAP5 on OAR2 is a protein coding gene interacting with a SH3 (Src 

homology region 3) domain of the adaptor protein NCK. This gene, in cattle, is 

associated with productivity traits, animal welfare and labor safety.( Valente, T. 

D. S. 2016). SLC27A1 (solute carrier family 27 member 1) is a member of the 

fatty acid transport protein family. It is the transmembrane protein that 

facilitates long chain fatty acid (LCFA) transport across the cytoplasmic 

membrane. The study conducted on mice purified SLC27A1 protein revealed 

its long-chain and very long-chain acyl-CoA synthetase activity (Hall et al., 

2003). SLC27A1 encoding gene was mapped to bovine chromosome 7 where 
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QTLs for milk production traits have been identified (Ordovás et al., 2005, 

Ogorevc et al., 2009).  

 

3.1.3 Fat percentage and yield 

Tables 5,6 and Figure 7 showed the SNPs identified for F% and FY. SNP 

rs405045517 located on OAR25, laid in the same region that reports a QTL 

(ID=14010) for F% (Raadsma et al., 2009). Furthermore, 7 of the SNPs 

associated with F% are mapped within genomic regions with known genes 

(Table 5). SNPs associated with FY, were identified on several chromosomes 

(1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 17, 18, 20, 21). In OAR3 are located the highest 

number of significant SNPs between 97.58 and 120 Mb. Marker rs403120738 

on OAR2 is mapped within a genomic region in which a QLT (ID=57736) for 

FY discovered by Garcia-Gamez et al. (2013) has been mapped. Marker 

rs406975522 located on OAR9 were identified in the same region that reported 

a QTL (ID=16015) for FY (Jonas et al., 2011). Thirteen markers associated 

with FY were within 13 know genes (Table 6) 

 

Table 5. Genome-wide and suggestive significant SNPs per F% 

SNPs  Chr Position P-values Genotype Gene 

rs402192268
b
 3 117695610 1.68E-06 A/C  

rs417152368
a
 4 37664073 2.62E-05 A/G PCLO 

rs399443712
c
 9 59167089 1.24E-05 A/C EXT1 

rs55628574
b
 13 17612673 2.27E-05 A/C PARD3 

rs429599628
b
 19 29064142 2.01E-06 A/C  

rs411206905
b
 21 29438769 5.22E-12 C/T KIRREL3 

rs405002813
b
 21 25433976 1.04E-08 C/T 

UEVLD 

RHOBTB1 

rs405045517
b
 25 16469719 3.36E-06 A/G BTB 

SNPs with superscript a are detected by EBVs, SNPS with superscript b are detected by DEBVs, SNPS with superscript 

c are detected by DEBVw, SNPs with superscript bc are detected by both DEBVs and DEBVw; SNPs in italic are 

located within the QTL regions. Names of SNPs are in standard reference name format from the NCBI database 
(http://www.ncbi.nlm.nih.gov). 
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Table 6.Genome-wide and suggestive significant SNPs for FY 

