N S%fo

S 7
g e
%

“Zors st \g@’

UNIVERSITA DEGLI STUDI DI PALERMO

Information and Communication Technologies
Dipartimento Energia, Ingegneria dell’ Informazione e Modelli Matematici
Ingegneria delle Telecomunicazioni

Progetto: TECLA — “Ricercatori ed Esperti Di Alta Tecnologia e Innovazione Tecnologica Applicata
al Settore dei Beni Culturali" a valere sull’Avviso n. 713/Ric. del 29 ottobre 2010
TITOLO III
“CREAZIONE DI NUOVI DISTRETTI E/O NUOVE AGGREGAZIONI PUBBLICO — PRIVATE”

Codice identificativo progetto: PONO3PE_00214_1/F7

* X

appiane
Coesione

> >

/ L Geverss ltalans - Presidessa del Consigho dei Vemist
Ministro per la Coesione Territoriale

200922000

k3
* e K

2

ez
ter

UNIONE EUROPEA

Fondo Europeo di Sviluppo Regionale

A Software Defined approach to the Internet of Things:
From Wireless Sensor Networks to Network Operating Systems

IL DOTTORE

IL COORDINATORE
SEBASTIANO MILARDO

CHIAR.MA PROFE.SSA ILENIA TINNIRELLO

IL TUTOR
CHIAR.MO PROF. SERGIO PALAZZO

CICLO XXX
ANNO CONSEGUIMENTO TITOLO 2018

to my family and Silvia

Sommario

Di recente il mondo delle reti di telecomunicazioni ¢ stato caratterizzato
dall’emergere del paradigma di Networking Software Defined (SDN). Grazie a
questo approccio ¢ possibile fornire un’interfaccia standard per lo sviluppo di
software in grado di gestire i dispositivi di networking e i flussi di traffico che li
attraversano, disaccoppiando il management della rete dal forwarding dei dati.
Questa soluzione, di cui il protocollo di comunicazione OpenFlow é tra i maggiori
esponenti, ha riscosso un notevole successo nelle reti cablate permettendo di
superare il vendor lock-in e permettendo la gestione di dispositivi eterogenei
tramite un unico punto di accesso logicamente centralizzato.

Un ulteriore ambito che potrebbe trarre notevole beneficio da un simile ap-
proccio é quello dell’Internet of Things (IoT), cioé 'insieme di quei dispositivi
embedded di uso quotidiano interconnessi tramite Internet, di cui le reti wireless
di sensori rappresentano un importante caso d’'uso. Anche in questo ambiente,
I'eterogeneita dei dispositivi e la necessita di soluzioni cucite attorno alla singola
applicazione ha creato una moltitudine di protocolli e soluzioni che difficilmente
riescono a cooperare, creando cosi una moltitudine di Intranet of Things invece di
un unica Internet of Things. Di recente, sono state presentate alcune soluzioni per
implementare un approccio Software Defined anche nelle reti di sensori wireless.

Il lavoro presentato in questa dissertazione si colloca in questo quadro presentan-
do un framework completo per la gestione di reti di sensori tramite un’interfaccia
OpenFlow-like chiamata SDN-WISE e la sua integrazione all’interno del sistema
operativo per networking ONOS.

In questa dissertazione sono presentati i dettagli architetturali e le conclusioni
maturate durante la progettazione della soluzione in questione.

Abstract

Recently, telecommunications have been characterized by the emerging of the
Software Defined Networking (SDN) paradigm. This approach provides standard
interfaces for the development of network management software. Software that
can control networking devices and the flows of traffic passing through them,
decoupling the network management from the data forwarding. This solution, of
which the OpenFlow communication protocol is one of the major players, has been
successfully applied in wired networks allowing to overcome the vendor lock-in
and allowing the management of heterogeneous devices through a single logically
centralized point of control.

Another area that could greatly benefit from such an approach is the Internet
of Things (IoT), that is, an interconnection via the Internet of devices embedded
in everyday objects, of which wireless sensor networks represent an important use
case. Even in this environment, the heterogeneity of the devices and the need for
solutions tailored around each single application has created lots of protocols and
solutions that can hardly cooperate, thus creating multiple Intranets of Things
instead of the envisioned unique Internet of Things. Recently, some solutions
have been presented to implement a Software Defined approach in wireless sensor
networks.

The work presented in this dissertation belongs to this context and it presents a
complete framework for the management of sensor networks through an OpenFlow-
like interface called SDN-WISE and its integration within the ONOS network
operating system.

This dissertation presents the architectural details and the conclusions reached
during the design of the proposed solution.

Contents

Introduction
1.1 Structure of this Dissertation

1.2 Acknowledgements L.

Technical Background
2.1 Software Defined Networking
2.2 Software Defined Wireless Sensor Networks

221 SDWN . . .

Comparing IoT protocols

3.1 Related Worko

3.2 ZigBee

3.3 6LoWPAN
3.3.1 Protocol Stack o oo
3.3.2 Routing Protocol oo

3.4 FEuWin Experimental Platform

3.5 Experimental Setupo
3.5.1 Data Generated and Environmental Conditions
3.5.2 Parameters Settings L.

3.5.3 Performance Metrics

II

3.6 Numerical results

3.6.1 Static and Quasi-Static Environments
3.6.2 Dynamic Environment L.
3.7 Conclusion
SDN-WISE
4.1 SDN-WISE Overview
4.1.1 Requirements Lo
4.1.2 SDN-WISE approach
4.1.3 SDN-WISE protocol architecture
4.2 SDN-WISE protocol details
4.2.1 Topology Discovery
4.2.2 Packet handling
4.3 Prototype and testbedo
4.4 Performance evaluation
4.5 Conclusions

A Software Defined QoS for IoT devices

5.1 Related Work
5.2 BasiclIdea
5.3 Detailed Operations

5.3.1 Estimation issues L.
5.4 Simulation Resultso
5.5 Conclusions

Extending ONOS to support IoT devices

6.1 ONOS Architecture

40
41
41
42
45
47
47
49
o4
56

61

62
64
66
67
71
72
80

81

7

8

6.2 Proposed Architecture 87

6.2.1 Applications oo 88
6.2.2 SensorNode Subsystem 89
6.2.3 FlowRule Subsystem 90
6.2.4 Packet Subsystemo 91
6.2.5 DeviceControlRule Subsystem 92
6.2.6 Protocols 93
6.3 Prototype Implementation 93
6.4 Conclusion 95
Implementing the IoT Vision using ONOS 96
7.1 Motivation and Architecture L. 101
7.2 The Software Sensor Node 105
7.3 Sensor Node Registration and Representation 107
7.4 Network-Wide Packet Forwarding 112
7.5 Case Study: MapReduce In-Network Processing 115
7.6 Conclusions 120
Reducing energy footprint with GEO Routing 122
8.1 Geographic forwarding in SDWSNs 124
8.1.1 Localization 124
8.1.2 Controller operations 127
8.1.3 Nodes operations 129
8.2 Prototype 130
8.2.1 ONOS Extended Architecture 130
8.2.2 Geographic Forwarding 131

IV

8.3 Performance evaluation 135

83.1 Unicast case 136

8.3.2 Multicast case 138

8.4 Conclusions 140

9 A Declarative Approach to SDWSN 144
9.1 Related work 146
9.1.1 Imtents 146

9.1.2 Machine Learning for Network Management 147

9.1.3 Artificial Neural Networks 148

9.2 Proposed Solution 149
9.2.1 Architecture L 149

9.2.2 Routing Strategyo 150

9.3 Testbed 151
9.3.1 Dataset and Topology 151

9.3.2 Simulated Testbed 0oL 153

9.4 Predictive Flow Instantiation 154
95 Results. 156
9.6 Conclusions 157

10 Conclusions and Future Work 159
References 160

List of Figures

2.1

3.1

3.2
3.3

3.4

3.5

3.6

3.7
3.8

4.1
4.2
4.3

4.4

SDWN protocol stack. 10

Protocol architectures. Left: SDWN. Center: 6LoWPAN. Right:

ZigBee. 17
Flextop deployment at the University of Bologna. 23
Flextop nodesmap. 24

Unicast trafficc RTT as a function of the number of hops when
transmitting 20 bytes of payload in static conditions. 31
Unicast traffic: RTT as a function of the payload size in the case of
one hop and static conditions. 32
Unicast traffic: RTT for the different protocols in the case of static

and quasi-static conditions, setting 20 bytes of payload and 2 hops. 34

Multicast traffic: average RT'T as a function of the payload size. . 35
Multicast traffic: average PLR as a function of the payload size. . 36
SDN-WISE protocol stack. 47
WISE packet header. 49
WISE flow table. 49
Exemplary topology. oo 52

VI

4.5

4.6
4.7
4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

0.1
0.2

2.3

0.4
5.5
5.6
5.7

Finite state machine implementing a policy such that packets gen-
erated by A are dropped if the last data measured by B is lower
than (or equal t0) Topr. -« « o« o oL
SDN-WISE deployment options.
Integration with the OMNeT++ simulator.
Nodes deployment.,
CDFs of the RTT for different payload sizes and different distances
between the source and destination node.

