

Information and Communication Technologies

Dipartimento Energia, Ingegneria dell’Informazione e Modelli Matematici
Ingegneria delle Telecomunicazioni

Progetto: TECLA – “Ricercatori ed Esperti Di Alta Tecnologia e Innovazione Tecnologica Applicata

al Settore dei Beni Culturali" a valere sull’Avviso n. 713/Ric. del 29 ottobre 2010
TITOLO III

“CREAZIONE DI NUOVI DISTRETTI E/O NUOVE AGGREGAZIONI PUBBLICO – PRIVATE”

Codice identificativo progetto: PON03PE_00214_1/F7

A Software Defined approach to the Internet of Things:
From Wireless Sensor Networks to Network Operating Systems

IL DOTTORE IL COORDINATORE
SEBASTIANO MILARDO CHIAR.MA PROF.SSA ILENIA TINNIRELLO

IL TUTOR

CHIAR.MO PROF. SERGIO PALAZZO

CICLO XXX
ANNO CONSEGUIMENTO TITOLO 2018

to my family and Silvia

I

Sommario

Di recente il mondo delle reti di telecomunicazioni è stato caratterizzato
dall’emergere del paradigma di Networking Software Defined (SDN). Grazie a
questo approccio è possibile fornire un’interfaccia standard per lo sviluppo di
software in grado di gestire i dispositivi di networking e i flussi di traffico che li
attraversano, disaccoppiando il management della rete dal forwarding dei dati.
Questa soluzione, di cui il protocollo di comunicazione OpenFlow è tra i maggiori
esponenti, ha riscosso un notevole successo nelle reti cablate permettendo di
superare il vendor lock-in e permettendo la gestione di dispositivi eterogenei
tramite un unico punto di accesso logicamente centralizzato.

Un ulteriore ambito che potrebbe trarre notevole beneficio da un simile ap-
proccio è quello dell’Internet of Things (IoT), cioè l’insieme di quei dispositivi
embedded di uso quotidiano interconnessi tramite Internet, di cui le reti wireless
di sensori rappresentano un importante caso d’uso. Anche in questo ambiente,
l’eterogeneità dei dispositivi e la necessità di soluzioni cucite attorno alla singola
applicazione ha creato una moltitudine di protocolli e soluzioni che difficilmente
riescono a cooperare, creando così una moltitudine di Intranet of Things invece di
un unica Internet of Things. Di recente, sono state presentate alcune soluzioni per
implementare un approccio Software Defined anche nelle reti di sensori wireless.

Il lavoro presentato in questa dissertazione si colloca in questo quadro presentan-
do un framework completo per la gestione di reti di sensori tramite un’interfaccia
OpenFlow-like chiamata SDN-WISE e la sua integrazione all’interno del sistema
operativo per networking ONOS.

In questa dissertazione sono presentati i dettagli architetturali e le conclusioni
maturate durante la progettazione della soluzione in questione.

Abstract

Recently, telecommunications have been characterized by the emerging of the
Software Defined Networking (SDN) paradigm. This approach provides standard
interfaces for the development of network management software. Software that
can control networking devices and the flows of traffic passing through them,
decoupling the network management from the data forwarding. This solution, of
which the OpenFlow communication protocol is one of the major players, has been
successfully applied in wired networks allowing to overcome the vendor lock-in
and allowing the management of heterogeneous devices through a single logically
centralized point of control.

Another area that could greatly benefit from such an approach is the Internet
of Things (IoT), that is, an interconnection via the Internet of devices embedded
in everyday objects, of which wireless sensor networks represent an important use
case. Even in this environment, the heterogeneity of the devices and the need for
solutions tailored around each single application has created lots of protocols and
solutions that can hardly cooperate, thus creating multiple Intranets of Things
instead of the envisioned unique Internet of Things. Recently, some solutions
have been presented to implement a Software Defined approach in wireless sensor
networks.

The work presented in this dissertation belongs to this context and it presents a
complete framework for the management of sensor networks through an OpenFlow-
like interface called SDN-WISE and its integration within the ONOS network
operating system.

This dissertation presents the architectural details and the conclusions reached
during the design of the proposed solution.

I

Contents

1 Introduction 1

1.1 Structure of this Dissertation . 3

1.2 Acknowledgements . 4

2 Technical Background 5

2.1 Software Defined Networking . 6

2.2 Software Defined Wireless Sensor Networks 8

2.2.1 SDWN . 9

3 Comparing IoT protocols 14

3.1 Related Work . 16

3.2 ZigBee . 18

3.3 6LoWPAN . 20

3.3.1 Protocol Stack . 20

3.3.2 Routing Protocol . 21

3.4 EuWin Experimental Platform . 22

3.5 Experimental Setup . 25

3.5.1 Data Generated and Environmental Conditions 26

3.5.2 Parameters Settings . 27

3.5.3 Performance Metrics . 29

II

3.6 Numerical results . 31

3.6.1 Static and Quasi-Static Environments 31

3.6.2 Dynamic Environment . 37

3.7 Conclusion . 38

4 SDN-WISE 40

4.1 SDN-WISE Overview . 41

4.1.1 Requirements . 41

4.1.2 SDN-WISE approach . 42

4.1.3 SDN-WISE protocol architecture 45

4.2 SDN-WISE protocol details . 47

4.2.1 Topology Discovery . 47

4.2.2 Packet handling . 49

4.3 Prototype and testbed . 54

4.4 Performance evaluation . 56

4.5 Conclusions . 61

5 A Software Defined QoS for IoT devices 62

5.1 Related Work . 64

5.2 Basic Idea . 66

5.3 Detailed Operations . 67

5.3.1 Estimation issues . 71

5.4 Simulation Results . 72

5.5 Conclusions . 80

6 Extending ONOS to support IoT devices 81

6.1 ONOS Architecture . 84

III

6.2 Proposed Architecture . 87

6.2.1 Applications . 88

6.2.2 SensorNode Subsystem . 89

6.2.3 FlowRule Subsystem . 90

6.2.4 Packet Subsystem . 91

6.2.5 DeviceControlRule Subsystem 92

6.2.6 Protocols . 93

6.3 Prototype Implementation . 93

6.4 Conclusion . 95

7 Implementing the IoT Vision using ONOS 96

7.1 Motivation and Architecture . 101

7.2 The Software Sensor Node . 105

7.3 Sensor Node Registration and Representation 107

7.4 Network-Wide Packet Forwarding 112

7.5 Case Study: MapReduce In-Network Processing 115

7.6 Conclusions . 120

8 Reducing energy footprint with GEO Routing 122

8.1 Geographic forwarding in SDWSNs 124

8.1.1 Localization . 124

8.1.2 Controller operations . 127

8.1.3 Nodes operations . 129

8.2 Prototype . 130

8.2.1 ONOS Extended Architecture 130

8.2.2 Geographic Forwarding . 131

IV

8.3 Performance evaluation . 135

8.3.1 Unicast case . 136

8.3.2 Multicast case . 138

8.4 Conclusions . 140

9 A Declarative Approach to SDWSN 144

9.1 Related work . 146

9.1.1 Intents . 146

9.1.2 Machine Learning for Network Management 147

9.1.3 Artificial Neural Networks 148

9.2 Proposed Solution . 149

9.2.1 Architecture . 149

9.2.2 Routing Strategy . 150

9.3 Testbed . 151

9.3.1 Dataset and Topology . 151

9.3.2 Simulated Testbed . 153

9.4 Predictive Flow Instantiation . 154

9.5 Results . 156

9.6 Conclusions . 157

10 Conclusions and Future Work 159

References 160

V

List of Figures

2.1 SDWN protocol stack. 10

3.1 Protocol architectures. Left: SDWN. Center: 6LoWPAN. Right:

ZigBee. 17

3.2 Flextop deployment at the University of Bologna. 23

3.3 Flextop nodes map. 24

3.4 Unicast traffic: RTT as a function of the number of hops when

transmitting 20 bytes of payload in static conditions. 31

3.5 Unicast traffic: RTT as a function of the payload size in the case of

one hop and static conditions. 32

3.6 Unicast traffic: RTT for the different protocols in the case of static

and quasi-static conditions, setting 20 bytes of payload and 2 hops. 34

3.7 Multicast traffic: average RTT as a function of the payload size. . 35

3.8 Multicast traffic: average PLR as a function of the payload size. . 36

4.1 SDN-WISE protocol stack. 47

4.2 WISE packet header. 49

4.3 WISE flow table. 49

4.4 Exemplary topology. 52

VI

4.5 Finite state machine implementing a policy such that packets gen-

erated by A are dropped if the last data measured by B is lower

than (or equal to) xThr. 52

4.6 SDN-WISE deployment options. 54

4.7 Integration with the OMNeT++ simulator. 56

4.8 Nodes deployment. 57

4.9 CDFs of the RTT for different payload sizes and different distances

between the source and destination node. 57

4.10 Average RTT vs. the payload size, for different values of the number

of hops. 58

4.11 Standard deviation of the RTT values vs. the payload size, for

different values of the number of hops. 58

4.12 CDF of the RTT in the multicast case for different payload sizes. 60

4.13 Efficiency for different values of maximum WISE Flow Table entry

TTL. 60

4.14 Efficiency for different values of beacon sending period. 60

4.15 Controller response times for different topologies. 61

5.1 New SDN-WISE report message. 68

5.2 Example of network topology. 70

5.3 Finite state machine implementing a policy such that a node changes

state depending on the buffer occupancy xi. 72

5.4 Simulation scenario. 73

5.5 Dropped data packets without QoS support. 76

5.6 WCD: Dropped data packet TGY = 75, TY R = 95 (option 1). . . . 76

5.7 WCD: Dropped data packet TGY = 75, TY R = 95 (Option 2). . . . 77

VII

5.8 WCD: Dropped data packet TGY = 65, TY R = 85. 78

5.9 WCD: Dropped data packet TGY = 85, TY R = 105. 78

5.10 CD: Dropped data packet TGY = 65, TY R = 85. 79

5.11 CD: Dropped data packet TGY = 85, TY R = 105. 79

5.12 CD: Dropped data packet TGY = 65, TY R = 85, Variable Traffic. . 80

6.1 ONOS Layered Architecture . 85

6.2 ONOS Extended Architecture for IoT 87

6.3 Integrated Network Scenario. 94

6.4 ONOS Snapshot of the Prototype. 95

7.1 Typical IoT Ecosystem. 97

7.2 Heterogeneous Network Integration with SSN 106

7.3 Representation of (a): the sink node in ONOS, and (b): its protocol

stack. 109

7.4 Sensor Node Registration Flowchart. 110

7.5 Integrated Forwarding flowchart. 113

7.6 Network topology with different reducers for each case. 116

7.7 Nodes resource usage. 119

8.1 Flow diagram of the operations executed at the nodes for localization

purposes. 125

8.2 Exemplary case. 127

8.3 Multicast Group Join/Leave message format. 132

8.4 Geographic Coordinates message format. 132

8.5 Geographic Multicast packet format. 133

VIII

8.6 CDF of the overall number of signaling messages for different unicast

forwarding strategies. 138

8.7 CDF of the number of rules for different unicast forwarding strategies.138

8.8 CDF of the energy consumption in the unicast case for the considered

forwarding strategies. 139

8.9 PDF of the number of hops needed in the unicast case for the

considered forwarding strategies. 139

8.10 CDF of the path length implied in the unicast case for the considered

forwarding strategies. 139

8.11 Multicast topologies considered in our work. 141

8.12 Time needed to compute the Steiner tree using Dreyfus-Wagner

algorithm. 141

8.13 Time needed to compute the Steiner tree using GeoSteiner algorithm.142

8.14 CDF of the path length in the multicast case for the considered

forwarding strategies. 142

9.1 Placement of the IoT devices in Santander. 152

9.2 Network topology. 152

9.3 A comparison between the experimental data and the predicted

data for a relay node. 155

9.4 Overall number of packets transmitted since November 1st, vs time,

normalized by overall number of packets transmitted in the "Oracle"

case. 157

9.5 Overall standard deviation for the number of packets transmitted

since November 1st, vs time, normalized by the Standard deviation

for the number of packets transmitted in the "Oracle" case. 158

IX

X

Chapter 1

Introduction

The Software Defined Networking paradigm is changing the way in which

networks are conceived with disruptive implications on network design, deployment,

operation, and maintenance. In fact SDN has been envisioned as a way to reduce

complexity and increase flexibility of network configuration and management [1].

In SDN networks management operations (Control Plane) are logically centralized

and physically decoupled from forwarding operations (Data Plane), so allowing to

easily update the behavior of the network. In the last few years, the industrial

and academic communities have devoted relevant efforts to SDN development, and

nowadays well established SDN solutions are available for both wired and wireless

infrastructured network domains.

In the meantime, market forecasts released by different institutions anticipate

the deployment of larger and larger numbers of Internet of Things (IoT) devices

in the near future. For example, the most recent study conducted by IDC for

Intel and the United Nations forecasts that there will be around 200 billion IoT

devices by 20201. As a result of these high expectations, industry is investing huge

resources in the development and deployment of IoT technologies and platforms.

The academic research community is also following this wave and today IoT is one
1http://intel.ly/1i8O2ec

1

CHAPTER 1. INTRODUCTION

of the hottest research topic in computer science, whereas it is also spreading to

other domains such as transportation, production and manufacturing, as well as

environmental and social sciences.

Software-Defined Networking (SDN) and Internet of Things (IoT) are today

two hot topics deemed in the short term to be fused with each other. Indeed the

flexibility and the ability of SDN to balance traffic on different paths in such a way

to implement an optimized network resources’ usage makes it a valuable ally in the

implementation of the IoT vision. In fact, one of the most critical issues for the

IoT realization is the huge data management and processing and the consequent

need for optimized network routing and balancing.

Wireless sensor networks (WSN) are a fundamental ingredient of the IoT

ecosystem. These networks are composed of sensor nodes that cooperatively

monitor the physical environment [2] and track events [3] generating incessant

streams of data that the IoT can use to improve our lives and our businesses in

many ways. Unlike traditional networks, WSN nodes are resource constrained in

terms of energy, communication range, bandwidth, processing power, and memory

[4]. Additionally, a WSN has to deal with a great variety of applications that

require different network structures [5, 6], and may exploit mobile nodes [7, 8].

Sensors, in particular, offer unprecedented access to granular data that can be

transformed into powerful knowledge2. Integrated analytics platforms will be used

to overcome the data burst and avoid that sensor data will just add information

overload and noise escalation.

In order to implement this unified IoT scenario, integration between different

SDN platforms and implementations is needed. Therefore, this thesis focuses
2http://bit.ly/2mLtG7t

2

CHAPTER 1. INTRODUCTION

on SDN-like platforms for wireless sensor networks (SDWSN) by defining and

implementing a Data Plane and a Control Plane for such devices.

Having a Control Plane for Software Defined IoT devices is extremely important

as the existing controllers are typically bundled with some sample applications

and the support for other devices is tightly coupled with the particular switch

behavior.

To this purpose, one of the main focus of this thesis is to introduce an extended

controller based on the Open Network Operating System (ONOS), as the starting

point for the implementation of the IoT vision. By using ONOS to control

heterogenous networks it is possible for any wireless sensor device to communicate

and interact in a standard and transparent way with external nodes.

Leveraging this approach it is possible to unlock new possibilities for the

management of Software Defined IoT devices, overcoming the constraints in terms

of computational power and energy consumption and making life easier for network

administrators.

1.1 Structure of this Dissertation

This dissertation is organized in 8 chapters (including this introduction) as

follows:

Chapter 2 provides basic definitions and concepts related to SDN and SDWSN.

It also presents the State of the Art for SDWSN and in particular it focuses on

SDWN, one of the first solutions for SDWSN.

Chapter 3 shows a comparison between different communication protocols for

IoT devices. ZigBee, 6LoWPAN, and SDWN are compared to reveal the difference

between distributed solutions and a centralized one.

3

CHAPTER 1. INTRODUCTION

Chapter 4 presents SDN-WISE, a stateful software defined solution for wireless

sensor networks based on SDWN which is the starting point for the following

chapters.

Chapter 5 analyzes how SDN-WISE can be used to support QoS policies in

WSN. In particular in the context of heterogeneous sensors for environmental

monitoring.

In Chapters 6 and 7 the need for a Network Operating System for Software

Defined IoT devices is underlined and an extension of ONOS is presented.

Then, in Chapter 8 a routing application based of Geographic forwarding and

in Chapter 9, a novel declarative approach to NOS applications for IoT based on

Long Short-Term Memory Recurrent Artificial Neural Networks is given.

Finally, Chapter 10 summarizes the conclusions and proposes further works

related to the presented subject.

1.2 Acknowledgements

Part of the results described in this dissertation comes from the research funded

by Progetto: TECLA Ricercatori ed Esperti Di Alta Tecnologia e Innovazione

Tecnologica Applicata al Settore dei Beni Culturali (PON03PE_00214_1/F7).

The code produced while working on this project is freely available at https:

//github.com/sdnwiselab.

4

Chapter 2

Technical Background

In the early 2000s micro-electro-mechanical systems (MEMS), wireless commu-

nications and digital electronics have reached the maturity level needed to develop

tiny, low-cost, low-power wireless sensor nodes (generally referred to as Motes) able

to wirelessly communicate with each others without a pre-deployed infrastructure,

i.e. to form what are commonly referred to as wireless sensor networks (WSN)s

[9].

Driven by the promise that WSNs would have produced a radical impact in

several application scenarios, in the last decade the networking research community

has devoted an immense effort to the study of WSNs and the definition of appro-

priate solutions for them. While such effort has resulted in a deep understanding

of the WSN related matter, the expected large scale deployment of WSNs has not

fully happened till today.

The reasons of the slow commercial take off of WSNs are multifold. Nevertheless,

at the very basis there is a technical reason: WSNs are characterized by profoundly

different requirements depending on the specific application and deployment

scenario. Accordingly, as widely recognized [9], there is not something like a

one-fits-all solution for WSNs. Instead, there is a plethora of vertical application-

5

CHAPTER 2. TECHNICAL BACKGROUND

specific solutions that have resulted in extremely fragmented context and market.

The above problem can be overcome by making WSNs programmable and thus,

there has been significant research effort devoted to design programmable WSNs

[10, 11, 12]. However, in most current real-world WSN deployments, programming

is typically very tightly related to the operating system, requiring the application

developers to focus on intensive low-level details rather than on the application

logic.

2.1 Software Defined Networking

The Software Defined Networking (SDN) paradigm and OpenFlow, which

currently is the most popular instance of SDN, have been recently proposed to

solve analogous issues in the wired domain [1]. Thanks to standardized interfaces,

which can work on networks made of heterogeneous switches, in OpenFlow the

network nodes handle incoming packets as specified in the so-called Flow Table.

Each entry of the Flow Table is related to a flow and is composed by three sections:

(i) a matching-rule which specifies the values of the header field that must be

found in the packets belonging to the flow; (ii) the action that must be executed

on the packets of the flow (e.g., drop, forward to, etc.); and (iii) some statistical

information about the flow. If the Flow Table does not contain any entry specifying

how to deal a certain packet, the node sends a request to a software entity called

Control Plane that has a high level abstraction of the network elements. The

Controller can run on a remote server in a (logically) centralized manner. The

Controller replies with information required to fill a new Flow Table entry for

handling the packet.

In this way, OpenFlow clearly separates (even physically) the data plane from

6

CHAPTER 2. TECHNICAL BACKGROUND

the control plane and delivers a network

• which is easy to configure and manage [13],

• which can evolve because, in principle, new services and management policies

can be introduced in the network as simply as it is to install a new software

on a PC [1, 14],

• in which a given network node can be replaced with another produced by

any vendor, so freeing the operator from the vendor lock-in and allowing to

use commodity hardware.

The above are crucial advantages for network operators which, thus, are

investing large efforts in the SDN domain in terms of new equipment acquisition

and/or knowhow development.

As a result, rarely the interest in a new networking paradigm has increased at

such a pace as it is happening for SDN. In fact even if OpenFlow was initially meant

for universities and campus networks the huge benefits introduced in terms of

simplicity and evolvability made it suitable for other contexts and it is now possible

to find even carrier-grade networking devices that are OpenFlow compliant [15].

Therefore, most network operators are running pilot experimentations of OpenFlow

networks, manufacturers are producing OpenFlow compliant network equipment,

and the research community (both academic and industrial) is involved in a vast

amount of SDN-related R&D activities. In fact, the applications of SDN are now

everywhere. SDN has been used in campus networks [1], wide area networks [16],

carrier networks [17] but also wireless and mobile devices [18] A quick look at the

list of members of the Open Networking Foundation, an organization promoting

7

CHAPTER 2. TECHNICAL BACKGROUND

the development of SDN-related standards, suffices to understand that this hype

has spread to the wireless domain, as well.

2.2 Software Defined Wireless Sensor Networks

Despite the vast adoption of OpenFlow, and SDN in general, in the wired

domain, there has been no such widely accepted solution in wireless networks and,

especially, WSNs1

Sensor OpenFlow [20] was the first attempt to implement an SDN protocol

for WSNs. It follows the OpenFlow architecture, by considering that the nodes

should maintain a flow table with entries of specific, predefined format. Sensor

OpenFlow supports in-network processing mainly to enable data aggregation, as

commonly done in WNS for energy preservation. Note that Sensor OpenFlow

cannot support the wide range of protocols, either standard or proprietary that

have been proposed in the context of WSNs. Furthermore, in [21] the Sensor

OpenFlow approach is integrated with other WSN programming techniques.

Authors in [22] also presented the idea of exploiting the OpenFlow technology

to address the reliability in WSNs. The authors claim that OpenFlow-based

sensors are more reliable than typical sensors, and simulation results show that

the proposed approach achieves better performance for large networks.

The use of OpenFlow in a wireless mesh network allows a rapid change of

forwarding and routing algorithms [23]. A survey on challenges and opportunities

in using wireless SDNs is presented in [24]. This chapter claims that the SDN

technology will have to face problems regarding slicing, isolation, status reporting,
1Actually, even before the break-in of SDN in the WSN arena, there have been studies about

WSNs in which the behavior of nodes was dependent on rules that can be changed over time –
see [19], for example.

8

CHAPTER 2. TECHNICAL BACKGROUND

and handoffs, whereas it will improve connectivity, QoS, planning, security, and

localization. Ref. [25] proposes an SDN system, where experimentations show that

the proposed solution reduces the energy consumption and provides a higher level

of flexibility in network management.

Another SDN-like solution is TinySDN [26] which focuses on the support of

SDN operations across different platforms which is achieved by building on TinyOS.

TinySDN enables interoperability of SDN-enabled nodes with several controllers,

and has been implemented and tested with the Cooja simulator.

However these approaches, as well as the ones presented in [27] and [28], are

directly derived by OpenFlow and thus, require all nodes to be instructed by the

Controller to process the packets they are called to handle. Therefore, they involve

large amount of signaling exchange between nodes and Controller. Also, since each

flow traversing a node must have an appropriate entry in a given data structure

(denoted as flow table in OpenFlow) in order to specify how to distinguish packets

belonging to the flow and how to treat them, it is likely that nodes will have to

maintain large flow tables.

2.2.1 SDWN

The first implementation of SDWN was developed in October 2012 [29]. The

main idea behind the protocol is to adapt a centralized approach, such as the one

proposed in SDN networks, to a wireless environment, thus giving the opportunity

to support the flexible definition of rules and topology changes.

The SDWN protocol stack is shown in Fig. 2.1: physical (PHY) and MAC

layers are those of the 802.15.4 [30], whereas upper layers are inspired by the SDN

paradigm. A typical SDWN network is composed of a controller device, a sink

node, and several other nodes. The controller gathers the information from nodes,

9

CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.1: SDWN protocol stack.

maintains a representation of the network, and establishes routing paths for each

data flow. The sink is the only node that is directly connected to the controller,

and it acts as a gateway for nodes. Usually the sink coincides with the network

coordinator and its protocol stack is equivalent to that of a generic node. The

stack of a generic node is divided into three parts: 1) the forwarding layer (FWD);

2) the aggregation layer (AGGR); and 3) the network operating system (NOS).

The MAC layer provides incoming packets to the FWD layer that identifies the

type of the packet. Six different types of packets are defined as follows:

1. data: generated (delivered) by (to) the application layer;

2. beacon: periodically sent in broadcast by all nodes in the network;

3. report: containing the list of neighbors of a node;

4. rule request: generated when it receives a packet for handling which it has

no information (i.e., the path);

5. rule response: generated by the controller as a reply to the rule request;

6. open path: used to setup a single rule across different nodes.

When a nonbeacon packet is received by the FWD layer, it is sent to the NOS

that searches for the corresponding rule in an appropriate data structure called

10

CHAPTER 2. TECHNICAL BACKGROUND

flow table. The flow table stores all the rules coming from the controller. For each

rule, there are three types of action that could be executed: forward to a node,

modify the packet, or drop it. If a packet does not match any of the rules in the

table, a rule request is sent to the controller.

The path between the sink and the node for sending/receiving rule request/rule

response packets must be chosen effectively, considering both reliability of the path

and its length. Each node constantly stores its distance (in number of hops) from

the sink, and the received signal strength indicator (RSSI) that is the level of power

it receives from the next hop toward the sink. During the network initialization,

each node is in a quiescent state waiting for messages. When the sink turns ON,

it sends a beacon, containing the number of hops from the sink (zero in this case).

When a node A receives the beacon, it performs the following four operations.

1. Add the source of the beacon and the RSSI received in the list of nodes

(neighbors table) that are one hop distant from A.

2. Analyze the distance contained in the beacon and the RSSI of the received

message, then compare these values to the corresponding stored values: if

the number of hops is lower and the RSSI is higher, the source of the beacon

is elected as the best next hop toward the sink, and the values stored in A

are updated.

3. The beacon timer is activated and node A will periodically send its own

beacon in broadcast.

4. The report message timer is activated: the neighbors table of A is sent

periodically to the sink node using the best next hop toward the sink. After

each transmission, the list of neighbors is deleted to have an updated view

11

CHAPTER 2. TECHNICAL BACKGROUND

of the network. The report period must be greater than the period used to

broadcast beacon messages (beacon period).

The information included in the report messages are used by the controller

to create a map of the network. Based on this representation, the controller is

able to respond to rule requests and to decide the routing paths for data packets,

while rule request will keep following the previously discovered path. The actual

implementation of the controller uses Dijkstra’s routing algorithm to solve rule

requests. The weight of the edges in the topology representation is a function of

the received RSSI.

A possible change in the network is notified to the controller using report

messages. As specified above, the controller obtains periodically all the lists

of neighbors, according to the report period that is bounded by the beacon

period. By decreasing the latter period, a faster responsiveness to environmental

changes could be obtained to the detriment of having larger overhead. In the

actual implementation of SDWN, the controller sends a rule response only after

receiving a rule request from a node and rules contained in the nodes expire after

a configurable period of time. Therefore, at the end of this period, the controller

receives a new rule requests for the unmanageable packets.

As previously mentioned, more than one action can be executed for an incoming

packet, thus achieving the multicast communication. By performing multiple

actions, the controller is able to clone an incoming message into multiple outgoing

messages. Unfortunately, a drawback of this approach is that the multicast is

locally executed by transmitting a series of unicast messages. In other terms, the

broadcast nature of the wireless communication is not exploited.

This work has been used as a base to develop an enhanced version of SDWN

12

CHAPTER 2. TECHNICAL BACKGROUND

called SDN-WISE that is described in detail in Chapter 4.

13

Chapter 3

Comparing IoT protocols

The internet of Things (IoT) is an emergent paradigm evolving around the

concept of things (objects, cars, etc.), equipped with radio devices and uniquely

addressable. The notion of IoT has been recognized by industrial leaders and

media as the next wave of innovation, pervading into our daily life [31, 32]. Sensors

are increasingly becoming more pervasive and attempt to fulfill end users needs,

thus providing the ease of usability in our everyday activities.

The common standards for IoT applications are ZigBee [33] and IPv6 over

low-power wireless personal area networks (6LoWPAN) [34]. Both these standards

are implemented on top of the IEEE 802.15.4 standard [30]; however, ZigBee uses

802.15.4 medium access control (MAC) addresses, whereas 6LoWPAN uses IPv6

addresses.

Recently, a third approach based on the software defined network (SDN)

paradigm has been proposed [29]. It is called Software Defined Wireless Networking

(SDWN) and uses a centralized routing protocol, as already stated in Chapter

2. The coordinator/gateway gathers information on the status of the network of

things, and brings this knowledge to a controller that can decide on the exploitation

of resources within the wireless network. The controller has a centralized vision

14

CHAPTER 3. COMPARING IOT PROTOCOLS

of the network of things and can even control things that lie behind several

coordinators/gateways. This approach brings the potential advantage of optimal

resource exploitation, provided that the overhead is controlled and the environment

does not change too frequently.

