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Entanglement degradation in the solid state: interplay of adiabatic and quantum noise
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2 Dipartimento di Metodologie Fisiche e Chimiche, Università di Catania,
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We study entanglement degradation of two non-interacting qubits subject to independent baths
with broadband spectra typical of solid state nanodevices. We obtain the analytic form of the con-
currence in the presence of adiabatic noise for classes of entangled initial states presently achievable
in experiments. We find that adiabatic (low frequency) noise affects entanglement reduction analo-
gously to pure dephasing noise. Due to quantum (high frequency) noise, entanglement is totally lost
in a state-dependent finite time. The possibility to implement on-chip both local and entangling
operations is briefly discussed.

PACS numbers: 03.65.Ud, 03.65.Yz, 03.67.Lx, 85.25.Hv

Over the last decade, considerable progress has been
made towards the implementation of an electrically con-
trolled solid-state quantum computer. In particular,
superconducting high-fidelity [1, 2] single qubit gates
with coherence times of about 1µs are nowadays avail-
able [3, 4]. The possibility to implement two-qubit logic
gates has been proved in different laboratories [5] and
Bell states preparation has been demonstrated [6]. Re-
cently, highly entangled states with concurrence up to
94 per cent have been generated “on demand” in a cir-
cuit quantum electrodynamic architecture, opening the
way to the implementation of quantum algorithms with
a superconducting quantum processor [7].

In order to achieve the high performances required to
overcome classical processors, it is important to establish
how long a sufficient degree of entanglement can be main-
tained in noisy nanocircuits. Implications are the possi-
bility to store entangled states in solid-state memories
and entanglement preservation during local operations
in quantum algorithms [8, 9]. Solid state noise may rep-
resent a serious limitation towards this goal. Supercon-
ducting nanodevices are usually affected by broadband
noise. Typical power spectra display a 1/f low-frequency
behavior followed by a white or ohmic flank [10, 11].

The effects on single-qubit gates of low- and high-
frequency noise components are quite different. Adia-
batic (low frequency) noise typically leads to power-law
decay, quantum (high frequency) noise to exponential be-
havior [10, 12]. On the other hand, disentanglement may
markedly differ from the single qubit decoherence. For
instance, at zero temperature, single qubit exponential
decay due to a Markovian bath contrasts to finite-time
bipartite entanglement degradation, known as “Entan-
glement Sudden Death” (ESD) [13]. In structured envi-
ronments non-Markovian noise appears to be more fun-
damental [14, 15]. Extending the current research on
ESD into physically relevant non-Markovian situations
remains a challenge [9]. The analysis of entanglement
degradation under the simultaneous presence of adiabatic
and quantum noise places in this context and it may pro-

vide new insights to the exploitation of solid-state nano-
devices for quantum information.
In this Communication we address these issues. We

consider two non-interacting qubits subject to inde-
pendent baths with typical solid-state broadband spec-
tra [16]. Entanglement is quantified by the concur-
rence [17], which is evaluated in analytic form in the
presence of adiabatic noise for classes of entangled ini-
tial states presently achievable in experiments. We find
that adiabatic noise has the same qualitative effect of
pure dephasing noise and no ESD occurs for pure ini-
tial states. However, due to the interplay with quantum
noise, entanglement is lost in a finite time which depends
on the initial entangled state. We comment on the sensi-
tivity to experimental imperfections and qubits operating
point. The possibility to implement on-chip both local
and entangling operations is briefly discussed.
Model and evolved two-qubit density matrix – The sys-

tem, formed by uncoupled qubits A and B affected by in-
dependent noise sources, is modeled by Htot = HA+HB.
Each qubit is an-isotropically coupled to a noise source

Hα = HQ,α − 1

2
X̂ασz,α, HQ,α = −1

2
~Ωα · ~σα . (1)

