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Abstract. An Hellinger-Reissner (H-R) variational principle is proposed for stress gradient
elasticity material models. Stress gradient elasticity is an emerging branch of non-simple con-
stitutive elastic models where the infinitesimal strain tensor is linearly related to the Cauchy
stress tensor and to its Laplacian. The H-R principle here proposed is particularized for a solid
composed by several sub-domains connected by coherent interfaces, that is interfaces across the
which both displacement and traction vectors are continuous. In view of possible stress-based
finite element applications, a reduced form of the H-R principle is also proposed in which the
field linear momentum balance equations are satisfied a-priori, the continuity condition of the
displacements across the interfaces is relaxed and the analogous continuity condition of the
traction is enforced as a side condition.
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1 INTRODUCTION

In the recent scientific literature, stress gradient elasticity theory is emerging as a valuable
model [1], alternative to the most traditional strain gradient, which can handle long distance
cohesive forces in real structured materials typically employed in micromechanics structures .

The very reason to employ such higher order material models is rooted on the fact they can
provide significant improvements to specific shortcomings displayed by classic local continuum
theories, such as crack tip stress singularity or stiffness size effects.

Stress gradient theory can be considered related to the original approach of Eringen [2],
which replaced the nonlocal stress integral relation, o(x) = |, a(}a:’ —z|) ot (x)dV ()
with a differential equation of the type o’/(x) = o(x) — (?°V20(x) where V? is the Laplace
differential operator, / is a positive internal length material parameter, o and 0" are respectively
the Cauchy and the Hookean stress tensors. The two approaches are mathematically linked if the
integral kernel function a(|x|) is the Green function of the differential operator £ := 1 — (2V?
or alternatively applying the differential operator £ to the kernel function, the following relation
holds: Lla(|x’ — x|)] = §(x’ — x), where §(x) is the Dirac delta function [3, 4].

The real complete equivalence of the two approaches is still under debate, since the strong
(integral) nonlocal elasticity and the stress gradient elasticity are indeed two different constitu-
tive models. [5, 6]. Moreover, the most remarkable difference is in the gradient induced extra
boundary conditions, namely boundary conditions which are produced by the differential nature
of the material model.

The stress gradient approach has a number of theoretical and applicative advantages with
respect to the most popular strain gradient elasticity [1]. In an earlier attempt to explore these
advantages, a slightly different formulation, called implicit gradient elasticity model, was inde-
pendently proposed and its Finite Element implementation carefully analyzed [7]. The stress
gradient model has been also utilized as an effective regularization procedure which allows to
smooth stress singularity that arise at the crack tip for linear elastic fracture mechanics problems
[8].

The most recent and effective contributions for a rational framing of this new branch of the
continuum mechanics is indeed rooted in the research work by Forest and co-workers [9, 10]
and the one by Polizzotto [1, 11, 12].

The two above mentioned autonomous stress gradient formulations share the same mechan-
ical background and both are developed in a consistent variational environment. Nevertheless
they arrive to a boundary-value problem which has the same field differential equations, but
surprisingly the boundary conditions proposed are different, not only for the type of equations,
but also for the number of boundary conditions. The understanding of these differences is a
quite important topic, which has been partially discussed in [12], but it deserve a more deep
analysis. In this paper we adopt the boundary conditions proposed in [1, 11].

One of the reasons that seem to justify the better performances of stress gradient models
with respect to the strain gradient ones [13, 14] is due to the fact that the latter approach re-
quires an higher grade of continuity for the displacement field. Consequently, rather complex
displacement based finite elements are necessary and, moreover, complex higher order bound-
ary conditions are demanded. Stress gradient elasticity models can be approached from a static
point of view, so that continuity required to stress field is less expensive and it also results easier
to enforce constitutive boundary conditions.

The paper is organized as follow. In the next Section the stress gradient elasticity boundary-
value problem is briefly recalled for a solid body with embedded coherent interfaces. Section 3
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is devoted to propose a specific form of the Hellinger-Reissner (H-R) variational principle,
showing that the stationarity conditions represent the equations of the boundary value problem
exposed in Sect. 2. In Section 4 a reduced form of the H-R variational principle is reported
which is developed relaxing some of the strong local conditions in a weak form. This reduced
form of the H-R principle opens to a possible stress based Finite Elements applications, of
a form similar to the one adopted in [18]. Finally in Section 5 some closing remarks and
possible future developments are discussed. Along the paper standard Cartesian index notation
is adopted.