The aim of this chapter is to fairly compare ZigBee to 6LowPAN and both

to SDWN. The three solutions presented above are compared by experiments

performed on the European Laboratory of Wireless Communications for the

Future Internet (EuWIn) platform.

In particular, the flexible topology testbed (Flextop) facility of EuWIn has

been used. Located inside the University of Bologna, Flextop consists of 53 nodes,

equipped with IEEE 802.15.4 interfaces. Flextop provides a controllable and a

priori known environment for experimentation, thus enabling the fair comparison

among different protocols, even though tests are performed at different time

instances. This chapter presents results of an extensive measurement campaign

evaluating different performance metrics, such as packet loss rate, round-trip-time

and overhead generated in the network, considering different network topologies

and sizes, payload sizes, and environmental conditions, from static to dynamic.

Results demonstrate that SDWN achieves the best performance in terms of

all considered metrics in static and quasi-static scenarios. However, a severe

performance degradation has been observed when the changes in network topology

are frequent and significant.

The rest of this chapter is organized as follows: In Section 3.1 the related work

are reported, Sections 3.2 and 3.3 report the details on ZigBee and 6LoWPAN

protocol stacks. Section 3.4 introduces the platform used for the experiments

and Section 3.5 describes the experimental setup and parameter settings. Finally,

15

CHAPTER 3. COMPARING IOT PROTOCOLS

results are shown in Section 3.6 and conclusion is drawn in Section 3.7.

3.1 Related Work

Many research papers deal with the implementation of ZigBee networks. For

example, [35, 36, 37] refer to the implementation of a ZigBee network for smart

home applications. Ref. [24] measures the impact of Wi-Fi interference over ZigBee

networks. An experimental analysis of star and tree ZigBee networks based on

commercially available hardware and software is provided in [38], to determine the

limitations of technology. Finally, Ref. [39] provides a comparison between ZigBee

Pro and ZigBee IP, in terms of latency, where a network is composed of five nodes.

Referring to 6LoWPAN, Ref. [40] presents an implementation over Texas

Instruments (TI) MSP430 devices. A star topology with an edge router and three

nodes was deployed, and IP addressability features were tested. In [41], a novel

architecture for supporting applications in the field of intelligent transportation

systems is presented. The implementation and evaluation of different neighbor

management policies applied to routing protocol for low-power and lossy networks

(RPL) are given in [42]; experiments were conducted on the TU-Berlin TWIST

testbed with 100 TelosB motes spread over a three-floor office building. Several

papers are also comparing ZigBee and 6LoWPAN: Ref. [43] provides a quali-

tative comparison, without addressing any quantitative evaluation of protocols’

performance. In [44], the authors present a comparative performance assessment

of ZigBee and 6LoWPAN protocols for industrial applications. The testbed is

composed of four TelosB nodes deployed in a linear topology.

Unfortunately, there are no works in the literature dealing with the comparison

of the SDWSN approach and the distributed approach represented by ZigBee and

16

CHAPTER 3. COMPARING IOT PROTOCOLS

Figure 3.1: Protocol architectures. Left: SDWN. Center: 6LoWPAN. Right: ZigBee.

17

CHAPTER 3. COMPARING IOT PROTOCOLS

6LoWPAN.

3.2 ZigBee

In this work, we consider the ZigBee-Pro 2007 release specified in [33], whose

protocol stack is shown in Fig. 3.1. The home automation profile is considered,

and many-to-one (MTO) routing, described below, is implemented.

MTO routing allows to establish a tree topology, rooted at the coordinator.

In order to form and maintain the tree, the coordinator periodically sends an

MTO route request (MTO-RR) packet in broadcast. Each node, receiving an

MTO-RR before retransmitting it, reads the accumulated path cost (i.e., the sum

of the costs of the links of the reverse path toward the coordinator) included in the

packet and selects the next hop toward the coordinator. In particular, if a node

receives several MTO-RRs from different nodes, it elects as a next hop the node

characterized by the minimum total path cost to the coordinator. At the end of

this MTO-RR transmission, all nodes in the network are aware of the next hop to

be used to transmit their data to the coordinator, that is their parents in the tree.

However, if the coordinator wants to know the path to reach a specific node in the

network (or a set of nodes by multicasting), MTO routing should be combined

to source routing (SR). After the MTORR transmission, once a node has a data

packet to be sent to the coordinator, it first sends a route record (RREC) packet

through the selected path. Each node in the path receiving the RREC packet,

adds in the relay list field its own address and forwards the new RREC packet

toward the coordinator. The coordinator analyzes the RREC packet and stores

that information in the source route table. Each time, the coordinator has to send

a packet to a node, it reads the relay list from this table and sends the packet

18

CHAPTER 3. COMPARING IOT PROTOCOLS

through the selected path.

In order to let nodes compute the link costs to be used in the MTO routing

for the selection of the path, each node in the network periodically sends link

status packets in broadcast at one hop. Each node receiving the link status packet

computes the link cost, being a function of the link quality indicator of the received

packet.

Even though MTO-RRs are periodically sent by the coordinator and are not

generated on-demand (which would make the protocol proactive), ZigBee saves

the reactive feature through the use of ad hoc on-demand distance vector (AODV)

protocol [45], when needed. In particular, in case of link failure, AODV is used

for discovering a new path toward the destination. According to AODV, a node

searching for a destination node sends a route request packet (RREQ) in broadcast,

which is retransmitted by all receiving nodes until it reaches the destination.

During the process of rebroadcasting the RREQ, intermediate nodes record in their

route discovery tables the address of the RREQ sender, and the corresponding

total cost of the reverse path to the source. The comparison among paths’ costs

of packets related to the same RREQ allows choosing the best path. Once the

destination receives the RREQ, it responds by sending a route reply (RREP) in

unicast back to the source along the reverse path.

In the case of multicast transmission, a path between the coordinator and

the multicast group should be established. In our experiments, we use AODV to

establish the route between the coordinator and the multicast group; in this case,

the RREQ packet, sent in broadcast, includes the address of the multicast group

to be discovered. Nodes in the network that are linked to the target multicast

group send an RREP back to the coordinator through the selected path. The

19

CHAPTER 3. COMPARING IOT PROTOCOLS

latter path is used for the transmission of query packets. In the uplink direction,

that is from the queried nodes to the coordinator, nodes use the same protocol as

for the unicast transmissions, therefore MTO.

3.3 6LoWPAN

The IETF 6LoWPAN working group published first document in August

2007 [34]. Among the several available 6LoWPAN solutions, the IPv6 stack,

implemented in Contiki, has been used and ported on the Flextop platform.

3.3.1 Protocol Stack

The 6LoWPAN protocol stack is shown in Fig. 3.1. The lowest layers are

based on IEEE 802.15.4 PHY and MAC layers. Due to the fact that the direct

integration between IPv6 and IEEE 802.15.4 lower network layers is not possible,

the IETF 6LoWPAN working group has specified an adaptation layer and header

compression scheme for transmission of IPv6 packets over IEEE 802.15.4 radio

links. The purpose of adaptation layer is to provide a fragmentation and reassembly

mechanism that allows IPv6 packets (maximum transmission unit for IPv6 is 1280

bytes) to be transmitted in IEEE 802.15.4 frames, which have a maximum size of

127 bytes of the MPDU (MAC protocol data unit). At network layer, the IPv6

routing protocol for low-power and lossy networks (RPL) is used (see below for

details). At the transport layer, user datagram protocol (UDP), providing best-

effort quality of service, is applied. Finally, at the application layer, constrained

application protocol (CoAP) is present.

20

CHAPTER 3. COMPARING IOT PROTOCOLS

3.3.2 Routing Protocol

According to RPL, a destination-oriented directed acyclic graph (DODAG),

where each node may have more than one parent toward the root, is built [46].

One of the parents is called preferred parent, and it is used for routing toward

the root. In our case, the coordinator acts as the root. The topology is set-up

based on a rank metric, which encodes the distance of each node with respect

to its reference root, as specified by the objective function. In particular, we use

the hop count metric as objective function; therefore, the rank of a given node

represents the number of hops separating the node from the coordinator. Paths in

the DODAG are selected to minimize the rank. RPL nodes exchange signaling

information in order to setup and maintain the DODAG. The construction of

DODAG is initiated by the root that sends DODAG information object (DIO)

messages to its neighbors to announce a minimum rank value. Upon receiving a

DIO message, an RPL node will:

1. update the list of its neighbors;

2. compute its own rank value;

3. select its preferred parent used as next hop to reach the root as the strongest

one (i.e., the one from which, it received the largest power); and

4. start transmitting DIO messages, containing its respective rank in the

DODAG (a distance to the DODAG root according to the hop-count).

RPL nodes may also send DODAG information solicitation (DIS) messages

when joining the network to probe their neighbors and solicit DIO messages.

Finally, destination advertisement object (DAO) messages are used to propagate

21

CHAPTER 3. COMPARING IOT PROTOCOLS

the destination information upward along the DODAG. DAO messages are sent in

unicast by the RPL node to the selected parent to advertise its address. When

a node receives a DAO, it updates its routing table and then this information is

used by the DODAG root to construct downward paths. In our implementation,

each router in the path records the route identifier and the corresponding next

hop toward the destination. RPL uses an adaptive timer mechanism, called

the trickle timer, to control the sending rate of DIO messages. The trickle

algorithm implements a check model to verify if RPL nodes have out-of-date routing

information. The frequency of the DIO messages depends on the stationarity of the

network, and the frequency is increased when the inconsistency is detected. Once

the network becomes stable, the trickle algorithm exponentially reduces the rate at

which DIO messages are emitted. RPL supports both unicast and multicast traffics.

In the case of multicast, we used the stateless multicast RPL forwarding (SMRF)

protocol. According to the latter, nodes join a multicast group by advertising its

address in their outgoing DAO messages, which only travel upward in the DODAG.

Upon reception of message from one of its children, a router makes an entry in its

forwarding table for this multicast address. This entry indicates that a node in the

DODAG is a member of the group. This router will then advertise this address in

its own DAOs, and relay multicast datagrams destined to this address.

3.4 EuWin Experimental Platform

The facility used in this paper, called Flextop [24], is an experimental platform

composed of 53 EMB-Z2530PA sensor nodes based on the TI CC2530 single chip

8051 8-bit controller. The TI CC2530 is IEEE 802.15.4 compliant; therefore, our

three solutions SDWN, ZigBee, and 6LoWPAN are implemented on top of the

22

CHAPTER 3. COMPARING IOT PROTOCOLS

Figure 3.2: Flextop deployment at the University of Bologna.

IEEE 802.15.4 PHY and MAC layers. We consider the 2.4 GHz ISM band PHY,

characterized by a bit rate of 250 kbit/s and by a minimum shift keying modulation

on top of which direct sequence spread spectrum is applied. In the case of MAC

layer, the nonbeacon-enabled mode is used, employing a carrier sense multiple

access with collision avoidance protocol (CSMA/CA). We refer to [30] for details

about the protocol, and to Section VII-B for the PHY and MAC layers parameter

settings in the software.

Nodes are located into boxes on the walls of a corridor at the University of

Bologna. Thirteen boxes are deployed in the corridor, and four nodes per box are

deployed at fixed positions (see Fig. 3.2). Node 53, at the end of the corridor, acts

as the coordinator of the network in all the cases.

The main strength of Flextop is that the experimental environment is stable

for the total duration of the experiment, thus making the results replicable, based

on:

1. nodes are at fixed and known positions;

2. channel gains between each pair of nodes are measured at the beginning of

each test; and

23

CHAPTER 3. COMPARING IOT PROTOCOLS

Figure 3.3: Flextop nodes map.

3. experiments are performed during the night, when nobody is present, avoiding

uncontrollable channel fluctuations.

With reference to point 2), and in order to properly describe the environment,

before the start of experiments, we measured the average received power matrix P .

The generic element of P , denoted as Pi,j , represents the average power received

by node i, when node j is transmitting. The matrix is obtained as follows: each

node, including the coordinator, sends a burst of 10 000 short packets to let other

nodes compute the average power received. We consider two nodes as connected

if the percentage of packets received over the link is larger than 90%. Therefore,

if more than 90% of packets are received over the link, we compute the average

received power that is included in the matrix; if a lower number of packets is

received, the two nodes are considered as not connected. The links are rather

stable, therefore the 90% threshold is actually not relevant, as links either exist or

do not.

24

CHAPTER 3. COMPARING IOT PROTOCOLS

Table 3.1: Average Received Powers (dBm) Matrix for -5dBm.

IDs 4 6 13 17 22 25 38 43 45 51 53
4 - -74 -54 -63 -62 -66 - - - - -
6 -73 - -80 -64 -75 -83 - -86 50 50 -88
13 -53 -81 - -55 -60 -69 -83 - -85 - -
17 -64 -65 -56 - -63 -58 -86 -82 -85 -89 -83
22 -64 -79 -62 -65 - -55 -80 -86 -84 -87 -85
25 -66 -84 -69 -57 -53 - -63 -67 -69 -79 -74
38 - - -82 -85 -78 -61 - -58 -80 -84 -72
43 -87 -88 - -82 -83 -68 -60 - -48 -71 -66
45 - - -85 -85 -82 -69 -77 -47 - -54 -59
51 - - - - -87 -79 - -80 -56 - -65
53 - - - -83 -85 -75 -75 -65 -60 -65 -

3.5 Experimental Setup

We consider two network setups: 1) a network consisting of 10 nodes (nodes

4, 6, 13, 17, 22, 25, 38, 43, 45, and 51, underlined with red circles in Fig. 3)

and 2) a network of 20 nodes, where we add the following nodes: 1, 8, 10, 11,

15, 20, 23, 30, 31, and 33. In all cases, the node 53 at the end of the corridor,

is used as the network coordinator. Nodes were selected according to their level

of connectivity, measured by the matrix P described above, to have nodes that

could reach the coordinator through different number of hops. The matrix P ,

characterizing the level of connectivity among the selected nodes in the case of 10

nodes and the coordinator, is reported in Table 3.1, where values are expressed

in decibel-milliwatt and where "-" indicates absence of connectivity. The level of

transmit power, set to obtain the matrix and used during experiments, was -5 dBm.

In the case of 20 nodes, the matrix is not included for the sake of conciseness.

25

CHAPTER 3. COMPARING IOT PROTOCOLS

3.5.1 Data Generated and Environmental Conditions

We consider a query-based application, where the coordinator periodically sends

a query packet to one or several target nodes and waits for the reply from it/them.

Both queries and replies are data packets with a given payload that is the same in

both cases, and we consider different payload sizes. Two different communication

configurations are evaluated: 1) unicast, where the coordinator sends the query to

one specific node that could be one, two or three hops far from the coordinator and

2) multicast, where the coordinator queries contemporaneously a subset of nodes,

and waits for replies from all of them. As for the environmental conditions, all

experiments were performed during the night, when no people were moving around,

to avoid uncontrollable environmental changes and to ensure a fair comparison.

However, in order to measure the level of reactivity of protocols to possible changes

such as in real environments, we investigated results in quasi-static and dynamic

conditions. In particular, experiments were still performed during the night, but we

introduced the ?disturbs? specified below. In the case of quasi-static environment,

we emulated a day-like situation, where people move around, by letting two people

walk along the corridor at a constant speed, following a predefined path. The

comparison among protocols is still fair, since we reproduced exactly the same

situation (same people, path, and speed) during all experiments. This case is

denoted as quasi-static, since only two people were moving without creating huge

obstacles and fast fading. In the case of dynamic environment, we emulated the

movement of nodes leaving the network and possibly coming back, by switching

OFF and on nodes at random instants. In particular, we implemented the following

procedure: 1) once a node switches ON, it remains in this state for at least 5 s;

2) after which, it generates a random and uniformly distributed delay between 0

26

CHAPTER 3. COMPARING IOT PROTOCOLS

and 10 s; and 3) at the end of which, the node switches OFF for 1 s, and then

it switches ON again [back to step 1)]. The comparison among protocols is still

fair, since the above described duty cycling is implemented in the tests identically.

Moreover, the channel conditions could be considered as extremely dynamic, since

nodes switch OFF frequently and at random time instants.

3.5.2 Parameters Settings

All the parameter settings related to PHY and MAC are the same for the three

protocols, and they are provided in Table 3.4. It also includes the network layer

parameters, different for the three protocols stacks, but set to the same values,

when possible. In particular, for the fair comparison, we set the SDWN beacon

packets period equal to the ZigBee link status period, as well as the SDWN flow

tables refreshing time equal to the ZigBee MTO-RR period. Therefore, when the

environment is static, routing tables are refreshed and new paths are discovered

with the same frequency (i.e., every 150 s). Broadcast packets used to compute link

costs/RSSI values are sent with the same frequency (i.e., every 10 s). Obviously,

in the presence of changes in the environment, the two protocols behave differently.

In case of 6LoWPAN, as stated above, the frequency of generation of DIO packets

is managed by the trickle algorithm: the RPL router will schedule the emission

of a DIO at some time in the future, depending on the events in the network

and real-time environment condition. In our case, we selected the default period

between two consecutive DIO messages equal to 12 s. We refer to the different

standards for the setting of the remaining parameters, since, in all cases, they were

set to the default values.

In relation to the packet sizes, all protocols use an MAC acknowledgement

of 11 bytes and a PHY header of 6 bytes. The MAC header is 18 bytes in the

27

CHAPTER 3. COMPARING IOT PROTOCOLS

Table 3.2: Parameter Settings: PHY

PHY layer
Bit rate 250 kbit/s

Frequency band channel 11, at 2.405 GHz
Transmit power -5 dBm

Receiver sensitivity -92 dBm
PHY layer header 6bytes

Table 3.3: Parameter Settings: MAC

MAC layer
BEmin 3
BEmax 5
NBmax 5

Max number of retransmission at MAC level 3
MAC header for ZigBee and SDWN 18 bytes

MAC header for 6LoWPAN 14-22 bytes

Table 3.4: Parameter Settings: NET

NET layer
SDWN

Beacon packet period 10 s
Report packet period 20 s

Flow tables refreshing time 150
Maximum number of children per parent 6

ZigBee
Link status period 10 s
MTO-RR period 150 s

MTO-RR number of retransmissions 3
Maximum number of children per parent 6

Random jitter for broadcast packet (0,127) ms
6LoWPAN

Minimum DIO period 12 s
DIO period doublings 8 s

Maximum number of children per parent 6
Random jitter for DAO packets forwarding (0,4) s
Random jitter for DIS packets generation (30-60) s

28

CHAPTER 3. COMPARING IOT PROTOCOLS

Table 3.5: MAC service data unit lengths

SDWN packet type MAC service data unit length (bytes)
Data 10 + Payload

Beacon 10 + 2
Report 10 + 3 + (3 * no. of neighbors)

Rule request 10 + Payload
Rule response 10 + (16 * no. of rules sent)

Open path 10 + (2 * no. of nodes in the path)
ZigBee packet type MAC service data unit length (bytes)

Data 15 + Payload
MTO-RR 15

RREC 13 + (2 * no. of nodes in the path)
Link status 13 + (2 * no. of neighbors)

6LoWPAN packet type MAC service data unit length (bytes)
Data 15 + Payload
DIO 85
DAO 48
DIS 6

case of ZigBee and SDWN, since short addresses are used, while it is 22 bytes for

6LoWPAN in the case of unicast packets (data packets and DAO), and 14 bytes in

the case of broadcast packets (DIO and DIS), due to the use of long addresses. The

MAC service data unit lengths for the different packets and the different protocols

are presented in Table 3.5.

3.5.3 Performance Metrics

We consider the following performance metrics: 1) packet loss rate (PLR); 2)

round-trip-time (RTT); 3) overhead; and 4) throughput. In all experiments, the

coordinator is sending one query every 300 ms toward the target node(s), and a

total number of 5000 queries are generated at the application layer. To compute

the PLR, in each experiment, we count the number of replies received at the

coordinator nRX from each target node. Therefore, we have a loss if we lose the

29

CHAPTER 3. COMPARING IOT PROTOCOLS

query or the reply independently from the link in which the packet is lost. In

the case of unicast transmission, PLR(%) = (5000 � nRX) ⇤ 100/5000, while in

the case of multicast, we compute an average PLR, averaged among the target

nodes. The resolution of the PLR is approximately 0.5%, since 5000 packets were

transmitted. The RTT is defined as the interval of time between the transmission

of the query at the application layer of the coordinator, and the instant in which

the reply is received at the application layer of the coordinator as well. In order to

compute the RTT of each packet, we use a software-defined timer implemented

at the application layer of the coordinator, having a resolution of 1 ms. Results

are then averaged over all packets received in each experiment, and among the

target nodes for the multicast case. Two definitions are used for the overhead. 1)

The ratio between the total number of packets transmitted in the network (being

data packets transmitted for the first time or retransmitted, acknowledgement, or

control packets), and the number of queries generated at the application layer of

the coordinator. 2) The ratio between the total number of bytes transmitted in

the network, and the number of bytes of information included in the generated

replies. We computed the latter by processing the data gathered by two sniffers

located at fixed positions at the end (near the coordinator) and in the middle of the

corridor. We measured the network throughput by counting the average number

of payload bits of the replies per second, correctly received by the coordinator.

Finally, note that results related to energy consumption are not provided in this

paper. However, being this metric strictly related to both, delays and reliability,

the best solution in terms of RTT and PLR is expected to be the best also from

the consumption viewpoint.

30

CHAPTER 3. COMPARING IOT PROTOCOLS

Figure 3.4: Unicast traffic: RTT as a function of the number of hops when transmitting
20 bytes of payload in static conditions.

3.6 Numerical results

In this section, we report the numerical results obtained in the experimental

campaign. More specifically, we first provide the results for the static and quasi-

static cases, then the dynamic case is addressed.

3.6.1 Static and Quasi-Static Environments

We first compare results among all considered protocols, for the case of static

and quasi-static environments. In Fig. 4, we show the RTT as a function of the

number of hops for the case of 20 bytes of payload, unicast transmission and static

environment. The set of target node(s) is different for the different protocols, since

different topologies are generated. In particular, the set of target nodes is reported

in Table 3.6, with the

corresponding number of hops and path connecting the node to the coordinator.

It can be observed that the node 51 is always directly connected to the coordinator.

31

CHAPTER 3. COMPARING IOT PROTOCOLS

Table 3.6: Target node(s) with the number of hops and paths.

Protocol 1 hop target node 2 hops target node 2 hops path 3 hops target node 3 hops path
SDWN 51 22 22-45-53 4 4-22-45-53
ZigBee 51 4 4-22-53 6 6-22-46-53

6LoWPAN 51 13 13-43-53 4 4-25-38-53

Figure 3.5: Unicast traffic: RTT as a function of the payload size in the case of one
hop and static conditions.

32

CHAPTER 3. COMPARING IOT PROTOCOLS

Table 3.7: Overhead: comparison among protocols.

Protocol Packets: 1 hop Packets: 2 hop Bytes: 1 hop Bytes: 2 hop
SDWN 2.6 5.6 2.5 5.6
ZigBee 4.7 8.7 6.5 11.4

6LoWPAN 6.2 9.5 10.9 16.8

For example, the node 4 is connected by three hops in the case of SDWN and

6LoWPAN, while for ZigBee only two hops are needed. As expected, the RTT

increases with the number of hops, since the packet has to pass through more

routers. In Fig. 3.5, we show the RTT as a function of the payload size in the

case of one hop, considering unicast and static environment. We observed that the

RTT slightly increases with increasing the payload size. In both figures, we can

notice that SDWN achieves better performance than other solutions, resulting in

the lowest RTT in all cases. This is due to the fact that in SDWN, once the path

between source and destination is established, forwarding at intermediate routers is

very quick, since intermediate nodes just have to check the action corresponding to

the received packet. In ZigBee and 6LoWPAN, instead, routing must be performed

at each intermediate node, resulting in increased delay. Moreover, we can observe

that ZigBee notably outperforms

6LoWPAN. The reason is that the protocol stack implemented by 6LoWPAN

is more complex (see Fig. 1), resulting in longer processing time, especially at the

adaptation layer (implementing addressing and fragmentation). Finally, the packet

size in the case of 6LoWPAN is larger due to the use of IP addresses. In Table

3.7, we compare the overhead generated by the different protocols by considering

a payload of 20 bytes, static environment, unicast traffic, and different number of

hops. As expected, the overhead is almost doubled by passing from 1 to 2 hops.

33

CHAPTER 3. COMPARING IOT PROTOCOLS

Figure 3.6: Unicast traffic: RTT for the different protocols in the case of static and
quasi-static conditions, setting 20 bytes of payload and 2 hops.

Moreover, it is increasing by passing from SDWN to ZigBee and to 6LoWPAN

solution. This is due to the fact that, in static conditions, SDWN keeps under

control the number of packets transmitted during the path formation phase, while

optimizing paths reduces the number of data retransmissions. Referring to the

overhead in number of bytes, the difference is also more notable, since headers in

SDWN are shorter than in ZigBee and 6LowPAN (see Tables 3.4 and 3.5).

We also want to emphasize that, for all protocols and in all cases, the PLR

was below 0.5%.

In Fig. 3.6, we compare the RTT achieved in case of static and quasi-static

environments, particularly considering the case of unicast traffic, 20 bytes of

payload, and 2 hops. As can be seen, in all cases, the RTT increases when passing

from static to quasi-static conditions, due to: 1) the need for searching for new

paths when links become unreliable and/or 2) links being unreliable inducing

more retransmissions, thus increasing the latency. However, in the considered

environment, SDWN still remains the best solution, since the channel fading is still

34

CHAPTER 3. COMPARING IOT PROTOCOLS

Figure 3.7: Multicast traffic: average RTT as a function of the payload size.

Table 3.8: Throughput (kb/s) comparison: unicast and multicast

Protocol Uni. 20 bytes Uni. 30 bytes Multi. 20 bytes Multi. 30 bytes
SDWN 0.53 0.8 1.06 1.59
ZigBee 0.53 0.8 1.05 1.57

6LoWPAN 0.53 0.8 0.97 1.43

quite low and changes in the environment are slow, such that SDWN could properly

react and work. Finally, note that 6LoWPAN shows the lowest performance

degradation when passing from static to quasi-static, since the implemented

trickle algorithm allows for better adaptation of routing to environmental changes.

Moreover, in the case of quasi-static environment, the PLR remains below 0.5% for

all the cases, demonstrating the good reactivity of protocols when the environment

changes slowly.

We also report results related to the multicast traffic, when triggering a

multicast group that consists of nodes 4 and 6. Fig. 3.7 shows the average RTT,

averaged between the two trigged nodes, whereas Fig. 3.8 compares the average

35

CHAPTER 3. COMPARING IOT PROTOCOLS

Figure 3.8: Multicast traffic: average PLR as a function of the payload size.

PLR. As can be seen, RTT is much higher than in the unicast case, especially for

6LoWPAN. The latter is due to an increase of the PLR that was below 0.5% in

the case of unicast; losses due to collisions between data packets originating from

the nodes 4 and 6 that cause retransmissions, and consequently, the increase of

delays. However, the multicast traffic increases the network throughput, as shown

in Table 3.8. The throughput was computed by considering an offered traffic of one

query for every 300 ms. Results demonstrate the improvement of the throughput

when passing from unicast to multicast, since more than one node is queried at

the same time. Note that, in the case of unicast, the throughput is the same for

all the three protocols, since, in all cases, the PLR is lower than 0.5%.

We conclude this section by considering a network composed of 20 nodes

(selected nodes are reported at the beginning of Section 3.5), implementing the

unicast application with 20 bytes of payload. The coordinator queries node 4,

and static and quasi-static environments were considered. Results are reported

in Table 3.9, where only the cases of SDWN and ZigBee are considered, having

36

CHAPTER 3. COMPARING IOT PROTOCOLS

Table 3.9: Twenty nodes network: comparing RTT and PLR

Protocol RTT (ms): static RTT (ms): quasi-static
SDWN 44 49
ZigBee 51 76

Protocol PLR (%): static PLR (%): quasi-static
SDWN 1.5 2
ZigBee 13 21.5

Table 3.10: Dynamic conditions: comparing SDWN and ZigBee

Protocol RTT (ms) PLR (%)
SDWN 40 96
ZigBee 61 33.5

already demonstrated that 6LoWPAN has the worst performance in all cases. As

can be seen, SDWN is again performing better than ZigBee, since environmental

conditions are still almost static; therefore, for larger networks, SDWN is also

performing well. Obviously, for both protocols, RTT and PLR are larger with

respect to the case of 10 nodes network, since more nodes are transmitting packets

during the path discovery phase, resulting in more collisions and possibly longer

and suboptimal paths.

3.6.2 Dynamic Environment

We conclude this chapter by considering the case of dynamic environment,

whose performance in terms of RTT and PLR are reported in Table 3.10. Results

have been achieved by considering the 10 nodes network, unicast application, and

20 bytes of payload, where the coordinator queries node 4. In this case, a highly

dynamic environment is emulated by making routers switched ON and OFF at

random instances of time. This requires nodes to refresh routes very quickly,

because a router in a path already established could switch OFF and the source

37

CHAPTER 3. COMPARING IOT PROTOCOLS

should search for a new relay for reaching the destination. All performance metrics

have worsened both for ZigBee and SDWN. However, SDWN reaches a very large

PLR, since most of the packets cannot find a proper route to reach the coordinator.