Here X̂α, α = A,B, are collective environmental vari-
ables whose power spectra are 1/f , f ∈ [γm, γM ] and

white or ohmic at f ≥ f̃ , where f̃ ≤ Ωα (~ = 1) [10, 11].
According to a standard model, noise with 1/f spectrum
can be originated from an ensemble of bistable fluctuators
with switching rates γ distributed as 1/γ [18]. The phys-
ical origin of these fluctuations depends on the specific
setup. Both the operating point (the angle θα between z

and ~Ωα) and the splittings Ωα are tunable. By operat-
ing each qubit at the “optimal point”, θα = π/2, partial
reduction of defocusing may be achieved [4, 10].
The two-qubit Density Matrix (DM) elements are eval-

uated in the computational basis B = {|0〉 ≡ |00〉, |1〉 ≡
|01〉, |2〉 ≡ |10〉, |3〉 ≡ |11〉}, where HQ,α|0〉α = −Ωα

2 |0〉α,
HQ,α|1〉α = Ωα

2 |1〉α. Since each “qubit+environment”
evolves independently, the time evolution operator of the

http://arxiv.org/abs/1001.4875v2
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composite system is the tensor product of terms cor-
responding to the two parts. Thus, once the single-
qubit dynamics, expressed by the DM elements ρAii′(t) =
∑

ll′ A
ll′

ii′ (t)ρ
A
ll′(0), ρBjj′ (t) =

∑

mm′ Bmm′

jj′ (t)ρBmm′(0), is

solved, the evolved two-qubit DM can be evaluated as [14]

〈ij|ρ(t)|i′j′〉 =
∑

ll′,mm′

All′

ii′(t)B
mm′

jj′ (t)〈lj|ρ(0)|l′j′〉, (2)

where indexes take values 0, 1. We consider extended
Werner-like (EWL) two-qubit initial states

ρ̂Φ = r|Φ〉〈Φ|+ 1− r

4
I4, ρ̂Ψ = r|Ψ〉〈Ψ|+ 1− r

4
I4, (3)

whose pure parts are the one/two-excitations Bell-like
states |Φ〉 = a|01〉 + b|10〉, |Ψ〉 = a|00〉 + b|11〉, where
|a|2 + |b|2 = 1. The purity parameter r quantifies the
mixedness and a sets the degree of entanglement of the
initial state. In the experiment of Ref. [7] entangled
states with purity ≈ 0.87 and fidelity to ideal Bell states
≈ 0.90 have been generated. These states may be ap-
proximately described as EWL states with rexp ≈ 0.91.
For EWL states, the density matrix in the computa-

tional basis is non-vanishing only along the diagonal and
anti-diagonal (X form) [13]; in this system this structure
is maintained at t ≥ 0. The entangled two-qubit dynam-
ics is quantified by concurrence, C(t) (C = 0 for sepa-
rable states, C = 1 for maximally entangled states) [17].
For X states CX

ρ (t) = 2max{0,K1(t),K2(t)} [19],

K1(t) = |ρ12(t)| −
√

ρ00(t)ρ33(t), (4)

K2(t) = |ρ03(t)| −
√

ρ11(t)ρ22(t). (5)

The initial value of the concurrence is equal for both
the EWL states of Eq. (3) and reads CΦ

ρ (0) = CΨ
ρ (0) =

2max{0, (|a b|+ 1/4)r − 1/4}. Initial states are thus en-
tangled provided that r > r∗ = (1 + 4|a b|)−1.
Elements of the two-qubit DM in the basis B will be

obtained via Eq. (2). To solve the single-qubit dissi-
pative dynamics we apply the multi-stage elimination
approach introduced in Ref. [12]. Effects of low- and
high-frequency components of the noise are separated by
putting, X̂α → Xα(t) + X̂f

α. Stochastic variables Xα(t)
describe low-frequency (1/f) noise, and can be treated
in the adiabatic and longitudinal approximation. High-
frequency (ω ∼ Ωα) fluctuations X̂f

α are modeled by a
Markovian bath and mainly determine spontaneous de-
cay. Therefore, populations relax due to quantum noise
(T1-type times), which also leads to secular dephasing
(T ∗

2 = 2T1-type). Low-frequency noise provides a defo-
cusing mechanism determining further coherences decay.
Concurrence under adiabatic noise – The effect of

low-frequency noise components is obtained by replac-
ing X̂α ≈ Xα(t). In the adiabatic and longitudinal ap-
proximation single-qubit populations do not evolve in
time, ραii(t) = ραii(0), where i = 0, 1. The leading ef-
fect of low-frequency fluctuations is defocusing, given
within the static-path approximation (SPA), ραij(t) ≈

- -

FIG. 1: (Color online) Concurrence (8) at θ = π/2 and Σ/Ω =
0.02. Panel (a) C(t) as a function of |a|2 (r = 0.9); Panel (b) C(t)
vs r (a = 1/

√
2).