SNPs Chr Position P-value Genotype Gene  

rs407841431bc
 

1 265454228 1.12E-09 A/G  

rs417007329b
 

1 266964438 1.31E-05 C/T HLCS 

rs424490890
c
 2 162163064 8.67E-06 A/G  

rs403120738
c
 2 55605381 3.05E-05 C/T  

rs420112859b
c
 3 97589857 2.15E-05 G/T  

rs418431341b
c
 3 102980403 3.99E-08 A/G TMEM131 

rs415464905b
c
 3 114017582 2.15E-07 C/T  

rs416315048
c
 3 114194065 1.11E-05 A/G  

rs402727086
c
 3 120239095 1.27E-05 A/G  

rs401873093
c
 4 101672990 2.71E-05 A/G  

rs420925403
c
 4 101796199 4.75E-06 C/T  

rs401226229
c
 5 95932217 1.32E-05 C/T  

rs423430191b
c
 5 672391 4.45E-06 A/G MAPK9 

rs430111891
a
 6 24257929 1.00E-05 A/G EMCN 

rs429361683
bc

 6 65844069 4.54E-06 A/G GABRB1 

rs429981329
c
 7 7961927 2.73E-05 C/T  

rs193638457
bc

 7 33318065 4.74E-06 C/T DNAJC17, GCHFR, 

C7H15orf62 

rs406975522
bc

 9 87132817 8.20E-08 A/G  

rs407723884
bc

 11 18974119 1.01E-06 C/T  

rs407468867
c
 11 54447900 9.25E-07 A/G RNF157 

rs420717702
c
 11 19274974 3.34E-06 A/G NLK 

rs417619187b
c
 13 5065704 2.02E-05 C/T  

rs411524173
c
 13 45107038 2.21E-05 A/G  

rs406819520
c
 13 55326126 6.27E-06 C/T  

rs424557837
bc

 17 58827476 5.05E-07 C/T LOC105606343 

rs414091996
bc

 17 59065347 1.20E-09 G/T  

rs409260825
c
 17 64741368 3.39E-06 A/G SGPSM1 

rs424842019
bc

 18 23087969 4.57E-06 C/T ADAMTSL3 

rs413552380
bc

 18 30764193 4.22E-07 A/G SCAPER 

rs405048880
bc

 20 44900188 1.47E-06 A/G LOC101117887 

rs419768704
c
 21 9360101 9.96E-06 A/G DLG2 

rs424021641
bc

 21 1802139 2.94E-06 A/G FAT3 
SNPs with superscript a are detected by EBVs, SNPS with superscript b are detected by DEBVs, SNPS with superscript 
c are detected by DEBVw, SNPs with superscript bc are detected by both DEBVs and DEBVw; SNPs in italic are 

located within the QTL regions. Names of SNPs are in standard reference name format from the NCBI database 

(http://www.ncbi.nlm.nih.gov). 
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Figure 7 Manhattan plot for F% and FY using EBV, DEBV and DEBVw 

 

3.1.4 Protein percentage and yield  

Tables 7,8 and Figure 8 showed the SNPs identified for P% and PY. Most of 

markers associated for P% were located on OAR3. However, only the SNPs on 

OAR2 laid in a QTL for the considered trait (ID=57738) (Garcia-Gamez et al., 

2013; Maatescu et al., 2010; Raadsma et al., 2009). Ten markers related with 

P% were mapped within know genes (Table 7). In Table 8, the three SNPs 

associated with PY were reported. The variant rs406975522 on chromosome 

OAR9, was discovered located in the intronic region of MMP16 (matrix 

metallopeptidase 16) gene. 
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Table 7. Genome-wide and suggestive significant SNPs per P%. 

SNP rs Chr Position P-value Genotype Gene  

rs403126323
bc

 1 223905490 3.39E-10 A/G  

rs423919863
bc

 2 14351231 2.08E-05 A/G IKBKAP 

rs417043797
bc

 2 184393569 2.49E-05 C/T EPB41L5 

rs413985466
a
 2 57368578 1.59E-05 A/G  

rs422391756a 2 87846505 7.66E-07 C/T  

rs413820801
bc

 3 191528809 7.49E-06 A/G  

rs421071422
bc

 3 191544417 1.35E-07 C/T  

rs424888367
bc

 3 200068982 4.42E-10 A/G ATF7IP 

rs414580044
bc

 3 206167771 4.94E-07 C/T CLEC4A 

rs408402130
bc

 3 117079611 3.56E-06 A/G PPFIA2 

rs424276469
c
 3 4735779 2.48E-05 A/G  

rs416914270
bc

 4 29207729 2.84E-06 C/T  

rs426928771
bc

 6 45108417 2.47E-06 C/T SEL1L3 

rs420418036
bc

 6 46458951 9.89E-09 G/T  

rs417798754
bc

 6 41745918 5.49E-07 A/G  

rs399420286
bc

 9 31431961 1.21E-06 A/G  

rs418199431
bc

 10 14719926 1.33E-07 A/G  

rs410586719
bc

 11 24224499 2.24E-07 A/C ZZEF1 

rs422865208
bc

 11 8385995 1.18E-06 A/G  

rs402691388
bc

 11 45194161 1.66E-07 A/G  

rs414067603
bc

 15 79902589 3.09E-07 G/T TCN1 

rs402908273
a
 15 49771118 5.65E-06 C/T NUMA1 

rs400223670
bc

 15 76158452 2.48E-05 G/T  

rs414091996
b
 17 59065347 2.41E-05 G/T  

rs405883702
bc

 18 59466973 3.34E-06 A/G  

rs421246582
bc

 18 66191615 1.55E-06 C/T TRAF3 

rs426561933
bc

 19 26430979 1.53E-06 C/T  

 

Table 8. Genome-wide and suggestive significant SNPs per PY. 

SNP Chr. Position P-value Genotype Gene  

rs406975522
bc

 9 87132817 3.87E-06 A/G MMP16 

rs409260825
bc

 17 64741368 1.21E-05 A/G  

rs424021641
bc

 21 1802139 1.42E-05 A/G  
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Figure 8 Manhattan plot for P% and PY using EBV, DEBV and DEBVw 

 

3.1.5 Considerations using EBV, DEBV and DEBVw for GWAS 

In GWAS of domesticated animals, often, the researchers may have available 

raw phenotypes of individuals and also their estimated breeding values (EBVs) 

from pedigree-based analyses of historical data. Some animals may have 

genotypes and EBVs based on information from their relatives, but no direct 

phenotypes. Although EBVs have been used as dependent variables in GWAS 

(Becker et al., 2013; Johnston et al., 2011), this approach has a high false 

positive rate (Ekine et al., 2013). Consequences of using EBVs include varying 

levels of precision and ‘shrinkage effect’ among the values used to represent 

phenotypes of different individuals, a reduction in the sample variance of the 
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phenotypes, and double-counting of information from relatives (Garrick et al., 