2 THE STRESS GRADIENT ELASTICITY BOUNDARY VALUE PROBLEM

In this Section the relations governing the stress gradient elasticity boundary-value prob-
lem are briefly collected. A continuous solid body made up of stress gradient elastic material
is considered. The body is referred to Cartesian orthogonal frame with axes x; (i = 1,2, 3);
it occupies the open domain V' C R? (see Figure 1); which is subdivided in m-subdomains
V), Vi2), - - - Vim). The interface separating the subdomains, called I', is geometrically char-
acterized by the the outward normal vector n (with arbitrary chosen orientation); it in gen-
eral contains line intersections and point junctions. The complete internal domain is denoted
V = V UT. The external boundary of 1/, denoted as S = 9V, is divided in the constrained
part S., where the displacement vector @ is assigned, and in the free part Sy, where the traction
vector ¢ is assigned. In order that after the deformation the subdomains V/,) fit to form a con-
tinuum, it is required that both the displacement w and traction ¢ = o - 1 are continuous across
the interfaces.

Figure 1: Sketch of a stress gradient elastic solid body formed by m = 3 subdomains V(y), V(3), ... V(;,) with
interfaces I'.

The complete set of equations that characterize the stress gradient elasticity problem are
reported in the following Subsections.
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2.1 Compatibility conditions

Since the problem is developed under the hypothesis of small displacements and small strains
the usual linearized compatibility conditions have to be enforced at every point inside the re-
gions V{;); moreover, the displacement vector has to take the value assigned on S,. Therefore
the compatibility conditions read as

gij = E(Ui’j_l_uj’i) in ‘/(T),(’f’ = l,m), U; = u; On Sc (1)
We notice that for stress gradient elasticy the compatibility relations are just the same relations

as for classical elasticity.

2.2 Equilibrium conditions

In the assumed hypothesis of small displacements the field equilibrium equations can be
written in their classical linearized format, whereas on the free boundary surface S r, with out-
ward normal vector n, the equilibrium condition with the external assigned traction must be
enforced. Therefore the equilibrium equations read as

0ijj T bi =0 in Vi, (r=1,...m); oijn; =1t onS; 2)

Again we observe that for stress gradient elasticity the equilibrium equations have the same
mathematical structure as for classical elasticity.

2.3 Stress gradient constitutive equations

The essential feature of stress gradient elasticity are incorporated within the constitutive
relations. Let us introduce a standard Hookean stress, say ag , which is related to the compatible
strain ¢;; defined in eq. (1);, through the Hooke law, that is,

O'ZI]{ = Dijhk{—:hk in ‘/(7.), (T = 1, e m) (3)

the latter stress o* is related to the equilibrium stress tensor o by the following (Helmholtz)
partial differential equations, with associated boundary conditions

045 — 520'1']'7]@]@ = O'g in ‘/(T), (7’ = 1, .. .m); Oij kNE = 0 onS = S’ U F+ ul'™ (4)

For o assigned within V/, the above Helmoholz problem permits one to evaluate, at least in
principle, the corresponding Cauchy stresses o. Equation (4); introduces an internal length
scale parameter ¢, which is directly related to the long range microstructure interactions and
serves ad a scaling factor for the Laplacian of the Cauchy stress tensor o

2.4 Interface conditions

To complete the problem equations it is necessary to address kinematic and static continuity
conditions across the interface I', see Figure 2. Following a typical nomenclature of mechanical
interfaces, the interface I' is supposed to split after the deformation mechanism in a positive
't and in a negative surface I'". As a consequence, a point & € I splits in a point &t €
I't and in a point £~ € I'~, with a concomitant jump of the displacement vector across the
interface that is, [u;] := v — u; = x7 — x;. Taking the normals n™ to '™ and n™ to '~
with outward directions from the respective adjacent subdomain, due to the small displacement
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Figure 2: Sketch showing an interface element I" with its positive (I't) and negative (I'~) parts, the normal vector
n =n" = —n™, the two traction vectors ¢+ and ¢~ and the displacement jump [u;] := u* — u~. For coherent
interfaces [u;] = 0 and [¢;] = 0.

hypothesis, the following condition holds n; := n; = —n;". Since the interfaces considered
here are coherent interfaces, in the sense that they present neither displacement, nor traction
jumps across the interface, the following continuity relations hold

[[Ul]] = O, and [[aijnj]] =0 onl (5)
We note that the stress gradient boundary conditions
oijxne =0 onl"andon T~ (6)

which are incorporated in eq.(45) (where S = SUTtuTl™) do not pertain to the set of inter-
face conditions, but they instead constitute the boundary conditions associated to the adjacent
subdomains.