ραij(0)zα(t) with zα(t) =
∫

dXαP (Xα) exp[−iωij(Xα)t].
It amounts to neglect effects of the slow fluctuators dy-
namics during time evolution. In relevant situations the
probability density can be assumed of Gaussian form
P (Xα) = exp(−X2

α/2Σ
2
α)/

√
2πΣα and the coherences

take the form reported in Ref. [12]. The variance Σα can
be estimated by independent measurement of the ampli-
tude of the 1/f power spectrum on the uncoupled qubits,

S
1/f
α (ω) = πΣ2

α[ln(γM/γm)ω]−1.
For the initial EWL states of Eq. (3), the concur-

rences reduce respectively to CΦ
ρ (t) = 2max{0,KΦ

1 (t)}
and CΨ

ρ (t) = 2max{0,KΨ
2 (t)}, where

KΦ
1 (t) = |ρΦ12(0)||zA(t)||zB(t)| −

√

ρΦ00(0)ρ
Φ
33(0), (6)

KΨ
2 (t) = |ρΨ03(0)||zA(t)||zB(t)| −

√

ρΨ11(0)ρ
Ψ
22(0) , (7)

give the same concurrence CΦ
ρ (t) = CΨ

ρ (t) ≡ C(t)

C(t) = 2r |a b|Πα

exp {− 1
2

(cαΣαt)2

1+(sαΣα)4(t/Ωα)2 }
[1 + (sαΣα)4(t/Ωα)2]

1/4
− 1− r

2
(8)

for times smaller than the adiabatic ESD time, tadESD

identified by the condition C(tadESD) = 0. In Eq. (8)
cα = cos θα, sα = sin θα. Adiabatic noise in the longi-
tudinal approximation leads to the same qualitative be-
havior obtained for pure dephasing noise [13], i.e. the
concurrence does not vanish at any finite time for a pure
state, r = 1 [19]. On the contrary, any small degree
of mixedness leads to disentanglement at a finite time.
Note that tadESD depends on the operating points θα. Here
we report the ESD times for identical qubits, Ωα = Ω,
θα = θ, operating at the optimal point (θ = π/2) and at
pure dephasing (θ = 0)

tadESD =
Ω

Σ2

√

16|ab|2 r2

(1− r)2
− 1,

(

θ =
π

2

)

(9)

tadESD =
1

Σ

√

ln

[

4|ab| r

1− r

]

, (θ = 0) (10)

where we assumed both qubits affected by the same am-
plitude 1/f noise, Σα ≈ Σ. The dimensionless ESD time
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-

-

-

-

FIG. 2: (Color online) Dependence of the ESD time on the purity
r (a = 1/

√
2) for initial state ρ̂Φ (panel a), and ρ̂Ψ (panel b). The

blue dashed curve is ΩtadESD, Eq.(9), red dot-dashed curve is for
quantum noise, black curve is the result of adiabatic and quantum
noise. Noise characteristics are Σ = 0.02Ω, Sf (ω) = 2 × 106 s−1.
In addition, Ω = 1011 rad/s, θ = π/2, T = 0.04 K. The inset zooms
the region where r ≈ 1. The point Pexp corresponds to rexp ≈ 0.91
where ΩtESD ≈ 18× 103 for ρ̂Φ and ΩtESD ≈ 14× 103 for ρ̂Ψ.