Average RTT vs. the payload size, for different values of the number

Standard deviation of the RTT values vs. the payload size, for
different values of the number of hops.
CDF of the RTT in the multicast case for different payload sizes.

Efficiency for different values of maximum WISE Flow Table entry

Efficiency for different values of beacon sending period.

Controller response times for different topologies.

New SDN-WISE report message.
Example of network topology.
Finite state machine implementing a policy such that a node changes
state depending on the buffer occupancy ;.
Simulation scenario.
Dropped data packets without QoS support.
WCD: Dropped data packet Tgy = 75, Tyr = 95 (option 1). . . .

WCD: Dropped data packet Tgy = 75, Tyg = 95 (Option 2). . . .

VII

52
o4
56
o7

57

58

58
60

60
60

61

68
70

72
73
76
76
7

5.8 WCD: Dropped data packet Tgy = 65, Typ =85. 78

5.9 WCD: Dropped data packet Tsy = 85, Typ = 105. 78
5.10 CD: Dropped data packet Ty = 65, Ty =85. 79
5.11 CD: Dropped data packet Tsy = 85, Typ =105. 79

5.12 CD: Dropped data packet Ty = 65, Ty g = 85, Variable Traffic. . 80

6.1 ONOS Layered Architecture 85
6.2 ONOS Extended Architecture for IoT 87
6.3 Integrated Network Scenario. 94
6.4 ONOS Snapshot of the Prototype. 95
7.1 Typical [oT Ecosystem. 97
7.2 Heterogeneous Network Integration with SSN 106

7.3 Representation of (a): the sink node in ONOS, and (b): its protocol

stack. 109
7.4 Sensor Node Registration Flowchart. 110
7.5 Integrated Forwarding flowchart. 113
7.6 Network topology with different reducers for each case. 116
7.7 Nodes resource usage. 119

8.1 Flow diagram of the operations executed at the nodes for localization

PUIPOSES. © « « v v v v e e e e e e e e 125
8.2 Exemplary case. 127
8.3 Multicast Group Join/Leave message format. 132
8.4 Geographic Coordinates message format. 132
8.5 Geographic Multicast packet format. 133

VIII

8.6

8.7
8.8

8.9

8.10

8.11

8.12

8.14

9.1
9.2

9.3

9.4

9.5

CDF of the overall number of signaling messages for different unicast
forwarding strategies.o 138
CDF of the number of rules for different unicast forwarding strategies. 138
CDF of the energy consumption in the unicast case for the considered
forwarding strategies. 139
PDF of the number of hops needed in the unicast case for the
considered forwarding strategies. 139
CDF of the path length implied in the unicast case for the considered
forwarding strategies.o Lo 139
Multicast topologies considered in our work. 141
Time needed to compute the Steiner tree using Dreyfus-Wagner
algorithm. o 141
Time needed to compute the Steiner tree using GeoSteiner algorithm.142

CDF of the path length in the multicast case for the considered

forwarding strategies. 142
Placement of the IoT devices in Santander. 152
Network topology. 152

A comparison between the experimental data and the predicted
data for arelaynode. oL 155
Overall number of packets transmitted since November 1st, vs time,
normalized by overall number of packets transmitted in the "Oracle"
CASE. « « e e e 157
Overall standard deviation for the number of packets transmitted
since November 1st, vs time, normalized by the Standard deviation

for the number of packets transmitted in the "Oracle" case. 158

IX

Chapter 1

Introduction

The Software Defined Networking paradigm is changing the way in which
networks are conceived with disruptive implications on network design, deployment,
operation, and maintenance. In fact SDN has been envisioned as a way to reduce
complexity and increase flexibility of network configuration and management [1].
In SDN networks management operations (Control Plane) are logically centralized
and physically decoupled from forwarding operations (Data Plane), so allowing to
easily update the behavior of the network. In the last few years, the industrial
and academic communities have devoted relevant efforts to SDN development, and
nowadays well established SDN solutions are available for both wired and wireless
infrastructured network domains.

In the meantime, market forecasts released by different institutions anticipate
the deployment of larger and larger numbers of Internet of Things (IoT) devices
in the near future. For example, the most recent study conducted by IDC for
Intel and the United Nations forecasts that there will be around 200 billion IoT
devices by 2020%. As a result of these high expectations, industry is investing huge
resources in the development and deployment of IoT technologies and platforms.

The academic research community is also following this wave and today IoT is one

Thttp://intel.ly/1i802ec

CHAPTER 1. INTRODUCTION

of the hottest research topic in computer science, whereas it is also spreading to
other domains such as transportation, production and manufacturing, as well as
environmental and social sciences.

Software-Defined Networking (SDN) and Internet of Things (IoT) are today
two hot topics deemed in the short term to be fused with each other. Indeed the
flexibility and the ability of SDN to balance traffic on different paths in such a way
to implement an optimized network resources’ usage makes it a valuable ally in the
implementation of the IoT vision. In fact, one of the most critical issues for the
[oT realization is the huge data management and processing and the consequent
need for optimized network routing and balancing.

Wireless sensor networks (WSN) are a fundamental ingredient of the IoT
ecosystem. These networks are composed of sensor nodes that cooperatively
monitor the physical environment [2| and track events [3| generating incessant
streams of data that the IoT can use to improve our lives and our businesses in
many ways. Unlike traditional networks, WSN nodes are resource constrained in
terms of energy, communication range, bandwidth, processing power, and memory
[4]. Additionally, a WSN has to deal with a great variety of applications that
require different network structures |5, 6], and may exploit mobile nodes [7, §|.

Sensors, in particular, offer unprecedented access to granular data that can be
transformed into powerful knowledge?. Integrated analytics platforms will be used
to overcome the data burst and avoid that sensor data will just add information
overload and noise escalation.

In order to implement this unified IoT scenario, integration between different

SDN platforms and implementations is needed. Therefore, this thesis focuses

2http://bit.ly/2mLtG7t

CHAPTER 1. INTRODUCTION

on SDN-like platforms for wireless sensor networks (SDWSN) by defining and
implementing a Data Plane and a Control Plane for such devices.

Having a Control Plane for Software Defined IoT devices is extremely important
as the existing controllers are typically bundled with some sample applications
and the support for other devices is tightly coupled with the particular switch
behavior.

To this purpose, one of the main focus of this thesis is to introduce an extended
controller based on the Open Network Operating System (ONOS), as the starting
point for the implementation of the IoT vision. By using ONOS to control
heterogenous networks it is possible for any wireless sensor device to communicate
and interact in a standard and transparent way with external nodes.

Leveraging this approach it is possible to unlock new possibilities for the
management of Software Defined IoT devices, overcoming the constraints in terms
of computational power and energy consumption and making life easier for network

administrators.

1.1 Structure of this Dissertation

This dissertation is organized in 8 chapters (including this introduction) as
follows:

Chapter 2 provides basic definitions and concepts related to SDN and SDWSN.
It also presents the State of the Art for SDWSN and in particular it focuses on
SDWN, one of the first solutions for SDWSN.

