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Introduction

> goal:

» Investigating the effectiveness of some approaches relied on
depth measures in constructing basic tools for clustering of
waveforms.

» Combining clustering of waveforms with clustering of
metadata.

> motivation:
» the analysis of waveforms
» Complex space-time modeling and functional analysis for
probabilistic forecast of seismic events. National grant MIUR,
PRIN-2015 program, Prot.20157PRZC4

» basic points:
» Working on collections of seismic data, dealing with
high-dimensionality.
» Avoiding strict parametric assumptions, clustering and aligning
functional data
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Selected collection of seismic data

» Source: Engineering Strong Motion database
(http://esm.mi.ingv.it/)

» Engineering Strong Motion database, ESM allows users to
query earthquake and station information and download
waveforms for events (M>4.0) recorded in the
European-Mediterranean and the middle-East regions.

ESM is fully compatible with the European Integrated Data
Archive (EIDA).

» A sample of 21 Italy earthquakes with magnitudo > 5.5.

» Recordings refer to a set of 41 station of class EC8 — A. The
distances from epicenter are in 50 — 100Km

» For each recording, waveform data and some related metadata
are considered.
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(http://esm.mi.ingv.it/)

Selected collection of seismic data

» Source: Engineering Strong Motion database
(http://esm.mi.ingv.it/)

Figure: Geographic Coordinates of the events and stations
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(http://esm.mi.ingv.it/)

Selected collection of seismic data

» A sample of 21 Italy earthquakes from 1976 to 2017.
Recordings refer to a set of 41 stations.

Table: Number of recordings for 4 main events

Event Latitude Longitude Recordings
EMSC-20161030-0000029 42.8322 13.1107 8
EMSC-20161026-0000095 42.9087 13.1288 10
EMSC-20170118-0000034 42.5293 13.2823 12
EMSC-20160824-0000006 42.6983 13.2335 14

» For the other events, from 1 to 4 recordings are in the sample.
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Selected collection of seismic data

Data collected can be arranged in:

Event
TIME LATITUDE DEGREE LONGITUDE DEGREE
EVENT DEPTH Km MAGNITUDE W

Station (EC8-A)

LATITUDE DEGREE LONGITUDE DEGREE ELEVATION m
SITE CLASS MORPHOLOGIC CLASS
Waves
DIMENSION (E-N-Z) PGA cms? TIME PGA

DURATION FREQUENCY HZ ACCELERATION
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Framework of the Data

Figure: Metadata for multivariate statistical analysis (right) and
functional data for waveforms analysis (left)

A vector of 46 data is available for each recordings.
Seismograms record in three cartesian axes (x, y, and z),
representing the horizontal directions ( E and N ) and vertical
direction Z.
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The methodology

The proposed approach links different methodologies so as to
combine information from metadata with waveform data.
Steps:

1. A hierarchical clustering is applied to obtain homogeneous
clusters of recordings (Multivariate Statistical Tecnique)

2. A waveform analysis is implemented inside the clusters,
aiming to the characterization of the seismic waves.

» This second step, is handled in a functional data setting.
The functional nature of the data are exploited in order to
highlight the temporal dynamics of the signals.

» The key contribution is to detect clusters of similar
waveforms by mean of Depth measures.

» A crucial point is represented by the alignment of waves
with different lengths.
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Selected collection of seismic data

Table: Summary of Metadata

range of variability

EVENT LATITUDE DEGREE 37.195 - 46.300
EVENT LONGITUDE DEGREE 10.345 - 15.495
EVENT DEPTH KM 4.300 - 220.700
MAGNITUDE W 5.400 -

EPICENTRAL DISTANCE KM 51.100 - 99.800
EARTHQUAKE BACKAZIMUTH DEGREE 0.800 - 357.900
PGA cm.s? -57.109 - 102.517
TIME PGA s 0.825 - 59.820

DURATION s 12.125 - 230.015
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Selected collection of seismic data

Table: Variables used in hierarchical clustering

range of variability

MAGNITUDE W 5.400 - 6.900
EPICENTRAL DISTANCE KM 51.100 - 99.800
EARTHQUAKE BACKAZIMUTH DEGREE 0.800 - 357.900
PGA cm.s? -57.109 - 102.517
TIME PGA s 0.825 - 59.820
DURATION s 12.125 - 230.015
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Agglomerative hierarchical clustering

1. Method: Minimization of total within-cluster variance (WARD)
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2. Choice of the number of clusters:
Averaging the distances between each cluster and its centroid,

K* is the value that maximize over K =2,..., N:
(N—-K) Gk
A(K) =
maxgk ( ) K ; ZI}((ZI dxikMk

3. K* =3 clusters are identified
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Waves as functional data - FDA, Ramsay et al.(2005)

Figure: E-component of the waves clustered in 3 initial groups
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Functional data show peaks and other features at different time points.
The underlying variability can be ascribed to two sources:

1. Amplitude (variability along y — axis)

2. Phase (variability along x — axis)

Ll

-2000

-4000

T
057 0se 059 060

> Alignment Procedure:
Short Time Fourier Transform (Shumway, 2003) and elastic shape
analysis of functional data (Tucker et al.,2013).
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Short Time Fourier Transform

Selection of time intervals — > STFT (y?;(t)) = ZP;(w; t)

Figure: STFT performed on the E-component of a signal

1. Time intervals are splitted into frames and the variability of the
time-frequency content of the waveforms is computed. The
partition with the minimum number of frames retaining at least an
% of the whole variabilility is selected.

