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Abstract: This paper focuses on inferences in logistic regression models fitted
by the Firth penalized log likelihood. In this context, many authors have claimed
superiority of the likelihood ratio statistic with respect to the (wrong) Wald
statistic via simulation evidence. We re-assess such findings by detailing the in-
ferential tool and including in the comparisons the (right) Wald statistic and also
other statistics neglected in previous literature. Simulation evidence and a real
data set analysis withdraw previous findings by showing that the likelihood ratio
statistic is not the best inferential device in Firth penalized logistic regression.
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1 Introduction

The logistic regression equation reads as logit(πi) =
∑K

j=1 xijβj where
E[Y |xi] = πi, Y is the dichotomic response variable and xi a K-dimensional
covariate vector. To estimate the regression parameter βj , Firth (1993)
suggested to modify the classical score function Uj(β) through U∗

j (β) =

Uj(β) + 0.5tr
{
I(β)−1∂I(β)/∂βj

}
, j = 1, 2, . . . ,K., corresponding to the

penalized log-likelihood `∗(β) = `(β)+log |I(β)| 12 being the penalty |I(β)| 12
the so-called Jeffrey’s invariant prior. Since the Firth penalized approach
allows to remove the first order O(n−1) bias of the MLEs, and it also guar-
antees finite estimates with sparse data where the classical ML estimates
do not exist, such penalized approach is widespread in practice, especially
in medical statistics involving small samples.
We focus on the construction of confidence intervals for the βjs, based
on test statistics computed using penalized likelihood quantities. Existing
approaches previously discussed consider CIs based on the penalized likeli-
hood ratio and the Wald statistics (e.g., Heinze and Schemper, 2002; Bull
et al., 2007). However we note two possible drawbacks in previous afore-
mentioned studies: first they consider a meaningless and then wrong Wald
statistic; second the other statistics - such as the well-known Score and the
relatively more recent Gradient statistics are totally ignored. In the next
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sections we revisit and compare them in terms of coverage levels for the
interval estimators

2 Methods

Let βj be the interest parameter in the logit regression equation. A relevant
(1 − α)100% confidence interval is defined as {β0j ∈ R : zα

2
≤ T (β0j) ≤

z1−α
2
}, where T (β0j) is any pivot statistic discussed nextly, and zα

2
and

z1−α
2

are the appropriate quantiles of the standard normal distribution.
The Likelihood ratio and the Wald statistics currently discussed in the
literature are

L = sign(β̂∗
j − β0j)

√
−2{`∗(β̂∗)− `∗(β̂∗

0)} W =
β̂∗
j − β0j√

I−1(β̂∗)jj

where β̂∗ is the full (unrestricted) penalized ML estimate, and β̂∗
0 is the

restricted penalized ML estimates, that is the penalized estimates obtained
fixing βj at β0j . The penalized likelihood ratio statistic is quite straight-
forward, but the form of the Wald statistic deserves some discussion: it
uses the jth element of the main diagonal of the (unpenalized) inverse
information evaluated at the penalized ML estimate. Notice the Informa-
tion, that is the variance of U∗, does not depend on the penalty and thus
we write it as I, without asterisk. Now the question is if such quantity -
employed in the aforementioned literature - represents the right formula
to compute the variance of estimator V [β̂∗]. The answer is no. From ba-
sics of Inference, it should be remarked that variance of the ML estimator
comes from the sandwich formula reducing to inverse of Information only
if the model is correctly specified and the second Bartlett identity holds.
In the Firth penalized likelihood, clearly the second Bartlett identity does
not hold, namely E[−H∗(β)] 6= I(β), where H∗ is the hessian depend-
ing on the penalty. Thus the usual sandwich formula cannot be simpli-

fied, but a reliable variance for β̂
∗

is provided by the sandwich estimate

V (β̂
∗
) ≈ H∗(β̂∗)]−1I(β̂∗)H∗(β̂∗)−1. For large samples the penalty effect

vanishes, making valid the simple approximation V (β̂
∗
) ≈ I(β̂∗)−1; how-

ever in small to moderate samples I(β̂∗)−1 typically overestimates the vari-
ance of β̂∗. This crucial issue appears to have been overlooked in literature,
causing a (pointless) ‘bad reputation’ of the Wald statistic.
Likelihood ratio and Wald represent two, possibly the most famous, likeli-
hood based statistics useful for interval estimators, but other options are
available; see Muggeo and Lovison (2014) for a nice treatment about all
four likelihood-based statistics. To complete our discussion about interval
estimators in Firth penalized logistic regression, we write down 2 additional
statistics, the Score and the Gradient statistic,