Chapter 3 shows a comparison between different communication protocols for
IoT devices. ZigBee, 6LoOWPAN, and SDWN are compared to reveal the difference

between distributed solutions and a centralized one.

CHAPTER 1. INTRODUCTION

Chapter 4 presents SDN-WISE, a stateful software defined solution for wireless
sensor networks based on SDWN which is the starting point for the following
chapters.

Chapter 5 analyzes how SDN-WISE can be used to support QoS policies in
WSN. In particular in the context of heterogeneous sensors for environmental
monitoring.

In Chapters 6 and 7 the need for a Network Operating System for Software
Defined IoT devices is underlined and an extension of ONOS is presented.

Then, in Chapter 8 a routing application based of Geographic forwarding and
in Chapter 9, a novel declarative approach to NOS applications for IoT based on
Long Short-Term Memory Recurrent Artificial Neural Networks is given.

Finally, Chapter 10 summarizes the conclusions and proposes further works

related to the presented subject.

1.2 Acknowledgements

Part of the results described in this dissertation comes from the research funded
by Progetto: TECLA Ricercatori ed Esperti Di Alta Tecnologia e Innovazione
Tecnologica Applicata al Settore dei Beni Culturali (PONO3PE 00214 1/F7).
The code produced while working on this project is freely available at https:

//github.com/sdnwiselab.

Chapter 2

Technical Background

In the early 2000s micro-electro-mechanical systems (MEMS), wireless commu-
nications and digital electronics have reached the maturity level needed to develop
tiny, low-cost, low-power wireless sensor nodes (generally referred to as Motes) able
to wirelessly communicate with each others without a pre-deployed infrastructure,
i.e. to form what are commonly referred to as wireless sensor networks (WSN)s
9].

Driven by the promise that WSNs would have produced a radical impact in
several application scenarios, in the last decade the networking research community
has devoted an immense effort to the study of WSNs and the definition of appro-
priate solutions for them. While such effort has resulted in a deep understanding
of the WSN related matter, the expected large scale deployment of WSNs has not
fully happened till today.

The reasons of the slow commercial take off of WSNs are multifold. Nevertheless,
at the very basis there is a technical reason: WSNs are characterized by profoundly
different requirements depending on the specific application and deployment
scenario. Accordingly, as widely recognized [9], there is not something like a

one-fits-all solution for WSNs. Instead, there is a plethora of vertical application-

CHAPTER 2. TECHNICAL BACKGROUND

specific solutions that have resulted in extremely fragmented context and market.

The above problem can be overcome by making WSNs programmable and thus,
there has been significant research effort devoted to design programmable WSNs
[10, 11, 12]. However, in most current real-world WSN deployments, programming
is typically very tightly related to the operating system, requiring the application
developers to focus on intensive low-level details rather than on the application

logic.
2.1 Software Defined Networking

The Software Defined Networking (SDN) paradigm and OpenFlow, which
currently is the most popular instance of SDN, have been recently proposed to
solve analogous issues in the wired domain [1]. Thanks to standardized interfaces,
which can work on networks made of heterogeneous switches, in OpenFlow the
network nodes handle incoming packets as specified in the so-called Flow Table.
Each entry of the Flow Table is related to a flow and is composed by three sections:
(i) a matching-rule which specifies the values of the header field that must be
found in the packets belonging to the flow; (ii) the action that must be executed
on the packets of the flow (e.g., drop, forward to, etc.); and (iii) some statistical
information about the flow. If the Flow Table does not contain any entry specifying
how to deal a certain packet, the node sends a request to a software entity called
Control Plane that has a high level abstraction of the network elements. The
Controller can run on a remote server in a (logically) centralized manner. The
Controller replies with information required to fill a new Flow Table entry for
handling the packet.

In this way, OpenFlow clearly separates (even physically) the data plane from

CHAPTER 2. TECHNICAL BACKGROUND

the control plane and delivers a network

e which is easy to configure and manage [13],

e which can ewvolve because, in principle, new services and management policies
can be introduced in the network as simply as it is to install a new software

on a PC [1, 14],

e in which a given network node can be replaced with another produced by
any vendor, so freeing the operator from the vendor lock-in and allowing to

use commodity hardware.

The above are crucial advantages for network operators which, thus, are
investing large efforts in the SDN domain in terms of new equipment acquisition
and/or knowhow development.

As a result, rarely the interest in a new networking paradigm has increased at
such a pace as it is happening for SDN. In fact even if OpenFlow was initially meant
for universities and campus networks the huge benefits introduced in terms of
simplicity and evolvability made it suitable for other contexts and it is now possible
to find even carrier-grade networking devices that are OpenFlow compliant [15].
Therefore, most network operators are running pilot experimentations of OpenFlow
networks, manufacturers are producing OpenFlow compliant network equipment,
and the research community (both academic and industrial) is involved in a vast
amount of SDN-related R&D activities. In fact, the applications of SDN are now
everywhere. SDN has been used in campus networks [1], wide area networks [16],
carrier networks [17]| but also wireless and mobile devices [18] A quick look at the

list of members of the Open Networking Foundation, an organization promoting

CHAPTER 2. TECHNICAL BACKGROUND

the development of SDN-related standards, suffices to understand that this hype

has spread to the wireless domain, as well.

2.2 Software Defined Wireless Sensor Networks

Despite the vast adoption of OpenFlow, and SDN in general, in the wired
domain, there has been no such widely accepted solution in wireless networks and,
especially, WSNs!

Sensor OpenFlow [20] was the first attempt to implement an SDN protocol
for WSNs. It follows the OpenFlow architecture, by considering that the nodes
should maintain a flow table with entries of specific, predefined format. Sensor
OpenFlow supports in-network processing mainly to enable data aggregation, as
commonly done in WNS for energy preservation. Note that Sensor OpenFlow
cannot support the wide range of protocols, either standard or proprietary that
have been proposed in the context of WSNs. Furthermore, in [21] the Sensor
OpenFlow approach is integrated with other WSN programming techniques.

Authors in [22] also presented the idea of exploiting the OpenFlow technology
to address the reliability in WSNs. The authors claim that OpenFlow-based
sensors are more reliable than typical sensors, and simulation results show that
the proposed approach achieves better performance for large networks.

The use of OpenFlow in a wireless mesh network allows a rapid change of
forwarding and routing algorithms [23|. A survey on challenges and opportunities
in using wireless SDNs is presented in [24]. This chapter claims that the SDN

technology will have to face problems regarding slicing, isolation, status reporting,

! Actually, even before the break-in of SDN in the WSN arena, there have been studies about
WSNs in which the behavior of nodes was dependent on rules that can be changed over time —
see [19], for example.

CHAPTER 2. TECHNICAL BACKGROUND

and handoffs, whereas it will improve connectivity, QoS, planning, security, and
localization. Ref. [25] proposes an SDN system, where experimentations show that
the proposed solution reduces the energy consumption and provides a higher level
of flexibility in network management.

Another SDN-like solution is TinySDN [26] which focuses on the support of
SDN operations across different platforms which is achieved by building on TinyOS.
TinySDN enables interoperability of SDN-enabled nodes with several controllers,
and has been implemented and tested with the Cooja simulator.

However these approaches, as well as the ones presented in [27] and [28], are
directly derived by OpenFlow and thus, require all nodes to be instructed by the
Controller to process the packets they are called to handle. Therefore, they involve
large amount of signaling exchange between nodes and Controller. Also, since each
flow traversing a node must have an appropriate entry in a given data structure
(denoted as flow table in OpenFlow) in order to specify how to distinguish packets
belonging to the flow and how to treat them, it is likely that nodes will have to

maintain large flow tables.

2.2.1 SDWN

The first implementation of SDWN was developed in October 2012 [29]. The
main idea behind the protocol is to adapt a centralized approach, such as the one
proposed in SDN networks, to a wireless environment, thus giving the opportunity
to support the flexible definition of rules and topology changes.