2009; Ostersen et al., 2011). As an alternative, the EBVs can be ‘deregressed’ 

(Garrick et al., 2009; Ostersen et al., 2011) to standardize the variance and 

influence of the individuals’ EBVs while still accounting for information from 

relatives. The use of deregressed EBVs (DEBVs) as dependent variables can 

improve the power of GWAS (Sevillano et al., 2015; Sell-Kubiak et al., 2015). 

To account for the heterogeneous variance of DEBVs due to differences in 

breeding value accuracy of individual belonging to different populations, the 

weighting factor was used and deregressed weighted estimated breeding values 

(DEBVw) was also used in for our GWA study. Comparisons among these 

three approaches with respect to their influence on our GWAS results 

demonstrate that DEBVs and DEBVw presented advantages over EBVs. We 

also compared DEBVs and DEBVw approaches and the results are more or less 

overlapped. In total, the present study revealed 153 genome-wise significant 

SNPs for milk production traits in Valle del Belice dairy sheep breed using 

GRAMMAR-GC approach. Several of these SNPs (n=19) are located within 

the previously reported QTL regions, and some within to the reported candidate 

genes. The significant SNPs detected within previously reported QTLs and 

candidate genes demonstrated that our results are in agreement with other 

GWAS studies on dairy sheep breeds.  

 

3.2 Results using repeated measures 

Incorporation of repeated measures may increase power to detect associations, 

but also requires specialized analysis methods to consider the correlated nature 

of data. This is the first analysis on sheep that consider longitudinal data to 

identify SNPs along the genome. In Table 9, the results considering all milk 

production traits are showed. The GWAS results for milk production traits 

showed the presences of a total of 6 significantly associated markers localized 
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within or near functional genes (Kominakis et al., 2017) The SNPs associated 

with milk traits were identified on chromosomes 1, 7, 10, 21, and 26.  
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Table 9. Genome-wide and suggestive significant SNPs for milk production 

traits considering repeated measures 

Trait SNPs Chr Position P-value Genotype Gene Distances 

MY rs398340969 21 28853635 1.73E-05 A/G DCPS  

MY rs417920940 26 9913215 1.47E-05 C/T TENM3  

F% rs425417915 7 98977544 2.00E-09 C/T TTC7B  

P% rs417079368 1 233594672 4.34E-07 C/T SUCNR1 0.37 

P% rs425417915 7 98977544 2.97E-06 C/T TTC7B  

P% rs419987770 10 28275437 4.68E-06 A/G KL 0.01 

PY rs400055578 7 72674247 1.59-05 A/G WDR89 0.03 

PY rs398340969 21 28853635 2.10E-05 A/G DCPS  

 

The GWAS analysis identified two SNPs with genome-wide significant 

association: rs425417915 for F% on OAR7 and rs417079368 for P% on OAR1, 

while other 6 SNPs reached the suggestive levels. Manhattan plots displaying 

the GWAS results of observed P-values against expected P- values for the traits 

considered are showed in Figure 9. In particular, the SNP rs425417915, 

associated at the same time with F% and P%, was found close to the TTCB7 

gene (tetratricopeptide repeat domain 7B) that play a crucial role in the lipid 

metabolism in cattle (Macleod et al., 2016) and it was also reported as 

candidate gene for obesity in mice (Morton et al., 2011). SNP rs398340969 is 

associated with MY and PY and it is located close to the DCPS, a gene 

differentially expressed in ovine mammary gland. Very interesting is that two 

SNPs (rs425417915 and rs398340969) were associated at the same time with 

different quantitative traits. Moreover SUCNR1 gene identified at 0.37 Mb of 

SNP rs417079368 associated with P%, was a gene related to the pathways 

initially selected with regard to cheese trait. It is well known that genetic 

correlation exists between milk production traits and would be interesting to 

investigate the allelic substitution effect of these SNPs on MY and PY, and F% 

and P%. As a supporting the identified associations, the quantile-quantile (Q-Q) 

plots visualizing the distribution of the observed test statistics derived from the 

GWAS analyses, were checked providing extra evidence for true associations 

of the GWAS analyses (Supplementary Figure S2). This analysis has identified 

a smaller number of variants than using the breeding values as response 
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variables for the traits considered and this could be due to the reduced number 

of observations per animal or to the analytical method used here. 

 

 

 

Figure 9 Manhattan plot for milk production traits using repeated 

measures. 

