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Chapter 1

Introduction

1.1 General

Reinforced Concrete (RC) is one of the most commonly used materials for con-
structions. It has numerous advantages including great compressive strength,
suitable rigidity, relative low cost, long service life, and high design flexibility.

A considerable number of existing RC buildings worldwide do not possess
sufficient seismic performance, and are prone to serious structural damages.
This is particularly evident for those cases where seismic-resistant regulations
were not promulgated at the time of construction and, consequently, the build-
ings were designed and constructed by merely taking into account the vertical
dead and live loads (gravity-designed buildings). As a result of this deficiency,
under the combination of vertical and horizontal actions, progressive damage
occurs in structural elements and thus the stability of the structure is affected,
which may lead to structural failure.

The consequences of structural damages range from direct and indirect
losses due to repair and disruption of business to social and environmental
impacts such as injuries, fatalities, homelessness, and release of hazardous ma-
terials, among others [67]. In addition, in many cases these constructions rep-
resent an important economic and social patrimony.

To prevent irreversible losses, the existing structures should be opportunely
strengthened in order to absorb the expected seismic energies. As a preliminary
step before the rehabilitation process, the potential weak areas in the target
structure should be identified. Nonlinear analysis is a promising tool that
provides insight into the structural performance and reliability, and also the
damage distribution in the structural elements. The technique is performed

15



16 Introduction

with the aim to determine the critical points and the degree of deterioration of
the structure so that an appropriate rehabilitation strategy can be selected.
Nonlinear static pushover analysis is a quite widespread computational tool
that provides an accurate estimation of the seismic demands and capacities of
structures. It can be programmed on the basis of concentrated plasticity or
distributed plasticity concept. Distributed plasticity models, although more
accurate with respect to the concentrated ones, require large computational
effort and time. For this reason, many commercial finite element programs are
developed in the framework of concentrated plasticity. Concentrated plasticity
models, on the other hand, require a predefined knowledge on the position
of the plastic sections. Otherwise, they consider the plastic sections at the
extreme segments of the structural elements. In the former case, predicting in
advance the exact positions of the plastic sections is usually not possible and if
inaccurately done, can lead to unreliable and erroneous responses. In the latter
case, it is not possible to locate a plastic section along the element span, and
thus the suspected element is automatically divided into two segments with a
necessary re-meshing procedure, which increases the computational cost.

1.2 Objectives

Considering the aforementioned problems, the main focus of the thesis is de-
voted to the development of a Finite Element Method (FEM) tool for nonlinear
static pushover analysis of RC structures in the framework of concentrated plas-
ticity. With respect to other strategies, the proposed approach overcomes the
mesh refinement problem and enables the formation of plastic hinges at any
position of the element.

Using this numerical tool, it is also possible to determine the effectiveness
and reliability of different retrofitting techniques, which is the second main
objective of this thesis. Special attention is given to Fiber Reinforced Polymer
(FRP) composites and Shape Memory Alloy (SMA) retrofitting techniques.

1.3 Structure of the Thesis

This thesis is split into five parts. In the first part (Chapter 2), different struc-
tural analysis methods and the relevant finite element strategies are introduced.
A literature review regarding the static pushover analysis technique and the ex-
isting distributed and concentrated plasticity models is presented.
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In the second part (Chapter 3), which is the main part of this thesis, the pro-
posed FEM procedure is described, beginning with the theoretical background
through the FEM implementation and arriving to numerical applications.

The third part (Chapter 4) deals with the application of FRP composites
for retrofitting deficient RC structures. For this purpose, the proposed FEM
procedure is modified to account the presence of FRP composites in RC sec-
tions.

The forth part (Chapter 5) begins with the introduction of a robust con-
stitutive model for SMA. Then, the model is empowered with a micromorphic
term in order to simulate the true behaviour of SMA in tension. Afterwards, the
very first model is introduced into the presented FEM procedure to investigate
the behaviour of RC structures retrofitted by SMA braces.