The SDWN protocol stack is shown in Fig. 2.1: physical (PHY) and MAC
layers are those of the 802.15.4 [30], whereas upper layers are inspired by the SDN
paradigm. A typical SDWN network is composed of a controller device, a sink

node, and several other nodes. The controller gathers the information from nodes,

CHAPTER 2. TECHNICAL BACKGROUND

APPL APPL o
5 3
§ Network operating system [E7 E E
= Virtualizer Es
g £ AGGR fon|leyer
3\ 2 USB/RS232 or other
a FWD Network operating system
A4
0 @
e MAC MAC -
g9 S
w PHY PHY
w
Generic node Sink

Figure 2.1: SDWN protocol stack.

maintains a representation of the network, and establishes routing paths for each
data flow. The sink is the only node that is directly connected to the controller,
and it acts as a gateway for nodes. Usually the sink coincides with the network
coordinator and its protocol stack is equivalent to that of a generic node. The
stack of a generic node is divided into three parts: 1) the forwarding layer (FWD);
2) the aggregation layer (AGGR); and 3) the network operating system (NOS).
The MAC layer provides incoming packets to the FWD layer that identifies the

type of the packet. Six different types of packets are defined as follows:
1. data: generated (delivered) by (to) the application layer;
2. beacon: periodically sent in broadcast by all nodes in the network;
3. report: containing the list of neighbors of a node;

4. rule request: generated when it receives a packet for handling which it has

no information (i.e., the path);
5. rule response: generated by the controller as a reply to the rule request;
6. open path: used to setup a single rule across different nodes.

When a nonbeacon packet is received by the FWD layer, it is sent to the NOS

that searches for the corresponding rule in an appropriate data structure called

10

CHAPTER 2. TECHNICAL BACKGROUND

flow table. The flow table stores all the rules coming from the controller. For each
rule, there are three types of action that could be executed: forward to a node,
modify the packet, or drop it. If a packet does not match any of the rules in the
table, a rule request is sent to the controller.

The path between the sink and the node for sending/receiving rule request/rule
response packets must be chosen effectively, considering both reliability of the path
and its length. Each node constantly stores its distance (in number of hops) from
the sink, and the received signal strength indicator (RSSI) that is the level of power
it receives from the next hop toward the sink. During the network initialization,
each node is in a quiescent state waiting for messages. When the sink turns ON,
it sends a beacon, containing the number of hops from the sink (zero in this case).

When a node A receives the beacon, it performs the following four operations.

1. Add the source of the beacon and the RSSI received in the list of nodes

(neighbors table) that are one hop distant from A.

2. Analyze the distance contained in the beacon and the RSSI of the received
message, then compare these values to the corresponding stored values: if
the number of hops is lower and the RSSI is higher, the source of the beacon
is elected as the best next hop toward the sink, and the values stored in A

are updated.

3. The beacon timer is activated and node A will periodically send its own

beacon in broadcast.

4. The report message timer is activated: the neighbors table of A is sent
periodically to the sink node using the best next hop toward the sink. After

each transmission, the list of neighbors is deleted to have an updated view

11

CHAPTER 2. TECHNICAL BACKGROUND

of the network. The report period must be greater than the period used to

broadcast beacon messages (beacon period).

The information included in the report messages are used by the controller
to create a map of the network. Based on this representation, the controller is
able to respond to rule requests and to decide the routing paths for data packets,
while rule request will keep following the previously discovered path. The actual
implementation of the controller uses Dijkstra’s routing algorithm to solve rule
requests. The weight of the edges in the topology representation is a function of
the received RSSI.

A possible change in the network is notified to the controller using report
messages. As specified above, the controller obtains periodically all the lists
of neighbors, according to the report period that is bounded by the beacon
period. By decreasing the latter period, a faster responsiveness to environmental
changes could be obtained to the detriment of having larger overhead. In the
actual implementation of SDWN, the controller sends a rule response only after
receiving a rule request from a node and rules contained in the nodes expire after
a configurable period of time. Therefore, at the end of this period, the controller
receives a new rule requests for the unmanageable packets.

As previously mentioned, more than one action can be executed for an incoming
packet, thus achieving the multicast communication. By performing multiple
actions, the controller is able to clone an incoming message into multiple outgoing
messages. Unfortunately, a drawback of this approach is that the multicast is
locally executed by transmitting a series of unicast messages. In other terms, the
broadcast nature of the wireless communication is not exploited.

This work has been used as a base to develop an enhanced version of SDWN

12

CHAPTER 2. TECHNICAL BACKGROUND

called SDN-WISE that is described in detail in Chapter 4.

13

Chapter 3

Comparing IoT protocols

The internet of Things (IoT) is an emergent paradigm evolving around the
concept of things (objects, cars, etc.), equipped with radio devices and uniquely
addressable. The notion of IoT has been recognized by industrial leaders and
media as the next wave of innovation, pervading into our daily life [31, 32]. Sensors
are increasingly becoming more pervasive and attempt to fulfill end users needs,
thus providing the ease of usability in our everyday activities.

The common standards for IoT applications are ZigBee [33] and IPv6 over
low-power wireless personal area networks (6LoWPAN) [34]. Both these standards
are implemented on top of the IEEE 802.15.4 standard [30]; however, ZigBee uses
802.15.4 medium access control (MAC) addresses, whereas 6LoWPAN uses I[Pv6
addresses.

Recently, a third approach based on the software defined network (SDN)
paradigm has been proposed [29]. It is called Software Defined Wireless Networking
(SDWN) and uses a centralized routing protocol, as already stated in Chapter
2. The coordinator/gateway gathers information on the status of the network of
things, and brings this knowledge to a controller that can decide on the exploitation

of resources within the wireless network. The controller has a centralized vision

14

CHAPTER 3. COMPARING IOT PROTOCOLS

of the network of things and can even control things that lie behind several
coordinators/gateways. This approach brings the potential advantage of optimal
resource exploitation, provided that the overhead is controlled and the environment
does not change too frequently.

The aim of this chapter is to fairly compare ZigBee to 6LowPAN and both
to SDWN. The three solutions presented above are compared by experiments
performed on the European Laboratory of Wireless Communications for the
Future Internet (EuWIn) platform.

In particular, the flexible topology testbed (Flextop) facility of EuWIn has
been used. Located inside the University of Bologna, Flextop consists of 53 nodes,
equipped with IEEE 802.15.4 interfaces. Flextop provides a controllable and a
priori known environment for experimentation, thus enabling the fair comparison
among different protocols, even though tests are performed at different time
instances. This chapter presents results of an extensive measurement campaign
evaluating different performance metrics, such as packet loss rate, round-trip-time
and overhead generated in the network, considering different network topologies
and sizes, payload sizes, and environmental conditions, from static to dynamic.

Results demonstrate that SDWN achieves the best performance in terms of
all considered metrics in static and quasi-static scenarios. However, a severe
performance degradation has been observed when the changes in network topology
are frequent and significant.

The rest of this chapter is organized as follows: In Section 3.1 the related work
are reported, Sections 3.2 and 3.3 report the details on ZigBee and 6LoWPAN
protocol stacks. Section 3.4 introduces the platform used for the experiments

and Section 3.5 describes the experimental setup and parameter settings. Finally,

15

CHAPTER 3. COMPARING IOT PROTOCOLS

results are shown in Section 3.6 and conclusion is drawn in Section 3.7.

3.1 Related Work

Many research papers deal with the implementation of ZigBee networks. For
example, |35, 36, 37] refer to the implementation of a ZigBee network for smart
home applications. Ref. [24] measures the impact of Wi-Fi interference over ZigBee
networks. An experimental analysis of star and tree ZigBee networks based on
commercially available hardware and software is provided in [38], to determine the
limitations of technology. Finally, Ref. [39] provides a comparison between ZigBee
Pro and ZigBee IP, in terms of latency, where a network is composed of five nodes.

Referring to 6LoOWPAN, Ref. [40| presents an implementation over Texas
Instruments (TI) MSP430 devices. A star topology with an edge router and three
nodes was deployed, and IP addressability features were tested. In [41], a novel
architecture for supporting applications in the field of intelligent transportation
systems is presented. The implementation and evaluation of different neighbor
management policies applied to routing protocol for low-power and lossy networks
(RPL) are given in [42]; experiments were conducted on the TU-Berlin TWIST
testbed with 100 TelosB motes spread over a three-floor office building. Several
papers are also comparing ZigBee and 6LoWPAN: Ref. [43] provides a quali-
tative comparison, without addressing any quantitative evaluation of protocols’
performance. In [44], the authors present a comparative performance assessment
of ZigBee and 6LoWPAN protocols for industrial applications. The testbed is
composed of four TelosB nodes deployed in a linear topology.