 

4.3 Regional heritability mapping (RHM) 

The results of the RHM analysis using 100 SNPs windows size for milk 

production traits are showed in Table 10 and Figure 10. A region on OAR2 was 

found significant (LRT=16.25) at the genome-wide level for F%, with a 
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partially overlapped window reaching the suggestive significance threshold 

(LRT=10.98). Three more regions (on OAR3 and OAR20) reached the 

suggestive significant threshold for the same trait. However, the same two 

regions on OAR3 reached the genome-wide significance threshold for P%. No 

other regions were found significant at either the genome-wide or the 

suggestive thresholds for the other traits. The genomic regions detected on 

OAR3 reported several QTLs identified in different studies for the considered 

traits. In particular, a QTL (ID=13905) for P% was found by Gutiérrez-Gil et 

al. (2009) on OAR3 in a commercial population of Spanish Churra sheep. The 

same authors reported QTLs (ID=13915 and 13917) on OAR2 and OAR20, 

respectively, which showed suggestive significant associations with F%) for 

F% (Gutiérrez‐Gil et al., 2009). Several GWAS studies for milk production 

traits on Spanish Churra sheep reported several QTLs (IDs=57707, 57708, 

57739, 57741, 17200) on OAR 3 which overlapped with our regions significant 

associated with F% and P%. (Garcia-Gamez et al., 2012; Garcia-Gamez et al., 

2012b; Garcia-Gamez et al., 2013) 

On OAR2, within the two partially overlapped regions, we found 132 protein-

coding genes, 15 pseudogenes, 8 tRNA genes, and 15 unknown genes. On 

OAR3, within the two partially overlapped regions, we found 106 protein-

coding genes, 16 pseudogenes, 9 tRNA genes, and 8 unknown genes. On 

OAR20, we found 243 protein-coding genes, 28 pseudogenes, 80 tRNA genes, 

and 28 unknown genes. 

In particular, within the partially overlapped regions on OAR3, LALBA gene 

(α-lactalbumin) is present as a strong functional candidate gene affecting the 

traits (Supplementary Table S1). Alpha-lactalbumin is a major whey protein 

that forms a subunit of the lactose synthase binary complex. Because lactose 

synthase is necessary for the production of lactose and the subsequent 

movement of water into the mammary secretory vesicles, this enzyme is critical 

in the lactation control and secretion of milk. Previous studies in LALBA-

deficient mice have shown the influence of this enzyme on the protein and fat 

concentration in milk. Homozygous mutant mice produce highly viscous milk 
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that is very rich in fat and protein and devoid of alpha-lactalbumin and lactose 

(Stinnakre et al., 1994). Polymorphisms in the LALBA gene were studied in the 

1990s as possible markers related to milk production in dairy species. However, 

to our knowledge, there are no reported studies on the influence of the ovine 

LALBA polymorphisms on milk traits. The candidacy initially suggested by 

Garcia-Gamez et al., in (2010), for the LALBA gene was strongly supported by 

the GWA study reported by the same authors in 2013. This GWA study 

identified marker rs399070200, located in the third intron of this gene, as the 

SNP with the most highly significant association detected on OAR3 both for 

P% and F%. 

Moreover, on OAR3 we found Aquaporins (AQPs) genes, in particular AQP6, 

AQP5 and AQP2 (in bold in Supplementary Table S1). This is a family of 

ubiquitous membrane proteins involved in the transport of water and wide 

range of solutes (Gomes et al., 2009). A functional role for some members of 

this family during the production and secretion of bovine milk was confirmed 

in an immunohistochemical study conducted by Mobasheri et al. (2011).   

Finally, we observed on OAR 3 and OAR20 genomic regions containing 

olfactory receptor (OR) family genes (19 on OAR3 and 62 on OAR20 indicated 

as “LOC” in bold in Supplementary Table S1). Olfactory receptors detect and 

identify a wide range of odors and chemosensory stimuli, are necessary to find 

food, detect mates and offspring, to recognize territories and avoid dangers. 

The use of regional heritability mapping can improve the detection rate of 

variants. Nagamine et al. (2012) showed that RHM is more powerful for 

detecting rare variants than the other methods. This may contribute to an 

improved ability to detect variance associated with the local region when 

regional effects are due to only the additive effects of multiple segregating 

alleles. The approach to the analysis of genome-wide SNP has the potential to 

capture some of the heritable variance that escapes the standard SNP by SNP 

analysis. The use of regional windows and estimation of variance in a mixed 

model framework integrates over the gametic variance in a region and escapes 

from reliance on the association between single causative alleles and single 
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SNP alleles. It thus has the ability to integrate effects over several causative 

variants providing a joint estimate of the combined effects of common and rare 

variants in a region. The results of this analysis suggest that regions known to 

harbour effects large enough to be detected by standard SNP by SNP analyses 

may yield some additional variance when analyzed by this approach. 