In the conclusion part (Chapter 6), the main findings of the thesis is sum-
marized and further developments are indicated.
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Chapter 2

State of Art

2.1 Introduction

In order to analyse the structural behaviour of framed structures, different pro-
cedures can be implemented based on the demanded accuracy of the responses.
Based on the inclusion of nonlinear effects, these procedures are categorized into
linear and nonlinear approches. Each of the two categories are then classified
into static and dynamic methods (see Fig. 2.1). The desicion of selecting one
method over the others lies on specific assumptions that can be considered for
a particular structure, thus each of the four methods can be applied for specific
engineering or research purposes. A detailed discussion through the features
and applications of different structural analysis methods is beyond the scope
of this thesis (the reader may refer to e.g. [55, 177]), which is devoted to the
nonlinear static analysis method only.

Experimental observations have demonstrated that the behaviour of struc-
tural materials as steel and concrete is associated with significant nonlinearity.
This, in fact, compels the structural engineers and researchers to carry out
nonlinear-type analysis to acquire more reliable and precise results. Nonlinear
time-history analysis is a promising tool that provides an accurate simulation
of the structural responses under specified ground motion records. The analysis
is computationally expensive due to the large number of time steps in the ap-
plied ground motions. For this, generally, it is recommended that the use of the
nonlinear time-history analysis should be limited to the structures in which the
effect of higher modes can be important, e.g. in irregular and tall buildings. As
an alternative solution, nonlinear static analysis (pushover) is used to predict
the structural performance in a simplified manner with acceptable precision.

19
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Structural Analysis

‘ Linear | Nonlinear

Static Dynamic Static (PushOver) Dynamic

Figure 2.1: Different approaches for the structural analysis of the framed structures.

In general, nonlinear analysis of structures can be performed with differ-
ent scales of accuracy and complexity. The scale of analysis is determined by
the size and the geometry of the model (e.g. a full-scale structure, a structural
element or a structural joint), and also the precision of the desired response.
Discrete finite elements model is one of the most common and widely-reported
methods of modelling in which the structural model is divided into a finite
number of interconnected frame elements. Within the scope of finite element
discretization, the frame elements are formulated either based on the displace-
ment (stiffness) approach or force (flexibility) approach. In the displacement-
based approach, the displacement field is assumed as the primary variable, see
Fig. 2.2(a), and the displacement shape functions are constructed in order to
evaluate the displacements along the element. Subsequently, stiffness matrix
and force vector are derived, e.g. using the principle of virtual displacement,
and accordingly internal forces and strains are calculated. On the other hand,
in the force-based formulation the force-field is at the beginning assumed as un-
known, see Fig. 2.2 (b), and internal forces are related to the nodal forces via
suitable shape functions by which the equilibrium condition is fulfilled even in
the plastic range [163]. The pertinent properties of the displacement-based and
force-based elements are demonstrated by Neuenhofer and Filippou through an
interesting comparative study [128].

To carry out a pushover analysis in the framework of finite element, two
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a)

Qv

w/ \«3‘%

Figure 2.2: Displacement-based element (a) and force-based element (b) showing,
respectively, deformation field and force field as the primary unknowns of the problem.

modelling strategies are available for the nonlinear analysis of beam-column
elements, namely distributed plasticity and concentrated plasticity. Distributed
plasticity assumes the spread of plasticity along the length of the beam-column
element, which is undoubtedly realistic and represents the true nonlinear be-
haviour of the structural elements. In this strategy, in practice, the behaviour of
beam-column elements is obtained by merely monitoring representative sections
that are located on the integration points [172], or in a more precise fashion,
permitting the localization of plasticity at each point of an element and discreti-
sizing the cross-section in finite regions, each one with its own constitutive char-
acteristics (fiber model). Distributed plasticity models are written following a
stiffness or a flexibility method depending if their formulation is displacement-
based or force-based, respectively. Concentrated plasticity (lumped plasticity),
on the other hand, is based on the assumption that the plasticity is formed
at the extremities of beam-column elements while the rest remains elastic. In
this context, the plasticity is lumped into zero-length sections for which the
mechanical properties are idealized by means of nonlinear rotational springs.
Figure 2.3 schematically illustrates the concentrated and distributed plasticity
based elements. It should be noted that in the case of concentrated plasticity,
the literature is larger and more expansive thanks to the basic advantages of
the concentrated plasticity strategy with respect to the distributed plasticity,
e.g. simplicity, reduced storage requirement and time of computation.