The average RTT of SDWN still remains lower than in case of ZigBee, since when

a packet manages to find a proper route with all routers switched ON, forwarding

is still very quick. This demonstrates that SDWN presents some issues in the case

of highly dynamic environments, as expected.

3.7 Conclusion

This work has presented a comparison among different solutions for the IoT

paradigm: ZigBee, 6LoWPAN, and a software defined-based solution, SDWN,

implementing a centralized routing. Results of an extensive measurements cam-

paign performed over the EuWIn laboratory are reported. Results show that in

static and quasi-static conditions SDWN outperforms the other solutions, indepen-

dently on the network size, payload size, traffic generated, and performance metric

considered. The reason for this is the fact that SDWN allows to optimize paths

selection and minimize forwarding time at routers. However, SDWN presents

some limitations when high dynamic environments are considered, because of the

time needed to refresh paths. As a conclusion, we can state that SDWN is more

suitable for applications where nodes are in fixed positions and under low mobility

scenario, as for the case of smart home and buildings applications. However, when

the situation is dynamic and there is a node mobility, a distributed solutions like

ZigBee and 6LoWPAN could work better. As an example, the case of smart city

applications, where nodes could be mounted over lamp posts in streets where object

(e.g., cars and people) are moving around, or where nodes could be directly carried

38

CHAPTER 3. COMPARING IOT PROTOCOLS

by moving objects, requires solutions characterized by high reactivity rather than

lower delays.

39

Chapter 4

SDN-WISE

As already mentioned, different works have recently appeared aiming at ex-

tending the SDN concepts to wireless sensor networks (WSNs) and other wireless

personal area networks [20, 29].

By introducing a new solution called Software Defined Networking for Wireless

Sensor Networks (SDN-WISE) we go beyond the above works in the following way.

We define a complete architecture which allows software developers to implement

their Controllers using any programming language of their choice. Also, SDN-

WISE introduces a software layer which allows several virtual networks to run on

the same physical wireless sensor or W-PAN network, similarly to what FlowVisor

does in OpenFlow networks.

Furthermore, as proposed in [47] for the wired domain, SDN-WISE defines

simple mechanisms for the definition and handling of the Flow Table that make

SDN-WISE stateful as compared to traditional OpenFlow which is stateless. In

this way WSN nodes can be programmed as finite state machines which can

be helpful to reduce the signaling between nodes and Controller and allow to

implement policies that cannot be supported in a stateless manner.

The rest of this chapter is organized as follows. In Section 4.1 an overview of

40

CHAPTER 4. SDN-WISE

SDN-WISE is given. The details of the major features of the proposed solution are

explained in Section 4.2, whereas, in Section 4.3 we describe the SDN-WISE proto-

type we have developed. Performance of SDN-WISE are evaluated experimentally

in Section 4.4. Finally, conclusions are drawn in Section 4.5.

4.1 SDN-WISE Overview

In this section we provide an overview of the SDN-WISE solution. More

specifically, we will first briefly give the requirements to be satisfied in the SDN-

WISE design; then we will provide an overview of the SDN-WISE technical

approach.

4.1.1 Requirements

Requirements for extending the SDN paradigm to WSNs have been already

analyzed in [20] and [29]. Such requirements are the obvious consequence of the

features of WSNs which are significantly different from those of wired networks.

In fact, WSNs are characterized by low capabilities in terms of memory, process-

ing, and energy availability. Furthermore, WSNs applications are typically non

demanding in terms of datarate. Therefore, SDN-WISE must be efficient in the

use of sensor resources, even if such efficiency will result in lower datarate.

In order to be energy efficient, SDN-WISE supports duty cycle [48], that is the

possibility to periodically turn off the radio interface of a sensor node, and data

aggregation [49]. These features were neglected in OpenFlow wired scenarios.

Furthermore, the interactions between sensor nodes and Controllers must be

reduced as much as possible to achieve system efficiency. In this context, some

level of programmable control logic in the sensor nodes may enable them to take

decisions without interacting with the Controller when local information only is

41

CHAPTER 4. SDN-WISE

needed. This however, requires the introduction of a state whereas the standard

OpenFlow instance of SDN is stateless [47].

Since WSNs are intrinsically data-centric, several solutions have been proposed

that make network protocols aware of the packet content [50]. Accordingly, SDN-

WISE nodes can handle packets based on the content stored in their header and

payload. Also, in OpenFlow packets are classified based on the equality between a

certain field in the packet header and a given string of bytes; differently from that,

in SDN-WISE such classification can be done based on other and more complex

relational operators, e.g., higher than, lower than, different from, etc. Finally, the

data-centric nature of WSNs involves another significant difference between the

expected behavior of SDN-WISE and OpenFlow. In fact, in OpenFlow network

resources are divided by the FlowVisor in slices, each assigned to a Controller, and

a packet can belong to one slice only. In WSNs, instead, the same piece of data

can be of interest to several applications using different Controllers. Therefore,

in SDN-WISE a packet is not necessarily tied with one Controller, i.e., different

Controllers can specify different rules for the same packet.

4.1.2 SDN-WISE approach

The behavior of SDN-WISE Sensor Nodes is completely encoded in three data

structures, namely: the WISE States Array, the Accepted IDs Array, and the

WISE Flow Table. Like in most SDN approaches, such structures are filled with

the information coming from the Controllers, running in appropriate servers. In

this way the Controllers define the networking policies which will be implemented

by the Sensor Nodes.

At any time SDN-WISE nodes are characterized by one current state for each

active Controller. A state is a string of sState bits. The WISE States Array is the

42

CHAPTER 4. SDN-WISE

data structure containing the values of the current states.

Given the broadcast nature of the wireless medium, sensor nodes will also

receive packets which are not meant for them (not even for forwarding). The

Accepted IDs Array allows each sensor node to select only the packets which it

must further process. In fact, the header of the packets contains a field in which

an Accepted ID is specified.

A node, upon receiving a packet, controls whether the ID contained in such

field is listed in its Accepted IDs Array. If this is the case, the node will further

process the packet; otherwise it will drop it.

In the case the packet must be processed, the sensor node will browse the

entries of its WISE Flow Table. Each entry of the WISE Flow Table contains

a Matching Rules section which specifies the conditions under which the entry

applies. In SDN-WISE Matching Rules may consider any portion of the current

packet as well as any bit of the current state. If the Matching Rules are satisfied,

then the sensor node will perform an action specified in the remaining section of

the WISE Flow Table entry. Note that such action may refer to how to handle

the packet as well as how to modify the current state.

If no entry is listed in the WISE Flow Table whose Matching Rules apply to

the current packet/state, then a request is sent to the Controllers.

In order to contact the Controllers, a node needs to have a WISE Flow Table

entry indicating its best next hop towards one of the sinks. This entry is different

from the others because it is not set by a Controller but is discovered by each node

in a distributed way.

To this purpose an appropriate protocol is run by the Topology Discovery (TD)

layer as it will be described later, which is based on the exchange and processing

43

CHAPTER 4. SDN-WISE

of appropriate packets called TD packets. Such packets contain information about

the battery level and the distance from the (nearest) sink in terms of number of

hops. Every time a node receives one of such packets it compares the current

best next hop with the information just acquired, then it chooses the best next

hop giving priority to the number of hops, then the RSSI value received with the

message and finally the residual battery level. This information is also used to

populate a WISE Neighbors list. This list contains the addresses of the neighboring

nodes, their RSSIs and their battery levels. This table is sent periodically to the

Topology Management (TM) layer, as detailed in the following, in order to build a

graph representation of the network. After that, the table is totally cleared and

rebuilt with incoming TD packets in order to always have an updated view of the

local topology.

One of the Controllers acts as a proxy between the physical network and the

other Controllers. This is called WISE-Visor and is the analogous of the FlowVisor

in traditional OpenFlow networks.

Controllers specify the network management policies which must be imple-

mented by the WSN and can be application dependent. Accordingly, the Controllers

can interact with the application.

Note that sensor nodes have limited capabilities in terms of memory, therefore,

selection of the size of the different data structures is very important1. The

optimal choice of such size depends on several deployment specific features set by

the WISE-Visor during the initialization phase.
1In particular note that the size of the WISE State Array gives an upperbound on the number

of active Controllers that can be supported by the network.

44

CHAPTER 4. SDN-WISE

4.1.3 SDN-WISE protocol architecture

In SDN-WISE networks Sensor Nodes and one (or several) Sink(s) can be

distinguished. Sinks are the gateways between the Sensor Nodes running the Data

plane and the elements implementing the Control plane. The protocol stack of the

Data plane, mostly run by Sensor Nodes, is shown in the left side of Figure 4.1.

The protocol stack of the Sink and the other elements implementing the Control

Plane are described in the right side of Figure 4.1. Sensor Nodes include an IEEE

802.15.4 transceiver and a micro-control unit (MCU). Above the IEEE 802.15.4

protocol stack, the Forwarding layer runs in the MCU which handles the arriving

packets as specified in a WISE flow table 2. This table is continuously updated

by the Forwarding layer according to the configuration commands sent by the

Controllers.

The In-Network Packet Processing (INPP) layer runs on top of the For-

warding layer. This is responsible for operations like data aggregation or other

in-network processing. In current SDN-WISE implementation the INPP layer

concatenates small packets that must be sent along similar paths. This would

reduce the network overhead. Furthermore, we are developing solutions that

enable the INPP to perform network coding which is very efficient in several WSN

scenarios [51, 52].

The Topology Discovery (TD) layer, instead, can access all layers of the

protocol stack by means of appropriate APIs. Thus, it can gather local information

from the nodes and control their behavior at all layers, according to the indications

provided by the Controllers. The TD layer provides an API to the application

layer as well, which extends the IEEE 802 APIs. This guarantees legacy with
2We derive our terminology from OpenFlow [1].

45

CHAPTER 4. SDN-WISE

existing applications.

In the Control plane, the network management logics are dictated by one or

several Controller(s), one of which is the WISE-Visor. The WISE-Visor includes

a Topology Management (TM) layer which abstracts the network resources so

that different logical networks, with different management policies set by different

Controllers, can run over the same set of physical devices. The TM layer has access

to APIs offered by all the protocol layers. Such APIs enable to control the behavior

of all protocol layers and therefore to implement cross-layer operations. The use of

the TM layer is driven by two requirements: i) collecting local information from the

nodes and sending them to the Controller(s) in the form of a graph of the network

(reporting information related to topology, residual energy level, SNR on the links,

etc.) ii) controlling all protocol stack layers as specified by the Controller(s). To

this purpose, between the sink device (characterized by the same protocol stack

of Sensor Nodes) and the WISE-Visor there is the Adaptation layer which is

responsible for formatting the messages received from the Sink in such a way that

they can be handled by the WISE-Visor and viceversa.

The Controllers may run either in the same node hosting the TM layer or in

remote servers. As a consequence, the interactions between the Controllers and

the TM layer can occur in several ways, as shown in the central part of Figure

4.1. In fact, in the case the Controllers run in the same node hosting the TM

layer, interactions will occur through the Java methods offered by the TM layer.

Alternatively, interactions can occur through the Java remote method invocation

(RMI) or the Simple Object Access Protocol (SOAP). In this way, programmers

can implement Controllers either in Java or in some Web programming languages.

Finally, note that the SDN-WISE protocol stack also includes a specific Adap-

46

CHAPTER 4. SDN-WISE

CONTROL-

LER K

CONTROL-

LER 1

PHY

MAC

FWD

INPP

APPLICATION

RMI

 ADAPTATION

FOR

SIMULATOR

TD
 ADAPTATION

FOR REAL

 NETWORK

PHY

SIM

MAC

SIM

FWD

SIM

INPP

SIM

APPLICATION SIM

TD

SIM

WISE-VISOR

Sensor Node Emulated Node

RMI SOAP

TCP/IP TCP/IP

Real

Sink

Simulated

Sink
D

E
V

IC
E

USB TCP/IP

M

C

U

IE
E

E

8
0

2
.1

5
.4

O
M

N
E

T
 +

+

Sink

TOPOLOGY MANAGER

…

E
m

b
e
d

d
e
d

 s
y
s
te

m

Figure 4.1: SDN-WISE protocol stack.

tation layer which can interact with a simulated sink (not a real sink). In this way

the Control plane can set the networking policies of a simulated network. In other

words SDN-WISE offers a tool which is very similar to Mininet [53].

4.2 SDN-WISE protocol details

In this section we describe in detail the major features of the SDN-WISE

protocols. More specifically, in Section 4.2.1 we will explain the Topology Discovery

protocol. Then, in Section 4.2.2 we will describe in detail how sensor nodes behave

when they receive a new packet.

4.2.1 Topology Discovery

In Section 4.1.3 we have explained that the Topology Manager module in the

WISE-Visor builds a consistent view of the current network status. To this purpose

it requires to collect local topology information generated by sensor nodes. The

Topology Discovery protocol run by all sensor nodes, is responsible for generating

such information and delivering it to the WISE-Visor.

47

CHAPTER 4. SDN-WISE

The TD protocol maintains information about the next hop towards the

Controllers and its current neighbors updated. To this purpose all sinks 3 in the

SDN-WISE network periodically and (almost) simultaneously transmit a Topology

Discovery packet (TD packet) over the broadcast wireless channel. Such packet

contains the identity of the sink that has generated it, a battery level, and the

current distance from the sink which is initially set to 0.

A sensor node A receiving a TD packet from sensor node B (note that B can

be a sink) performs the following operations 4:

1. inserts B in the list of its current neighbors along with the current RSSI and

the battery level. Obviously, if B is already present in the list of current

neighbors, then only the RSSI and battery level values are updated;

2. controls whether it has recently received a TD packet with a lower value

of the current distance from the sink. If this is not the case, then node A

updates the value reported in the TD packet to the current value plus one

and sets its next hop towards the Controllers equal to B;

3. sets its battery level in the corresponding field of the TD packet;

4. transmits the updated TD packet over the broadcast wireless channel.

Periodically, each sensor nodes generates a packet containing its current list

of neighbors and sends it to the WISE-Visor. Note that the list of neighbors is

periodically cleared. Nodes receiving packets directed towards the WISE-Visor or

the Controllers relay them to the node set as their next hop towards the Controllers.
3We already said that there might be several sinks in the same SDN-WISE network.
4TD packets received with RSSI lower than a given threshold will be neglected. In our current

implementation such threshold is set to -60 dBm.

48

CHAPTER 4. SDN-WISE

Figure 4.2: WISE packet header.

Figure 4.3: WISE flow table.

The rate of TD packets generation as well as of the packets containing local

topology information impacts the performance of SDN-WISE. In fact, the higher

such frequencies is, the higher is the overhead generated by the protocol. However,

such frequencies cannot be too low in dynamic scenarios (with rapid topology

changes); accordingly, their setting is application specific and can be controlled by

the WISE-Visor.

4.2.2 Packet handling

In this section we describe how the Forwarding protocol described in Section

4.1.3 operates upon receiving a packet. To this purpose we first provide a description

of the WISE packet format; then, a description of the structure of the WISE

flow table and, finally, we will explain how the WISE flow table is utilized upon

reception of a packet.

As shown in Figure 4.2, SDN-WISE packets have a fixed header consisting of

49

CHAPTER 4. SDN-WISE

10 bytes divided in the following fields:

• The Packet length field provides the length of the packet, included the

payload (if any), in bytes.

• The Scope identifies a group of Controllers that have expressed interest in

the content of the packet. The Scope value is initially set to 0 (as default)

but can be modified through appropriate entries in the WISE flow table

of the sensor node generating the packet. In our current implementation

Scope values have global validity as the WISE-Visor guarantees network-wide

consistency.

• The Source and Destination Addresses obviously specify the addresses (we use

two bytes addresses in our implementation) of the node which has generated

the packet and the intended destination.

• The flag U is used to mark packets that must be delivered to the closest

sink.

• The Type of packet field is used to distinguish between different types of

messages in fact besides data packets, TD packets and packets containing

local topology information, which we have already discussed, SDN-WISE

uses other types of packets for the request of a new entry to the Controllers,

for the introduction of a new entry in the WISE flow table of a given sensor

node, for opening a path in a sequence of sensor nodes, and for turning the

wireless interface of a sensor node off for a certain time interval. The type of

packet will determine the interpretation of the packet payload.

• The TTL is the time to live and is reduced by one at each hop.

50

CHAPTER 4. SDN-WISE

• Finally, the Next Hop ID is the field which must be present in the Accepted

IDs Array for the packet to be further processed by the sensor node (as

explained in Section 4.1.2).

The structure of the WISE flow table is shown in Figure 4.3 and extends the

one proposed in [29].

Like in the OpenFlow case we can distinguish three sections: Matching Rules,

Actions, and Statistics. The Matching Rules specify up to three conditions. If

such conditions are satisfied then the corresponding Action is executed and the

information reported in the Statistics section is updated. Each Matching Rule

consists of a field (S) which specifies whether the condition regards the current

packet (S = 0) or the state (S = 1); the fields Offset and Size specify the first

byte and the size, respectively, of the string of bytes in the packet or the state

which should be considered, the Operator field gives the relational operator to be

checked against the Value given in the rule. For example, the second Matching

Rule of the first entry in the WISE flow table given in Figure 4.3 is satisfied if the

first 2 bytes (Size = 2) after byte 10 (Offset = 10) of the current packet (S=0)

assume a value which is higher (Op = “>”) than xThr (Value = xThr).

If all the conditions specified in the Matching Rules section are satisfied (if Size

= 0 then the Matching Rule is not considered), then the corresponding Action is

executed. An Action is specified by five fields. The Type specifies the type of action.

Possible values of the Type field can be “Forward to”, “Drop”, “Modify”, “Send

to INPP”, “Turn off radio”. The flag M specifies whether the entry is exclusive

(M = 0) or not (M = 1). In the first case, if the conditions are satisfied, the

sensor node executes the action and then stops browsing the WISE flow table. In

the second case, instead, after executing the action, the sensor node continues

51

CHAPTER 4. SDN-WISE

!

"

$ %&'()

Figure 4.4: Exemplary topology.

Figure 4.5: Finite state machine implementing a policy such that packets generated by
A are dropped if the last data measured by B is lower than (or equal to)
xThr.

to browse the WISE flow table and executes other actions if the corresponding

conditions specified in the Matching Rules section are satisfied.

The meaning of the other two fields (i.e., Offset and Value) depend on the type

of action. For example, if the action is “Forward to” they must specify which is

the Next Hop ID (which will be written in the packet), if it is “Drop” they give the

drop probability as well as the next hop ID in case the packet is not dropped, if it

is “Modify” they specify the Offset and the new Value to be written, if it is “Send

to INPP” they specify they type of processing that must be executed, if it is “Turn

off radio” they specify after how much time the radio must be turned on again.

In case the action is “Modify”, the flag S specifies whether the action must be

executed on the packet or the state.

Statistics are used like in standard OpenFlow and thus, we do not discuss them

52

CHAPTER 4. SDN-WISE

further in this paper.

In the following we will show how sensor nodes use their data structures in

an exemplary scenario highlighting the specific features of SDN-WISE. Consider

the network topology shown in Figure 4.4 and suppose that data measured by

sensor A is significant only if the data measured by sensor B is higher than a given

threshold xThr. Therefore, if we pursue energy efficiency a network policy should

be implemented that enforces node C to drop packets if the packet received by

B contains a measured data lower than xThr. Using traditional OpenFlow-like

solutions it is impossible to enforce the above behavior for the following reasons:

• matching is executed only verifying the equivalence between a field in the

packet header and a specific value, i.e., it is not possible to look at the

payload and “higher than”-type relationships are not supported;

• in stateless solutions it is impossible to make the handling of the packet

dependent on the content of another packet.

Instead, in SDN-WISE the above policy can be easily realized through the finite

state machine represented in Figure 4.5 which can be implemented through the five

WISE flow table entries shown in Figure 4.3. In fact, the first two lines specify the

transitions between states 0 and 1 and viceversa, depending on the value contained

in the 10th byte of the packets generated by node B. More specifically, note that

in the first entry the first Matching Rule selects packets coming from node B, the

second Matching Rule selects those that have in the tenth and eleventh bytes a

value higher than xThr, finally the third Matching Rule selects the cases in which

the current state of the node is 0. If all the above rules are satisfied then the state

is set to 1 as shown in the Action section. Analogously, the second entry selects the

53

CHAPTER 4. SDN-WISE

(a) Simplest deployment option.

IEEE 802.15.4 Tx/Rx

(Sink)

Embedded System
(Adaptation for real network)

UMTS Modem

Internet

Server
(WISE-Visor)

Server
(Controller 1)

Server
(Controller 2)

TCP/IP

RMI

SOAP

$

$

$ $

$

Sensor

Nodes

TCP/IP

(b) Distributed deployment option.

Figure 4.6: SDN-WISE deployment options.

cases in which the incoming packet has been generated by B contains a measured

data lower than or equal to xThr, and the current state is one; and in such cases

sets the state to 0. The third entry in the table is executed any time a packet

generated by B is received and specifies that the packet must be forwarded to D

in any case. Finally, the fourth and fifth entry specify that packets coming from A

must be dropped if the current state is 0 (see the fourth entry) or forwarded to D

if the current state is 1 (see the fifth entry).

4.3 Prototype and testbed

In our testbed we used the same EMB-Z2530PA described in Chapter 3 Sect.

3.4 in a different testbed inside the University of Catania. Considering the SDN-

WISE deployment, it is important to notice that each node is equipped with 8kB

of RAM and 256 kB of Flash memory 40 kB of which are used for MAC layer

(TIMAC for CC2530 v1.4.0) and 10 kB are used for the SDN-WISE protocol.

For what concerns the Control plane, our prototype supports different deploy-

ment options. The simplest is the one depicted in Figure 4.6a, in which the node

hosting the sink is attached to the desktop computer using USB 2.0. In our testbed

the WISE-Visor as well as the Controllers are hosted in this desktop computer

54

CHAPTER 4. SDN-WISE

which is equipped with Intel(R) Core(TM) 2 CPU 2.40 GHz and 4GB of RAM

running Windows 7, 32 bit. The Controllers have been implemented using Java 7.

Topology information is stored in a JGraphT’s Graph object.

The above deployment option requires the presence of a node (the PC) with

significant computational resources in the area where the sensor nodes are deployed.

In several scenarios, however, it is not possible to deploy such powerful nodes

in the network area. In these cases, the sink is usually attached to an embedded

system that access the Internet through some communication interface. For

example, in the experimental testbed represented in Figure 4.6b, the sink is a TI

CC2500 device attached via USB to a Beagleboard running a Linux operating

system (Ubuntu 12.04). The Adaptation layer is implemented in the Beagleboard

which sends control packets to the WISE-Visor on a remote server. In our testbed

the Beagleboard is equipped with an UMTS interface (the smartphone in Figure

4.6b) and communication between the Adaptation and WISE-Visor occurs through

TCP/IP connections.

The Controllers may be hosted by other PCs (or virtual machines) and interact

with the WISE-Visor layer using SOAP, REST, RMI or UDP.

Finally, simulations modeling the behavior of the sensor nodes and the sinks

can be executed on another PC.

In Figure 4.7 we show a screenshot showing the topology of the simulated

sensor network. Node 0 is the sink and interacts through the Adaptation module

with a real instance of the WISE-Visor. Accordingly, Controllers 1 and 2 can be

real controllers determining the policies which are applied by the simulated sensor

nodes. In addition, the (emulated) Sink can be used to create a virtual network

extension so that simulated and real nodes are fully integrated and can interact

55

CHAPTER 4. SDN-WISE

Simulated

Sink

Adaptation
for simulator

WISE-Visor
TM

Adaptation
for real node

To Sink

Controller 1 Controller 2

Figure 4.7: Integration with the OMNeT++ simulator.

with each others. This can be useful for testing a real network scenario in which

there are not enough real devices. In this case only one Controller is used for

both nodes (real and simulated) and it treats all of them without making any

distinction.

4.4 Performance evaluation

In this section we will illustrate the results obtained by the SDN-WISE platform

in a physical testbed. More specifically, 6 nodes (5 sensor nodes and a sink) have

been deployed as shown in Figure 4.8. In our experiments the sink was connected

via USB to a PC which was running the Adaptation layer and the entire Control

plane functionality, like shown in Figure 4.6a. Finally, the Controller has been

implemented in Java and simply executes the Dijkstra algorithm.

In each measurement campaign 5000 data packets have been sent, each every 15

seconds. Different payload sizes have been considered for such packets (10, 20 and

30 bytes). Also, we have changed the time interval, T , between two consecutive

generations of TD packets. In each campaign we have set the time interval between

56

CHAPTER 4. SDN-WISE

Figure 4.8: Nodes deployment.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RTT [ms]

C
D

F

10
20
30

Payload [Bytes]

(a) Number of hops = 3.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RTT [ms]

C
D

F

10
20
30

Payload [Bytes]

(b) Number of hops = 5

Figure 4.9: CDFs of the RTT for different payload sizes and different distances between
the source and destination node.

the transmissions of local topology information to twice the value of T .

In the following we show the performance achieved by SDN-WISE in terms of

• Round Trip Time (RTT), that is, the time interval between the generation

of a data packet and the reception of the corresponding acknowledgment;

• Efficiency, measured as the ratio between the number of payload bytes

received by the intended destinations and the overall number of bytes circu-

lating in the network;

• Controller response time, measured as the duration of the time interval when

the Controller receives a request for a new entry and the time instant when

the Controller sends the corresponding entry.

57

CHAPTER 4. SDN-WISE

5 10 15 20 25 30 35
10

20

30

40

50

60

70

80

90

Payload [Bytes]

Av
er

ag
e

R
TT

 [m
s]

1 hop
2 hops
3 hops
4 hops
5 hops
Multicast 3 nodes

Figure 4.10: Average RTT vs. the payload size, for different values of the number of
hops.

5 10 15 20 25 30 35
10

20

30

40

50

60

70

80

90

Payload [Bytes]

St
an

da
rd

 D
ev

ia
tio

n
R

TT
 [m

s]

1 hop
2 hops
3 hops
4 hops
5 hops
Multicast 3 nodes

Figure 4.11: Standard deviation of the RTT values vs. the payload size, for different
values of the number of hops.

In Figures 4.9a and 4.9b we represent the Cumulative Distribution Functions

(CDF) of the RTT when the distance between the packet source and the packet

destination is equal to 3 and 5, respectively. In each figure we represent three

curves obtained for different values of the payload size (10, 20, and 30 bytes). As

expected, RTT increases as the distance and the payload increase. Furthermore,

we expect a similar behavior from the standard deviation. Indeed, this is reflected

in Figures 4.10 and 4.11 where we show the average and the standard deviation of

the RTT vs. the payload size for different values of the distance between source

and destination.

58

CHAPTER 4. SDN-WISE

In Figures 4.10 and 4.11 we plot a curve for the multicast case, as well. This

has been obtained by measuring the time instant between the transmission of a

packet and the reception of the acknowledgement from the last destination. In

this case, only three destinations were considered and were deployed within the

radio range of the source. Obviously, the average and the standard deviations

of the RTT is slightly higher than in the analogous (one hop) unicast case. The

corresponding CDFs are represented in Figure 4.12.

The performance in terms of efficiency are shown in Figures 4.13 and 4.14.

More specifically, in Figure 4.13 we represent the efficiency vs. the payload size for

different values of the lifetime of an entry in the WISE flow table, which we denote

here as TTL, instead in Figure 4.14 we show the same curves obtained for different

values of the interval between consecutive transmissions of the TD packets, T .

Note that most of the inefficiency is due to the high ratio between the header

size and the payload size.

Finally, in Figures 4.15 we show the response times of the Controller to requests

from nodes for new entries. We have simulated the process of request generation

by the nodes modeling a network consisting of 50, 60, and 70 nodes. Furthermore

we have assumed that initially only 10% of possible links are active but we have

increased such number by 10% every 100 requests, and at the end we obtain a

fully meshed network. What we observe is that there are hypes in the plots which

are in correspondence of an increase in the number of links which calls for a new

run of the Dijkstra algorithm. In any case the response delay is always below 100

ms. Such value could be further reduced by running the Controller on a more

powerful hardware.

59

CHAPTER 4. SDN-WISE

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RTT [ms]

C
D

F

10
20
30

Payload [Bytes]

Figure 4.12: CDF of the RTT in the multicast case for different payload sizes.

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Payload [Bytes]

Ef
fic

ie
nc

y

10s
30s
50s
70s
90s

WISE Flow Table Entry TTL

Figure 4.13: Efficiency for different values of maximum WISE Flow Table entry TTL.