Unfortunately, there are no works in the literature dealing with the comparison

of the SDWSN approach and the distributed approach represented by ZigBee and

16

CHAPTER 3. COMPARING IOT PROTOCOLS

i aati Controller e
(Application)(routing J (Application

ubpP

Application /
profiles

Application
framework

s

—/

pIPv6
I Routing
SDWN network contikiRPL
operating system (ICMPS6)
flow table
management
ZigBee Network
Layer
Addressing,
routing, header
6LoWPAN
adaptation layer
SDWN forwarding mxf:szrion
layer Neighbordiscovery
Neighbor discovery
\. J _ J

IEEE 802.15.4 MAC (IEEE 802.15.4 MA c) EEEE 802154 MAc)

EEE 802154 PHY (IEEE 802.15.4 PHY) (IEEE 802.15.4 PHY)

Figure 3.1: Protocol architectures. Left: SDWN. Center: 6LoWPAN. Right: ZigBee.

17

CHAPTER 3. COMPARING IOT PROTOCOLS

6LoWPAN.

3.2 ZigBee

In this work, we consider the ZigBee-Pro 2007 release specified in [33], whose
protocol stack is shown in Fig. 3.1. The home automation profile is considered,
and many-to-one (MTO) routing, described below, is implemented.

MTO routing allows to establish a tree topology, rooted at the coordinator.
In order to form and maintain the tree, the coordinator periodically sends an
MTO route request (MTO-RR) packet in broadcast. Each node, receiving an
MTO-RR before retransmitting it, reads the accumulated path cost (i.e., the sum
of the costs of the links of the reverse path toward the coordinator) included in the
packet and selects the next hop toward the coordinator. In particular, if a node
receives several MTO-RRs from different nodes, it elects as a next hop the node
characterized by the minimum total path cost to the coordinator. At the end of
this MTO-RR transmission, all nodes in the network are aware of the next hop to
be used to transmit their data to the coordinator, that is their parents in the tree.
However, if the coordinator wants to know the path to reach a specific node in the
network (or a set of nodes by multicasting), MTO routing should be combined
to source routing (SR). After the MTORR transmission, once a node has a data
packet to be sent to the coordinator, it first sends a route record (RREC) packet
through the selected path. Each node in the path receiving the RREC packet,
adds in the relay list field its own address and forwards the new RREC packet
toward the coordinator. The coordinator analyzes the RREC packet and stores
that information in the source route table. Each time, the coordinator has to send

a packet to a node, it reads the relay list from this table and sends the packet

18

CHAPTER 3. COMPARING IOT PROTOCOLS

through the selected path.

In order to let nodes compute the link costs to be used in the MTO routing
for the selection of the path, each node in the network periodically sends link
status packets in broadcast at one hop. Each node receiving the link status packet
computes the link cost, being a function of the link quality indicator of the received
packet.

Even though MTO-RRs are periodically sent by the coordinator and are not
generated on-demand (which would make the protocol proactive), ZigBee saves
the reactive feature through the use of ad hoc on-demand distance vector (AODV)
protocol [45], when needed. In particular, in case of link failure, AODV is used
for discovering a new path toward the destination. According to AODV, a node
searching for a destination node sends a route request packet (RREQ) in broadcast,
which is retransmitted by all receiving nodes until it reaches the destination.
During the process of rebroadcasting the RREQ), intermediate nodes record in their
route discovery tables the address of the RREQ sender, and the corresponding
total cost of the reverse path to the source. The comparison among paths’ costs
of packets related to the same RREQ allows choosing the best path. Once the
destination receives the RREQ), it responds by sending a route reply (RREP) in
unicast back to the source along the reverse path.

In the case of multicast transmission, a path between the coordinator and
the multicast group should be established. In our experiments, we use AODV to
establish the route between the coordinator and the multicast group; in this case,
the RREQ packet, sent in broadcast, includes the address of the multicast group
to be discovered. Nodes in the network that are linked to the target multicast

group send an RREP back to the coordinator through the selected path. The

19

CHAPTER 3. COMPARING IOT PROTOCOLS

latter path is used for the transmission of query packets. In the uplink direction,
that is from the queried nodes to the coordinator, nodes use the same protocol as

for the unicast transmissions, therefore MTO.

3.3 6LoWPAN

The IETF 6LoWPAN working group published first document in August
2007 [34]. Among the several available 6LoWPAN solutions, the IPv6 stack,

implemented in Contiki, has been used and ported on the Flextop platform.

3.3.1 Protocol Stack

The 6LoWPAN protocol stack is shown in Fig. 3.1. The lowest layers are
based on IEEE 802.15.4 PHY and MAC layers. Due to the fact that the direct
integration between IPv6 and IEEE 802.15.4 lower network layers is not possible,
the IETF 6LoWPAN working group has specified an adaptation layer and header
compression scheme for transmission of IPv6 packets over IEEE 802.15.4 radio
links. The purpose of adaptation layer is to provide a fragmentation and reassembly
mechanism that allows IPv6 packets (maximum transmission unit for IPv6 is 1280
bytes) to be transmitted in IEEE 802.15.4 frames, which have a maximum size of
127 bytes of the MPDU (MAC protocol data unit). At network layer, the IPv6
routing protocol for low-power and lossy networks (RPL) is used (see below for
details). At the transport layer, user datagram protocol (UDP), providing best-
effort quality of service, is applied. Finally, at the application layer, constrained

application protocol (CoAP) is present.

20

CHAPTER 3. COMPARING IOT PROTOCOLS

3.3.2 Routing Protocol

According to RPL, a destination-oriented directed acyclic graph (DODAG),
where each node may have more than one parent toward the root, is built [46].
One of the parents is called preferred parent, and it is used for routing toward
the root. In our case, the coordinator acts as the root. The topology is set-up
based on a rank metric, which encodes the distance of each node with respect
to its reference root, as specified by the objective function. In particular, we use
the hop count metric as objective function; therefore, the rank of a given node
represents the number of hops separating the node from the coordinator. Paths in
the DODAG are selected to minimize the rank. RPL nodes exchange signaling
information in order to setup and maintain the DODAG. The construction of
DODAG is initiated by the root that sends DODAG information object (DIO)
messages to its neighbors to announce a minimum rank value. Upon receiving a

DIO message, an RPL node will:

1. update the list of its neighbors;
2. compute its own rank value;

3. select its preferred parent used as next hop to reach the root as the strongest

one (i.e., the one from which, it received the largest power); and

4. start transmitting DIO messages, containing its respective rank in the

DODAG (a distance to the DODAG root according to the hop-count).

RPL nodes may also send DODAG information solicitation (DIS) messages
when joining the network to probe their neighbors and solicit DIO messages.

Finally, destination advertisement object (DAQO) messages are used to propagate

21

CHAPTER 3. COMPARING IOT PROTOCOLS

the destination information upward along the DODAG. DAO messages are sent in
unicast by the RPL node to the selected parent to advertise its address. When
a node receives a DAQ, it updates its routing table and then this information is
used by the DODAG root to construct downward paths. In our implementation,
each router in the path records the route identifier and the corresponding next
hop toward the destination. RPL uses an adaptive timer mechanism, called
the trickle timer, to control the sending rate of DIO messages. The trickle
algorithm implements a check model to verify if RPL nodes have out-of-date routing
information. The frequency of the DIO messages depends on the stationarity of the
network, and the frequency is increased when the inconsistency is detected. Once
the network becomes stable, the trickle algorithm exponentially reduces the rate at
which DIO messages are emitted. RPL supports both unicast and multicast traffics.
In the case of multicast, we used the stateless multicast RPL forwarding (SMRF)
protocol. According to the latter, nodes join a multicast group by advertising its
address in their outgoing DAO messages, which only travel upward in the DODAG.
Upon reception of message from one of its children, a router makes an entry in its
forwarding table for this multicast address. This entry indicates that a node in the
DODAG is a member of the group. This router will then advertise this address in

its own DAOs, and relay multicast datagrams destined to this address.