ΩtadESD is longer at the optimal point than for pure de-
phasing. This is originated from the different (algebraic
or exponential) decay of the concurrence Eq. (8) at the
two operating points. This behavior, due to the non-
Markovian nature of 1/f noise, results in a different scal-
ing of ΩtadESD with Ω/Σ ≫ 1 and in an algebraic or log-
arithmic (at θ = 0),dependence on r and a. The degree
of purity of the initial state, r, has a crucial quantitative
role on the ensuing entanglement maintenance. This is
illustrated in Fig. 1 for 1/f noise amplitude expected in
single qubit experiments Σ/Ω = 0.02 [4, 10, 12]. The de-
pendence on the initial degree of entanglement is instead
smoother and symmetric around |a|2 = 1/2.

In the multistage approach, quantum noise (ω ∼ Ω)
adds up to the defocusing channel leading to extra expo-
nential decay of the coherences and evolutions of the pop-
ulations. This last fact makes the concurrence of the two
EWL states nonequivalent. At finite temperature, quan-
tum noise leads to ESD even for initial Bell-like states
(r = 1) [15]. This is the main qualitative difference with
adiabatic noise. Here we discuss the interplay of adia-
batic and quantum noise simultaneously affecting nan-
odevices. We assume both qubits operate at the optimal
point, where the effect of adiabatic noise is reduced.

Interplay of adiabatic and quantum noise – The con-
currence is evaluated from Eqs. (4) - (5) with qubit α pop-
ulations obtained from the Born-Markov master equa-
tion. In the presence of white noise at frequencies ω ∼ Ω,
they read ραii(t) = (ραii(0) − ρα∞ii )e−t/T1 + ρα∞ii with re-

- -

FIG. 3: (Color online) CΦ
ρ (panel a) and CΨ

ρ (panel b) as a func-

tion of the dimensionless time Ωt for r = 0.95 with a = 1/
√
2

for adiabatic (blue dashed), quantum (red dot-dashed), and their
interplay (black solid). Noise and qubit characteristics as in Fig. 2.

laxation rate T−1
1 = Sf(Ω)/2 and asymptotic population

difference ρα∞11 − ρα∞00 = − tanh(Ωα/2kBT ). The coher-
ences acquire an additional exponential decaying factor,
T−1
2 = T−1

1 /2, and read

ρα01(t) ≈ ρα01(0) e
−iΩαt− 1

2
ln
(

1+
(

iΩα+ 1

T1

)

Σ
2
α

t

Ω2
α

)

−
t

2T1 . (11)

The concurrence can be evaluated in analytic form. Ex-
pressions are quite lengthy and here we exemplify the
case of initial Bell states (r = 1, a = 1/

√
2) and

resonant qubits: CΦ
ρ (t) = 2max{0,KΦ

1 (t)}, CΨ
ρ (t) =

2max{0,KΨ
2 (t)} where

KΦ
1 (t) =

1

2

e
−

t

T1

√

1 + Σ4(t/Ω)2
−
√

ρ∞11ρ
∞

00(1− e−
t

T1 )

×
√

((ρ∞00)
2 + (ρ∞11)

2) e−
t

T1 + ρ∞00ρ
∞

11

(

1 + e−
2t

T1

)

(12)

KΨ
2 (t) =

1

2

e−
t

T1

√

1 + Σ4(t/Ω)2
− 1

2
(1− e−

t

T1 )

×
[

(

(ρ∞00)
2 + (ρ∞11)

2
)

e
−

t

T1 + 2ρ∞00ρ
∞

11

]

. (13)

In general, due to the presence of quantum noise, entan-
glement is lost in a finite time for any r and a. A compar-
ison of the ESD times in the presence of adiabatic noise,
quantum noise and their interplay is illustrated in Fig.(2)
for white noise level expected from single qubit experi-
ments, Sf (ω) = 2×106s−1 and for the two Werner states.
The overall ESD time for states ρ̂Φ(0) is longer than the
one for ρ̂Ψ(0). This effect originates from relaxation pro-
cesses due to quantum noise. The two-excitation state
|Ψ〉 can decay to a one-excitation state |Φ〉, while the
inverse transition is strongly suppressed at low temper-
ature, kBT ≪ Ω. This mechanism does reflect on the
evolution of populations appearing in Eq. (4) leading to
a faster increase of the population term in CΨ