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Payload [Bytes]

Ef
fic

ie
nc

y

10s
30s
50s
70s
90s

Beacon Period

Figure 4.14: Efficiency for different values of beacon sending period.

60

CHAPTER 4. SDN-WISE

0 100 200 300 400 500 600 700 800 900 1000
10−1

100

101

102

Request #

D
ijk

st
ra

’s
 C

on
tro

lle
r R

es
po

ns
e

Ti
m

e
[m

s]

(a) 50 Nodes.

0 100 200 300 400 500 600 700 800 900 1000
10−1

100

101

102

Request #

D
ijk

st
ra

’s
 C

on
tro

lle
r R

es
po

ns
e

Ti
m

e
[m

s]

(b) 60 Nodes.

0 100 200 300 400 500 600 700 800 900 1000
10−1

100

101

102

Request #

D
ijk

st
ra

’s
 C

on
tro

lle
r R

es
po

ns
e

Ti
m

e
[m

s]

(c) 70 Nodes.

Figure 4.15: Controller response times for different topologies.

4.5 Conclusions

In this chapter we have introduced SDN-WISE, a Software Defined Networking

solution for WIreless SEnsor networks. SDN-WISE is stateful and aimed at

reducing the amount of information exchanged between sensors and SDN controllers.

Details on the SDN-WISE protocol stack are provided as well as results obtained

from extensive measures in a physical testbed. SDN-WISE is a promising approach

to the realization of programmable WSNs.

61

Chapter 5

A Software Defined QoS for IoT

devices

The development of new technologies related to the Internet of Things (IoT)

resulted in a remarkable increase in the number of Wireless Sensor Networks

(WSNs). According to [54], the devices involved are creating an enormous amount

of heterogenous data whose sources are extremely heterogeneous and geographically

distributed.

Nowadays it is possibile to find WSNs in many places where wired networks

are impossible to deploy. For example, WSNs are best suited in museums inside

historical buildings where, on the one hand, the architectural constraints limit

the deployment of wires, on the other hand, it is necessary to periodically collect

data coming from many different types of sensors (thermometers, hygrometers,

lux meters, but also accelerometers and smoke detectors) and all of them have

different constraints in terms of response time and relevance. Even more different

are the requirements in Wireless Multimedia Sensor Networks (WMSNs) where,

by including videos and images, strict real-time requirements are encountered [55].

The above examples highlight the relevance of treating different kinds of data

differently.

62

CHAPTER 5. A SOFTWARE DEFINED QOS FOR IOT DEVICES

Unfortunately managing these diversities is complex as the networking protocols

for WSNs are usually hard to configure. This condition is caused by the peculiar

features of the WSNs scenarios where the limited availability of resources, in terms

of processing, storage and energy, and the need to support resource demanding

applications, requires the use of efficient and effective networking solutions. Thus

the main focus is on achieving the best possible performance.

To solve similar issues in the wired domain, the Software-Defined Networking

(SDN) approach has been introduced in traditional networking scenarios. As

underlined in Chapter 2, in the wireless domain this paradigm has been proposed

only recently but thanks to its high flexibility it is a good candidate to deal with

the provisioning of QoS policies.

In particular, thanks to the computing architecture of sensor nodes, it is possible

to achieve an even higher grade of reconfigurability compared to wired solutions

by leveraging a stateful approach to control the behavior of nodes upon processing

packets, thus supporting differentiated levels of QoS in WSNs. QoS support in

wireless networks through the use of SDN has been addressed only lately [56]. In

fact, some works addressing the scenario of a software defined wireless network

appeared [57, 58], but all of them focus on infrastructured networks, i.e., cellular

networks or WiFi. In the past a large number of solutions have investigated the

topic of QoS support in WSNs [59] but none of them investigates a software-defined

approach.

Therefore, this chapter proposes a novel approach to support QoS in software

defined WSNs. To this purpose, we exploit the state information envisioned by

SDN-WISE. In fact, state can represent the level of congestion of the node and

this can be used in a twofold manner:

63

CHAPTER 5. A SOFTWARE DEFINED QOS FOR IOT DEVICES

1. assign different packet drop probabilities to different traffic flows depending

on the current level of congestion of a node;

2. inform the Controller about the current level of congestion of a node so

that it can calculate alternative rules for traffic flows in order to mitigate

congestion.

Performance results obtained by using the OPNET simulation tool assess the

effectiveness of the proposed approach. Such results have been found by considering

a feasible deployment inside the “Regional Art Gallery of Palazzo Bellomo” in

Siracusa, Italy.

The rest of this chapter is organized as follows. In Section 5.1 the literature

on the topic is discussed. In Section 5.2 the basic idea of the proposed scheme

is presented whereas details of the operations are described in Section 5.3. In

Section 5.4 numerical results are presented and, finally, in Section 5.5 conclusions

are drawn.

5.1 Related Work

Supporting QoS in a WSN is a very important task to be accomplished, given

the ever increasing number of QoS demanding applications in WSNs. The QoS

support mechanisms developed for wired networks and traditional wireless networks

cannot be applied in WSNs because they are too complex. A complete survey

on the QoS provisioning issues in WSN is [60] where Cross-Layer approaches are

considered as well. Many of the works described in [60] focus on the integration

between the Application and the Network layer, while others like [61] focus on the

MAC layer, only. In this chapter we will exploit state information to support QoS

in SDN-WISE.

64

CHAPTER 5. A SOFTWARE DEFINED QOS FOR IOT DEVICES

Note that a few papers targeting QoS support in SDN scenarios, recently

appeared [56]. As an example, in [62] a new OpenFlow Controller called OpenQoS

is proposed. This allows to support dynamic routing where routes are dynamically

optimized to ensure QoS for multimedia traffic. In [63] a new QoS framework, called

QoSFlow, which enables QoS management in OpenFlow environments is presented.

QoSFlow introduces QoS functions to manage QoS resources, e.g., bandwidth,

queue size, etc. without changing the SDN architecture. In [64] PolicyCop, a QoS

policy management framework based on SDN, is presented, which also provides

an interface for specifying the QoS-based service level agreement (SLA). In [65],

authors illustrate an Interactive Parallel Grouping Algorithm (IPGA) to ensure

QoS which can be implemented through a CUDA system within a SDN Controller.

Concerning the support of QoS in Software Defined Wireless Networks, in [57]

Ethanol, an example of Software Defined Networking for 802.11 Wireless Networks,

was proposed. In Ethanol support of QoS is achieved in a simple way by adding

a functionality to the WiFi access points used in the wireless network. This

functionality is accomplished by using an additional API for controlling wireless

links and for defining the QoS of wired flows. The Ethanol Controller controls this

operation. In [58] a set of programming abstractions modeling three fundamental

aspects of a WiFi network in a 5G perspective are presented. The focus is in

particular on state management of wireless clients, resource provisioning, and

network state collection for support of QoS intended as requirements in terms of

SINR and bandwidth.

65

CHAPTER 5. A SOFTWARE DEFINED QOS FOR IOT DEVICES

5.2 Basic Idea

The wireless sensor network envisioned in our work consists of sensor nodes

that implement SDN-WISE and one (or several) sink(s) that is (are) connected

with a Controller. Sensor nodes can generate different traffic flows which can be

categorized as belonging to k different priority classes, where C1 is the highest

priority class and Ck is the lowest priority class.

Each node has a transmission buffer that stores data packets before they

can be forwarded. The occupancy level of such buffer increases when the traffic

that the node must handle increases. Accordingly, the level of buffer occupancy

gives information about the level of congestion of the node. Indeed each node

is characterized by a congestion state which represents how close a node is to

incur in a congestion condition. To this purpose, thresholds of buffer occupancy

are defined, each associated to a different congestion state. When the number of

packets in the buffer becomes larger (or lower) than each of these thresholds, a

change in the state of the node is invoked. The idea is to diversify the packet

handling procedure depending on both the current congestion state of the node

(i.e. the buffer occupancy) and the priority level of the packets arriving at the

node. For each state and for each traffic priority level, the Controller will provide

the sensor nodes with the corresponding set of routing/forwarding rules. The

proposed approach is in fact aimed at supporting QoS differentiation through a

drop probability which changes based on the congestion level at the sensor nodes

along the path going from the source sensor node to the sink. For this purpose

the proposed mechanism exploits the stateful approach available in SDN-WISE.

The proposed mechanism also includes procedures aimed at mitigating the

congestion in the network through load balancing. To this purpose the proposed

66

CHAPTER 5. A SOFTWARE DEFINED QOS FOR IOT DEVICES

solution leverages the SDN-WISE report message sent by the node to the Con-

troller by adding a field for state information. Upon receiving such messages, the

Controller searches for new paths where it is possible to divert the traffic flow and

sends the new corresponding rules to the nodes of the network in such a way that

alternative paths are used. Nevertheless, the proposed procedure requires only a

minor addition to the already existing report message proposed in SDN-WISE and

therefore the payload of the report message consists of the following fields:

• No HOP (1 byte), which denotes the distance in hops from the sink,

• Battery Level (1 byte), which is used to specify the residual battery level of

the node,

• Congestion Level (1 byte), which is a field added to give information about

the congestion state of the node,

• N (1 byte), which is the number of neighbors of the node,

• Addressn (2 bytes), which is the address of the n-th neighbor,

• RSSIn (1 byte), which gives information about the RSSI towards the n-th

neighbor.

The complete report message is shown in Figure 5.1.

5.3 Detailed Operations

An incoming packet at a sensor node, labeled as belonging to a specific priority

class Ci, can cause a state transition and, therefore, a change in the behavior of

the node. This occurrence depends on the set of rules stored in the WISE Flow

Table. A simplified example of this table is reported in Table 5.1. Each entry of

67

CHAPTER 5. A SOFTWARE DEFINED QOS FOR IOT DEVICES

Bit 0-7 Bit 0-7

Byte 0-9 SDN-WISE Header

10 No. Hop Battery Level

12 Congestion Level N

14 Address1

16 RSSI1 ...

18 ...

... Addressn

... RSSIn

Figure 5.1: New SDN-WISE report message.

the table can be divided in two parts: a set of matching rules, and an action. The

matching rules provide the conditions that must be satisfied in order to match the

entry. Each matching rule consists of four fields:

• Location, which is a field that specifies if the operation matching is referred

to the incoming packet or to the state array,

• Offset, which gives information about the index of the byte in the packet or

the state that has to be considered,

• Operator, which gives information about the relational operator used to check

the rule.

• Value, which indicates the value to which it has to compare to check the rule

validity.

If the entry is matched, the corresponding action will be executed. The latter

is specified by two fields: the type of action (for example forward, modify, drop)

and the Value field which gives information depending on the type of action. For

68

CHAPTER 5. A SOFTWARE DEFINED QOS FOR IOT DEVICES

example if the action is forward, it has to specify the next hop address and the

drop rate.

In this chapter, we propose to use the state-already available in SDN-WISE

to give information about the congestion state of the node. More specifically, we

assume that the state at a node can assume three different values related to as

many as L = 3 different thresholds of buffer occupancy:

• Green (G) when the traffic load is low,

• Yellow (Y) when the traffic load is approaching the maximum level that the

node can tolerate but did not yet reach it,

• Red (R) when the node is fully congested.

As a consequence of the identification of these states, some thresholds are

available. In particular, we introduce the TGY threshold to characterize the state

transition between Green and Yellow states, and the TY R threshold to identify the

state transition between Yellow and Red states.

If the node state is Yellow or Red, in order to support the agreed QoS and

mitigate the congestion, more resources are allocated to traffic flows with higher

priority level. This can be obtained by using a dropping policy which depends on

both the current state of the node and the priority level of the traffic flow Ci to

which the current packet is related. More specifically, a drop probability is used

and this is differentiated based on the node state:

• if the node state is Green, no drop is executed, independently of the priority

level of the traffic flow Ci of the packet,

69

CHAPTER 5. A SOFTWARE DEFINED QOS FOR IOT DEVICES

Figure 5.2: Example of network topology.

• if the node state is Yellow or Red, drop is executed according to the priority

level of the traffic flow; in particular, the drop probability is inversely

proportional to the priority level of the traffic flow.

In the following, we illustrate an example of a sensor network that implements

the above described discipline. Consider a network consisting of five nodes (one

sink and four sensors) as shown in Figure 5.2.

Let us suppose that node N1 issues a traffic flow at a rate of 30 kb/s with

a high priority level C1 and node N2 issues a traffic flow of 30 kb/s with a low

priority level C3. For both of them, the next hop is node N3. If the relay node N3

can accomodate at most 50 kb/s, its buffer will fill up and data packets will be

dropped. If no QoS policy is implemented, node N3 will drop packets of nodes

N1 and N2, regardless of their priority level. On the other hand, by using the

stateful approach to ensure QoS, node N3 will drop packets of nodes N1 and N2

with different drop probabilities, depending on the priority levels of the related

traffic sources and the current node congestion state. In this way, more resources

will be allocated to traffic with higher priority level and QoS can be supported. To

illustrate how the node N3 works, let us consider the WISE Flow Table at node

N3. Table 5.1 shows a representation of a possible WISE Flow Table of node N3.

For each entry of the WISE Flow Table at node N3, the three matching rules

70

CHAPTER 5. A SOFTWARE DEFINED QOS FOR IOT DEVICES

Table 5.1: WISE Flow Table for the node N3 in Figure 5.2.

Matching Rules Action

PACKET [SRC_ADDRESS] == N1 and

STATE_ARRAY [0] == RED and

PACKET [PRIORITY_LEVEL] == C1

DROP (10%, Sink)

PACKET [SRC_ADDRESS] == N2 and

STATE_ARRAY [0] == RED and

PACKET [PRIORITY_LEVEL] == C3

DROP (80%, Sink)

check respectively the source of the incoming packet, the current state and the

priority level. For example the first row (i.e. entry) is matched if the node N3 is in

a Red state and, accordingly, drops with probability 10% a packet originated by

node N1 with priority C1. Alternatively, if the second row is matched, node N3, in

Red state, will drop with probability 80% a packet originated by node N2 with

priority C3. In both cases if the packet is not dropped it is forwarded to node N4.

5.3.1 Estimation issues

The approach of identifying the congestion state at a node by measuring the

number of packets currently enqueued in the transmission buffer, could imply

fluctuations in the observation. In fact, the use of instantaneous values of the

level of buffer occupancy could create oscillations between the node’s states due to

possible sudden traffic bursts in the network.

To avoid such oscillations, a filtered estimation of the buffer occupancy is used

to control the transitions among node’s congestion states. More specifically, upon

receiving a packet, a node updates the buffer occupancy, xi, as follows:

xi = ↵xi�1 + (1� ↵)bi (5.1)

71

CHAPTER 5. A SOFTWARE DEFINED QOS FOR IOT DEVICES

Figure 5.3: Finite state machine implementing a policy such that a node changes state
depending on the buffer occupancy xi.

where:

• bi, denotes the instantaneous value of the buffer occupancy,

• ↵, is a coefficient, in the range between 0 and 1, that characterizes the degree

of filtering fluctuation. More specifically, if ↵ is low, fluctuations are not

filtered; viceversa if ↵ is close to 1, fluctuations are smoothed.

The above filter is the well known Holt exponential smoother [66] which is a

very simple and widely used recursive filter characterized by a tunable smoothing

parameter, i.e. ↵. This is indeed a low-pass filter which weights both the recent

values, i.e. xi�1, and the instantaneous values, i.e. bi, so providing a suitable

forecasting procedure to be applied to irregular components.

In Figure 5.3 we show the finite state machine implementing this policy: observe

that, according to the outcome of the filtering procedure in eq.(5.1), the node can

change state based on the result of the comparison with the assigned thresholds.

5.4 Simulation Results

In order to assess the network performance achieved by using the proposed

approach for the QoS support, we implemented a real Controller that manages

a wireless sensor network modeled using the OPNET Modeler 14.5 [67]. The

behavior of the Controller is emulated through an application written in C++

72

CHAPTER 5. A SOFTWARE DEFINED QOS FOR IOT DEVICES

Figure 5.4: Simulation scenario.

and it is hosted on a notebook computer, equipped with an Intel(R) Core (TM)

i5-2410 M CPU 2.30 GHz, and 8 GB of RAM running Windows 7, 64 bit. The

simulations itself has been executed on another notebook computer, equipped

with an Intel(R) Core (TM) i5-3230 M CPU 2.60 GHz, and 8GB of RAM running

Windows 8, 64 bit. The Controller interacts with the sink node modeled in OPNET

through the High Level Architecture (HLA) technology [68]. This provides all the

specifications in order to ensure that two or more simulations can inter-operate

with each other to exchange data or information within a simulators’ federation.

In the OPNET Modeler, we modeled a sensor network consisting of sensor nodes

and a sink implementing SDN-WISE with the QoS management feature.

Figure 5.4 shows a possible deployment inside the “Regional Art Gallery of

Palazzo Bellomo” in Siracusa, Italy. The network consists of 16 nodes (15 sensor

nodes located next to the artworks and 1 sink).

In our experiments, the sink node implements the HLA interface to exchange

messages with the Controller(s) and the sensor nodes implement the SDN-WISE

paradigm. Each sensor node has a transmission buffer able to store a maximum

of 120 data packets. Initially we choose to use two different thresholds for the

73

CHAPTER 5. A SOFTWARE DEFINED QOS FOR IOT DEVICES

buffer size: 75 packets to identify a transition between Green state and Yellow

state (TGY) and 95 packets to identify a transition between Yellow and Red states

(TY R). The simulation lasts 30 minutes and there are six sources which generate

traffic as follows:

• node1, node2, node3 generate a traffic of 10 kb/s with priority level C1, C2,

C3, respectively, from the beginning to the end of the simulation time,

• node4 generates a traffic of 10 kb/s with priority level C1 from time 300 s to

time 1500 s,

• node5 generates a traffic of 10 kb/s with priority level C2 from time 500 s to

time 1300 s,

• node6 generates a traffic of 10 kb/s with priority level C3 from time 800 s to

time 1000 s.

All traffic flows must be forwarded towards the sink that is the destination node for

these traffic flows, and the best path to reach it is through node7, node8, node9 and

node10. Each sensor node, when does not know how to handle a packet, sends a

request rule to the external Controller. This will forward a rule response containing

rules for each state in which it may be. Table 5.2 reports the drop probabilities

used depending on the node congestion state and the traffic priority level. The

figure shows also two different options for the congestion level 3: one with low

drop probability (Option 1) and the other one with high drop probability (Option

2).

The simulation campaign is organized in three parts: at first, we simulate a

scenario in which the network does not support any kind of QoS, i.e. all traffic

flows are treated in the same way. Then we consider the possibility to support

74

CHAPTER 5. A SOFTWARE DEFINED QOS FOR IOT DEVICES

Table 5.2: Drop probabilities in simulations.

Option 1 Option 2

Green State Yellow State Red State Red State

C1 NO DROP 1% 5% 10%

C2 NO DROP 3% 20% 45%

C3 NO DROP 5% 40% 80%

QoS but without dynamic routing update, i.e. no congestion notification at the

Controller is considered. This approach is denoted as WCD. In this case the default

path to reach the sink is never changed and thresholds set at each node are not

varied. Finally, we consider a scenario in which the network supports the QoS

by implementing an SDN-WISE report messages exchange with the Controller

to guarantee dynamic routing update in case of congestion at network nodes. In

this case the default routing path can be integrated by using an alternative path

through node11, node12, node13, node14 and node15. We denote this approach as

CD. In the three cases we show the performance achieved in terms of: i) Dropped

data packets measured as the number of data packets dropped due to congestion;

ii) Drop rate measured as the percentage of data traffic dropped due to congestion;

iii) Impact of the buffer occupancy thresholds that is, the drop rate measured with

different values of the buffer occupancy thresholds, which cause the change in

node’s state.

Figure 5.5 shows the dropped data packets obtained by simulating the scenario

without QoS support. In this case, as expected, the three curves of the dropped

data packets for the flows generated by node1, node2 and node3 have almost the

same trend because there is no difference in the treatment of nodes’ traffic flows.

In Figure 5.6 we report the dropped data packets obtained by simulating the

75

CHAPTER 5. A SOFTWARE DEFINED QOS FOR IOT DEVICES

Figure 5.5: Dropped data packets without QoS support.

Figure 5.6: WCD: Dropped data packet TGY = 75, TY R = 95 (option 1).

scenario WCD with QoS support and using low drop probability (Option 1). We

observe an improvement for the traffic flow with priority level C1 as compared to

the previous case. In order to obtain a higher improvement for the traffic flow with

priority level C1, the use of higher drop probabilities has been also investigated.

In Figure 5.7 we report the dropped data packets obtained by simulating

the scenario with high drop probabilities (Option 2). As expected, the number

of dropped packets increases proportionately to the traffic load; in particular it

increases exponentially when node6 starts to send data packets, i.e. at time 800 s;

this is because when node6 starts to transmit, the full congestion state is incurred

76

CHAPTER 5. A SOFTWARE DEFINED QOS FOR IOT DEVICES

Figure 5.7: WCD: Dropped data packet TGY = 75, TY R = 95 (Option 2).

at node7. Concerning the QoS, it can be observed that the data packets dropped

for the traffic with priority level C1 is significantly lower than the data packets

dropped when the priority level is C3.

We also performed other simulations by considering two different thresholds

for the change in nodes’ congestion state. Figures 5.8 and 5.9 report these results.

In each figure, we represent the dropped data packets and the traffic obtained for

different pairs of values of the thresholds, i.e. TGY = 65, TY R = 85 and TGY =

85, TY R = 105. If we choose large thresholds, it is possible to observe that the

curves of the three traffic flows tend to get closer with an increase of dropped data

packets for the flow with the highest priority. If instead we choose small thresholds,

more data packets, in particular for the flow with the lowest priority, are dropped

also in a condition in which the network could be able to manage them.

In Table 5.3 we show the dropped data rate obtained for the different thresholds

and drop probabilities used. If we choose larger thresholds the drop probability

increases for the traffic flow with priority C1 and decreases for traffic flow with

priority C3.

Another set of results is shown in Figures 5.10 and 5.11 where we report

77

CHAPTER 5. A SOFTWARE DEFINED QOS FOR IOT DEVICES

Figure 5.8: WCD: Dropped data packet TGY = 65, TY R = 85.

Figure 5.9: WCD: Dropped data packet TGY = 85, TY R = 105.

Table 5.3: Drop rate results.

No QoS

support

WCD low drop

probability

WCD high

drop probability

Thres. - 75-95 65-85 75-95 85-105

C1 16.23 % 9.39 % 3.81% 4.17% 6.46%

C2 16.96 % 15.65 % 16.16% 16.01% 16.44%

C3 15.97 % 25.33% 30.93% 29.77% 26.26%

78

CHAPTER 5. A SOFTWARE DEFINED QOS FOR IOT DEVICES

Figure 5.10: CD: Dropped data packet TGY = 65, TY R = 85.

Figure 5.11: CD: Dropped data packet TGY = 85, TY R = 105.

the results obtained when sensor nodes implement the congestion notification

mechanism to the Controller for the different set of thresholds considered. When

the congestion notification is received by the Controller, it forwards new rules to

drive the traffic flows with the lowest priority level towards another network path.

As expected the dropped data packets and the drop rate remarkably decrease.

Unlike the WCD case, the congestion notification mechanism implemented at

the Controller allows to solve the congestion in a short time and, as expected, to

decrease the dropped data packets and the drop rate.

The solution implemented has been also tested in a scenario with a variable and

79

CHAPTER 5. A SOFTWARE DEFINED QOS FOR IOT DEVICES

Figure 5.12: CD: Dropped data packet TGY = 65, TY R = 85, Variable Traffic.

dynamic traffic flow where node4, node5 and node6 transmit in bursts at different

time instants. Figure 5.12 shows the results obtained in this case. Observe that

also in time varying conditions the mechanism allows to preserve QoS requirements.

5.5 Conclusions

In this chapter we have introduced a mechanism that exploits the stateful nature

of SDN-WISE to support differentiated levels of QoS in WSNs. The mechanism is

based on the usage of state to give information about the congestion condition at

the nodes. Each node, as shown by simulations, is able to handle traffic flows with

different levels of QoS in different ways. Simulation results assess the effectiveness

of the proposed solution to handle QoS.

80

Chapter 6

Extending ONOS to support IoT

devices

As the name itself suggests, heterogeneity is one of the major characteristics of

the Internet of Things (IoT): several platforms are available which employ very

different technological solutions from each others. Software developers willing to

use resources belonging to different platforms have hard time in coping with such

heterogeneity. A similar issue in the computer science domain has been addressed

leveraging the use of operating systems. Thus, in recent years operating systems

(OS)s have been proposed to mask the heterogeneity of IoT devices. Relevant

examples of such OSs in the open source arena are Contiki [69] and RIOT OS

[70]. By exploiting the above operating system software developers can implement

applications which can be used on large number of hardware platforms.

However, such solutions implement specific protocols at the networking layers,

usually based on 6LowPAN [34] and IPv6 [71]. Instead, a large body of literature

exists demonstrating that there is no one-fits-all networking solution in resource

constrained domains like those included in the IoT. Therefore, solutions are needed

which allow to program the networking layers in a platform independent way.

In the wired domain several control planes have been proposed along the years

81

CHAPTER 6. EXTENDING ONOS TO SUPPORT IOT DEVICES

to solve similar issues.

The first software solutions for control plane management focused on providing

just an easy-to-use interface to network control messages. Into this category we

can include control plane softwares like POX and NOX [72, 73]. Subsequent

attempts include SANE [74], ETHANE [75], 4D [76] and RCP [77], NOX [],

Floodlight [78], and Beacon [79]. Among them TUNOS [80] was proposed to

provide open device management, cognitive network status, global network view,

virtual forwarding space, applications context management, and general network

control APIs designed for user-friendly network programming.

Even though these controllers were successfully applied in the first days of

SDN, they were centralized and therefore, have been later replaced by distributed

solutions, called Network Operating Systems (NOSs). In addition to traditional

control plane solutions a NOS provides new services and capabilities. A NOS is

independent from the specific protocol used on the Data plane, by providing a

specific Southbound interface to the network devices thus allowing the interaction

with different SDN technologies. A NOS also provides a global overview of the

network and the ability to replicate and distribute this information for better

scaling and fault tolerance. Finally, all these services are provided to network

application through a Northbound interface (usually Web GUIs, REST APIs, or a

Java libraries).

Here we provide a brief description of the most relevant NOSs:

ONIX [81] is a distributed SDN controller, which identifies the scalability

constraints of the aforementioned centralized solutions and builds an architecture,

which distributes the network management functionality to several instances.

Control planes written within ONIX operate on a global view of the network, and

82

CHAPTER 6. EXTENDING ONOS TO SUPPORT IOT DEVICES

use basic state distribution primitives provided by the platform. However, its

development has been discontinued, whereas it has been developed mainly for data

centers and it is closed-source, as also described in [15].

OpenDaylight [82] is a distributed network operating system, which has been

developed as a collaborative project among several universities and vendors. Using

these technologies it is possible to create different southbound plugins for different

protocols like OpenFlow, BGP-LS/PCEP, and NETCONF. The northbound of

OpenDaylight supports different types of applications/service functions such as

Base Network Functions and Service Functions. The first one is related to topology

and device management whereas the second one implements a Forwarding Rules

Manager for OpenFlow and a PCEP Service function provider for RSVP-TE

tunnels. OpenDaylight provides a project, IoTDM, which focuses on the IoT,

but it follows the data-level integration approach, rather than a network-oriented

solution, which would actually complement existing solutions for networks of

switches1. More specifically, IoTDM does not enable the direct communication

among devices, whereas it relies on application-level protocols, such as CoAP2, in

order to integrate heterogeneous devices. Apart from being a hybrid, rather than

a pure network-level approach, IoTDM considers only one of the several existing

standards and as it has been documented [83, 84], much effort is still required in

order to settle to a particular standard for the IoT.

Finally, the Open Network Operating System (ONOS) has been proposed in

[15]. ONOS is based on Floodlight, but it is distributed and provides an extensible,

layered architecture, in order to integrate other devices and protocols, besides

OpenFlow, which is inherently supported. In fact, ONOS has been considered in
1https://wiki.opendaylight.org/view/IoTDM_Overview
2https://tools.ietf.org/html/rfc7252

83

CHAPTER 6. EXTENDING ONOS TO SUPPORT IOT DEVICES

the context of this work, due to its scalability properties and its highly modular

architecture, which allows the seamless integration of new protocols.

Anyway, regardless the IoTDM solution, all the above network operating sys-

tems cannot cope with the specific characteristics of fundamental IoT components

such as wireless sensor and actor networks.

For example, they do not consider the limitations in terms of processing and

energy resources of such IoT devices. Therefore, they do not handle duty cycles,

data aggregation, value based routing, etc. Instead, sensors and actuators are

fundamental ingredients of the IoT ecosystem because they generate incessant

streams of data that the IoT can use to improve our lives and our businesses in

many ways. Sensors, in particular, offer unprecedented access to granular data

that can be transformed into powerful knowledge. Integrated analytics platforms

will be used to overcome the data burst and avoid that sensor data will just add

information overload and noise escalation.