3.4 EuWin Experimental Platform

The facility used in this paper, called Flextop [24], is an experimental platform
composed of 53 EMB-Z2530PA sensor nodes based on the TI CC2530 single chip
8051 8-bit controller. The TT CC2530 is IEEE 802.15.4 compliant; therefore, our

three solutions SDWN, ZigBee, and 6LoWPAN are implemented on top of the

22

CHAPTER 3. COMPARING IOT PROTOCOLS

Figure 3.2: Flextop deployment at the University of Bologna.

IEEE 802.15.4 PHY and MAC layers. We consider the 2.4 GHz ISM band PHY,
characterized by a bit rate of 250 kbit/s and by a minimum shift keying modulation
on top of which direct sequence spread spectrum is applied. In the case of MAC
layer, the nonbeacon-enabled mode is used, employing a carrier sense multiple
access with collision avoidance protocol (CSMA/CA). We refer to [30] for details
about the protocol, and to Section VII-B for the PHY and MAC layers parameter
settings in the software.

Nodes are located into boxes on the walls of a corridor at the University of
Bologna. Thirteen boxes are deployed in the corridor, and four nodes per box are
deployed at fixed positions (see Fig. 3.2). Node 53, at the end of the corridor, acts
as the coordinator of the network in all the cases.

The main strength of Flextop is that the experimental environment is stable
for the total duration of the experiment, thus making the results replicable, based

on:

1. nodes are at fixed and known positions;

2. channel gains between each pair of nodes are measured at the beginning of

each test; and

23

CHAPTER 3. COMPARING IOT PROTOCOLS

Figure 3.3: Flextop nodes map.

3. experiments are performed during the night, when nobody is present, avoiding

uncontrollable channel fluctuations.

With reference to point 2), and in order to properly describe the environment,
before the start of experiments, we measured the average received power matrix P.
The generic element of P, denoted as P, ; , represents the average power received
by node i, when node j is transmitting. The matrix is obtained as follows: each
node, including the coordinator, sends a burst of 10 000 short packets to let other
nodes compute the average power received. We consider two nodes as connected
if the percentage of packets received over the link is larger than 90%. Therefore,
if more than 90% of packets are received over the link, we compute the average
received power that is included in the matrix; if a lower number of packets is
received, the two nodes are considered as not connected. The links are rather
stable, therefore the 90% threshold is actually not relevant, as links either exist or

do not.

24

CHAPTER 3. COMPARING IOT PROTOCOLS

Table 3.1: Average Received Powers (dBm) Matrix for -5dBm.

IDs | 4 6 | 13 | 17 | 22 | 25 | 38 | 43 | 45 | 51 | 53
4 - | -T4|-54|-63 | -62|-66 | - - - - -
6 |-73| - |-80|-64|-75]-83] - |[-8 | 50 | 50 | -88
13 |-53 |-81| - |[-55|-60|-69 |-83 | - |-8 | - -
17 | -64 | -65|-56 | - |-63|-58 | -86 | -82 | -85 | -89 | -83
22 | -64|-79|-62|-65| - |-55|-80 |-86 | -84 |-87 | -85
25 | -66 | -84 | -69 | -57 | -B3 | - | -63 | -67|-69 |-79 | -74
38 | - - | -82 -85 |-78|-61| - |-58|-80|-84|-72
43 | -87|-88 | - |-82|-83|-68|-60| - |-48 | -71 |-66
45 | - - | -85 | -85 |-82|-69 |-T7|-47| - |-54]|-59
o1 - - - - |87 -7 - | -80|-56| - |-65
93 | - - - | -83|-8 |-75|-75|-65|-60 |-65| -

3.5 Experimental Setup

We consider two network setups: 1) a network consisting of 10 nodes (nodes
4, 6, 13, 17, 22, 25, 38, 43, 45, and 51, underlined with red circles in Fig. 3)
and 2) a network of 20 nodes, where we add the following nodes: 1, 8, 10, 11,
15, 20, 23, 30, 31, and 33. In all cases, the node 53 at the end of the corridor,
is used as the network coordinator. Nodes were selected according to their level
of connectivity, measured by the matrix P described above, to have nodes that
could reach the coordinator through different number of hops. The matrix P,
characterizing the level of connectivity among the selected nodes in the case of 10
nodes and the coordinator, is reported in Table 3.1, where values are expressed

""" indicates absence of connectivity. The level of

in decibel-milliwatt and where
transmit power, set to obtain the matrix and used during experiments, was -5 dBm.

In the case of 20 nodes, the matrix is not included for the sake of conciseness.

25

CHAPTER 3. COMPARING IOT PROTOCOLS

3.5.1 Data Generated and Environmental Conditions

We consider a query-based application, where the coordinator periodically sends
a query packet to one or several target nodes and waits for the reply from it/them.
Both queries and replies are data packets with a given payload that is the same in
both cases, and we consider different payload sizes. Two different communication
configurations are evaluated: 1) unicast, where the coordinator sends the query to
one specific node that could be one, two or three hops far from the coordinator and
2) multicast, where the coordinator queries contemporaneously a subset of nodes,
and waits for replies from all of them. As for the environmental conditions, all
experiments were performed during the night, when no people were moving around,
to avoid uncontrollable environmental changes and to ensure a fair comparison.
However, in order to measure the level of reactivity of protocols to possible changes
such as in real environments, we investigated results in quasi-static and dynamic
conditions. In particular, experiments were still performed during the night, but we
introduced the ?disturbs? specified below. In the case of quasi-static environment,
we emulated a day-like situation, where people move around, by letting two people
walk along the corridor at a constant speed, following a predefined path. The
comparison among protocols is still fair, since we reproduced exactly the same
situation (same people, path, and speed) during all experiments. This case is
denoted as quasi-static, since only two people were moving without creating huge
obstacles and fast fading. In the case of dynamic environment, we emulated the
movement of nodes leaving the network and possibly coming back, by switching
OFF and on nodes at random instants. In particular, we implemented the following
procedure: 1) once a node switches ON, it remains in this state for at least 5 s;

2) after which, it generates a random and uniformly distributed delay between 0

26

CHAPTER 3. COMPARING IOT PROTOCOLS

and 10 s; and 3) at the end of which, the node switches OFF for 1 s, and then
it switches ON again [back to step 1)]. The comparison among protocols is still
fair, since the above described duty cycling is implemented in the tests identically.
Moreover, the channel conditions could be considered as extremely dynamic, since

nodes switch OFF frequently and at random time instants.

3.5.2 Parameters Settings

All the parameter settings related to PHY and MAC are the same for the three
protocols, and they are provided in Table 3.4. It also includes the network layer
parameters, different for the three protocols stacks, but set to the same values,
when possible. In particular, for the fair comparison, we set the SDWN beacon
packets period equal to the ZigBee link status period, as well as the SDWN flow
tables refreshing time equal to the ZigBee MTO-RR period. Therefore, when the
environment is static, routing tables are refreshed and new paths are discovered
with the same frequency (i.e., every 150 s). Broadcast packets used to compute link
costs/RSSI values are sent with the same frequency (i.e., every 10 s). Obviously,
in the presence of changes in the environment, the two protocols behave differently.
In case of 6LoOWPAN, as stated above, the frequency of generation of DIO packets
is managed by the trickle algorithm: the RPL router will schedule the emission
of a DIO at some time in the future, depending on the events in the network
and real-time environment condition. In our case, we selected the default period
between two consecutive DIO messages equal to 12 s. We refer to the different
standards for the setting of the remaining parameters, since, in all cases, they were
set to the default values.