S = U∗
j (β̂∗

0)

√
I−1(β̂∗

0)jj , G = sign(β̂∗
j − β0j)

√
(β̂∗

j − β0j)U∗
j (β̂∗

0).
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where I−1(β̂∗
0)jj is the inverse of the variance of the conditional Score U∗

j

given the remaining components. Interestingly the Score statistic is well
known in the mainstream inference background, but its use appears to be
quite limited in practical application. The Gradient statistic is relatively
new, but takes advantage of its computational simplicity as it just needs
estimates and first derivatives.

3 Simulation study

To compare the four likelihood based statistics, we generate Bernoulli
data Yi ∼ Ber(πi) where logit(πi) = β0 + β1xi. We set β0 = 1 while
β1 ∈ {0.5, 1.5}, and three different sample sizes n ∈ {20, 50, 100}. For each
scenario we consider a balanced binary variable xi = I(i > n/2) and a
continuous covariate with equally spaced values, i.e. xi = i/n.

TABLE 1. Simulation results (based in 1000 runs): empirical coverage level (CL)
and average width (AW) of the CIs based on the incorrect Wald (W ), the correct
Wald with the sandwich variance (WS), Likelihood Ratio (L), Score (S) and
Gradient (G) statistics.

xi = i/n xi = I(i > n/2)

β1 = 0.5 β1 = 1.5 β1 = 0.5 β1 = 1.5

n Test CL AW CL AW CL AW CL AW

20 W 0.991 4.69 0.984 5.52 0.994 7.25 0.991 8.00
WS 0.970 4.09 0.934 4.43 0.982 6.70 0.981 7.16
L 0.957 4.87 0.973 6.05 0.968 7.40 0.981 8.40
S 0.951 3.83 0.934 4.31 0.968 6.40 0.972 7.20
G 0.957 5.59 0.972 7.55 0.962 7.97 0.977 9.29

50 W 0.968 2.81 0.970 3.65 0.968 4.73 0.971 5.63
WS 0.958 2.66 0.957 3.15 0.962 4.55 0.943 5.22
L 0.959 2.83 0.965 3.87 0.959 4.75 0.950 5.80
S 0.961 2.58 0.947 3.19 0.955 4.44 0.953 5.38
G 0.950 2.93 0.967 4.41 0.955 4.86 0.947 6.05

100 W 0.955 1.94 0.959 2.59 0.965 3.31 0.966 3.96
WS 0.946 1.90 0.938 2.36 0.959 3.25 0.951 3.80
L 0.946 1.94 0.940 2.67 0.954 3.31 0.954 4.01
S 0.948 1.86 0.945 2.40 0.951 3.19 0.957 3.85
G 0.943 1.96 0.937 2.84 0.953 3.34 0.950 4.08

Table 1 reports the empirical coverage level (CL) and the relevant average
width (AW) of the 95% CIs for β1. Broadly speaking the likelihood ratio
statistic does not perform the best, and the fair WS behaviour reasonably
well, even better than L for n ≥ 50. Overall, score-based CIs appear to out-
perform the competitors in terms of CL and AW, also in the most difficult
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scenarios with small samples (n = 20) and strong predictor causing sam-
pling zeroes and sparse data (β1 = 1.5). As expected, differences attenuate
at large samples.

4 Example: osteogenic sarcoma data

We consider an example from Metha and Patel (1995) on n = 46 patients
with osteogenic sarcoma. A three year disease-free interval (DFI3) is the re-
sponse, while the explanatory variables are gender (SEX) and the presence
of any osteoid pathology (AOP) and lymphocytic infiltration (LI). Notice
the classical MLEs cannot be computed since there is problem of separa-
tion caused by the variable LI. We estimate a penalized logistic regression
model with additive linear effects and compute the 95% confidence inter-
vals for βLI , see Table 2. It is worth emphasizing the variable LI turns out
to be significant only according to WS , L, S and G but the 95% CI based
on S is the narrowest.

TABLE 2. 95% confidence intervals for βLI based on the five pivot statistics and
exact inference (E).

95%CI W WS L S G E

Inf -5.504 -4.637 -7.363 -4.805 -10.147 −∞
Sup 0.582 -0.286 -0.188 -0.104 -0.356 0.160
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