In this chapter we will extend ONOS in order to consider such features.

The rest of this chapter is organized as follows. In Section 6.1, background

information on the ONOS architecture is provided. The proposed architecture is

discussed in Section 6.2, whereas a software prototype is presented in Section 6.3.

Finally, in Section 6.4, the conclusions are drawn.

6.1 ONOS Architecture

Open Network Operating System (ONOS) is an open source, distributed

network operating system, which has been implemented for managing network

operations following an SDN approach. The managed network elements and

operations are abstracted and decoupled from the underlying network architecture,

84

CHAPTER 6. EXTENDING ONOS TO SUPPORT IOT DEVICES

Figure 6.1: ONOS Layered Architecture

in order to enable interoperability across heterogeneous networks.

Even though its design is strongly influenced by OpenFlow, ONOS follows a

layered architecture, depicted in Figure 6.1, which allows integration of several

network management protocols, under the same abstractions. Components be-

longing in multiple layers are vertically integrated in the context of the so-called

subsystems, which are services implementing key system functions. Such functions

include the management of devices, links, flow rules, topology and more. Typi-

cally, communication from high layer components to lower layer ones is performed

using the corresponding APIs (NB/SB), whereas communication from low layer

components to the higher layer ones is performed by using events.

The components belonging to the Protocols layer are handling communication

with the Network Elements, which are the devices connected with ONOS (e.g.

OpenFlow switches). More specifically, the Protocols layer includes the drivers

85

CHAPTER 6. EXTENDING ONOS TO SUPPORT IOT DEVICES

implementing each device communication protocol as well as the association

between the devices registered in the system with their driver.

In the southbound (SB) part of ONOS, the Providers layer includes the

components responsible for translating the abstractions used in higher layers to

network management protocol-specific operations and vice versa. In particular, a

provider service receives from its south part low-level events and encapsulates them

in the proper data format to deliver them to higher layers, where the corresponding

information will be further processed or stored. Higher layer components, are

using the SB (Provider) API to invoke actions necessary to translate the high

level abstractions to protocol-specific formats before sending them to the network

elements.

In its northbound (NB) part, ONOS includes the components managing the

abstractions of the network elements and the available operations. In particular,

abstractions of flow rules, incoming and outgoing packets, network devices, hosts

and more are represented by dedicated APIs in the NB (Consumer) API layer.

Then, these abstractions are used in the context of the Core layer, which provides

access to all information maintained by the system, including the devices, the

topology and the links, whereas it offers additional functionality based on this

information, such as the calculation of forwarding paths between devices deployed

in a certain topology.

Finally, the Applications layer components leverage information regarding the

network status, provided through the NB API, and performs complex actions re-

quiring several subsystems, such as packet forwarding. Typical ONOS applications

are triggered upon specific events coming from the network elements, then, based

on certain criteria, they are generating the appropriate flow rules that they send

86

CHAPTER 6. EXTENDING ONOS TO SUPPORT IOT DEVICES

Figure 6.2: ONOS Extended Architecture for IoT

back to the network elements through the corresponding subsystems.

6.2 Proposed Architecture

The proposed architecture is integrated into ONOS, enabling the seamless

integration between SDN-WISE wireless sensor networks and OpenFlow networks.

Figure 6.2 depicts the components required in each one of the ONOS layers in order

to achieve both network flow and device control in WSN. Components marked with

dark blue have been developed from scratch; the FlowRule API, marked with light

blue, has been extended in order to support SDN-WISE features; the rest of the

components marked with gray color have been kept in their original ONOS version,

even though interacting with different implementations. In the following sections,

the proposed architecture will be explained, by following a top-down approach.

The components of the northbound and southbound parts will be explained in

the context of the following subsystems that they form: SensorNode Subsystem,

FlowRule Subsystem, Packet Subsystem and DeviceControlRule Subsystem. Appli-

cations and protocols will be separately explained, as they participate in several

87

CHAPTER 6. EXTENDING ONOS TO SUPPORT IOT DEVICES

subsystems.

6.2.1 Applications

ONOS Applications layer includes two new components, which perform packet

forwarding in SDN-WISE WSNs and remote sensor device management for the

devices that have the corresponding driver integrated with the system. More

specifically, the SensorNodeForwarding application processes incoming packets

from both SDN-WISE nodes and OpenFlow switches and installs the appropriate

forwarding rules to the corresponding devices. When a message arrives at the

application, the latter will first identify the source and the destination network

devices and then, send a request to the built-in PathService to calculate the best

path, by considering the global topology, consisting of both OpenFlow and SDN-

WISE nodes. Then, depending on the device type (SDN-WISE or OpenFlow),

the corresponding FlowRules API will be used in order to create and install the

forwarding rules to the devices. At this point it should be noted that it is not

necessary to use the extended FlowRules API for forwarding a packet to the

next hop even in a WSN; however, as SDN-WISE has been designed specifically

for WSNs, it provides functionality, like setting the whole path from source to

destination in one message, that cannot be directly supported with the current

ONOS features.

The SensorNodeDeviceManagement application goes beyond the standard

ONOS functionality, which is focusing on the network flows and enables man-

agement operations of the networking devices themselves. We believe that this

functionality is vital for a network operating system, since the network is not only

about packet transport, but also about the devices performing it. This becomes

even more evident in a WSN, where the networking devices have limited resources

88

CHAPTER 6. EXTENDING ONOS TO SUPPORT IOT DEVICES

and their proper management may increase their effectiveness as well as their

lifetime. Currently, the SensorNodeDeviceManagement application provides some

simple primitives to external services in order to perform basic operations on

the devices, such as turn them on and off. However, we envision the use of this

component in more complex scenarios, where we will optimize resource usage by

fine tuning each individual networking device from ONOS, which has a global view

of the network requirements in every timeslot.

6.2.2 SensorNode Subsystem

The SensorNode Subsystem introduces new components in both the northbound

and the southbound part of ONOS and it is responsible for handling information

regarding the sensor nodes connected with the system. More specifically, when a

message is received by a sensor node in the Protocols layer by SDNWise protocol,

the latter will first extract the message source (note that ONOS will receive the

message from the sink, however the source can be any node) and then, raises

an event to notify the SensorNodeProvider that a device has possibly arrived

in the system. Then, the SensorNodeManager is notified with all information

accompanying the sensor node in order to update the description it currently

holds. Such description includes only technical information of the node, such as

serial number and operating system version. The SensorNodeManager will have

to update the SensorNodeStore, which is used as an assisting service for persisting

data, with the new information. This operation, even though seeming redundant,

is very important for managing a WSN, where the network status can be unstable,

since it is necessary to keep the network operating system up-to-date on the nodes’

status, so that it can make the right decisions, e.g. for packet forwarding. For

this reason, the SensorNode Provider also offers functionality to actively check

89

CHAPTER 6. EXTENDING ONOS TO SUPPORT IOT DEVICES

the status of a sensor node, instead of waiting for its beacons. This operation

is provided through the SensorNodeProvider API and it is useful in case higher

layer protocols require accurate information on a node status (e.g. battery level or

connectivity), before taking a decision and installing a rule.

All data handled in the context of the SensorNode Subsystem are accessed

through the SensorNode API, which introduces in ONOS new data structures

designed for the representation of sensor nodes, as the current developments are

only considering switches as networking devices. The sensor-specific APIs provide

access to information such as the battery level of a node, its neighborhood and the

signal strength for each neighbor, its coordinates in 3-D space as well as specific

data structures for sensor node address representation.

6.2.3 FlowRule Subsystem

The FlowRule Subsystem combines existing and new components. More specif-

ically, the new components have been introduced to address requirements that are

specific for WSNs and SDN-WISE in particular. This way, the FlowRuleProvider

API has been implemented considering SDN-WISE flow tables and messages, since

the existing ONOS implementation is provided specifically for OpenFlow, which

has different structures. However, the use of the same API allows the transparent

use of both the implementations, by leveraging an ONOS Providers layer feature

that binds a service with a specific naming scheme throughout the whole platform.

Therefore, flow rules meant to be sent to sensor nodes will be always sent through

the new provider via the existing API. This is the functionality that enables the

SensorNodeForwarding application to create and install the rules transparently, as

described earlier in Section 6.2.1.

In the NB API layer, the FlowRule API has been extended to support rules

90

CHAPTER 6. EXTENDING ONOS TO SUPPORT IOT DEVICES

containing conditions and actions that are specific for sensor networks, whereas it

has been mostly inspired by SDN-WISE. Most importantly, it adopts the SDN-

WISE flexibility to create traffic matching criteria on variable areas in a network

packet, instead of using fixed addresses, like the existing API. This is needed, since

the IoT is characterized by the dispersiveness of architectures and therefore, it is

both unrealistic and inefficient to include every possible option in the API. Rather

than that, we provide an extensible component, which can easily be adapted to the

specific requirements of each underlying platform. The existing FlowRuleManager

can handle the extended actions, so nothing has been added in this context.

6.2.4 Packet Subsystem

The Packet Subsystem is extended only in the Providers layer, since the data

structures already included in the other layers were generic enough to address

the requirements of an IoT ecosystem. The PacketProvider implemented for

SDN-WISE WSNs is responsible for handling all possible message types arriving

at ONOS. Even though, there are several message types handled in this context,

in this section we are going to present the two most common ones: the Report and

the Data message. Report messages carry information regarding the status of a

sensor node, such as its battery level, its neighbors and the received signal strength

indication (RSSI) with each one of them. This information is very critical for

WSNs network operations, such as routing and therefore, ONOS should maintain

a consistent view. Therefore, the SDN-WISE-based PacketProvider updates the

appropriate services upon the reception of such messages. Data messages are in

fact the typical forwarding requests. The Packet Provider wraps them in the

format provided by the Packet API and delivers them to the packet processing

applications, an instance of which is SensorNodeForwarding.

91

CHAPTER 6. EXTENDING ONOS TO SUPPORT IOT DEVICES

6.2.5 DeviceControlRule Subsystem

The DeviceControlRule Subsystem introduces a new modus operandi in ONOS,

by extending its scope to incorporate control not only of the network flows, but

also of the network devices. A major design difference, compared to the standard

ONOS operation, is that actions in this context may be triggered proactively,

without any prior request from a network device. This can happen because the

operating system may decide that certain device operations may be unnecessary

or even impeding other devices operations. This behavior is mostly expected in

wireless networks, due to shared medium and power limitations and therefore, the

design of this subsystem has been largely based on requirements drawn from this

area.

The DeviceControlRule API in the northbound provides the device treatment

instructions, with respect to the existing APIs for traffic treatment. Currently,

such actions include turning the device on and off, setting the transmission and

reception power, loading an executable function and updating the device about

its coordinates. The rules created based on these instructions are passed to the

DeviceControlRuleManager in the core layer, which is responsible for keeping

statistics on the rules and then, forwarding them to the lower layers in order to be

sent to the appropriate device.

In the southbound part, the DeviceControlRuleProvider receives requests from

higher layers, through its API, which is specified in the SB API layer, and

creates the corresponding messages to be sent to the devices. Then, it uses the

SensorNodeDriver to send the messages to the sensor nodes. Note that, currently,

the flow of operations in this subsystem is only top-down, as no events are expected

to come from the network.

92

CHAPTER 6. EXTENDING ONOS TO SUPPORT IOT DEVICES

6.2.6 Protocols

SDNWise protocol has a double role: on the one hand it provides access to

SDN-WISE-specific data structures, so that ONOS can understand the message

format required for communicating with the sensor nodes and, on the other hand,

it maintains a mapping between the sensor nodes and their communication driver.

Its main responsibility is to listen for incoming sensor connections, pass incoming

messages to the higher layers and send messages generated in higher layers, such

as flow control rules, to the sensor nodes.

SensorNodeDriver handles the low-level communication with the sensor devices.

Its implementation depends on the operating system running on each connected

device, such as Contiki or RIOT. In the same respect as SDNWise, this protocol

provides access to device-specific message formats in order to properly translate

the instructions specified in the context of the DeviceControlRule API.

6.3 Prototype Implementation

The software prototype provides a proof-of-concept implementation of IoT

integration in ONOS. In particular, it enables packet forwarding across OpenFlow

and SDN-WISE networks through a single application, which considers a holistic

view of the network provided by ONOS in order to decide the routing path.

More specifically, the scenario presented in this section shows how the proposed

architecture can support communication between a sensor node and a host, which

can in principle represent a service running in a data center, which stores the

information generated by the sensor network. As shown in Figure 6.3, suppose

that the sensor node belongs to an SDN-WISE network and its address is 01:00:10,

whereas the host is connected to an OpenFlow switch and its address is 10.0.0.1.

93

CHAPTER 6. EXTENDING ONOS TO SUPPORT IOT DEVICES

Figure 6.3: Integrated Network Scenario.

Both these networks will be represented inside ONOS using common, generic

abstractions for devices and links, which allow for the creation of a single topology

view of the whole system.

The result is shown in Figure 6.4, which shows ONOS representation of the

topology through its built-in user interface. The gray nodes represent the SDN-

WISE nodes, the blue ones the OpenFlow switches and the black ones, the hosts

connected to the switches. In order to make the scenario more interesting, we

suppose that there are two gateways between the networks and that the sender

sensor node is in the middle of the SDN-WISE network, which means that it

can use both gateways at the same cost. In the standard operation, the sender

would select one of the gateways to send the packet and then, the gateway would

send it to the host, regardless the location of the latter. By using the proposed

ONOS extended architecture though, the path decision algorithm will be executed

94

CHAPTER 6. EXTENDING ONOS TO SUPPORT IOT DEVICES

Figure 6.4: ONOS Snapshot of the Prototype.

considering the whole topology and therefore, the selection of the gateway will be

made in an optimal way.

Another advantage of this approach is that the gateways do not need to be aware

of the services that data should be transfered, which can become very complex

when several providers require access to different parts of the information generated

by the WSN. By using ONOS, each application can set its own forwarding rules

and the network will perform forwarding accordingly.

6.4 Conclusion

In this chapter an architecture of a Network Operating System for the Internet

of Things has been presented. The proposed architecture starts from ONOS and

extends its current scope, which mainly covers OpenFlow networks, to enhance

WSNs. As a result, interaction between SDN-WISE and OpenFlow networks

becomes seamless, with the NOS deciding the forwarding paths considering the

whole topology and providing the appropriate commands for each device type.

95

Chapter 7

Implementing the IoT Vision using

ONOS

The fragmentation of the IoT landscape, due to the deployment of many

Intranets of Things, which cannot cooperate effectively and efficiently, instead

of a unique Internet of Things [85], sets interoperability constraints despite the

integration efforts [83, 86].

Even though the SDN-driven approach is definitely a step towards the vision of

an easily (re-)configurable IoT environment, as also outlined in [84], there is still a

major issue that must be addressed. More specifically, traditional SDN solutions

focus on device-level protocols, thereby providing isolated views of the individual

network segments consisting an IoT ecosystem.

In fact, considering for example that the network of switches of Fig. 7.1 supports

OpenFlow [1] and that the WSN supports SDN-WISE or Sensor OpenFlow [20],

there will be two different SDN controllers managing each network segment.

Bearing in mind the large number of network segments involved in a standard IoT

ecosystem, it is obvious that, compared to the existing application-level integration

solutions, this approach introduces very high complexity and therefore, does not

scale.

96

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

Figure 7.1: Typical IoT Ecosystem.

97

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

Actually, a similar problem arose in the first days of SDN even for fixed networks,

where several controllers existed, each one optimized for different scenarios. In

order to tackle with this issue, the traditional SDN controllers evolved to become

Network Operating Systems (NOSs), which provide high-level abstractions for

several heterogeneous devices and protocols and can be used to manage even large

networks. The Open Network Operating System (ONOS), depicted in Fig. 7.1,

is an example of such a system. Unfortunately, NOSs have not been sufficiently

exploited in the context of WSNs, furthermore, no attention has been paid to the

network-level integration of IoT devices.

In this chapter, we leverage the developments in NOSs and we specify a unified

system, which controls an IoT ecosystem at the network layer in a holistic way.

More specifically, our contributions are as follows:

• We provide generic abstractions for sensor nodes as well as encapsulations

of non-IP packets, in order to enable IoT service providers to deploy their

network configuration over any allocated infrastructure, transparently.

• We propose an architecture enabling the IoT service providers to create

networks of sensors and switches, while supporting packet forwarding through

different network segments.

• We develop a framework which supports a shift in the IoT communication

paradigm from device-to-cloud to device-to-device, allowing the direct com-

munication of sensor nodes over networks of switches. In this way, clouds

of sensors can be created in an ad-hoc manner, exploiting subsets of the

already deployed WSN devices, thereby fostering granularity and reusability.

• We introduce the Software Sensor Nodes concept which acts as an integration

98

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

element for different IoT protocol stacks so enabling the communication of

devices adopting different standards. This is achieved by exploiting both

the extensible nature of the NOS, which allows the implementation of any

device-level protocol, and the common abstractions for sensors and rules,

which are enforced, irrespectively of the underlying protocol.

Note that in this chapter we are not proposing a new protocol (or set of

protocols) which should replace existing ones, like ZigBee and 6LoWPAN. Instead,

we are proposing a general approach that leverages the existence of SDN solutions

in both the infrastructured and infrastructureless segments of the IoT to provide

application developers with abstractions of the whole network and the related

services that can be easily utilized in efficient and flexible manner.

In this context, we have focused on SDN-WISE for the infrastructureless seg-

ment because it is stateful and, as a consequence, Turing complete. Therefore, it

can implement any protocol if correctly instructed by the corresponding network

application. For example, we have implemented a network application that pro-

grams the sensor nodes so that they execute geographical routing [87] and we are

implementing another network application that enables nodes to interpret and

generate typical 6LoWPAN signaling messages such as Router Solicitation, Router

Advertisement, Node Registration and Node Confirmation so that interaction with

standard 6LoWPAN nodes is possible.

As a whole the proposed solution has several advantages for all actors involved

in the IoT ecosystem. In fact, by exploiting the overall view of the network

topology it is possible to establish the optimal communication path according to

the application requirements. Considering for example the network of Fig. 7.1,

it is typically more efficient for nodes n2 and n6 to communicate through the

99

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

switches than through the WSN, which would be the standard solution. This

is valuable for final users (they can obtain higher levels of QoS) and network

operators (they can increase resource efficiency). Furthermore, by leveraging

the virtualization/abstractions of physical resources it is possible for application

developers to focus on the implementation of the application, ignoring the specific

low level details of the physical objects and their interconnections. This would

involve significant reduction in the development cost and time to market. Finally,

by leveraging the possibility to program the behavior of nodes through network

applications running on top of the NOS it becomes possible to have IoT nodes that,

in principle, can execute any existing or novel IoT protocol. It is even possible to

have IoT nodes that handle packets belonging to different applications according

to different protocols. This very high level of flexibility can be exploited to

• integrate IoT platforms running different IoT solutions, so contributing to

solve the IoT fragmentation problem, and making it possible to implement

and deploy applications that exploit the services offered by a larger pool of

IoT resources.

• improve the Quality of Service offered to applications and increase efficiency.

This is possible because it is well known fact that there is no one-fits-all

solution in the IoT context, and by exploiting the proposed approach any

application can rely on the most appropriate set of protocols (which should

be implemented as network application on top of the NOS).

The individual components of the proposed architecture have been described in

6. The main goal of this chapter is to propose an architecture which accommodates

the above components and explain how they interact in order to achieve the

100

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

aforementioned contributions. Also, in this chapter the overall system is assessed

in an application scenario involving the use of MapReduce to process the data

produced by IoT devices.

In order to maximize compatibility with relevant standards, major requirement

we considered in our work has been to minimize the number of new abstractions

needed in the ONOS framework and avoid any need for modifications of the

OpenFlow (and other) standard(s).

The rest of this chapter is organized as follows. Then, Section 7.1 provides a

general view of the overall system architecture and summarizes the motivation for

the proposed system. Section 7.2 introduces the concept of the Software Sensor

Node, which is used to integrate WSNs and networks of switches. The fundamental

operations offered by the proposed system, namely sensor node registration and

integrated packet forwarding are explained in Sections 7.3 and 7.4, respectively.

A MapReduce-based use case for the system is presented in Section 7.5 and it is

used to extract performance metrics, which highlight measurable benefits of the

proposed approach. Finally, conclusions are drawn in Section 7.6.

7.1 Motivation and Architecture

The key motivation of this work is the realization of a unified system which

enables the communication among heterogeneous devices in order to create IoT

ecosystems exploiting the infrastructure already in place. Following a pure network-

level approach, the proposed system does not depend on any particular IoT

architecture. This is achieved by:

1. Employing SDN technologies in both the transport and the sensor networks.

2. Specifying generic, protocol-agnostic abstractions for sensor nodes and net-

101

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

work packets.

3. Introducing the concept of the software sensor node, an SDN-enabled sensor

node, which can be easily integrated with any existing WSN deployment, by

implementing the corresponding protocol procedures inside the NOS.

Fig. 6.2 depicts the extended ONOS architecture, where the dark-colored

components are required to integrate software defined sensor nodes [88]; whereas

the light colored components have been kept back in their original ONOS imple-

mentation.

The proposed architecture follows the logical separation of ONOS into sub-

systems. The SensorNode Subsystem provides the abstractions as well as an

up-to-date registry of the sensor nodes connected to the system. More specifically,

the SensorNode API is a generic, extensible, API, which specifies a generic sensor

node, so that it can be efficiently accessed from the other layers of the NOS:

• The SensorNode API is used for both sending information, such as forwarding

rules, to the sensor nodes as well as receiving information, like the battery level

and their neighbors, from them. The API is extensible, so that application-

specific sensors can also be easily integrated.

• The SensorNode Manager implements the SensorNode API functionality.

Essentially, it is a registry for all the sensor nodes managed by the NOS by

maintaining up-to-date information either for logging reasons (e.g. forwarding

rules) or for status maintenance (e.g. battery level).

• The SensorNode Provider translates protocol-specific data to data that can

be accessed through the SensorNode API and vice-versa. More specifically,

102

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

incoming data are decoded into ONOS-specific APIs, so that they can be

effectively managed by the higher layers. Outgoing data are encoded into

protocol-specific APIs, by leveraging the Protocols layer.

• The SensorFlowRule Subsystem is used to create and install flow rules, by

leveraging the protocol supported by the target device.

• The SensorFlowRule API specifies the high-level semantics for creating rules

that are sensor-node specific and can look at any portion of the packets to

classify them into flows. This is supported by SDN-WISE and enables a high

degree of flexibility which goes well beyond what OpenFlow can obtain.

• The SensorFlowRule Provider is used to encode flow rules, by leveraging the

corresponding protocol, so that they can be sent to the sensor nodes. Let us

note here that the FlowRule Manager and the FlowRuleProvider API have

been kept unchanged with respect to their original ONOS implementation.

This has been achieved by exploiting the high-level semantics of ONOS

combined with the generic design of the FlowRule API.

• The SensorPacket Subsystem handles incoming and outgoing packets from/to

the sensor nodes, by using a non-IP, generic packet encapsulation API. In

particular, the SensorPacket API provides access to incoming and outgoing

packets from/to sensor nodes. Even though the network-level packet format

depends on the corresponding underlying network protocol, the SensorPacket

Provider encapsulates all this information into ONOS high-level abstractions.

The current API has been designed by considering requirements of generic

sensor nodes and provides access to information such as host and destination

address, protocol version and other low-level details. However, this API can be

103

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

extended to support application-specific protocols by building on top of the existing

system.

In the Protocols layer, the specific semantics of the underlying network protocol

are implemented. More specifically, the proposed architecture includes the server-

side SDN-WISE implementation, which is responsible for communicating with

the sensor nodes and provides access to low-level protocol semantics. This is

achieved through a protocol-specific API, with respect to the already existing one

in ONOS for OpenFlow, which is able to encode/decode information coming from

the WSN/NOS.

Observe that in the APP layer, ONOS supports the implementation of network

applications. In fact, these applications are responsible for creating the rules, which

are then installed in the nodes by leveraging the corresponding subsystems. When

a sensor node, which is connected to ONOS, receives a packet that it cannot handle,

it attaches this packet to a request and sends it to ONOS. ONOS decapsulates

the various packet layers as described previously in the context of the subsystems

and, in case it cannot directly be handled by them (e.g. it is not a trivial beacon

packet), it is delivered to the network application associated with this node. Then,

the network application decides how to handle this packet. Note here that a

network application essentially implements a network protocol. Therefore, even

existing protocols, such as 6LoWPAN or ZigBee can, in principle, be implemented

in ONOS. For instance, if an SDN-WISE node receives a 6LoWPAN packet, it

will encapsulate it in an SDN-WISE packet by inserting it in the payload. Then,

the network application will decode that payload, it will understand that it is a

6LoWPAN packet and will send the corresponding reply packet to the sensor node.

Given the heterogeneity of the supported devices (sensor nodes and switches),

104

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

ONOS has to associate each device type with a set of subsystems in order to handle

them accordingly. This is achieved by adopting system-wide naming schemes in

the form of Uniform Resource Identifiers (URI) for every component. For example,

an OpenFlow switch is represented as of:000000001 and an SDN-WISE node as

sdnwise:00000101. In this way, every device connected to the system as well as

every device-specific software module are registered using the same prefix. As

a result, ONOS can deliver packets and events coming from the devices to the

respective subsystems and viceversa, transparently.

Despite the complexity and the variety of operations provided by the NOS,

in this chapter we focus on a fundamental subset, in order to illustrate how the

proposed solution achieves the contributions outlined at the beginning of this

section are accomplished. More specifically, in the following, we first introduce

the concept of the Software Sensor Node and then, we explain the procedure

implemented for registering and representing a sensor node in the system. Then,

we illustrate how different sensor network applications can register their packet

types to the system, so that they can efficiently make use of the corresponding

flow rules capabilities. Finally, we present the integrated forwarding network

application, which essentially bridges the gap between networks of switches and

sensors by leveraging both existing and newly introduced NOS components.

7.2 The Software Sensor Node

The fundamental component introduced at the device level for network-layer

integration is the Software Sensor Node (SSN). SSNs are essentially SDN-WISE-

enabled nodes, which do not necessarily correspond to a physical device, with

respect to the concept of OVSwitch for OpenFlow networks. In fact, such nodes

105

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

Figure 7.2: Heterogeneous Network Integration with SSN

may as well be deployed as services in the network, e.g. using Network Function

Virtualization (NFV), by leveraging the SDN-WISE node implementation, which

has already been used for WSNs emulation.

Due to their programmability stemming from their SDN support, SSNs can be

easily integrated with any IoT protocol, by just implementing the corresponding

APIs as a NOS application. This way, a SSN can be virtually attached to any

WSN by just sending the corresponding signaling messages to the nodes it has

to connect to. For example, in Fig. 7.2, suppose that nodes n1 and n2 belong

to a 6LoWPAN network, whereas nodes n3 and n4 belong to a ZigBee network.

Then, the SSN, can send the appropriate neighborhood discovery packets to n1

and n4, through the respective sinks n2 and n3, and become neighbor with both

them. Furthermore, it can also exchange neighborhood information with both

these nodes, thereby creating a symmetric link n1 � SSN � n4, which in fact

hinders the path of the intermediate sinks and switches, giving the impression to

the sensor nodes that they have two hops distance.

106

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

This way, every SSN actually represents the set of sensor nodes of a particular

WSN that are connected to it. Therefore, the overall network topology can be

abstracted as network of SDN-enabled switches and sensors. Moreover, dynamic ad-

hoc networks can be created by connecting individual nodes over an heterogeneous

infrastructure, consisting of switches and SDN-WISE sensor nodes, either physical

or virtual (software) ones. As a result, transferable network configurations can

be enforced on the fly to already existing WSNs, with respect to the IoT vision

presented in [84], by controlling the whole infrastructure in a holistic way.

The proposed NOS performs holistic management of the networks of switches

and sensors by introducing generic abstractions for sensor nodes and packets and by

performing integrated packet forwarding transparently across these networks. Note

that the implementation of 6LoWPAN and other WSN protocols in the NOS has not

been prototyped in the context of this paper, since it mostly involves development

work, whereas it does not add any complexity in the overall architecture; eventually,

the challenge is for SDN-WISE nodes to communicate over OpenFlow switches.

7.3 Sensor Node Registration and Representation

A key requirement of the proposed system is the unified representation of the

whole network, consisting of both sensor nodes and switches. This is achieved by

introducing new and extending existing core ONOS abstractions, which provide fine

grained access to the network components, namely the devices and the links. More

specifically, two access layers are considered for devices and links, the base and the

enhanced layer. The base layer is used to create an internal graph representation of

the network topology, where every node is represented by a Device and every edge

by a Link. The enhanced layer for the sensor nodes, SensorNode, extends the

107

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

Device and it is used to access implementation-specific information, such as the

energy level of a sensor, its geographic coordinates and its neighborhood. Whereas,

the enhanced layer for the sensor links, SensorLink, extends the Link to provide

information on the Received Signal Strength Indicator (RSSI) of a wireless link,

which is typically used as a metric for the weight of an edge representing a wireless

link.