Furthermore, regions where no single associated SNP has a large enough effect 

to be detected as significant at the genome-wide level may explain sufficient 

variance to be detected by this approach. 

 

Table 10.Genome-wide and suggestive significant SNPs for milk 

production traits considering regional heritability mapping approach 

Trait OAR window SNP and position (in bp) LRT h
2
w 

start end 

 

 

Fat % 

2 83 rs413324492 

234715088 

rs401097503 

240388878 

16.25 0.03 

2 84 rs407871693 

237161006 

rs412038888 

243300137 

10.98 0.02 

3 48 rs412220800 

134166768 

rs419412283 

139724363 

11.71 0.02 

3 49 rs407496519 

137065870 

rs418178732 

142443170 

12.94 0.02 

20 9 rs429947991 

23043970 

rs399189470 

30066632 

9.61 0.02 

Protein% 3 48 rs412220800 

134166768 

rs41941228 

139724363 

13.86 0.03 

3 49 rs407496519 

137065870 

rs399189470 

142443170 

16.27 0.03 
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Figure 10 Manhattan plot for F% and P% traits using regional heritability 

approach. 

 



 

 

 

Conclusions 
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The application of recently developed genomic technology, such as high-

density single nucleotide polymorphism (SNP) arrays, has great potential to 

increase our understanding on the genetic architecture of complex traits, to 

improve selection efficiency in domestic animals through genomic selection, 

and to conduct association studies. In this thesis, GWAS was used for the first 

time with the aim to identify SNPs associate with the milk production traits, to 

compare different response variables and to apply different analysis 

methodologies in Valle del Belice sheep breed.  

Comparison among the estimated breeding values and their deregressed and 

weighted values as responsible variables, respect to their influence on our 

GWAS results, has demonstrated that DEBVs and DEBVw allow identifying a 

greater numbers of SNPs than using EBVs. Several of these SNPs (n=19) are 

mapped within the previously reported QTL regions and within candidate genes 

for milk production traits. The general consistence of the significant SNPs 

detected herein with the reported QTL and candidate genes for milk traits allow 

us to be confident of the results obtained. Moreover some genomic regions 

identified by close SNPs associated with a specific trait should be further 

investigated to verify their effect on the traits. In particular on OAR2 at position 

177.26-178.47 Mb (rs419432879-rs429723758) and on OAR 14 at 1.7-3.8 Mb 

(rs411845712-rs404689394) markers associated with MY were found. On 

OAR3 we found an interest region at 114 to 120 Mb for FY (rs416315048-

rs402727086), and on OAR 6 at 41,7 and 46,45 Mb for P% (rs426928771-

rs420418036). Another approach considering repeated measures for each 

animal was performed. This analysis has identified a smaller number of SNPs 

probably due to the reduced number of observations per animal or to the 

analytical method used. Regional Heritability Mapping approach provides 

heritability estimates attributable to small genomic regions, and it has the power 

to detect genomic regions containing multiple alleles that individually 

contribute too little variance to be detected by more standard GWAS 

approaches. Even taking into account the limitations imposed by sample size 
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and the number of SNPs analyzed some of the results are consistent with 

previous studies. The results confirmed the roles of LALBA gene and AQP 

genes, on OAR 3, as candidate genes for milk production traits in sheep. These 

genomic regions should be reproduced in future studies, favorably of a larger 

scale. Replication of the GWAS will also help to clear the picture of the weak 

signals detected in our study. To improve the statistical power, it would be 

possible to replicate the study, preferably including more genotyped samples. 

However, the results create opportunities for changing milk production traits 

through breeding by selecting individuals based on their genetic merit for milk 

production traits, which can consider the possibility of implementation the 

GWAS aspect into genomic selection in Valle del Belice dairy sheep. 

Therefore, the information generated from this thesis has important 

implications for the design and applications of association studies as well as for 

the development of selection breeding programs for the Valle del Belice sheep 

breeds. 
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Supplementary Material  
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Supplementary Figure S1. Quantile-quantile (Q-Q) plots of the observed test 

statistics of the genome wide association studies using EBV. 
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Supplementary Figure S2. Quantile-quantile (Q-Q) plots of the observed test statistics of the genome 

wide 
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CHR Start End N° SNP Gene 

2 234715088 240388878 116 SPOCD1, ADGRB2, COL16A1, PEF1, HCRTR1, TINAGL1, LOC101107259, SERINC2, LOC105608219, FABP3, ZCCHC17, TRNAQ-CUG, SNRNP40, NKAIN1, PUM1, SDC3, LOC101108033, 

LAPTM5, MATN1, LOC105608216, LOC105611135, LOC105608214, PTPRU, MECR, SRSF4, LOC105611150, TMEM200B, EPB41, OPRD1, TRNAE-UUC, YTHDF2, GMEB1, LOC101123533, TAF12, 