For coherent interfaces only the kinematic and static relations (5) and (6) must be considered.
A different kind of interface has been often used for driving dechoesion or fracture processes
along predefined potential surfaces. For these last cases cohesive interfaces are employed, in
which, the traction continuity is still enforced, but the displacement jump can be different from
zero, since it is a measure of the crack opening. In case of cohesive interfaces, beside static and
kinematic relations, is also necessary to introduce specific interface constitutive equations (see
e.g. [15, 16, 17]). In what follows reference is done only to coherent interfaces, leaving for
future research works the extension to cohesive interfaces.

Equations (1)-(6) are then the governing equations of stress gradient elastic boundary value
problem. In the next Section a stress based variational approach will be examined.

3 HELLINGER-RESSNER VARIATIONAL PRINCIPLE

In absence of interfaces I', the Hellinger-Reissner stationarity principle for stress gradient
elasticity [1, 11] reads

H= / {oijui; — G(o, Vo) — bu;} AV — /

S

f c
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where 0;; = 0j;, p; and u; are free variables and G is the (Gibbs) complementary stress energy
potential, a convex function given in the following simplest quadratic form

1
G(o,Vo) = EAijkl (UijUkz + £2O-ij,m0-kl,m) (8)

In the case of embedded interfaces, as depicted in Fig. 1, the functional (7), has to be modified
as follows

H1(Uij>pz’>uz’> Qz') = / {Uijui,j - G(O-ijao-ij,m) - biui} dv
1%

9)
—/ tiu dS—/ (Ui—ﬂi)pid8+/% [ui] AT
3 3 r

where the last integral is appended to (7) in order to enforce the interface condition [u;] = 0
on [' by means of a traction-like Lagrange multiplier ¢;. Note that the variable p;, in place of
0i; nj, is mandatory since p; is independent of o;;. Rewriting explicitly the functional H; by
inserting the Gibbs stress function (8)

1

H1(Uij>pz’>uz’> Qz') = / {Uijui,j - §Aijkl (UijUkz + £2O-ij,m0-kl,m) - biui} dVv
1%

—/ tiu; dS—/ (u; — U;)p; dS+/Q¢ [wi] AT
3 3 r

oH, = / {(uiy — Aijaon) 005 — O AijiOrim 00 ijm y AV
v

(10)

taking the first variation

14 - r

Sr

S r

Applying the Gauss theorem at the two terms with du; ; and do;; ., and considering also the
following two identities

[[Uijnjéui]] = [[oijnj]]éuf + U;n][[éul]] = [[oijnj]]éui_ + O'?]—-’I?,j [[(5ul]] (12)

eq.(11) becomes
5H1 = / {U(m-) — Aijkl (O'kl — 520k17mm) } 50‘¢jdv — / (O'ijJ' + bl) (5ul dVv
\% \%

+ / (O'ij’nj — t_l) 6'&1 dS + / (O'l'jnj — pz) 6’&1 dS — / (Ul — 'I_Ll) 6pl dS
S S, S

S,

— / £2Aijkl Okl,m Mm 60'1']' ds + / £2Aijkl [[Ukl,m Nm 60’@']] dr (13)
S r

S

+/ (¢; — oi5m;) [du]dl — /[[O'ij n,] du; dF+/[[ui]] dg;dI' =0
r r o Jr

(%)
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Note that the term (*) can be alternatively written as [, (¢; — oin;) [6w;] dU'— [1[o4; ;] du; T
by means of the identity (12).