In relation to the packet sizes, all protocols use an MAC acknowledgement

of 11 bytes and a PHY header of 6 bytes. The MAC header is 18 bytes in the

27

CHAPTER 3. COMPARING IOT PROTOCOLS

Table 3.2: Parameter Settings: PHY

PHY layer
Bit rate 250 kbit /s
Frequency band channel 11, at 2.405 GHz
Transmit power -5 dBm
Receiver sensitivity -92 dBm
PHY layer header 6bytes

Table 3.3: Parameter Settings: MAC

MAC layer
BFE in 3
BE 0z 5
N By 5
Max number of retransmission at MAC level 3
MAC header for ZigBee and SDWN 18 bytes
MAC header for 6LoWPAN 14-22 bytes
Table 3.4: Parameter Settings: NET
NET layer
SDWN
Beacon packet period 10°s
Report packet period 20 s
Flow tables refreshing time 150
Maximum number of children per parent 6
ZigBee
Link status period 10 s
MTO-RR period 150 s
MTO-RR number of retransmissions 3
Maximum number of children per parent 6
Random jitter for broadcast packet (0,127) ms
6LoWPAN
Minimum DIO period 12 s
DIO period doublings 8s
Maximum number of children per parent 6
Random jitter for DAO packets forwarding (0,4) s
Random jitter for DIS packets generation | (30-60) s

28

CHAPTER 3. COMPARING IOT PROTOCOLS

Table 3.5: MAC service data unit lengths

SDWN packet type MAC service data unit length (bytes)
Data 10 + Payload
Beacon 10 + 2
Report 10 + 3 + (3 * no. of neighbors)
Rule request 10 + Payload
Rule response 10 + (16 * no. of rules sent)
Open path 10 + (2 * no. of nodes in the path)
ZigBee packet type MAC service data unit length (bytes)
Data 15 + Payload
MTO-RR 15
RREC 13 + (2 * no. of nodes in the path)
Link status 13 + (2 * no. of neighbors)
6LoWPAN packet type | MAC service data unit length (bytes)
Data 15 + Payload
DIO 85
DAO 48
DIS 6

case of ZigBee and SDWN, since short addresses are used, while it is 22 bytes for
6LoWPAN in the case of unicast packets (data packets and DAO), and 14 bytes in
the case of broadcast packets (DIO and DIS), due to the use of long addresses. The
MAC service data unit lengths for the different packets and the different protocols

are presented in Table 3.5.

3.5.3 Performance Metrics

We consider the following performance metrics: 1) packet loss rate (PLR); 2)
round-trip-time (RTT); 3) overhead; and 4) throughput. In all experiments, the
coordinator is sending one query every 300 ms toward the target node(s), and a
total number of 5000 queries are generated at the application layer. To compute
the PLR, in each experiment, we count the number of replies received at the

coordinator nRX from each target node. Therefore, we have a loss if we lose the

29

CHAPTER 3. COMPARING IOT PROTOCOLS

query or the reply independently from the link in which the packet is lost. In
the case of unicast transmission, PLR(%) = (5000 — ngx) * 100/5000, while in
the case of multicast, we compute an average PLR, averaged among the target
nodes. The resolution of the PLR is approximately 0.5%, since 5000 packets were
transmitted. The RTT is defined as the interval of time between the transmission
of the query at the application layer of the coordinator, and the instant in which
the reply is received at the application layer of the coordinator as well. In order to
compute the RTT of each packet, we use a software-defined timer implemented
at the application layer of the coordinator, having a resolution of 1 ms. Results
are then averaged over all packets received in each experiment, and among the
target nodes for the multicast case. Two definitions are used for the overhead. 1)
The ratio between the total number of packets transmitted in the network (being
data packets transmitted for the first time or retransmitted, acknowledgement, or
control packets), and the number of queries generated at the application layer of
the coordinator. 2) The ratio between the total number of bytes transmitted in
the network, and the number of bytes of information included in the generated
replies. We computed the latter by processing the data gathered by two sniffers
located at fixed positions at the end (near the coordinator) and in the middle of the
corridor. We measured the network throughput by counting the average number
of payload bits of the replies per second, correctly received by the coordinator.
Finally, note that results related to energy consumption are not provided in this
paper. However, being this metric strictly related to both, delays and reliability,
the best solution in terms of RTT and PLR is expected to be the best also from

the consumption viewpoint.

30

CHAPTER 3. COMPARING IOT PROTOCOLS

90

Il SDWN
o Il ZigBee e
[]6LoWPAN

701

60

RTT (ms)

30F

2
No. of hops

Figure 3.4: Unicast traffic: RTT as a function of the number of hops when transmitting
20 bytes of payload in static conditions.

3.6 Numerical results

In this section, we report the numerical results obtained in the experimental
campaign. More specifically, we first provide the results for the static and quasi-

static cases, then the dynamic case is addressed.

3.6.1 Static and Quasi-Static Environments

We first compare results among all considered protocols, for the case of static
and quasi-static environments. In Fig. 4, we show the RTT as a function of the
number of hops for the case of 20 bytes of payload, unicast transmission and static
environment. The set of target node(s) is different for the different protocols, since
different topologies are generated. In particular, the set of target nodes is reported
in Table 3.6, with the

corresponding number of hops and path connecting the node to the coordinator.

It can be observed that the node 51 is always directly connected to the coordinator.

31

CHAPTER 3. COMPARING IOT PROTOCOLS

Table 3.6: Target node(s) with the number of hops and paths.

Protocol 1 hop target node 2 hops target node 2 hops path 3 hops target node 3 hops path
SDWN 51 22 22-45-53 4 4-22-45-53
ZigBee 51 4 4-22-53 6 6-22-46-53

6LoWPAN 51 13 13-43-53 4 4-25-38-53
30 T T
I SDWN
Il zigBee
25/ [_16LOWPAN |
20+ 1
m
£
= 15F
-
4
10- 1
5F }
0
20 30
Payload (bytes)

Figure 3.5: Unicast traffic: RT'T as a function of the payload size in the case of one
hop and static conditions.

32

CHAPTER 3. COMPARING IOT PROTOCOLS

Table 3.7: Overhead: comparison among protocols.

Protocol | Packets: 1 hop | Packets: 2 hop | Bytes: 1 hop | Bytes: 2 hop
SDWN 2.6 5.6 2.5 5.6
ZigBee 4.7 8.7 6.5 114

6LoWPAN 6.2 9.5 10.9 16.8

For example, the node 4 is connected by three hops in the case of SDWN and
6LoWPAN, while for ZigBee only two hops are needed. As expected, the RTT
increases with the number of hops, since the packet has to pass through more
routers. In Fig. 3.5, we show the RTT as a function of the payload size in the
case of one hop, considering unicast and static environment. We observed that the
RTT slightly increases with increasing the payload size. In both figures, we can
notice that SDWN achieves better performance than other solutions, resulting in
the lowest RT'T in all cases. This is due to the fact that in SDWN, once the path
between source and destination is established, forwarding at intermediate routers is
very quick, since intermediate nodes just have to check the action corresponding to
the received packet. In ZigBee and 6LoWPAN, instead, routing must be performed
at each intermediate node, resulting in increased delay. Moreover, we can observe
that ZigBee notably outperforms

6LoWPAN. The reason is that the protocol stack implemented by 6LoWPAN
is more complex (see Fig. 1), resulting in longer processing time, especially at the
adaptation layer (implementing addressing and fragmentation). Finally, the packet
size in the case of 6LOWPAN is larger due to the use of IP addresses. In Table
3.7, we compare the overhead generated by the different protocols by considering
a payload of 20 bytes, static environment, unicast traffic, and different number of

hops. As expected, the overhead is almost doubled by passing from 1 to 2 hops.

33

CHAPTER 3. COMPARING IOT PROTOCOLS

60

Il static
[JQuasi static

50 1

40

RTT (ms)

20 1

10+ .

o

SDWN ZigBee 6LoWPAN

Figure 3.6: Unicast traffic: RTT for the different protocols in the case of static and
quasi-static conditions, setting 20 bytes of payload and 2 hops.

Moreover, it is increasing by passing from SDWN to ZigBee and to 6LoWPAN
solution. This is due to the fact that, in static conditions, SDWN keeps under
control the number of packets transmitted during the path formation phase, while
optimizing paths reduces the number of data retransmissions. Referring to the
overhead in number of bytes, the difference is also more notable, since headers in
SDWN are shorter than in ZigBee and 6LowPAN (see Tables 3.4 and 3.5).