RAB42, LOC101102543, TRNAU1AP, RCC1, LOC105608205, PHACTR4, LOC101110400, MED18, SESN2, TRNAG-CCC, LOC101110916, PTAFR, LOC101111170, LOC101104811, LOC101111434, 

EYA3,  XKR8, RPA2, THEMIS2, LOC101112204, PPP1R8, STX12, FAM76A, LOC101106571, IFI6, FGR, AHDC1, WASF2, LOC105606955, GPR3, CD164L2, FCN3, MAP3K6, SYTL1, TMEM222, 

LOC105606957, LOC101108028, WDTC1, SLC9A1, LOC105606958, FAM46B, LOC105606960, TRNP1, KDF1, NUDC, NR0B2, GPN2, SFN, ZDHHC18, PIGV, LOC105611280, ARID1A, 

LOC106990911, RPS6KA1, LOC101110394, HMGN2, DHDDS, LIN28A, LOC105606964, ZNF683, AIM1L, UBXN11, SH3BGRL3, CEP85, CATSPER4, LOC105606966, CNKSR1, ZNF593, FAM110D, 

PDIK1L, TRIM63, LOC101117060, SLC30A2, EXTL1, PAFAH2, STMN1, LOC106990973, PAQR7, AUNIP, MTFR1L, SEPN1, MAN1C1, LDLRAP1 

2 237161006 243300137 119 PTPRU, MECR, SRSF4, LOC105611150, TMEM200B, EPB41, OPRD1, TRNAE-UUC, YTHDF2, GMEB1, LOC101123533, TAF12, RAB42, LOC101102543, TRNAU1AP, RCC1, LOC105608205, 

PHACTR4, LOC101110400, MED18, SESN2, TRNAG-CCC, LOC101110916, PTAFR, LOC101111170, LOC101104811, LOC101111434, EYA3, XKR8, RPA2, THEMIS2, LOC101112204, PPP1R8, 

STX12, FAM76A, LOC101106571, IFI6, FGR, AHDC1, WASF2, LOC105606955, GPR3, CD164L2, FCN3, MAP3K6, SYTL1, TMEM222, LOC105606957, LOC101108028, WDTC1, SLC9A1, 

LOC105606958, FAM46B, LOC105606960, TRNP1, KDF1, NUDC, NR0B2, GPN2, SFN, ZDHHC18, PIGV, LOC105611280, ARID1A, LOC106990911, RPS6KA1, LOC101110394, HMGN2, DHDDS, 

LIN28A, LOC105606964, ZNF683, AIM1L, UBXN11, SH3BGRL3, CEP85, CATSPER4, LOC105606966, CNKSR1, ZNF593, FAM110D, PDIK1L, TRIM63, LOC101117060, SLC30A2, EXTL1, PAFAH2, 

STMN1, LOC106990973, PAQR7, AUNIP, MTFR1L, SEPN1, MAN1C1, LDLRAP1, TMEM57, LOC101114847, TMEM50A, RSRP1, SYF2, RUNX3, CLIC4, LOC106990974, LOC101116025, 

LOC105606970, SRRM1, TRNAE-UUC, TRNAS-GGA, RCAN3,  NIPAL3, STPG1, GRHL3, TRNAC-GCA,  IFNLR1, IL22RA1, MYOM3, SRSF10, PNRC2, LOC101118928, CNR2, FUCA1, HMGCL, 

GALE, LYPLA2, PITHD1, TCEB3, LOC105606974, RPL11, ID3, E2F2, ASAP3, TCEA3,  LOC106990852, LOC105606976, ZNF436, HNRNPR, TRNAV-CAC, HTR1D, LUZP1, KDM1A, C2H1orf234,  

LACTBL1, EPHB2, C1QB, LOC101123446, C1QA, EPHA8, ZBTB40 

3 134166768 139724363 110 SCN8A, TRNAE-UUC, SLC4A8, GALNT6", TRNAG-CCC, CELA1, BIN2, SMAGP, DAZAP2, LOC106990996", TRNAR-CCU, POU6F1, LOC101115112, TFCP2, CSRNP2, LETMD1, LOC105610932, 

LOC101115614, LOC105610931, LOC101116975, LOC101117657, TMPRSS12, ATF1, TRNAE-UUC, DIP2B, LOC101118348, TRNAC-ACA, LOC105610928, LARP4, FAM186A, LIMA1, CERS5, 

LOC101119459, GPD1, SMARCD1, ASIC1, LOC105612625, AQP6, AQP5, AQP2, FAIM2, BCDIN3D, LOC105612627, NCKAP5L, TMBIM6, LOC105612628, FMNL3, PRPF40B, FAM186B, MCRS1, 