The Euler-Lagrange equations at the statinarity condition of the Hellinger-Reissner principle
then read

2 .
U(i,5) = i4ijkl (Ukz —/ O-kl,mm)J inV

v~

Eij

04,5 + bl =0 in V; Oijn; = t_z on S'f

oMy =Py On Sc, U; = u; On Sc
(14)

[[Ul]] = O, [[O'l'j nj]] = O, qi = ol-;nj(z U;;nj)a onl

CAip Okgmnm =0 = 0jmn, =0 onS

CAijokimmm =0 = 0ijmnm,=0 onlTandon T~

It is easy to verify that the Euler-Lagrange equations reported above coincide with the boundary-
value problem defined by all the field and boundary equations of eqs.(1)—(6)

4 A REDUCED FORM OF THE HELLINGER-RESSNER PRINCIPLE

A suitably reduced-form of the H-R principle of the preceding Section can be developed with
the intent to derive Finite Elements applications. For this purpose let us assume

i) The field equilibrium equation are satisfied a-priori: 0;;; + b; = 0;
ii) The continuity condition of the displacement u; across I' is relaxed: ¢; = 0;

iii) The continuity condition of the traction ¢; = o;;n; across I" is enforced as a side condition
by writing: [o;; nj u;] = 045 n; [us]], provided that [o;; n;] = 0, see eq. (12).

As a consequence, the last integral of eq.(10) drops out. Also, applying the divergence
theorem, the first integral of (10) transform as

Hy = —/ (04,5 + bi) us dV—/ G(0ij, 0im) AV +/ (o35m5 = pi)Jui ds
v v

c

—0 (15)
+ / plﬂl dS + / (O'l'jnj — fl)ul dS — / Oij nj [[UZ]] dF
7c gf F
This, introducing the modified functional H,., can be rewritten in the form
H, = / G(0ij, 0ijm) AV — / (o35 — ts)uids — / piti; ds
1% 5;

‘ (16)
— / (O'ijnj — pl)ul dS + / 055 Ny [[UZ]]dF
c r
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we remark that the stationarity condition

H,(04j, pi, u;) — stationary

¢ 0ij.5 + bl =0 nV (17)
N[w]=0 on[’

would lead to the same Euler-Lagrange equations like those obtained for the original H-R prin-
ciple with interface, that is (14). In particular, at the stationarity condition, it would result that
p; = t; = 0;;n; on S. This implies that for FE discretization purposes, it is possible to replace
p; with t; without errors, because after discretization, the variation will be taken with respect
to the inherent discrete variables (node value of the unknown fields), not with respect the latter
(distributed) unknowns. Additionally, since u; = %; on S. at the stationarity limit, it is also
possible to replace u; = u; on S. in (16). Therefore, for discretization purposes, the functional
(16) can be written in the simpler form:

H: I:/ G(O’ij,O'l’Lm)dV—/ (Jl-jnj—ﬂ-)uids—/ Uijnjﬂids
v 51 ¢ (18)
—I-/O'l'j n; [[ul]]dl“
r

or also, since [, oy; 1 [wi]dT" = — [,/ 5 05 m; uidL, we obtain

H: I:/G(O'l’j,O'l’Lm) dV—/(Jijnj—ﬁ-)uids—/Jijnjﬂids—l—/ Jijnjds (19)
\%4 Sy

A aV/S.

Finally, the discretization by FEs starts by subdividing the domain in /m subdomains, each of
which is a finite element, whereas the interface I' represents the inter-elements surface (or line
for 2D problems). Inside each element the following modelling can be adopted

ui(x) ~ N} (x)U; oi(T) = Nj(x) S; (20)

where U and S are respectively discrete (or nodal) displacements and stresses. Details con-
cerning FE discretization and element technology are not reported here, but it seems possible to
extend recent stress approach adopted for standard elasticity problems [18] to the present stress
gradient elasticity context.

S CONCLUSIONS

In the present paper an ad-hoc Hellinger-Reissner variational principle for stress gradient
elastic material structures has been presented. The H-R principle has been formulated consider-
ing that the continuum has embedded a number of coherent interfaces, that transform the usual
continuum in an assemblage of subdomains interconnected in a way to ensure, to some degree,
the original behavior of the monolithic continuum. The main purpose is to set up a consistent
variational environment for the application of stress based finite elements for the structural anal-
ysis of stress gradient material structures. The specific development of a stress gradient Finite
Element, with a deep analysis of characteristics and performances, is out of the targets of the
present paper and will be the subject of future studies.
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