2. This allows to cut the signals obtainig informative sequences of the
same length.
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Elastic Shape Analysis , (Tucker et al.,2013)

> Warping functions are tranformations of time ¥(t) :

F={y:[0,T]=[0,T] [ ©(0)=0, (T)=T}

> Let define the Square Root Slope Functions SRSFs:
. df (t)
= f _—
q(t) = sign f(t) ’ p”

v

for any fi,f, , let define the distance D, :

Dy(f1,f) = infyer||qr — (g2 07)||

v

The optimal warping function ¥ is the solution of the minimization
of Dy(f,,f,) over I'. (by dynamic programming algorythm)
The warped (ALIGNED) functions are the compositions:

v

foy:[0,T]— R
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Choice of a depth

» Robust nonparametric tools, based on the concept of data
depth can be applied for clustering purposes in the functional
data setting

> the underlying idea is to determine the clusters providing an
order within a sample of curves.

» Several depth notions generalizes unidimensional concepts of
robust statistics to multivariate data

> Not all the depths are able to be generalized to functional
data, due to the high dimensionality

» We focus on Modified Band Depth (MBD, Lépez-Pintado and
Romo, 2009)
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Band Depth

Basic concepts:
1. The Band in R? delimited by a set of n observed curves:

b (t), -5 yn(t;)) (1)

with t; € [0,1] is defined as:

B(y.t) = (t,y) : minj—1...a(yj(t;)) < y(t) < maxj—1,..n (w(tl,-)() |
2
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Band Depth and Modified Band Depth

For any of the n observed waves,
1. The Band Depth is defined as:

J o\l
BDn(y):Z<.> Y 1(G(x) € Blyi,---,yi) (3)
=1\

1<..ig..<n

BD,, is the proportion of bands, made up of 2,3,...,J curves
containing the graph of y. (Lopez-Pintado & Romo, 2009)

2. The Modified Band Depth, given A, a Lebesgue measure in
[0,1] is:

MBD,(y) = XJ: <;’> h y

j=2 1<..ig..<n

A(A(x; xi1---X57))
A(T)

(4)

MBD),, is the portion of time that y(t) is in the bands, made
up of 2,3,...,J curves containing the graph of y.
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Clustering Modified Band Depth

» The center — outward ordering provided by MBD,, is exploited
in the proposed clustering procedure:

» selecting ot : 0 < @ <1 and considering a partition of n curves
in K clusters, the ¢— trimmed median function and only the
(1 —t)100% of deepest curves are retained in the cluster
(kernel).

» each of the 100¢% most external curves is allocated to the
cluster w.r.t. its MBD is highest.

> the kernels of the clusters are computed again, after the
memership is changed, and the new 100¢% of most external
curves is assigned to on of the clusters, maximizing the MBD.

> After some steps the clusters achieve the optimal configuration

> The area of the Kernels of the clusters give a measure of their
cohesiveness.
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Clustering Algorithm

Steps of the Algorithm

1. Determining clusters on the space of the Metadata.

2. Aligning waves inside the clusters:

2.1 STFT
2.2 ESA

3. Depth-based clustering of waveforms:

3.1 compute the depth (MBD) for the initial partition

3.2 find the kernel made up by the % of deepest curves

3.3 ri-allocate the (1 — )% of most external curves in the
cluster w. r. t. the MBD is highest.

3.4 repeat steps 3.2 — 3.3 until the allocation of the curves
improves in terms of increasing MBD.

3.5 stop when all the external curves have the highest MBD
with its cluster
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Initial clusters

Figure: E-component of the waves clustered in 3 initial clusters
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Clusters for STFT and ESA results

Figure: final clusters
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Clusters based on MBD

Figure: E-component of the waves clustered in 7 final clusters
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Clusters based on MBD

Figure: N-component of the waves clustered in 7 final clusters
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Clusters based on MBD

Figure: Z-component of the waves clustered in 7 final clusters
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Metadata in final clusters

E1 N2 23 3 Ea ES E6 E7 E1 N2 23 3 E4 Es E6 E7

MAGNITUDE W MAGNITUDE W MAGNITUDE W MAGNITUDE W

E1 N2 23 3 Ea Es E1 N2 23

MAGNITUDE W MAGNITUDE W MAGNITUDE W MAGNITUDE W
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Residuals from attenuation models

Ues = Ues,ef"’sk +55255+5P2P5, +0L2L,

where k=1,2,...,7
(Al Atik et al.2010 ; Lanzano et al. 2017)

Figure: Residuals from cluster 1: Duration 36.28 -57.37 s;
PGA1 —3cm/s?
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Residuals from attenuation models

Ues = Hes, ef + S+ 8525, +0P2P,, +0L2L,

where k=1,2,...,7
(Al Atik et al.2010 ; Lanzano et al. 2017)

Figure: Residuals from cluster 2: Duration 160 - 230 s; PGA4 —10cm/s?

IT.TOD

IT.MMP1

gy COMTECtion (in]
1y COMTECtioN (In]

Detecting clusters in spatially correlated waveforms 2017, 14-16 November



Residuals from attenuation models

Ues = Hes, ef + S+ 8525, +0P2P,, +0L2L,

where k=1,2,....7
(Al Atik et al.2010 ; Lanzano et al. 2017)

Figure: Residuals from cluster 3: Duration 65.72 - 91-23 s;
PGA2 —10cm/s?
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Residuals from attenuation models

Ues = Hes, ef + S+ 8525, +0P2P,, +0L2L,

where k=1,2,...,7
(Al Atik et al.2010 ; Lanzano et al. 2017)

Figure: Residuals from cluster 4: Duration 97 - 140 s; PGA5 —30cm/s?
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Analysis of the event Accumoli, 24 — 08 — 2016

Figure: Map of the signals
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