We also want to emphasize that, for all protocols and in all cases, the PLR
was below 0.5%.

In Fig. 3.6, we compare the RTT achieved in case of static and quasi-static
environments, particularly considering the case of unicast traffic, 20 bytes of
payload, and 2 hops. As can be seen, in all cases, the RTT increases when passing
from static to quasi-static conditions, due to: 1) the need for searching for new
paths when links become unreliable and/or 2) links being unreliable inducing
more retransmissions, thus increasing the latency. However, in the considered

environment, SDWN still remains the best solution, since the channel fading is still

34

CHAPTER 3. COMPARING IOT PROTOCOLS

avg. RTT (ms)

120

Il SDWN
I zigBee
[]6LoWPAN

100

80

60

40

201

20

30

Payload (bytes)

Figure 3.7: Multicast traffic: average RTT as a function of the payload size.

Table 3.8: Throughput (kb/s) comparison: unicast and multicast

Protocol | Uni. 20 bytes | Uni. 30 bytes | Multi. 20 bytes | Multi. 30 bytes

SDWN 0.53 0.8 1.06 1.59

ZigBee 0.53 0.8 1.05 1.57
6LoWPAN 0.53 0.8 0.97 1.43

quite low and changes in the environment are slow, such that SDWN could properly

react and work. Finally, note that 6LoOWPAN shows the lowest performance

degradation when passing from static to quasi-static, since the implemented

trickle algorithm allows for better adaptation of routing to environmental changes.

Moreover, in the case of quasi-static environment, the PLR remains below 0.5% for

all the cases, demonstrating the good reactivity of protocols when the environment

changes slowly.

We also report results related to the multicast traffic, when triggering a

multicast group that consists of nodes 4 and 6. Fig. 3.7 shows the average RTT,

averaged between the two trigged nodes, whereas Fig. 3.8 compares the average

35

CHAPTER 3. COMPARING IOT PROTOCOLS

12

Il SDWN
I ZigBee
10H Cl 6LoWPAN

avg. PLR (%)
e

- —B

20 30
Payload (bytes)

Figure 3.8: Multicast traffic: average PLR as a function of the payload size.

PLR. As can be seen, RTT is much higher than in the unicast case, especially for
6LoWPAN. The latter is due to an increase of the PLR that was below 0.5% in
the case of unicast; losses due to collisions between data packets originating from
the nodes 4 and 6 that cause retransmissions, and consequently, the increase of
delays. However, the multicast traffic increases the network throughput, as shown
in Table 3.8. The throughput was computed by considering an offered traffic of one
query for every 300 ms. Results demonstrate the improvement of the throughput
when passing from unicast to multicast, since more than one node is queried at
the same time. Note that, in the case of unicast, the throughput is the same for
all the three protocols, since, in all cases, the PLR is lower than 0.5%.

We conclude this section by considering a network composed of 20 nodes
(selected nodes are reported at the beginning of Section 3.5), implementing the
unicast application with 20 bytes of payload. The coordinator queries node 4,
and static and quasi-static environments were considered. Results are reported

in Table 3.9, where only the cases of SDWN and ZigBee are considered, having

36

CHAPTER 3. COMPARING IOT PROTOCOLS

Table 3.9: Twenty nodes network: comparing RTT and PLR

Protocol | RTT (ms): static | RTT (ms): quasi-static
SDWN 44 49

ZigBee 51 76

Protocol | PLR (%): static | PLR (%): quasi-static
SDWN 1.5 2

ZigBee 13 21.5

Table 3.10: Dynamic conditions: comparing SDWN and ZigBee

Protocol | RTT (ms) | PLR (%)
SDWN 40 96
ZigBee 61 33.5

already demonstrated that 6LoWPAN has the worst performance in all cases. As
can be seen, SDWN is again performing better than ZigBee, since environmental
conditions are still almost static; therefore, for larger networks, SDWN is also
performing well. Obviously, for both protocols, RTT and PLR are larger with
respect to the case of 10 nodes network, since more nodes are transmitting packets
during the path discovery phase, resulting in more collisions and possibly longer

and suboptimal paths.

3.6.2 Dynamic Environment

We conclude this chapter by considering the case of dynamic environment,
whose performance in terms of RTT and PLR are reported in Table 3.10. Results
have been achieved by considering the 10 nodes network, unicast application, and
20 bytes of payload, where the coordinator queries node 4. In this case, a highly
dynamic environment is emulated by making routers switched ON and OFF at
random instances of time. This requires nodes to refresh routes very quickly,

because a router in a path already established could switch OFF and the source

37

CHAPTER 3. COMPARING IOT PROTOCOLS

should search for a new relay for reaching the destination. All performance metrics
have worsened both for ZigBee and SDWN. However, SDWN reaches a very large
PLR, since most of the packets cannot find a proper route to reach the coordinator.
The average RTT of SDWN still remains lower than in case of ZigBee, since when
a packet manages to find a proper route with all routers switched ON, forwarding
is still very quick. This demonstrates that SDWN presents some issues in the case

of highly dynamic environments, as expected.

3.7 Conclusion

This work has presented a comparison among different solutions for the IoT
paradigm: ZigBee, 6LoWPAN, and a software defined-based solution, SDWN,
implementing a centralized routing. Results of an extensive measurements cam-
paign performed over the EuWIn laboratory are reported. Results show that in
static and quasi-static conditions SDWN outperforms the other solutions, indepen-
dently on the network size, payload size, traffic generated, and performance metric
considered. The reason for this is the fact that SDWN allows to optimize paths
selection and minimize forwarding time at routers. However, SDWN presents
some limitations when high dynamic environments are considered, because of the
time needed to refresh paths. As a conclusion, we can state that SDWN is more
suitable for applications where nodes are in fixed positions and under low mobility
scenario, as for the case of smart home and buildings applications. However, when
the situation is dynamic and there is a node mobility, a distributed solutions like
ZigBee and 6LoWPAN could work better. As an example, the case of smart city
applications, where nodes could be mounted over lamp posts in streets where object

(e.g., cars and people) are moving around, or where nodes could be directly carried

38

CHAPTER 3. COMPARING IOT PROTOCOLS

by moving objects, requires solutions characterized by high reactivity rather than

lower delays.

39

Chapter 4
SDN-WISE

As already mentioned, different works have recently appeared aiming at ex-
tending the SDN concepts to wireless sensor networks (WSNs) and other wireless
personal area networks [20, 29].

By introducing a new solution called Software Defined Networking for Wireless
Sensor Networks (SDN-WISE) we go beyond the above works in the following way.
We define a complete architecture which allows software developers to implement
their Controllers using any programming language of their choice. Also, SDN-
WISE introduces a software layer which allows several virtual networks to run on
the same physical wireless sensor or W-PAN network, similarly to what FlowVisor
does in OpenFlow networks.

Furthermore, as proposed in [47] for the wired domain, SDN-WISE defines
simple mechanisms for the definition and handling of the Flow Table that make
SDN-WISE stateful as compared to traditional OpenFlow which is stateless. In
this way WSN nodes can be programmed as finite state machines which can
be helpful to reduce the signaling between nodes and Controller and allow to
implement policies that cannot be supported in a stateless manner.

The rest of this chapter is organized as follows. In Section 4.1 an overview of

40

CHAPTER 4. SDN-WISE

SDN-WISE is given. The details of the major features of the proposed solution are
explained in Section 4.2, whereas, in Section 4.3 we describe the SDN-WISE proto-
type we have developed. Performance of SDN-WISE are evaluated experimentally

in Section 4.4. Finally, conclusions are drawn in Section 4.5.

4.1 SDN-WISE Overview

In this section we provide an overview of the SDN-WISE solution. More
specifically, we will first briefly give the requirements to be satisfied in the SDN-
WISE design; then we will provide an overview of the SDN-WISE technical

approach.

4.1.1 Requirements

Requirements for extending the SDN paradigm to WSNs have been already
analyzed in [20] and [29]. Such requirements are the obvious consequence of the
features of WSNs which are significantly different from those of wired networks.
In fact, WSNs are characterized by l