Information provided at the enhanced layer can be further extended through

annotations, implemented as key-value pairs. Such annotations are typically useful

for passing application-specific parameters to ONOS, which are required to make

network-layer decisions. For example, consider a WSN that contains two types

of sensor nodes, temperature and pressure and assigns a different aggregator

to each type. In order to forward the packets to the corresponding aggregator,

ONOS needs to be aware of the sensor type each node carries. This information

cannot be contained in any network packet header, though. Therefore, through

the annotations, such information can be passed to the system from an external

service, rather than the network, so that it can be later used for taking networking

decisions, such as packet forwarding.

The registration of SDN-WISE nodes is quite straightforward and is achieved

through the SDN-WISE protocol mechanisms by leveraging the SensorLink ab-

straction provided by the proposed system. Links between sensors are periodically

reported to ONOS through the REPORT packets issued by every sensor and

containing the list of its neighbors and the associated Received Signal Strength

Indicator (RSSI). Links between sensors (sinks) and switches are reported through

the DP_CONNECTION packets, which contain the MAC address of the sink

nodes.

108

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

Figure 7.3: Representation of (a): the sink node in ONOS, and (b): its protocol stack.

In fact, as shown in Fig. 7.3(a) our extension of ONOS represents sinks both as

sensors (for the wireless link) and as edge hosts (for the wired link), because they

typically carry two different types of network interfaces. This design approach

is the consequence of the two major requirements (i) to avoid any change in

the standard OpenFlow and (ii) minimize the number of novel abstractions to

be introduced in ONOS. To this purpose sink nodes will run the protocol stack

represented in Fig. 7.3(b).

At the physical and link layers two sets of protocols will be implemented that

are specific of the infrastructured and WSN segments, such as IEEE 802.3 and

IEEE 802.15.4, respectively. SDN-WISE is executed on top of the IEEE 802.15.4

interface; whereas a Relay Layer is also executed which is responsible of the

operations needed to bridge the two different network segments; one of its major

roles is packet adaptation, for example.

Finally, links between SDN-WISE nodes and others implementing any other

109

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

Figure 7.4: Sensor Node Registration Flowchart.

stack (e.g., 6LoWPAN), are established by leveraging the communication protocol

of the standard nodes. More specifically, SDN-WISE node can be instructed by

the NOS to send the corresponding protocol-specific packets and then, use the

corresponding response to identify the link, in the same respect as with links

between two SDN-WISE nodes. For example, SDN-WISE nodes can generate

and interpret typical 6LoWPAN signaling messages such as Router Solicitation,

Router Advertisement, Node Registration and Node Confirmation. In this way

it is possible for SDN-WISE nodes to build a network topology overlayed at the

6LoWPAN nodes.

This is a fundamental feature of the proposed solution as there is already a

large number of WSN devices already deployed worldwide (e.g., according to a ABI

market research 850 million IEEE 802.15.4 devices have been shipped in 2016).

On the ONOS side, there are two subsystems involved in the sensor node

registration process: the SensorPacket Subsystem and the SensorNode Subsystem.

110

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

The flowchart given in Fig. 7.4 depicts the role of the SensorPacket Subsystem, for

example. When a REPORT packet arrives, a direct SensorLink is created between

that node and all its neighbors. In the special case of the DP_CONNECTION, a

standard edge Link is created, so that ONOS treats the sink as the edge of the

network of switches. Links between SDN-WISE and standard sensor nodes are

created in the context of the ONOS application implementing the corresponding

protocol, based on the SensorLink abstraction. Note that these are also edge

Links, as the standard nodes cannot accept SDN rules and, thus, they are treated

as regular hosts. After the links have been established, the network topology is

updated accordingly.

ONOS keeps an updated view of the WSN using the SensorNode Subsystem.

More specifically, the SensorNode Provider checks for sensor nodes connectivity,

based on the reports received by them, whereas it creates a new Device upon

a sensor node arrival to the system. At the high level, the SensorNodeManager

introduces functionality to store and access fundamental information on the nodes,

such as their address, their battery level, the sink they are connected to or, in

case the node is a sink itself, the switch that it is attached to. Note that this

information is either directly coming or implicitly derived from the REPORT

packets. Sensor nodes are abstracted by the SensorNode data structure, which

extends the Device, thus directly enabling its integration with the Topology,

while providing the abstractions described earlier in this section. All information

regarding sensor nodes are currently stored in hash tables. However, in case the

networks grow larger, more sophisticated and highly efficient in-memory databases

can be leveraged (e.g. Hekaton, VoltDB, etc.), in order to address any scalability

issue, without any changes to the existing API.

111

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

7.4 Network-Wide Packet Forwarding

In our solution, the packets sent by sensor nodes to ONOS, in order to obtain

a corresponding rule, are delivered to the Integrated Forwarding application. The

latter extracts the source and the destination and calculates the shortest path

considering the whole topology. Wireless link cost is calculated based on the link

RSSI and is dynamically passed to the path extraction algorithm. Accordingly, in

the example of Fig. 7.1, a packet from node n1 to node n5 will follow the path

including switches, since it contains fewer wireless links, which are most costly.

Whereas, a standard controller would suggest the path of sensor nodes only, since

it would not have a full view of the topology.

Unfortunately, packets coming from sensor nodes have different format than

the standard IP packets, sent by hosts and are currently supported by ONOS.

Accordingly, we have introduced a new API, the SensorPacket API, on top of the

existing PacketManager, as shown in Fig. 6.2, in order to enable ONOS to deal

with the new packet formats. SensorPacket API includes the PacketType, which

represents sensor packet types similarly to the type of service of IP packets. The

main novelty of this API is that it allows different network applications to register

their own packet types, without interfering with each other, thereby fostering reuse

of existing packet headers with application decoupling.

Once ONOS can deal with packets generated by sensors, then, in order to

achieve integrated forwarding we need to define how ONOS will instruct the

network nodes in such a way that the traffic flow can traverse sequences of switches

and sensors, transparently. A major problem in this context is the passage between

one segment of switches and one segment of sensors (or viceversa), since they use

different instruction sets. In our solution, when a packet arrives to the system,

112

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

Figure 7.5: Integrated Forwarding flowchart.

the SensorPacket Provider checks its type and, if it is not used for signaling, it

encapsulates it into an ONOS-specifc packet format that can be accessed by the

SensorPacket API. Accordingly, incoming packets are transformed to Ethernet

frames, using ONOS core APIs. Then, they are delivered to the PacketProcessors,

which are typically implemented in the application layer.

Fig. 7.5 describes the steps followed by the Integrated Forwarding application

when it receives a packet (typically from the Packet Provider). After the whole

path from source to destination has been calculated, it is broken into individual

113

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

segments, which separate the sequence of switches and sensor nodes, as described in

the flowchart of Fig. 7.5. Each segment is represented as a set of links connecting

only devices of the same type. Accordingly, every time a link connecting devices

of different type is met, the current segment is closed and a new one is opened.

For example, considering that node n1 of Fig. 7.1 sends a packet with destina-

tion node n5 and that ONOS calculates as shortest path the one passing through

the OpenFlow switches, Integrated Forwarding will split the path into two different

segments. More specifically, when ONOS receives the packet, it triggers the process

described in the flowchart of Fig. 7.5. After the path is calculated, the first link

is considered and switch s1 is added to the segment of switches, by entering the

flowchart parts 1, 2, 5 and 6. Then, the switches s2 and s3 are also added to the

same segment by entering parts 1, 2 and 5. When the link s1 ! n7 is visited, the

segment of switches is closed, by executing the operations shown in parts 1, 2 and

4. Observe that ONOS understands n7 as host h2 in this case, since it is connected

to switch s3. Finally, for each one of the two remaining sensor links from n7 to n5,

parts 1, 2 and 3 are considered. After that step, there are no more links in the

path and hence, the active sensor node segment is closed as well and the process

ends.

For each generated segment, the appropriate flow rule subsystem is used in

order to specify the forwarding rules. More specifically, if the request is made by a

sensor, the SensorFlowRule Subsystem is used, whereas if it is made by a switch,

the OpenFlowRule API is leveraged.

114

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

7.5 Case Study: MapReduce In-Network Process-

ing

As we have already discussed, the proposed solution has several advantages

ranging from very high flexibility to the possibility for developers to implement

IoT services and applications ignoring the specific low level details of the physical

objects and their interconnections. In this section, however, we will focus on the

performance improvement that can be achieved by exploiting the overall view

of the network topology, including both infrastructured and infrastructureless

segments.

To this purpose we will compare the performance obtained by the proposed

approach to the performance obtained when the infrastructured segments of the

network implement a shortest path routing whereas the infrastructureless segments

implement RPL1, which is the most widely deployed routing protocol for 6LoWPAN

networks [46].

More specifically, the effectiveness of the proposed system is assessed by con-

sidering the case where MapReduce operations are executed inside the WSN

network and the results are sent to a service deployed in a host outside the WSN,

as suggested in [89]. For example, considering the system of Fig. 7.1, suppose

that the sensor nodes are executing MapReduce operations and then, the results

are sent to service SVC-1, deployed in the cloud, by sending the data over the

OpenFlow network. Let us explicitly observe that in-network processing for big

data applications has already been successfully applied in data centers [90, 91]. In

the use case addressed here, we shift this paradigm to in-network processing for
1Although a large number of RPL improvements have been proposed in the recent past,

we have chosen the standard RPL implementation because we are focusing on the advantages
obtained by exploiting the complete and integral view of the overall network rather than the
possibility to select shorter paths inside the infrastructureless segment.

115

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

Figure 7.6: Network topology with different reducers for each case.

sensor networks.

We consider a WSN of 23 nodes connected with a transport network of 6

switches, as depicted in Fig. 7.6. Each sensor node implements the SDN-WISE

protocol, whereas each switch implements OpenFlow. Switches and sensor nodes

are deployed in Mininet, which has been extended to support the SDN-WISE

software sensor nodes. Sensor nodes are equipped with sensors of four different

types: temperature, humidity, pressure and noise. Values generated by each of

these types are associated with the corresponding key in the context of the map

function. According to MapReduce, there has to be exactly one node, namely the

reducer, which collects all values associated with a single key. The selection of

the reducer for each key is made as explained in [89] and is outside the scope of

this work.

116

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

In order to select the appropriate reducer for each key, it is essential to know

the sensor types that every node carries, which is not included in the signaling

messages. This is achieved in the application layer by leveraging the extensibility

of the SensorNode API, based on the inherent ONOS Annotations API. This

enables the update of the nodes description by inserting the corresponding sensor

types as key-value pairs of the form hsensor, sensor typei.

In our experiments, every node carries a random number of sensor types.

Furthermore, a map function is loaded in each node by ONOS, which periodically

generates key-value pairs for each sensor type and pushes them to the network

layer. At the first execution, the node does not know how to treat the packet

generated by the map function and therefore, it makes a request to the NOS. The

latter selects the reducer and, through Integrated Forwarding application, installs

the appropriate rules to every device, as described in the previous section.

We have implemented a prototype of the proposed solution for TI CC2530

devices as well as the software modules that extend Mininet to consider sensor

nodes also.

Our prototype has been released in open source and can be downloaded at the

following URLs:

• https://github.com/sdnwiselab/onos (source code of ONOS)

• https://github.com/sdnwiselab/sdn-wise-cc2530 (source code for

the TI CC2530 devices)

• https://github.com/sdnwiselab/onos-sdn-wise-app-samples/tree/

master/mapreduce (source code of the MapReduce application and the

Mininet scripts)

117

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

Since we have a small number of sensors, the results shown in the chapter have

been obtained by using the Mininet simulator. In our experiments energy related

metrics have been calculated by elaborating the logs of the simulation considering

the information about battery and energy consumption provided in the datasheets

of the TI CC2530.

The use of Integrated Forwarding firstly affects the selection of the reducers,

which is made considering the cost of communication among the nodes, derived

from the forwarding path. In particular, as shown in Fig. 7.6, in the standard

WSN case, the node in the center of the network is selected to be a reducer. On

the other hand, when Integrated Forwarding is enabled, the optimal reducer is one

of the sinks (node 1 in this case). In order to have a common point of reference,

the evaluation will be made considering that the reducer will be node 1 in both the

standard WSN and the integrated forwarding approach, since the goal is to study

the communication aspects of the proposed architecture and not the MapReduce

implementation as a whole.

The use of sensor nodes resources after executing the experiment for 10 minutes

is shown in Fig. 7.7. More specifically, Fig. 7.7a shows the CDF of the remaining

energy level of the sensor nodes after the experiment is over.

As shown in the figure, in the integrated forwarding case, there is always

a larger fraction of nodes with more residual battery than in the typical one.

Moreover, since the difference increases as the energy levels become lower, the

network lifetime is expected to be significantly higher when using the proposed

approach. Furthermore, as shown in Fig. 7.7b, in case the network of switches is

used, i.e. when nodes 18, 19, 21, 22 and 23 are sending data to node 1 (reducer), the

delivery times are significantly smaller than in the typical WSN-specific approach.

118

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

(a) Remaining Battery CDF (b) Delay

(c) Nodes Traffic CDF (d) Rules CDF

Figure 7.7: Nodes resource usage.

119

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

The reason is that the core network has much larger capacity, and therefore packets

are forwarded much faster than in the context of the WSN.

The effectiveness of the use of the core network also becomes clear by considering

Fig. 7.7c, which shows the CDF of the overall number of packets sent and received

by the sensor nodes in the plain WSN and the integrated forwarding approach.

Overall, the integrated forwarding approach results in less communication between

the nodes, which is essential for WSNs and is the key factor for the reduction on

the energy consumption shown in Fig. 7.7a.

Finally, the proposed integrated forwarding approach results in less flow rules

in the nodes, as depicted in Fig. 7.7d. This means less signaling messages and

lower memory occupancy for the nodes, which is very important given the strict

limitations on both communication and hardware resources. The reduction of flow

rules in the integrated forwarding approach is the result of the use of the core

network. Indeed, when using the WSN alone to forward packets, each intermediate

node requires 1 rule per destination. Therefore, for each path of N hops, which

traverses the core network, a reduction of N rules at most (e.g. in sink-to-sink

communication) is achieved for the WSN.

7.6 Conclusions

This chapter presents a network operating system which is used to integrate

networks of switches with networks of sensors. Starting from ONOS, an existing

solution for OpenFlow networks, we have introduced new components, which

efficiently abstract both the network elements and their operations. Moreover,

we have explained how the proposed extensions can work together with existing

modules, eventually enabling ONOS to perform holistic network management and

120

CHAPTER 7. IMPLEMENTING THE IOT VISION USING ONOS

integrated packet forwarding in software defined transport and wireless sensor

networks.

The proposed system has been prototyped, whereas its evaluation is performed

in the context of a novel in-network packet processing approach, which enables

the execution of MapReduce operations in WSNs.

121

Chapter 8

Reducing energy footprint with

GEO Routing

In most cases sensor nodes have low resources in terms of energy, processing

capabilities, and memory. Therefore, it is fundamental to reduce as much as

possible the signaling exchange and the memory occupancy.

This can be achieved by enabling nodes to execute forwarding, that is, the most

common operation performed in multihop communication networks (such as WSNs)

autonomously. Indeed, a large number of distributed forwarding/routing protocols

for WSNs are available in the literature which however are outperformed even by

the earliest SDN solutions proposed for WSNs [92]. As discussed in [47] the use

of a stateful solution such as SDN-WISE, reduces the need for message exchange

between nodes and Controller when changes in the node behavior are necessary due

to variations in network conditions; however, according to [93] in each node there

is still the need for one entry in the flow table (and the corresponding signaling

message from the Controller) for each flow traversing the node.

In this chapter we aim at defining a solution which allows sensor nodes of a

software defined WSN to take forwarding/routing decisions without explicit control

from the Controller. Thus, the proposed solution does not need signaling exchange

122

CHAPTER 8. REDUCING ENERGY FOOTPRINT WITH GEO ROUTING

or a flow entry for each flow traversing each node. To this purpose we leverage on

geographic forwarding which has been largely applied in WSNs for both unicast

and multicast communications [94, 95].

A node applying geographic forwarding relays incoming packets to its neighbor

which is nearest to the destination. To do so, therefore, it only needs to know the

position of the destination, carried in the packet, and the positions of its immediate

neighbors. This information can be obtained using a simple protocol that will be

presented later on.

In this chapter we show that by exploiting geographic forwarding/routing sensor

nodes achieve several advantages. First of all, overhead due to signaling purposes

and the number of flow entries needed in the flow tables decrease significantly.

In fact, in principle it is sufficient for the Controller to generate and transmit

a unique entry for each unicast data flow and at most D flow table entries for

each multicast session in intermediate nodes, where D is the number of multicast

destinations.

Concerning multicast, the processing load for the evaluation of the optimal

multicast tree at the Controller can be reduced dramatically. In fact, it is well

known that the problem of finding the optimal multicast tree can be formulated as

a Steiner tree problem which is known to be NP complete in the number of nodes

and destinations. By leveraging geographic forwarding, instead, the multicast

tree can be identified by solving the Euclidean Steiner tree problem that has a

complexity dependent on the number of multicast destinations which is, most of

the time, significantly smaller than the number of nodes in the network.

The rest of this chapter is organized as follows. In Section 8.1 we propose

a solution to apply geographic forwarding to software defined wireless sensor

123

CHAPTER 8. REDUCING ENERGY FOOTPRINT WITH GEO ROUTING

networks. In Section 8.2 we provide a description of our prototype implementation.

In Section 8.3 we assess the advantages of the proposed approach. Finally, in

Section 8.4 concluding remarks are drawn.

8.1 Geographic forwarding in SDWSNs

In this section we will describe the operations executed by the Controller and

the nodes (in subsections 8.1.2 and 8.1.3, respectively). Such operations require

nodes to be aware of their position as well as the positions of their neighbors,

whereas the Controller must have information about the positions of all nodes.

Accordingly, in Section 8.1.1 we preliminarily describe how in the proposed solution

such awareness of the position is achieved.

8.1.1 Localization

In line with most solutions proposed to extend the SDN approach to WSNs we

assume that nodes execute a protocol which allows them to collect information

about the neighboring nodes and the RSSI values of the corresponding wireless

links. Such protocol is based on the periodic generation of Beacon messages by the

sink(s); these messages are hop by hop relayed by sensor nodes to their neighbors.

As a consequence of the reception of these beacons, nodes send the list of neighbors

and the RSSI values to the Controller in appropriate Report messages. In existing

solutions, the Controller uses the information contained in the Report messages to

build a representation of the network topology which is used for routing purposes.

In our approach, the Controller uses such information to estimate the positions of

the nodes in the network, as well. In fact, RSSI values can be used to evaluate the

distance between the corresponding pairs of nodes and consequently to localize

nodes. Several centralized localization techniques exist (see [96, 97] for overviews)

124

CHAPTER 8. REDUCING ENERGY FOOTPRINT WITH GEO ROUTING

Figure 8.1: Flow diagram of the operations executed at the nodes for localization
purposes.

which provide reliable results [98]. Indeed, a large number of studies can be found

in the literature that compare different localization techniques for WSNs, e.g., [99]

and [100]. The selection of the specific solution utilized to evaluate the position of

the nodes is however out of the scope of this work. In fact, we explicitly observe

that since the localization algorithm is executed by the Controller, it can be

changed very easily. This will be discussed in Section 8.2.1.

Furthermore, note that in the case some sensors are aware of their position1,

they will be considered anchors in the localization algorithm performed by the

Controller. This might significantly increase the localization accuracy of other

nodes [101]. In any case, we observe that the solution we propose for geographic

forwarding in software defined WSNs is robust to significant localization errors as

we discuss in Section 8.3.1.
1The positions of some nodes might be set by the installer at the deployment time or some

nodes might be equipped with localization technologies, e.g., GPS.

125

CHAPTER 8. REDUCING ENERGY FOOTPRINT WITH GEO ROUTING

In Figure 8.1 a high level flow diagram of the procedure performed by sensor

nodes for localization purposes is shown. Such procedure is triggered in four

different cases:

1. when a Beacon message, originally generated by the sink, must be relayed

by the sensor node to its neighbors. In this case the procedure will just

return the current position of the node which will be included in the Beacon

message so as to allow the neighbor nodes to learn its position.

2. when a Report message must be generated. Also in this case the procedure

will return the current position of the node which will be included in the

Beacon message so as to allow the neighbor nodes to learn its position.

3. when a Report message must be generated. Also in this case the procedure

will return the current position of the node which will be included in the

Report message, together with the list of neighbors and the RSSI values.

This message will arrive to the Controller which can check whether the node

has updated information.

4. when a Coordinates message is received from the Controller. The latter is

a new2 message generated by the Controller to give each node information

about its position and, optionally, the positions of its neighbors. When a

node receives a Coordinates message, it updates its position information and,

optionally, the positions of its neighbors. Note that several strategies can be

devised to identify when the Controller has to generate a new Coordinates

message for a given node. In our implementation the centralized localization

algorithm is performed by the Controller and Coordinates messages for a
2There is no analogous message in other SDN solutions for WSNs.

126

CHAPTER 8. REDUCING ENERGY FOOTPRINT WITH GEO ROUTING

(a) Remaining Battery CDF (b) Delay

(c) Nodes Traffic CDF

Figure 8.2: Exemplary case.

set of given nodes are generated when a change occurs in the list of their

neighbors.

5. when a Beacon message is received from a neighbor node. In this case, the

position of the neighbor will be updated.

Operations performed by the Controller are an obvious consequence of what

we have described above.

8.1.2 Controller operations

In order to present an overview of the operations executed by the Controller

to support geographic forwarding in a software defined wireless sensor network

127

CHAPTER 8. REDUCING ENERGY FOOTPRINT WITH GEO ROUTING

we consider an exemplary scenario. We consider a dense network with a large

number of nodes as shown in Figure 8.2a and suppose that node A generates a

packet which must be sent to nodes B and C. Note that we consider the case of a

multicast (rather than unicast) session because it is more general than the unicast

case. The latter can be easily derived as a special case of a multicast session with

only two members of the group.

When the application in A generates the first packet which must be delivered

to B and C, there are no entries in the flow table that can be applied and therefore

the packet is sent to the Controller. We assume that the Controller knows that the

destinations are B and C3. As explained in Section 8.1.1, the Controller knows

the position of all nodes including A, B, and C, which we denote as pA, pB, and

pC , respectively. Therefore, it can calculate the Euclidean Steiner tree which, in

our exemplary case, includes a Steiner (i.e., branching) point in position pS, as

shown in Figure 8.2b.

In the general case, there are no nodes in pS, therefore, the Controller will

select the node which is closest to the Steiner point. In our exemplary case, the

Controller selects node D in position pD. Therefore, node A should send packets

towards pD, whereas D will relay the packets towards pB and pC .

However, the Controller will preliminarily simulate the tree which will be built

by nodes executing geographic forwarding. In Figure 8.2c we show the tree which

will be built in our exemplary case. This is done for two reasons:

• Check that no deadlock situations will be incurred. In fact, it might happen
3How the Controller can learn about the identity of the destinations of the packet is outside

the scope of this work. Nevertheless, in our prototype we implemented two mechanisms. In the
first, nodes must join the multicast group (similarly to IGMP). In the second, it is the application
that informs the Controller that packets with certain characteristics must be delivered to certain
destinations.

128

CHAPTER 8. REDUCING ENERGY FOOTPRINT WITH GEO ROUTING

that, while executing geographic forwarding, the packet arrives to a node

which does not have any neighbor closer to the destination than itself. If

this is the case, then the packet will be sent using traditional forwarding

techniques, i.e., geographic forwarding will not be applied.

• Check whether there are cycles in the forwarding graph and, in case, remove

them. To this purpose, note that the cycles will certainly include the

branching points (D in our exemplary case) and therefore, detecting them is

very simple. For example, in the scenario depicted in Figure 8.2c, the packet

will traverse the link between D and E twice. This is useless, therefore, the

Controller will consider node E (located in pE) as branching point instead

of D.

Accordingly, the Controller will insert rules in the flow tables of nodes A, E, B,

and C. Based on such rules, node A will modify the packets of the multicast flow by

inserting a flag informing that the packet must be relayed according to geographic

forwarding and that the position of the branching node, i.e. the intermediate

destination, is pE. Node E, instead, will create two copies of each packet of the

multicast flow and modify them so that they will be forwarded towards pB and

pC , respectively. Finally, nodes B and C will deliver the packet to the application

layer.

8.1.3 Nodes operations

Operations performed by nodes to geographically forward the packets are

straightforward. In fact, packets that must be relayed according to geographic

forwarding contain the position of the intended destination A node, upon receiving

one of such packets, calculates the Euclidean distances between the destination

129

CHAPTER 8. REDUCING ENERGY FOOTPRINT WITH GEO ROUTING

and the neighboring nodes, selects the neighbor which is closer to the destination,

and forwards the packet to such node. For example, in Figure 8.2c node A sends

the packet to node F because it is the neighbor closer to the position pE.

Operations executed by destinations (or branching points such as E) are the

consequence of those executed by the Controller as explained at the end of Section

8.1.2.

8.2 Prototype

This section describes the prototype of the proposed solution we realized using

ONOS and SDN-WISE. First, in Section 8.2.1, the necessary ONOS components

are described. Then, the operations supporting geographic forwarding in both the

unicast and the multicast cases are explained in Section 8.2.2.

8.2.1 ONOS Extended Architecture

The ONOS (Open Network Operating System) [15] is a distributed network

operating system, that we used to manage SDN-based networks and WSN networks.

Our current implementation is based on SDN-WISE but apart from the original

SDN-WISE packet types, we have implemented four new SDN-WISE modules and

corresponding messages in order to address the geographic forwarding as well as

the multicast case, since we did not want to alter the standard protocol operations.

More specifically, the GroupJoin and GroupLeave message types are used when a

node requests to join or leave a particular multicast group. The MulticastData

message contains the multicast headers, which are going to be presented later

in Section 8.2.2, and the payload. The Coordinates message type carries the

coordinates of a specific node and of its neighbors.

In the ONOS Application layer, the GeographicForwarding application has

130

CHAPTER 8. REDUCING ENERGY FOOTPRINT WITH GEO ROUTING

been implemented and contains two fundamental modules: the LocalizationAlgo

and the MulticastTreeAlgo. LocalizationAlgo is based on the Adaptive n-Triangle

method, which has been shown to perform very well in centralized environments

[98]. This algorithm is dynamically passed as an argument to each sensor node

instance provided by the SensorNode API and not stored inside the SensorNode

Manager, thereby ensuring that different localization techniques can be used in

parallel, without interfering with each other. The MulticastTreeAlgo implements

an application-specific API for creating a multicast tree and retrieving the next

multicast hop in the tree, as well as the sequence of intermediate hops between

them. This API has been implemented to calculate both the Steiner tree, using

Dreyfus-Wagner dynamic programming solution [102], and the Euclidean Steiner

Tree, using GeoSteiner [103]. Moreover, it provides a method to check whether

there is a cycle in the path to be calculated by the nodes, so that an alternative

path can be enforced to the network by the GeographicForwarding application.

8.2.2 Geographic Forwarding

The geographic multicast implementation assumes that at the ONOS side

destinations for packets belonging to a certain flow are known. To this purpose in

the multicast case GROUP_JOIN and GROUP_LEAVE messages, the format of

which are shown in Figure 8.3, are used. Those are sent by each node that requires

membership to a specific group characterized through a Group ID or wants to

leave a group. When ONOS receives this packet, the Group Manager module is

triggered and registers/deletes the node to the specified group.

At the node side, the geographic forwarding implementation allows each node

to find the next intermediate hop towards the destination (either a destination or

a Steiner point) in a completely autonomous way.

131

CHAPTER 8. REDUCING ENERGY FOOTPRINT WITH GEO ROUTING

Figure 8.3: Multicast Group Join/Leave message format.

Figure 8.4: Geographic Coordinates message format.

SDN-WISE nodes implementation does not provide geographic forwarding

support. In order to overcome this issue, we exploit the SDN-WISE In-Network

Packet Processing (INPP) capabilities. More specifically, ONOS GeographicFor-

warding application sends to all nodes a geographic function that finds the neighbor

which is closest to the position of the intended destination (or the next multicast

hop/Steiner point in the multicast case). After this function has been installed

into the nodes, it can be called through the flow table, where the action is set to

SEND_TO_INPP. Furthermore, the ONOS Application sends each node its own

coordinates, as calculated by the LocalizationAlgo, as well as the node’s neighbors.