ρ (t) than in

CΦ
ρ (t), see Eqs. (12) - (13). Note that for high purity lev-

els, the ESD time due to quantum noise is shorter than
the adiabatic ESD time (Fig. 2 inset), which goes to in-
finity for pure states. This observation however has to be
supplemented with a quantitative estimate of the amount
of entanglement preserved before ESD takes place. In-
deed, for typical amplitudes of 1/f and white noise, adi-
abatic noise considerably reduces the amount of entan-
glement on a short time scale even for r → 1. This is
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FIG. 4: (Color online) CΨ
ρ (t) as a function of the dimensionless

time Ωt for 1/f noise in [1, 106] Hz, and Σ/Ω = 0.02 at θ = π/2.
Panel (a): detuned qubits Ω1 (Ω2) = 1, (1.2)× 1011 rad/s (black),
or resonant qubits Ω = Ω1 (dashed blue). Dotted lines are the
SPA, Eq. (8). Panel (b): non-resonant qubits with (black) or with-
out (dotted red (gray)) coupling g

2
σz,A ⊗ σz,B , g = 109 rad/s.

Uncoupled resonant qubits (dashed blue) from numerical simula-
tions.

shown in Fig. 3, where CΦ
ρ , (C

Ψ
ρ ) ≈ 1/

√
2 (for lower val-

ues of concurrence Bell violation always occurs [20]) at
Ωt ≈ 2.38 · 103, (2.24 · 103).
On-chip entanglement generation and maintenance –

In the final part of this Communication we comment on
the sensitivity of the above analysis to experimental im-
perfections and on the possibility to achieve, in a single
chip, both entangling (preparation) and local operations.
A detuning between the two qubits of about 20% does
not change even quantitatively our analysis. This is illus-
trated in Fig. 4(a) for different initial purity of the Bell-
like state ρΨ. Note that the SPA is reliable even when the
dynamics of impurities responsible for 1/f noise extend-

ing up to γM ≈ 106 s−1 ≪ Ωα is considered (numerical
simulations). Similar effects occur in the presence of a
few per-cent deviations around the fixed working point.

In addition, this picture is not modified if detuned
qubits are coupled via − g

2σz,A ⊗ σz,B, provided that
g ≪ |Ω1 − Ω2|,Ωα. Deviations are visible only on a very
small scale, Fig. 4(b). This fact points out that local (sin-
gle qubit) operations may be performed with detuned
qubits even in the presence of a fixed transverse cou-
pling (here we consider θα = π/2). Tuning the individ-
ual qubit splittings on/off resonance effectively switches
on/off their interaction. This suggests that entanglement
generation and local operations may be performed on-
chip in a fixed coupling scheme. Entanglement can be
generated by tuning the qubits on resonance. Without
modifying the inter-qubit coupling, once induced a de-
tuning, entanglement may be maintained. Both opera-
tions take place in the presence of broadband noise and
their efficiency depends on the device operating point.
The present analysis shows that long - time maintenance
of entanglement during local operations can be achieved
by operating the two qubits at their own optimal point.
In view of the different qualitative behavior of single-
qubit and entanglement evolution, this result was not as
a priori established. On the other side, it has been re-
cently demonstrated that by properly fixing the qubits
coupling strength, high-fidelity two qubit operations can
be achieved and entanglement generated [21]. It is there-
fore possible, depending on the operation, to fix accord-
ingly the optimal operating conditions of the nanodevice.
In conclusion, we have studied a physical system where
effectively amplitude and phase noise act on a X-state [9].
We demonstrated that even if adiabatic noise may not in-
duce ESD, for typical noise figures, it reduces the amount
of entanglement initially generated faster than quantum
noise. The main effect of quantum noise consists in dif-
ferentiating classes of states more or less affected by re-
laxation processes. In the presence of transverse noise,
one-excitation states maintain entanglement longer than
two-excitation states. Efficiency of entanglement preser-
vation sensitively depends on the initial state purity.
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