KCNH3, SPATS2, DNAJC22, C1QL4, ROAP, LOC101119463, PRPH, LOC101119713, LOC105614728, LOC101119975, LOC106990101, LMBR1L, TRNAC-GCA, DHH, RHEBL1, KMT2D, PRKAG1, 

DDN, WNT1, WNT10B, ARF3, TRNAN-GUU, FKBP11, CCDC65, RND1, DDX23, CACNB3, ADCY6, CCNT1, KANSL2, LALBA, LOC101121506, LOC101122268, LOC101122513, LOC101122776, 

LOC101123028, LOC101123287, LOC101123547, LOC101101975, LOC101102226, LOC101102472, LOC101102718, LOC101102972, LOC101103226, LOC101103465, LOC101103713, C3H12orf54, 

LOC101103970, LOC101104481, LOC101104739, LOC101104986, LOC101105490, LOC101105739, ZNF641, LOC101105997, LOC101106252, LOC105611712, LOC101106515, LOC101106764, 

CCDC184, ASB8, LOC105611714, PFKM, SENP1, COL2A1, TMEM106C, VDR, LOC105611708, HDAC7, SLC48A1, RAPGEF3, ENDOU, RPAP3, LOC105611709, PCED1B, AMIGO2, TRNAG-CCC, 

LOC106990997, SLC38A4, LOC101108564 

3 137065870 142443170 115 CCNT1, KANSL2, LALBA, LOC101121506, LOC101122268, LOC101122513, LOC101122776, LOC101123028, LOC101123287, LOC101123547, LOC101101975, LOC101102226, LOC101102472, 

LOC101102718, LOC101102972, LOC101103226, LOC101103465, LOC101103713, C3H12orf54, LOC101103970, LOC101104481, LOC101104739, LOC101104986, LOC101105490, LOC101105739, 

ZNF641, LOC101105997, LOC101106252, LOC105611712, LOC101106515, LOC101106764, CCDC184, ASB8, LOC105611714, PFKM, SENP1, COL2A1, TMEM106C, VDR, LOC105611708, HDAC7, 

SLC48A1, RAPGEF3, ENDOU, RPAP3, LOC105611709, PCED1B, AMIGO2, TRNAG-CCC, LOC106990997, SLC38A4, LOC101108564,  SLC38A2, SLC38A1, SCAF11, ARID2, ANO6, TRNAS-GGA, 

LOC105611661, NELL2, LOC105613432 

20 23043970 30066632 115 TFAP2B, LOC106991807, PKHD1, LOC105603743, IL17A, IL17F, MCM3, LOC101104694, TRNAE-UUC, LOC105603744, PAQR8, EFHC1, LOC101118825, TRAM2, TMEM14A, GSTA1-1, TRNAG-

CCC, LOC101106291, LOC101106720, LOC101106976, TRNAR-UCU, LOC101107232, ICK, FBXO9, GCM1, ELOVL5, LOC101108696, OVAR-DRB, LOC105612264, LOC101119856, LOC105603927, 

LOC101109220, DQB, LOC101120118, LOC101109492, OVAR-DRB3, DQA, LOC101120871, LOC106990179, LOC101109747, BTNL2, LOC101110006, LOC101110277, LOC101121379, 

LOC105603751, LOC101121635, LOC101110546, LOC105603754, LOC105603755, C20H6orf10, LOC106991808, LOC105603929, LOC101111058, LOC101122142, LOC106991799, NOTCH4, "GPSM3, 

PBX2, AGER, RNF5, AGPAT1, EGFL8, PPT2, PRRT1, FKBPL, ATF6B, LOC105603761, TNXB, LOC101123159, LOC105612706, LOC101123419, LOC105612707, LOC105603760, LOC101123672, 

STK19, DXO, SKIV2L, NELFE, CFB, C2, ZBTB12, EHMT2, SLC44A4, NEU1, LOC101116687, LOC105603930, HSPA1A, LOC494436, HSPA1L, LSM2, VARS, LOC106991809, VWA7, SAPCD1,  

MSH5, CLIC1, DDAH2, C20H6orf25, LY6G6C, LY6G6D, LOC101119591, LY6G6F, ABHD16A, LOC105603765, LY6G5C, LY6G5B, CSNK2B, GPANK1, C20H6orf47, APOM, BAG6, PRRC2A, NCR3, 

AIF1, LST1, LTB, TNF, LTA, LOC105603766, NFKBIL1, ATP6V1G2, DDX39B, MCCD1, LOC106990117, LOC105603776, LOC101105367, LOC101105609, LOC106991789, LOC105614324, 

LOC105603775, MICA, POU5F1, TCF19, CCHCR1, PSORS1C2, CDSN, C20H6orf15, LOC101106374, LOC105603772, LOC101109651, MUC21,  DPCR1, LOC106990499, SFTA2, VARS2, GTF2H4, 