These are encoded in the Coordinates packet, whose format is shown in Figure

8.4. The Coordinates packet is delivered to the geographic function by installing

a single rule for geographic-type packets, which will be explained later in this

section.

132

CHAPTER 8. REDUCING ENERGY FOOTPRINT WITH GEO ROUTING

Figure 8.5: Geographic Multicast packet format.

The proposed geographic multicast packet format is depicted in Figure 8.5.

Bytes 10-13 of this packet correspond to the coordinates of its destination (Steiner

point or a multicast destination). The Group ID is used by the GeographicForward-

ing application in order to retrieve the group members registered to the system

under this identifier. The Previous Multicast Node Address is required by the

GeographicForwarding application on ONOS in order to avoid sending the packet

back to the previous node of the multicast tree, as the ONOS controller is stateless

and thus, not aware of the path that a packet has followed. Finally, the Current

Multicast Node Address is used by multicast nodes in order to know whether they

are the recipients of this multicast packet and that they should ask their controller

(ONOS) for the next node in the tree.

GeographicForwarding application on ONOS installs two flow rules in each

multicast node or Steiner point and one flow rule in all the remaining nodes. The

flow rule installed in all nodes instructs them to call the installed INPP geographic

function when a Coordinates packet (labeled as GEO_COORDINATES in the

type field) or a Multicast packet (labeled as GEO_DATA packet in the type field)

is received.

133

CHAPTER 8. REDUCING ENERGY FOOTPRINT WITH GEO ROUTING

Then, the function will consider the destination coordinates and send the packet

to the neighbor which is closest to the destination. In this way nodes can forward

the packets until the next multicast node or Steiner point. To this purpose the

ONOS application had previously installed another rule in the above nodes, which

instructs them to send a request to the Controller upon receiving a GEO_DATA

packet with Current Multicast Node Address equal to its own. Observe that this

is a high priority rule in the WISE flow table.

When the GeographicForwarding application receives a GEO_DATA request,

which format is analogous to the one shown in Figure 8.5, it checks the Group ID

to extract the nodes of the group and asks the MulticastTreeAlgo to get the next

multicast node or Steiner point from the multicast tree. After the next node has

been retrieved, it simulates the geographic path to see whether there are holes or

loops in the path. In case there are, it finds an alternative path and it enforces

it with the standard SDN-WISE forwarding rules to the corresponding nodes.

Otherwise, it changes the packet by setting the requesting node in the Previous

Multicast Node Address and the next one in Current Multicast Node Address field

and sends the packet back to the requesting node.

Note that in this way there is no need to send the entire Euclidean Steiner

tree calculated by the Controller to sensor nodes and thus, the signaling overhead

decreases.

Considering the example of Figure 8.2 where node A is the multicast source and

nodes B and C are the multicast destinations, node A will create a GEO_DATA

packet, where the Initiator, Previous and Current Multicast Node Address are

the same (i.e. node A). When it will attempt to send the packet, the flow rule

which instructs the node to ask its Controller will be triggered and the packet

134

CHAPTER 8. REDUCING ENERGY FOOTPRINT WITH GEO ROUTING

will be eventually delivered to the GeographicForwarding application in ONOS.

The latter will use the GeoSteiner algorithm to find the next node in the tree,

node E, which is a Steiner point. Then, it will send the address of node E as the

Current Multicast Node Address and send the packet back to A. When A receives

it, the geographic forwarding function will be called and it will be forwarded to

the next intermediate hop as shown in the figure. Each intermediate hop will run

the same procedure until the packet arrives at node E, which will follow the same

procedure with A, since the Current Multicast Node Address is its own address.

The difference is that, in this case, the GeographicForwarding application will reply

with two packets, one for each branch towards the multicast destinations B and C.

In case of the geographic unicast forwarding, a simplified version of the above

procedures will be executed.

In fact, in the unicast case the operations executed by forwarding nodes located

between the source and the destination are analogous to those illustrated so far

for nodes located between two multicast nodes (i.e. Steiner points nor sources or

multicast destinations).

8.3 Performance evaluation

In this section we will assess the performance of the proposed approach in

terms of signaling overhead, number of flow table entries, path length, energy

consumption and computation time.

We consider a 80x80 m2 area with 100 nodes. Positions of nodes were generated

randomly according to a uniform distribution. There is one sink (node 0) located

at position (79,19) which acts as a gateway between the WSN and the rest of the

world (including the ONOS controller). We consider both the case of unicast and

135

CHAPTER 8. REDUCING ENERGY FOOTPRINT WITH GEO ROUTING

multicast forwarding. In particular:

• Unicast case: we have a source node i.e., node 1 located in (56,31) which

communicates in unicast with any of the other 99 nodes;

• Multicast case: we have a source node (i.e., node 1) which sends multicast

flows to the multicast group members. In particular the number of multicast

group members varies up to 10 members.

All nodes know their own coordinates, as well as the coordinates of their

immediate neighbors according to the algorithm discussed in the previous sections.

We emulated the network behavior in Mininet and we extended the SDN-WISE

standard data packet by setting the type as GEO_DATA when geographic forwarding

is applied. The packet header is 10 bytes long and the payload length is 11 bytes.

8.3.1 Unicast case

We preliminarily compare the following approaches:

• Shortest path where the Controller estimates the shortest path to reach

the destination using Dijkstra algorithm and sends back this information to

the source node so that intermediate nodes simply relay the packet according

to a pre-computed path;

• Geographic-CTRL where the Controller preliminarily executes the GeoSteiner

algorithm to identify the routing path so that intermediate nodes simply

relay the packet according to a pre-computed path;

• Geographic-DIST where the distributed geographic forwarding is imple-

mented as described in the previous sections.

136

CHAPTER 8. REDUCING ENERGY FOOTPRINT WITH GEO ROUTING

In Figure 8.6 we show the CDF of the overall number of signaling messages

sent to install the required flow table entries in the nodes. Observe that by

comparing the Geographic-CTRL and DIST it is evident that Geographic-DIST is

the one that needs less signaling. The advantage of this distributed approach is

also evident by looking at Figure 8.7 where we report the CDF of the number of

flow table rules at nodes. Note that Geographic-DIST gives better performance

than Geographic-DIST always. Therefore from now on we will not consider the

Geographic-CTRL anymore. Furthermore, we will denote the “Geographic-DIST”

case as “Geographic”.

Also, in Figures 8.7 and 8.6 we observe that the shortest path as compared to

the geographic case, requires a higher number of rules and signaling messages.

In Figure 8.8 we report the CDF of the overall energy consumption in mJ. In

order to obtain this Figure we have emulated a set of Embit EMB-Z2530PA/IA

devices [104] where the consumption is 135 mA in TX mode, 28 mA in RX

mode and 6.8 mA in idle mode. Observe that the geographic approach allows to

drastically reduce the energy consumption as compared to the shortest path.

Finally we compared the path length obtained in the shortest path and ge-

ographic cases. More specifically, in Figures 8.9 and 8.10, we show the PDF of

the number of hops and the CDF of the geometric path length needed in the

two cases, respectively. Finally we have evaluated the impact of errors in the

estimation of the node position on the performance of the proposed scheme. In

fact, previous studies have highlighted that geographic routing is vulnerable to

even low localization errors: even localization errors in the order of tens percent of

the radio coverage can reduce the delivery rate significantly [105]. However, as we

have explained in Section 8.1.2, the Controller can predict and thus, avoid protocol

137

CHAPTER 8. REDUCING ENERGY FOOTPRINT WITH GEO ROUTING

Figure 8.6: CDF of the overall number of signaling messages for different unicast
forwarding strategies.

Figure 8.7: CDF of the number of rules for different unicast forwarding strategies.

failure. As a result, the delivery rate is not impacted by localization errors and

our experimental results show that when such errors are in the order of the radio

coverage, the resulting increase in the path length is below 0.5%.

8.3.2 Multicast case

In Figure 8.11 we show the Steiner tree evaluated by the controller applying

the Dreyfus-Wagner algorithm [106] and the tree obtained using our approach.

Observe that the two topologies are very close to each other.

In Figures 8.12 and 8.13 we compare the execution time needed to calculate

138

CHAPTER 8. REDUCING ENERGY FOOTPRINT WITH GEO ROUTING

Figure 8.8: CDF of the energy consumption in the unicast case for the considered
forwarding strategies.

Figure 8.9: PDF of the number of hops needed in the unicast case for the considered
forwarding strategies.

Figure 8.10: CDF of the path length implied in the unicast case for the considered
forwarding strategies.

139

CHAPTER 8. REDUCING ENERGY FOOTPRINT WITH GEO ROUTING

the Steiner tree using the Dreyfus-Wagner algorithm and using our mechanism,

respectively. Results have been obtained using a 1.8 GHz Intel Core i5 personal

computer equipped with 8GB of RAM running Windows 8. In particular in Figure

8.12 we report the execution time vs. the number of multicast destinations for

different number of nodes in the network. Observe that in spite of the very limited

number of destinations considered, the time needed is in the order of hundreds

or thousands of seconds. Comparing Figure 8.12 and 8.13 it is evident that the

execution time obtained by our algorithm is 3-4 orders of magnitude lower than

the one obtained applying the Dreyfus-Wagner algorithm. While such performance

difference may be impacted by implementation inefficiencies, it is clear that the

computation complexity is exponential in Figure 8.12 and linear in Figure 8.13,

thus assessing the effectiveness of the geographic approach.

Concerning the path length experimental results show that the performance

reduction obtained by the geographic approach compared to what would be

obtained using the Steiner tree is negligible. Furthermore, non obvious results are

presented in Figure 8.14 where we show the distribution of the path length (in

hops) between the source and each of the multicast destinations. In Figure 8.14

the geographic approach gives shorter paths than what would have been obtained

using the Steiner tree, which would result in shorter delays.

8.4 Conclusions

In this chapter we have investigated how geographic forwarding can be applied

in software defined WSNs and what advantages can be achieved by using it. More

specifically we have provided a complete solution that allows to apply geographic

forwarding in software defined WSNs which is compliant with major frameworks

140

CHAPTER 8. REDUCING ENERGY FOOTPRINT WITH GEO ROUTING

Figure 8.11: Multicast topologies considered in our work.

Figure 8.12: Time needed to compute the Steiner tree using Dreyfus-Wagner algorithm.

141

CHAPTER 8. REDUCING ENERGY FOOTPRINT WITH GEO ROUTING

Figure 8.13: Time needed to compute the Steiner tree using GeoSteiner algorithm.

Figure 8.14: CDF of the path length in the multicast case for the considered forwarding
strategies.

142

CHAPTER 8. REDUCING ENERGY FOOTPRINT WITH GEO ROUTING

in the relevant domain.

Also, we have realized a complete prototype of the proposed solution. In our

work we have assessed the advantages of applying geographic forwarding in WSNs

in terms of reduction of signaling messages and memory occupancy for storing flow

table entries. The performance advantages are obtained at the cost of a negligible

increase in the path length. Furthermore, in the case of multicast applications

the processing required at the Controller to calculate the optimal routes can be

dramatically reduced.

143

Chapter 9

A Declarative Approach to SDWSN

Software Defined Networking (SDN) is a networking paradigm that has garnered

a lot of interest among the academic and industrial communities as it promises to

dramatically reduce the complexity of network configuration and management.

While there are few protocols on the Data plane side, we have witnessed a

flourishing of software solutions on the Control plane even if, in most of the cases,

these softwares were just easy-to-use facades to Data plane messages [107]. In

fact, their main focus was on easing how to instruct a network to perform the

actions needed to achieve a behavior (imperative approach) and not on providing

the instruments to define the desired behavior and leave to the Control plane the

configuration process (declarative approach).

A recent evolution towards a declarative approach is contaned in the Open

Networking Operating System (ONOS) which is the concept of intent. An intent

is an immutable model object that describes an application’s request to the ONOS

core to alter the network’s behavior [15]. For example, given two nodes in a

network, say A and B, if there is a connectivity intent between them, the controller

will try its best to guarantee a communication channel between this two nodes by

installing the required Flow Rules in the network and by autonomously updating

144

CHAPTER 9. A DECLARATIVE APPROACH TO SDWSN

them if the state of the network changes.

This chapter proposes a further step in this direction by allowing the adminis-

trators to state some general proprieties for a network, while it is the controller

that decides how to turn such requests into messages for the Data plane.

In order to achieve such results the Control plane has to learn as much as

possible from the network itself and it has to dynamically react to changes without

any supervision. To this purpose, we leveraged the SDN paradigm and the

programmability of the Control plane.

In fact, as the Control plane became a software module running on commodity

hardware, it is easier to use existing libraries and algorithms for machine learning,

data analysis, and data forecasting with the result of making the Control plane

more intelligent.

By intelligent we mean that the Control plane can reduce the number of direct

human interventions in the configuration process, using unsupervised learning

algorithms and Artificial Neural Networks (ANN).

Therefore, the main contribution of this chapter is providing a declarative

architecture for network management and demonstrating how, by leveraging a

Long Short-Term Memory Artificial Neural Network (LSTM-ANN), it is possible

to implement an intelligent control plane by using a predictive flow instantiation

algorithm.

To assess the feasibility of the proposed solution to a relevant use case we used

SDN-WISE and ONOS and we have emulated a portion of the SmartSantander

testbed using the datasets made available by the FESTIVAL project [108].

Accordingly, the remainder of this chapter is organized as follows: Section 9.1

introduces the related works on the field of machine learning. In Section 9.2 the

145

CHAPTER 9. A DECLARATIVE APPROACH TO SDWSN

architecture of the proposed solution is reported while Section 9.3 describes the

dataset, the topology, and the testbed used. Section 9.4 presents the predictive

flow instantiation algorithm and finally, in Section 9.5, achieved results are shown

and then conclusions are stated in Section 9.6.

9.1 Related work

As the nature of this chapter is to bring together different research topics, the

content of this section is split into three parts. First we provide a brief description

of the current Declarative Control plane solutions in Section 9.1.1, then we describe

the existing works on machine learning solutions applied to network management

in Section 9.1.2 and finally, since we exploit Artificial Neural Networks, we provide

some theoretical background in Section 9.1.3.

9.1.1 Intents

Among the principal NOS, OpenDayLight (ODL) and the Open Networking

Operating System (ONOS) are gaining a lot of traction in the research community

as already analyzed in Chapter 6. For what concerns the aim of this chapter,

we will briefly describe the concept of Intent and the ONOS Intent framework.

An Intent, both in ONOS and ODL, is used to explicate a network behavior

providing generalized and abstracted policy semantics instead of specific configura-

tion commands. In particular, ONOS uses the intent specifications to translate

this requirements into installable intents, which are essentially operations on the

network environment. At the lowest levels, Intents may be described in terms of:

• Network Resource : A set of object models, such as links, that tie back to

the parts of the network affected by an intent.

146

CHAPTER 9. A DECLARATIVE APPROACH TO SDWSN

• Constraints : Weights applied to a set of network resources

• Criteria : Packet header fields or patterns that describe a slice of traffic.

• Instructions : Actions to apply to a slice of traffic, such as header field

modifications, or outputting through specific ports.

Although this can be considered as a first step in the evolution towards a

declarative approach, the full potential of a logically centralized and omniscient

Control plane can be unlocked only by providing more autonomy to the Control

plane itself, therefore a key role is played by Machine learning algorithms.

9.1.2 Machine Learning for Network Management

Machine learning and in particular Artificial Neural Networks (ANN) have been

widely used in the past few decades as a tool capable of directing traffic control in

wired/wireless networks. The potentiality and theoretical aspects of ANN will be

briefly detailed in section 9.1.3, however in this section we provide an overview of

the applications of machine learning algorithms in network management. Machine

learning can be considered at the base of self organizing network. An extensive

literature exists on the topic [109], therefore we consider only those works which

exploits these techniques in the SDN context. In [110] the authors provided a

machine learning based framework to predict the Quality of Experience in SDN. In

[111], the authors compared four well known machine learning algorithms trained on

historical network attack data, to predict network attack patterns in SDN networks.

In [112] Particle Swarm Optimisation (PSO) and Genetic Algorithms (GA), are

employed to find the best set of inputs that give the maximum performance

of an SDN. In [113] it is presented a matheuristic for dynamic optical routing

implemented as an application into a software-defined mobile carrier network using

147

CHAPTER 9. A DECLARATIVE APPROACH TO SDWSN

machine learning to predict tidal traffic variations. Despite the existence of a

large corpus of papers on the application of machine learning algorithms to SDN

networks, there are no papers about SD-IoT deployments.

9.1.3 Artificial Neural Networks

Artificial Neural Networks have been developed as a way to mimic the behavior

of the human brain. An ANN is comprised of multiple interconnected nodes, called

neurons, that closely resemble a neural network. Each neuron is connected to

other neurons through weighted links and neurons are grouped together into layers.

From a functional point of view a neuron contains an activation function which

returns a value depending on the values provided by the incoming links multiplied

by their respective weights. This value is used as input for other neurons and

the process is repeated until the last group (layer) of neurons which returns the

output of the ANN. The process that allows to select the weights of the links of

the network is called training. For more details on ANN and training algorithms

please refer to [114]

Among ANN, it is possible to distinguish two different kinds of networks:

feed-forward and recurrent (RNN). In feed-forward networks all the connections

between the neurons share the the same direction, from one layer to the next,

and there are no connections between neurons at the same layer or connection

providing inputs from a neuron to another of previous layers. This restriction is

removed in recurrent neural networks. The major effect of such change is that

the neural network presents a short term memory, depending on the inputs, as

opposed to the long term memory acquired during the training phase. The main

drawback of these ANN is the Vanishing Gradient (VG) problem. RNNs learn the

weight by measuring how a small change in the weights will affect the network’s

148

CHAPTER 9. A DECLARATIVE APPROACH TO SDWSN

output. If a change in the input causes a very small change in the output the

network is not able to learn effectively [115].

To solve this issue Long Short Term Memory ANN (LSTM-ANN) were intro-

duced in [115]. These RNNs are able to reduce the VG using some special units

called gates that can change the weights or truncate the gradient when needed.

The applications of LSTM are multiple: natural language process, handwriting

recognition, and, for what concerns the topic of this paper, time series analysis

and prediction [116].

9.2 Proposed Solution

In this section we briefly describe the proposed solution. More specifically, we

first describe the proposed architecture in Section 9.2.1, then, in Section 9.2.2 we

describe how the routing strategy exploits the data produced by neural network.

9.2.1 Architecture

The architecture of the proposed work is mainly built as a software suite on top

of the ONOS network operating system. Our software suite can be divided into

three modules: the performance specification module, the measurement module,

and the prediction module.

The Performance Specification module (PSM) is in charge of accepting

the requirements from the user and translating such requirements into an objective

function which should be maximized. In our current implementation we mainly

focused on two performance metrics, i.e., totale energy consumption and fairness.

Therefore, the objective function can be easily determined through a real value in

the range [0, 1], which identifies the weights of energy consumption and fairness in

the objective function.

149

CHAPTER 9. A DECLARATIVE APPROACH TO SDWSN

The Measurement module (MM) is based on the ONOS REST APIs which

are used to collect the amount of traffic traversing each link of the network. This

information is used by the prediction module to train the LSTM-ANN.

The Prediction module (PM) includes the LSTM-ANNs that are used to

predict the traffic load in a future time slot of traffic. If the ANN predicts a change

in the traffic produced by the nodes that justifies a change in the forwarding plane

according to the objective function set by the user then new corresponding Flow

Rules are deployed in the network.

9.2.2 Routing Strategy

The capability to predict the amount of data generated by each node is used to

reshape the routing algorithm of the network. Using the prediction, it is possible

to create a weight function in which each vertex has a weight w0 depending on the

formula:

w0(x, y) = a · w(x, y) + (1� a) · p(y) (9.1)

where w is the weight of the edge between nodes x and y1, p(y) is the amount

of data that will be generated by the node y, as predicted by the LSTM-ANN, and

a is the tuning parameter imposed by the performance specification module based

on the user’s preferences. The optimal routing in this context can be implemented

using Dijkstra’s shortest path algorithm on a new graph Gi obtained from the

original graph G in which the weight of each edge is calculated according to the

formula in 9.1.

Another important aspect of our analysis consists on deciding how much traffic

should be predicted and when to re-run the configuration of the network. In terms
1For the sake of simplicity, in our experiments in the following Section 9.5 we consider

w(x, y) = 1 for all the edges, but in a real environment other values could be included such as
the battery level of the node or the link quality

150

CHAPTER 9. A DECLARATIVE APPROACH TO SDWSN

of costs, changing a path in a network means that the controller has to send an

OpenPath packet to the nodes belonging to the new path (for details on routing

in SDN-WISE please refer to [93]).

The cost of the operation depends on the number of nodes involved in the

change and the benefit obtained by changing the routing in the network. Therefore,

before selecting a new routing strategy a comparison between the two options is

executed and this tradeoff is resolved according to the user preferences.

9.3 Testbed

To test our solution we have implemented a simulated environment based on

real data using Cooja, SDN-WISE and ONOS.

9.3.1 Dataset and Topology

The datasets we used has been taken by the FESTIVAL platform exploiting

the data produced by the parking spot sensors in the city of Santander (Spain)

[117]. The complete SD-IoT system is made of 309 wireless sensor nodes, that

collect the data, 37 wireless relay nodes that are used for routing, 3 gateways and

a datacenter. The placement of all the devices is provided in Figure 9.1.

The blue dots are the nodes, the red ones the repeaters and the black ones the

gateways. Each node is connected to the closest relay node and the relay nodes

form a mesh network connected to the gateways. Finally, all the gateways are

connected to each other and can communicate with the datacenter.

The topology of the network made of the relay nodes is provided in Figure

9.2. This topology has been simulated using the data provided in [117], therefore

there might be some discrepancies between the simulated and the real connectivity

matrix. However, considering the purpose of this work, such differences can be

151

CHAPTER 9. A DECLARATIVE APPROACH TO SDWSN

Figure 9.1: Placement of the IoT devices in Santander.

Figure 9.2: Network topology.

152

CHAPTER 9. A DECLARATIVE APPROACH TO SDWSN

neglected as the focus is on the prediction of patterns in the data not on the exact

replication of the testbed.

For what concerns the generation of the data, each node reports every change

of state in the parking spot using a message containing: a measurement ID, the ID

of the node, a timestamp and the state of the parking spot. Each message is sent

to the closest relay node and forwarded to the closest gateway and then collected

by the datacenter. However, this work focuses on tuning the network of the relay

nodes, thus when in the rest of this chapter we refer to the data produced by a

relay node, we actually mean the aggregation of the data produced by the nodes

directly connected to a relay node. The dataset considered contains 1,580,807

messages sent from January 1, 2016 to December 31, 2016. The messages have

been split into 13542 groups depending on their date and their first relay node.

Then, for each of these groups, we counted the number of messages sent for each

hour, creating 366 24-dimentional vectors for each relay node. These vectors have

been enriched with two additional values indicating the day of the week and if

that day was a public holiday or not.

9.3.2 Simulated Testbed

The feasibility of the proposed approach has been proven in a simulated

environment made of different software modules, in particular:

• Cooja, Mininet, and SDN-WISE to model the network.

• ONOS to implement the Control Plane of the network.

• MATLAB and Python to train the LSTM-ANNs and predict the network

traffic.

153

CHAPTER 9. A DECLARATIVE APPROACH TO SDWSN

Cooja is a network simulator developed for Contiki [69]. It allows to create

networks of emulated and/or simulated wireless sensors. In our case we used Cooja

to build a network of 37 wireless sensor nodes and 3 gateways replicating the relay

nodes in Santander. Each nodes uses SDN-WISE at the network layer, and it

is controlled by the ONOS control plane. Mininet [53] allows to create virtual

networks of OpenFlow devices and virtual hosts. In out testbed we leveraged

Mininet to model the network of the gateways and the datacenter. MATLAB

and Python have been used to train 37 different LSTM-ANNs, one for each relay

node. Each LSTM-ANN is made of 4 neurons in the input layer, one for each of

the variables considered (i.e. day of the week, hour of the day, holiday, generated

packets), 50 neurons in the first hidden layer, and one neuron in the output layer

to predict the number of packets generated by the relay node. Each model is fitted

for 50 training epochs with a batch size of 72. This number represents the number

of input elements after which the internal state of the LSTM-ANN is reset and

in our case it consists of 3 days of data. Each neural network has been trained

with the data from January to October, and tested on November and December.

A week of prediction for a relay node is shown in Figure 9.3.

9.4 Predictive Flow Instantiation

As described in Section 9.2.2 the routing in the network exploits a prediction

of the amount of traffic which will be produced by the sensor nodes. Therefore, a

prediction algorithm is run periodically, (e.g. in our testbed we used a 1 hour time

slot). More specifically, at the end of each slot the Algorithm in 1 is executed:

If there is no data on the traffic, networking policies are implemented using

Dijkstra’s shortest path algorithm and the value of a in eq. (9.1) is set equal to 1.

154

CHAPTER 9. A DECLARATIVE APPROACH TO SDWSN

Figure 9.3: A comparison between the experimental data and the predicted data for a
relay node.

Algorithm 1 Prediction Algorithm
traffic = []
topo = getNetworkTopology()
weightedTopo = setWeights(a=1, b=0, topo)
pThreshold = getThreshold()
while (1) do

currentTraffic = getTrafficData()
traffic.append(currentTraffic)
prediction = predictTraffic(traffic)
pCurrent = getPacketsToBeSent(weightedTopo)
newWeightedTopo = setWeights(a, b, topo, traffic)
pPredicted = getPacketsToBeSent(newWeightedTopo)
pRules = getUpdateCost(weightedTopo)
if (pCurrent >pPredicted + pThreshold + pRules) then

paths = Dijkstra(newWeightedTopology)
updateFlowRules(paths)
weightedTopo = newWeightedTopo

end if

waitForNextSlot()
end while

155

CHAPTER 9. A DECLARATIVE APPROACH TO SDWSN

Otherwise, the prediction algorithm uses the data from t0 to t to predict the traffic

generated by each relay node at t+ 1 (predictTraffic(traffic)). Then it computes:

• pcurrent: the number of data packets predicted to be sent in the network in

t+ 1, using the actual routing policies.

• ppredicted: the number of data packets predicted to be sent in the network in

t+ 1, using the weight function in eq. (9.1).

If pcurrent is higher than ppredicted plus the number of packets needed to reprogram

the devices and plus a user defined threshold (which gives some hysteresis) then

the Flow Rules implementing the new routing policies are deployed in the network

and the weights are updated.

The main outcome of this approach is that by using a predictive flow instan-

tiation, there are situations in which longer paths are used to balance energy

consumption among nodes of the network, (Fair Configuration (FC)).

9.5 Results

In order to prove the flexibility of the proposed solution, we have conducted

three different measurement campaigns, tuning the network with different values of

a. The Dijkstra Configuration (a = 1) and Fair Configuration (a = 0), as defined

in section 9.4, and the Oracle configuration (OC), in which there is no prediction

and the data at t+ 1 is returned from the dataset.

Figure 9.4 shows the average number of packets sent in the network from

November to December by each of the nodes in the three different configurations.

These measurements have been normalized using the DC as reference. It is possible

to notice that the DC produces the highest number of packets, ending with a

156

CHAPTER 9. A DECLARATIVE APPROACH TO SDWSN

Figure 9.4: Overall number of packets transmitted since November 1st, vs time, nor-
malized by overall number of packets transmitted in the "Oracle" case.

+10% when compared to the OC. On the other hand, to measure the fairness of

the proposed solution the standard deviation of the number of packets for each

node is reported in Figure 9.5. The OC and the FC achieve the lowest standard

deviations. In both figures it is also possible to notice that the FC does not differ

too much from the OC. As a result, by tuning the values of a it is possibile to

select the preferred tradeoff between the values reported for the FC and for the

DC.

9.6 Conclusions

In this chapter we have presented a general architecture for an SD-IoT manage-

ment system based on a LSTM-ANN. We tested our approach on a real dataset

inside a simulated environment and we have shown that it is possible to leverage

the predictability of the human behavior to tune the performances of the system.

The proposed solution aims at providing the starting point for a wider declara-

tive, SDN-based, predictive flow rule instantiation system in which the network

management depends on a set of desired parameters, not limited to just the

157

CHAPTER 9. A DECLARATIVE APPROACH TO SDWSN

Figure 9.5: Overall standard deviation for the number of packets transmitted since
November 1st, vs time, normalized by the Standard deviation for the
number of packets transmitted in the "Oracle" case.

relationship between energy efficiency and fairness, and it is the Control plane

that autonomously decides the policies to be implemented in order to make such

policies effective.

158

Chapter 10

Conclusions and Future Work

This dissertation presented a novel approach based on Software Defined Net-

working to control IoT devices. This solution has been extensively tested in

different scenarios showing that a SDWSN has many advantages compared to

existing solutions, in particular experimental results show that in static and quasi-

static conditions a Software Defined approach outperforms standard solutions,

independently on the network size, payload size, traffic generated, and performance

metric considered. The reason for this is the fact that such approach allows to

optimize paths selection and minimize forwarding time at routers. Furthermore:

• SDN-WISE allows the softwarization of network management for WSNs.

Programming the network from the outside is easier because the interfaces

used are platform independent and can be upgraded or modified without

changing the firmware running on the wireless sensor nodes.

• SDN-WISE allows to easily implement QoS policies thanks to its statefulness

and its programmability. In fact a node can manage different classes of traffic

depending on its congestion condition.

• The proposed solution can be used to include WSNs into Network Operating

Systems unlocking the interaction between wired and wireless sensor networks.

159

CHAPTER 10. CONCLUSIONS AND FUTURE WORK

In particular ONOS which mainly covers OpenFlow networks, can now

instruct WSNs. As a result, interaction between SDN-WISE and OpenFlow

networks becomes seamless, with the NOS deciding the forwarding paths

considering the whole topology and providing the appropriate commands for

each device type.

• Such interaction can be used to optimize routing and energy consumption

leveraging advanced techniques like Geographical routing or Artificial Neural

Networks.

Given these conclusions, further work could be focused on further integrating

SDN-WISE within existing IoT solution, both for what concerns IoT Operating

Systems, like RIoT and Contiki, and protocols, like 6LoWPAN and ZigBee.

Another step could be done in the direction of extending the software defined

approach towards other layers of the communication stack. For example allowing

the controller to decide the physical channel used by each of the wireless nodes in

a network.

In addition, it is of primarily importance studying and implementing security

related aspects in order to guarantee a secure and authenticated communication

channel among the nodes and between the nodes and the controller.

160

CHAPTER 10. CONCLUSIONS AND FUTURE WORK

161

Bibliography

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “OpenFlow,” ACM SIGCOMM

Computer Communication Review, vol. 38, p. 69, mar 2008.

[2] M. Abo-Zahhad, O. Amin, M. Farrag, and A. Ali, “A Survey on Protocols,

Platforms and Simulation Tools for Wireless Sensor Networks,” International

Journal of Energy, Information and Communications, vol. 5, pp. 17–34, dec

2014.

[3] H. Malazi, K. Zamanifar, and S. Dulman, “FED: Fuzzy Event Detection

model for Wireless Sensor Networks,” International Journal of Wireless &

Mobile Networks, vol. 3, pp. 29–45, dec 2011.

[4] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”

Computer Networks, vol. 52, pp. 2292–2330, aug 2008.

[5] H. T. Malazi, K. Zamanifar, A. Pruteanu, and S. Dulman, “Gossip-based

density estimation in dynamic heterogeneous wireless sensor networks,” In-

ternational Journal of Autonomous and Adaptive Communications Systems,

vol. 7, no. 1/2, p. 151, 2014.

162

BIBLIOGRAPHY

[6] H. T. Malazi, K. Zamanifar, A. Khalili, and S. Dulman, “DEC: Diversity-

based energy aware clustering for heterogeneous sensor networks,” Ad-Hoc

and Sensor Wireless Networks, vol. 17, no. 1-2, pp. 53–72, 2013.

[7] P. M. Pawar, R. H. Nielsen, N. R. Prasad, and R. Prasad, “Mobility Impact on

Cluster Based MAC Layer Protocols in Wireless Sensor Networks,” Wireless

Personal Communications, vol. 74, pp. 1213–1229, feb 2014.

[8] H. K. D. Sarma, A. Kar, and R. Mall, “A Hierarchical and Role Based Secure

Routing Protocol for Mobile Wireless Sensor Networks,” Wireless Personal

Communications, vol. 90, pp. 1067–1103, oct 2016.

[9] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor

networks: a survey,” Computer Networks, vol. 38, pp. 393–422, mar 2002.

[10] A. Boulis, C.-C. Han, R. Shea, and M. B. Srivastava, “SensorWare: Pro-

gramming sensor networks beyond code update and querying,” Pervasive

and Mobile Computing, vol. 3, pp. 386–412, aug 2007.

[11] L. Mottola and G. P. Picco, “Programming wireless sensor networks,” ACM

Computing Surveys, vol. 43, pp. 1–51, apr 2011.

[12] J. Qadir, N. Ahmed, and N. Ahad, “Building programmable wireless networks:

an architectural survey,” EURASIP Journal on Wireless Communications

and Networking, vol. 2014, p. 172, dec 2014.

[13] J. Wickboldt, W. De Jesus, P. Isolani, C. Both, J. Rochol, and L. Granville,

“Software-defined networking: management requirements and challenges,”

IEEE Communications Magazine, vol. 53, pp. 278–285, jan 2015.

[14] S. S. et al., “The future of networking and the past of protocols,” 10 2011.

163

BIBLIOGRAPHY

[15] P. Berde, W. Snow, G. Parulkar, M. Gerola, J. Hart, Y. Higuchi,

M. Kobayashi, T. Koide, B. Lantz, B. O’Connor, and P. Radoslavov, “ONOS,”

in Proceedings of the third workshop on Hot topics in software defined net-

working - HotSDN ’14, (New York, New York, USA), pp. 1–6, ACM Press,

2014.

[16] P. Xiao, W. Qu, H. Qi, Z. Li, and Y. Xu, “The SDN controller placement

problem for WAN,” in 2014 IEEE/CIC International Conference on Com-

munications in China (ICCC), pp. 220–224, IEEE, oct 2014.

[17] L. Velasco, A. Asensio, J. Berral, A. Castro, and V. López, “Towards a

carrier SDN: an example for elastic inter-datacenter connectivity,” Optics

Express, vol. 22, p. 55, jan 2014.

[18] N. A. Jagadeesan and B. Krishnamachari, “Software-Defined Networking

Paradigms in Wireless Networks: A Survey,” ACM Computing Surveys,

vol. 47, pp. 1–11, nov 2014.

[19] F. Dressler, I. Dietrich, R. German, and B. Krüger, “A rule-based system for

programming self-organized sensor and actor networks,” Computer Networks,

vol. 53, pp. 1737–1750, jul 2009.

[20] T. Luo, H.-P. Tan, and T. Q. S. Quek, “Sensor OpenFlow: Enabling Software-

Defined Wireless Sensor Networks,” IEEE Communications Letters, vol. 16,

pp. 1896–1899, nov 2012.

[21] D. Zeng, T. Miyazaki, S. Guo, T. Tsukahara, J. Kitamichi, and T. Hayashi,

“Evolution of Software-Defined Sensor Networks,” in 2013 IEEE 9th Inter-

164

BIBLIOGRAPHY

national Conference on Mobile Ad-hoc and Sensor Networks, pp. 410–413,

IEEE, dec 2013.

[22] A. Mahmud, R. Rahmani, and T. Kanter, “Deployment of Flow-Sensors

in Internet of Things’ Virtualization via OpenFlow,” in Proceedings - 2012

3rd FTRA International Conference on Mobile, Ubiquitous, and Intelligent

Computing, MUSIC 2012, pp. 195–200, 2012.

[23] P. Dely, A. Kassler, and N. Bayer, “OpenFlow for Wireless Mesh Networks,”

in 2011 Proceedings of 20th International Conference on Computer Commu-

nications and Networks (ICCCN), pp. 1–6, IEEE, jul 2011.

[24] M. Abrignani, C. Buratti, D. Dardari, N. El Rachkidy, A. Guitton,

F. Martelli, A. Stajkic, and R. Verdone, “The EuWIn testbed for 802.15.4/zig-

bee networks: From the simulation to the real world,” Proceedings of the Inter-

national Symposium on Wireless Communication Systems, vol. 9, pp. 365–369,

2013.

[25] T. Miyazaki, S. Yamaguchi, K. Kobayashi, J. Kitamichi, Song Guo, T. Tsuka-

hara, and T. Hayashi, “A software defined wireless sensor network,” in 2014

International Conference on Computing, Networking and Communications

(ICNC), pp. 847–852, IEEE, feb 2014.

[26] B. Trevizan de Oliveira, L. Batista Gabriel, and C. Borges Margi, “TinySDN:

Enabling Multiple Controllers for Software-Defined Wireless Sensor Net-

works,” IEEE Latin America Transactions, vol. 13, pp. 3690–3696, nov

2015.

165

BIBLIOGRAPHY

[27] R. Riggio, K. M. Gomez, T. Rasheed, J. Schulz-Zander, S. Kuklinski, and

M. K. Marina, “Programming Software-Defined wireless networks,” in 10th

International Conference on Network and Service Management (CNSM) and

Workshop, pp. 118–126, IEEE, nov 2014.

[28] C. Bernardos, A. de la Oliva, P. Serrano, A. Banchs, L. Contreras, H. Jin,

and J. Zuniga, “An architecture for software defined wireless networking,”

IEEE Wireless Communications, vol. 21, pp. 52–61, jun 2014.

[29] S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo, “Software Defined

Wireless Networks: Unbridling SDNs,” in 2012 European Workshop on

Software Defined Networking, pp. 1–6, IEEE, oct 2012.

[30] “IEEE 802.15.4,” http://www.ieee802.org/15/pub/TG4.html.

[31] J. A. Stankovic, “Research Directions for the Internet of Things,” IEEE

Internet of Things Journal, vol. 1, pp. 3–9, feb 2014.

[32] S. L. Keoh, S. S. Kumar, and H. Tschofenig, “Securing the Internet of Things:

A Standardization Perspective,” IEEE Internet of Things Journal, vol. 1,

pp. 265–275, jun 2014.

[33] “ZigBee,” http://www.zigbee.org/.

[34] N. Kushalnagar, G. Montenegro, and C. Schumacher, “Ipv6 over low-power

wireless personal area networks (6lowpans): Overview, assumptions, problem

statement, and goals,” 01 2007.

[35] Lili Liang, Lianfen Huang, Xueyuan Jiang, and Yan Yao, “Design and

implementation of wireless Smart-home sensor network based on ZigBee

166

BIBLIOGRAPHY

protocol,” in 2008 International Conference on Communications, Circuits

and Systems, pp. 434–438, IEEE, may 2008.

[36] S. D. T. Kelly, N. K. Suryadevara, and S. C. Mukhopadhyay, “Towards the

Implementation of IoT for Environmental Condition Monitoring in Homes,”

IEEE Sensors Journal, vol. 13, pp. 3846–3853, oct 2013.

[37] C. Gezer and C. Buratti, “A ZigBee Smart Energy Implementation for Energy

Efficient Buildings,” in 2011 IEEE 73rd Vehicular Technology Conference

(VTC Spring), pp. 1–5, IEEE, may 2011.

[38] E. D. Pinedo-Frausto and J. A. Garcia-Macias, “An experimental analysis

of Zigbee networks,” in 2008 33rd IEEE Conference on Local Computer

Networks (LCN), pp. 723–729, IEEE, oct 2008.

[39] M. Franceschinis, C. Pastrone, M. A. Spirito, and C. Borean, “On the

performance of ZigBee Pro and ZigBee IP in IEEE 802.15.4 networks,” in

2013 IEEE 9th International Conference on Wireless and Mobile Computing,

Networking and Communications (WiMob), pp. 83–88, IEEE, oct 2013.

[40] B. Pediredla, K. I. Wang, Z. Salcic, and A. Ivoghlian, “A 6LoWPAN imple-

mentation for memory constrained and power efficient wireless sensor nodes,”

in IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics

Society, pp. 4432–4437, IEEE, nov 2013.

[41] G. Pellerano, M. Falcitelli, M. Petracca, and P. Pagano, “6LoWPAN conform

ITS-Station for non safety-critical services and applications,” in 2013 13th

International Conference on ITS Telecommunications (ITST), pp. 426–432,

IEEE, nov 2013.

167

BIBLIOGRAPHY

[42] S. Dawans, S. Duquennoy, and O. Bonaventure, “On link estimation in dense

RPL deployments,” in 37th Annual IEEE Conference on Local Computer

Networks – Workshops, pp. 952–955, IEEE, oct 2012.

[43] M. Kovatsch, M. Weiss, and D. Guinard, “Embedding internet technology for

home automation,” in 2010 IEEE 15th Conference on Emerging Technologies

& Factory Automation (ETFA 2010), pp. 1–8, IEEE, sep 2010.

[44] E. Toscano and L. Lo Bello, “Comparative assessments of IEEE 802.15.4/Zig-

Bee and 6LoWPAN for low-power industrial WSNs in realistic scenarios,” in

2012 9th IEEE International Workshop on Factory Communication Systems,

pp. 115–124, IEEE, may 2012.

[45] C. Perkins and E. Royer, “Ad-hoc on-demand distance vector routing,” in

Proceedings WMCSA’99. Second IEEE Workshop on Mobile Computing

Systems and Applications, pp. 90–100, IEEE, 1999.

[46] T. Winter, P. Thubert, A. Brandt, T. H. Clausen, J. W. Hui, R. Kelsey,

P. Levis, K. Pister, R. Struik, and J. Vasseur, “Rpl: Ipv6 routing protocol

for low power and lossy networks,” Work In Progress), http://tools. ietf.

org/html/draft-ietf-roll-rpl-19, no. July, pp. 1–164, 2011.

[47] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState,” ACM

SIGCOMM Computer Communication Review, vol. 44, pp. 44–51, apr 2014.

[48] Wei Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol

for wireless sensor networks,” in Proceedings.Twenty-First Annual Joint

Conference of the IEEE Computer and Communications Societies, vol. 3,

pp. 1567–1576, IEEE, 2002.

168

BIBLIOGRAPHY

[49] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann, “Impact of

network density on data aggregation in wireless sensor networks,” in Pro-

ceedings 22nd International Conference on Distributed Computing Systems,

pp. 457–458, IEEE Comput. Soc, 2002.

[50] A. Manjeshwar and D. Agrawal, “TEEN: a routing protocol for enhanced

efficiency in wireless sensor networks,” in Proceedings 15th International

Parallel and Distributed Processing Symposium. IPDPS 2001, no. C, pp. 2009–

2015, IEEE Comput. Soc, 2001.

[51] C. Fragouli, J.-Y. Le Boudec, and J. Widmer, “Network coding,” ACM

SIGCOMM Computer Communication Review, vol. 36, p. 63, jan 2006.

[52] L. Keller, E. Atsan, K. Argyraki, and C. Fragouli, “SenseCode,” ACM

Transactions on Sensor Networks, vol. 9, pp. 1–20, mar 2013.

[53] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop,” in Proceedings

of the Ninth ACM SIGCOMM Workshop on Hot Topics in Networks - Hotnets

’10, (New York, New York, USA), pp. 1–6, ACM Press, 2010.

[54] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”

Computer Networks, vol. 54, pp. 2787–2805, oct 2010.

[55] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “A survey on wireless

multimedia sensor networks,” Computer Networks, vol. 51, pp. 921–960, mar

2007.

[56] F. Hu, Q. Hao, and K. Bao, “A Survey on Software-Defined Network and

OpenFlow: From Concept to Implementation,” IEEE Communications Sur-

veys & Tutorials, vol. 16, no. 4, pp. 2181–2206, 2014.

169

BIBLIOGRAPHY

[57] H. Moura, G. V. C. Bessa, M. A. M. Vieira, and D. F. Macedo, “Ethanol: Soft-

ware defined networking for 802.11 Wireless Networks,” in 2015 IFIP/IEEE

International Symposium on Integrated Network Management (IM), pp. 388–

396, IEEE, may 2015.

[58] L. Zhong, K. Nakauchi, and Y. Shoji, “Performance analysis of application-

based QoS control in software-defined wireless networks,” in 2014 In-

ternational Wireless Communications and Mobile Computing Conference

(IWCMC), pp. 464–469, IEEE, aug 2014.

[59] X. Song, C. Wang, and J. Pei, “2ASenNet: A multiple QoS metrics hierarchi-

cal routing protocol based on swarm intelligence optimization for WSN,” in

2012 IEEE International Conference on Information Science and Technology,

pp. 531–534, IEEE, mar 2012.

[60] I. Al-Anbagi, M. Erol-Kantarci, and H. T. Mouftah, “A Survey on Cross-Layer

Quality-of-Service Approaches in WSNs for Delay and Reliability-Aware

Applications,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1,

pp. 525–552, 2016.

[61] M. Sujeethnanda, N. Padmalaya, and G. Ramamurthy, “A Novel Approach to

an Energy Aware Routing Protocol for Mobile WSN: QoS Provision,” in 2012

International Conference on Advances in Computing and Communications,

pp. 38–41, IEEE, aug 2012.

[62] H. Egilmez and S. Dane, “OpenQoS: An OpenFlow controller design for

multimedia delivery with end-to-end Quality of Service over Software-Defined

Networks,” Signal & Information Processing Association Annual Summit

and Conference (APSIPA ASC), pp. 1–8, 2012.

170

BIBLIOGRAPHY

[63] A. Ishimori, F. Farias, I. Furtado, E. Cerqueira, and A. Abelém, “Automatic

QoS Management on OpenFlow Software-Defined Networks,” 7th API Think-

Tank - Software Defined Networking, vol. 1, no. i, pp. 2–3, 2012.

[64] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “PolicyCop:

An Autonomic QoS Policy Enforcement Framework for Software Defined

Networks,” in 2013 IEEE SDN for Future Networks and Services (SDN4FNS),

pp. 1–7, IEEE, nov 2013.

[65] B.-Y. Ke, P.-L. Tien, and Y.-L. Hsiao, “Parallel prioritized flow scheduling

for software defined data center network,” in 2013 IEEE 14th International

Conference on High Performance Switching and Routing (HPSR), pp. 217–

218, IEEE, jul 2013.

[66] R. Brown, Exponential Smoothing for Predicting Demand. Little, 1956.

[67] “OPNET Modeler,” http://www.riverbed.com.

[68] Simulation Interoperability Standards Committee (SISC), “IEEE Standard

for Modeling and Simulation (M&S) High Level Architecture (HLA) - Frame-

work and Rules,” IEEE Std 1516-2010 (Revision of IEEE Std 1516-2000),

pp. 1–38, 2010.

[69] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible

operating system for tiny networked sensors,” in 29th Annual IEEE Interna-

tional Conference on Local Computer Networks, pp. 455–462, IEEE (Comput.

Soc.), 2004.

[70] E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, and T. Schmidt, “RIOT OS:

Towards an OS for the Internet of Things,” in 2013 IEEE Conference on

171

BIBLIOGRAPHY

Computer Communications Workshops (INFOCOM WKSHPS), pp. 79–80,

IEEE, apr 2013.

[71] A. J. Jara, S. Varakliotis, A. F. Skarmeta, and P. Kirstein, “Extending the

Internet of things to the future Internet through IPv6 support,” Mobile

Information Systems, vol. 10, no. 1, pp. 3–17, 2014.

[72] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and

S. Shenker, “NOX,” ACM SIGCOMM Computer Communication Review,

vol. 38, p. 105, jul 2008.

[73] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN,” ACM SIG-

COMM Computer Communication Review, vol. 44, pp. 87–98, apr 2014.

[74] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh, N. McKeown,

and S. Shenker, “SANE: a protection architecture for enterprise networks,”

15th USENIX Security Symposium, pp. 137–151, 2006.

[75] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker,

“Ethane,” in Proceedings of the 2007 conference on Applications, technologies,

architectures, and protocols for computer communications - SIGCOMM ’07,

(New York, New York, USA), p. 1, ACM Press, 2007.

[76] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie,

H. Yan, J. Zhan, and H. Zhang, “A clean slate 4D approach to network

control and management,” ACM SIGCOMM Computer Communication

Review, vol. 35, p. 41, oct 2005.

[77] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der

Merwe, “Design and implementation of a routing control platform,” 2nd

172

BIBLIOGRAPHY

conference on Symposium on Networked Systems Design & Implementation,

pp. 15–28, 2005.

[78] Project Floodlight, “Floodlight,” 2017.

[79] D. Erickson, “The beacon openflow controller,” in Proceedings of the second

ACM SIGCOMM workshop on Hot topics in software defined networking -

HotSDN ’13, (New York, New York, USA), p. 13, ACM Press, 2013.

[80] T. Feng, J. Bi, and H. Hu, “TUNOS: A novel SDN-oriented networking

operating system,” in 2012 20th IEEE International Conference on Network

Protocols (ICNP), pp. 1–2, IEEE, oct 2012.

[81] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,

R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, Others, and S. Shenker,

“Onix: A Distributed Control Platform for Large-Scale Production Networks,”

9th USENIX Conference on Operating Systems Design and Implementation,

pp. 1–6, 2010.

[82] J. Medved, R. Varga, A. Tkacik, and K. Gray, “OpenDaylight: Towards a

Model-Driven SDN Controller architecture,” in Proceeding of IEEE Interna-

tional Symposium on a World of Wireless, Mobile and Multimedia Networks

2014, pp. 1–6, IEEE, jun 2014.

[83] A. Al-Fuqaha, A. Khreishah, M. Guizani, A. Rayes, and M. Mohammadi,

“Toward better horizontal integration among IoT services,” IEEE Communi-

cations Magazine, vol. 53, pp. 72–79, sep 2015.

[84] V. Cerf and M. Senges, “Taking the Internet to the Next Physical Level,”

Computer, vol. 49, pp. 80–86, feb 2016.

173

BIBLIOGRAPHY

[85] M. Zorzi, A. Gluhak, S. Lange, and A. Bassi, “From today’s INTRAnet of

things to a future INTERnet of things: A wireless- and mobility-related

view,” IEEE Wireless Communications, vol. 17, no. 6, pp. 44–51, 2010.

[86] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, “Middleware

for Internet of Things: A Survey,” IEEE Internet of Things Journal, vol. 3,

pp. 70–95, feb 2016.

[87] S. Milardo, A. C. Anadiotis, L. Galluccio, G. Morabito, and S. Palazzo, “Of-

floading software defined WSNs through distributed geographic forwarding.”

[88] A.-C. G. Anadiotis, L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo,

“Towards a software-defined Network Operating System for the IoT,” in 2015

IEEE 2nd World Forum on Internet of Things (WF-IoT), pp. 579–584, IEEE,

dec 2015.

[89] A.-C. G. Anadiotis, G. Morabito, and S. Palazzo, “An SDN-Assisted Frame-

work for Optimal Deployment of MapReduce Functions in WSNs,” IEEE

Transactions on Mobile Computing, vol. 15, pp. 2165–2178, sep 2016.

[90] L. Mai, L. Rupprecht, P. Costa, M. Migliavacca, P. Pietzuch, and A. L.

Wolf, “Supporting application-specific in-network processing in data centres,”

in Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM -

SIGCOMM ’13, (New York, New York, USA), p. 519, ACM Press, 2013.

[91] P. Costa, A. Donnelly, A. Rowstron, and G. O. Shea, “Camdoop : Exploiting

In-network Aggregation for Big Data Applications,” NSDI’12 Proceedings of

the 9th USENIX conference on Networked Systems Design and Implementa-

tion, pp. 1–14, 2012.

174

BIBLIOGRAPHY

[92] C. Buratti, A. Stajkic, G. Gardasevic, S. Milardo, M. D. Abrignani, S. Mijovic,

G. Morabito, and R. Verdone, “Testing Protocols for the Internet of Things on

the EuWIn Platform,” IEEE Internet of Things Journal, vol. 3, pp. 124–133,

feb 2016.

[93] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “SDN-WISE: Design,

prototyping and experimentation of a stateful SDN solution for WIreless

SEnsor networks,” in 2015 IEEE Conference on Computer Communications

(INFOCOM), vol. 26, pp. 513–521, IEEE, apr 2015.

[94] M. Zorzi and R. Rao, “Geographic random forwarding (geraf) for ad hoc

and sensor networks: energy and latency performance,” IEEE Transactions

on Mobile Computing, vol. 2, pp. 349–365, oct 2003.

[95] K. Chen and K. Nahrstedt, “Effective location-guided tree construction

algorithms for small group multicast in MANET,” in Proceedings.Twenty-

First Annual Joint Conference of the IEEE Computer and Communications

Societies, vol. 3, pp. 1180–1189, IEEE, 2002.

[96] J. Bachrach and C. Taylor, “Localization in Sensor Networks,” in Handbook

of Sensor Networks, pp. 277–310, Hoboken, NJ, USA: John Wiley & Sons,

Inc., sep 2005.

[97] G. Mao, B. Fidan, and B. D. Anderson, “Wireless sensor network localization

techniques,” Computer Networks, vol. 51, pp. 2529–2553, jul 2007.

[98] V. Daiya, J. Ebenezer, S. A. V. S. Murty, and B. Raj, “Experimental

analysis of RSSI for distance and position estimation,” in 2011 International

175

BIBLIOGRAPHY

Conference on Recent Trends in Information Technology (ICRTIT), pp. 1093–

1098, IEEE, jun 2011.

[99] E. Elnahrawy, Xiaoyan Li, and R. Martin, “The limits of localization using

signal strength: a comparative study,” in 2004 First Annual IEEE Commu-

nications Society Conference on Sensor and Ad Hoc Communications and

Networks, 2004. IEEE SECON 2004., vol. 00, pp. 406–414, IEEE, 2004.

[100] G. Zanca, F. Zorzi, A. Zanella, and M. Zorzi, “Experimental comparison

of RSSI-based localization algorithms for indoor wireless sensor networks,”

in Proceedings of the workshop on Real-world wireless sensor networks -

REALWSN ’08, (New York, New York, USA), p. 1, ACM Press, 2008.

[101] P. Biswas and Y. Ye, “Semidefinite programming for ad hoc wireless sensor

network localization,” in Proceedings of the third international symposium

on Information processing in sensor networks - IPSN’04, (New York, New

York, USA), p. 46, ACM Press, 2004.

[102] S. E. Dreyfus and R. A. Wagner, “The steiner problem in graphs,” Networks,

vol. 1, no. 3, pp. 195–207, 1971.

[103] D. M. Warme, “Spanning trees in hypergraphs with applications to steiner

trees,” 1998. AAI9840474.

[104] “Embit Data Sheet,” https://tinyurl.com/EmbitDatasheet.

[105] R. Shah, A. Wolisz, and J. Rabaey, “On the performance of geographical

routing in the presence of localization errors,” in IEEE International Con-

ference on Communications, 2005. ICC 2005. 2005, vol. 5, pp. 2979–2985,

IEEE, 2005.

176

BIBLIOGRAPHY

[106] “Dreyfus-Wagner Algorithm,” https://tinyurl.com/Dreyfus-Wagner.

[107] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,

S. Azodolmolky, and S. Uhlig, “Software-Defined Networking: A Compre-

hensive Survey,” Proceedings of the IEEE, vol. 103, pp. 14–76, jan 2015.

[108] T. Akiyama, S. Murata, K. Tsuchiya, T. Yokoyama, M. Maggio, G. Ciulla,

J. R. Santana, M. Zhao, J. B. D. Nascimento, and L. Gürgen, “FESTIVAL:

Design and Implementation of Federated Interoperable Smart ICT Services

Development and Testing Platform,” Journal of Information Processing,

vol. 25, pp. 278–287, 2017.

[109] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, “A Survey of

Machine Learning Techniques Applied to Self-Organizing Cellular Networks,”

IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2392–2431,

2017.

[110] T. Abar, A. Ben Letaifa, and S. El Asmi, “Machine learning based QoE

prediction in SDN networks,” in 2017 13th International Wireless Communi-

cations and Mobile Computing Conference (IWCMC), pp. 1395–1400, IEEE,

jun 2017.

[111] S. Nanda, F. Zafari, C. DeCusatis, E. Wedaa, and B. Yang, “Predicting

network attack patterns in SDN using machine learning approach,” in 2016

IEEE Conference on Network Function Virtualization and Software Defined

Networks (NFV-SDN), pp. 167–172, IEEE, nov 2016.

[112] A. Sabeeh, Y. Al-Dunainawi, M. F. Abbod, and H. S. Al-Raweshidy, “A

hybrid intelligent approach for optimising software-defined networks perfor-

177

BIBLIOGRAPHY

mance,” in 2016 6th International Conference on Information Communica-

tion and Management (ICICM), pp. 47–51, IEEE, oct 2016.

[113] R. Alvizu, S. Troia, G. Maier, and A. Pattavina, “Matheuristic With Machine-

Learning-Based Prediction for Software-Defined Mobile Metro-Core Net-

works,” Journal of Optical Communications and Networking, vol. 9, p. D19,

sep 2017.

[114] F. Dario Baptista, S. Rodrigues, and F. Morgado-Dias, “Performance com-

parison of ANN training algorithms for classification,” in 2013 IEEE 8th

International Symposium on Intelligent Signal Processing, pp. 115–120, IEEE,

sep 2013.

[115] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmid-

huber, “LSTM: A Search Space Odyssey,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 28, pp. 2222–2232, oct 2017.

[116] “LSTM Applications,” http://people.idsia.ch/~juergen/rnn.html.

[117] “FEderated interoperable SmarT ICT services deVelopment And testing

pLatform,” http://www.festival-project.eu.

178