DDR1, LOC105603769, IER3, FLOT1, TUBB, MDC1, NRM, PPP1R18, DHX16, C20H6orf136, ATAT1, MRPS18B, PPP1R10, RPP21, GNL1, PRR3, ABCF1, LOC101106373, LOC101107908, 

LOC101108171, LOC101108432, LOC101110710, LOC106991793, LOC105603777, OLA-I, LOC105603778, LOC101110973, LOC101111233, TRIM26, TRIM15, TRIM10, TRIM40, TRIM31, TRNAL-

CAA, RNF39, PPP1R11, LOC105603779, ZNRD1, LOC105603780, ZFP57, MOG, GABBR1, LOC101113705,  LOC101111325, LOC101113965, LOC101111587, LOC101114220, LOC101111839, 

LOC101112095, LOC101114473, LOC101112357, LOC101114731, LOC101114983, LOC101112607, LOC101112857, LOC101115237, LOC101113109, LOC101113370, LOC101113633, 

LOC101113894, LOC105613647, LOC106991794, LOC101115488, LOC101114399, LOC101114653, LOC101114912, LOC101115167, LOC101115411, LOC101115662, LOC101115916, 

LOC101116185, LOC101116436, LOC101116688, LOC101116944, LOC101115997, LOC101117202, LOC101117457, LOC101117709, LOC101117974, LOC101118231, LOC101118485, 

LOC101118741, LOC101116262, LOC101119001, LOC101119263, TRNAG-ACC, LOC101116514, LOC101119515, LOC101116772, LOC101119769, LOC101117201, LOC101120028, 

LOC101120282, LOC101120531, LOC101120786, LOC101117455, LOC101121048, LOC101121301, LOC101121555, LOC101117708, LOC101122062, LOC101122314, LOC101122560, 

LOC101122821, ZNF311, TRNAL-AAG, TRNAE-CUC, TRNAF-GAA, LOC105603785, TRNAM-CAU, TRNAK-UUU, TRNAM-CAU", TRNAL-AAG, TRNAL-CAA, LOC105603786, TRNAL-CAA, 

TRNAR-CCG, TRNAA-AGC, TRNAA-CGC, TRNAF-GAA, TRNAA-UGC, TRNAK-UUU, TRNAR-CCG, TRNAA-AGC, TRNAM-CAU, TRNAS-AGA, TRNAS-AGA, TRNAQ-CUG, ZBED9, TRNAK-

UUU, TRNAT-UGU, TRNAR-UCG, TRNAI-UAU, GPX5, GPX6, TRNAA-AGC, TRNAM-CAU, TRNAT-UGU, TRNAT-UGU, LOC101123333, TRNAF-GAA, ZSCAN23, ZSCAN31, PGBD1, 

LOC105603790, NKAPL, ZSCAN9, TRNAS-GCU, LOC106991791, LOC101104612, ZKSCAN8, LOC105603808, ZSCAN16, ZNF165, LOC105603933, LOC105603806, LOC105603804, LOC106991795, 

LOC105603935, LOC105603803, LOC105603936, LOC105603937, LOC105603802, LOC105603801, LOC105603938, LOC105603800, LOC105603799, LOC105603939, LOC105603798, LOC101103354, 

LOC101102593, LOC105603940, LOC105612194, LOC105603796, TRNAG-GCC, TRNAM-CAU, LOC101119941, LOC106990414, LOC101120961, LOC101123158, LOC101102344, LOC101119679, 

LOC101118999, LOC101123417, LOC101123670, LOC101122637, LOC101120447, LOC101118484, LOC101120702, LOC101119426, TRNAM-CAU, TRNAQ-UUG, TRNAQ-CUG, TRNAM-CAU, 

TRNAV-AAC, TRNAT-AGU, TRNAA-AGC, TRNAL-UAA, LOC105603793, TRNAI-AAU, TRNAI-AAU, TRNAT-AGU, TRNAV-AAC, TRNAS-CGA, TRNAR-ACG, TRNAK-UUU, TRNAI-AAU, 

TRNAF-GAA, TRNAI-UAU, TRNAT-CGU, TRNAL-CAA, TRNAL-CAA, TRNAM-CAU, TRNAK-UUU, TRNAD-GUC, TRNAK-UUU, TRNAL-CAA, TRNAR-UCU, TRNAS-AGA, TRNAQ-CUG, 

TRNAS-UGA, TRNAS-AGA, TRNAM-CAU, TRNAS-AGA, TRNAS-AGA, TRNAQ-CUG, TRNAS-UGA, TRNAD-GUC, TRNAS-AGA, TRNAS-AGA, TRNAS-AGA, ZNF184, ZNF391 

Supplementary Table S1. Gene content of significant regions of heritability associated to milk traits F% and P% 
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