The main goal of the present thesis is the development of an efficient numer-
ical tool based on lumped plasticity elements to run nonlinear analyses on RC
structures in order to simulate the nonlinear behaviour of such structures. This
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Integration point Plastic part

Elastic part

Rotational spring

Figure 2.3: Schematic representation of distributed plasticity (a) and concentrated
plasticity (b) in the element.

instrument could be therefore exploited to solve part of the nonlinear structural
analysis methods, mainly the most diffused static one.

The aim of this Chapter is to provide a brief literature review on the de-
velopment and applications of pushover analysis (Section 2.2) and also on the
implementation of finite element modelling strategies (Section 2.3). Finally,
conclusion remarks are discussed in Section 2.4.

2.2 A Literature Survey on the Pushover Analysis

Among the two nonlinear analysis procedures available, pushover analysis has
received the majority of attentions due to its simplicity with respect to its dy-
namic counterpart. It offers information on the limit load, the location of plastic
sections, displacement capacity and member ductilities. The procedure consists
of applying a progressively increasing set of lateral loads in different steps. In
each step, the stiffness matrix is updated and the static equilibrium condition
of the structure is imposed. The procedure continues until the formation of a
collapse mechanism or achievement of a predetermined displacement [139]. At
the end of the procedure, the result is given in the form of a capacity curve,
which is the plot of the base-shear of the structure versus the displacement of
a control point, which is generally the mass centroid of the highest floor, see
Fig. 2.4.

Many studies have been conducted on different scales to show the applica-
tion of pushover analysis in determining the overall capacity of the structure,
the acceptable accuracy of the procedure compared to experimental studies
and dynamic analyses, its approximations as well as limitations. Here, the fo-
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Shear force

Displacement x

Figure 2.4: The illustration of the capacity curve obtained from pushover analysis.

cus is not to provide an exhaustive review on the pushover analysis procedure.
It is rather intended to remark some influential studies and illustrating some
applications.

The early developments of the pushover analysis have been reviewed by
Elnashai [58]. The accuracy of the pushover analysis is an important aspect
that should be properly investigated. Bagheri et al. [15] concluded that the
static pushover analysis is not suitable for the evaluation of high-rise buildings
and thus the use of dynamic analysis is essential. On the other hand, according
to the results of Mwafy and Elnashai [127], the deficiencies of the pushover
analysis with respect to the dynamic analysis can be compensated by selecting
multiple load patterns. Very recently, a study was performed by Li et al. [106]
to assess the applicability of the pushover analysis method. In this study,
pushover analysis with three different types of lateral load distribution, namely
inverted triangle, uniform and adaptive, in which the distribution of the lateral
load changes according to the distribution of the inertia force at any step of
the analysis, are implemented and a three-story RC frame was selected as the
case study. A shaking table test was conducted and the experimental results
were used as a reference to validate the results of pushover and time-history
analyses. It was observed by the authors that the accuracy of the pushover
analysis is adequate for mid-rise ductile RC frames. However, it was pointed
out that the error of the pushover analysis increases as the structural damage
evolves in the frame. In Fig. 2.5, the accuracy of adopted analysis methods
in the calculation of the top displacement is compared with the ones of the
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Figure 2.5: Comparison of the top displacements in the study of Li et al. [106] for the
structure with no accumulated damage (a) and the structure with sever accumulated
damage (b).

shaking table test.

Krawinkler and Seneviratna [91] have discussed the principles of the pushover
analysis followed by an identification of the cases where the pushover analysis
is satisfactory and the cases where an additional corroboration is needed. Two
main outcomes are mentioned by the authors. It was demonstrated, through
a pushover analysis on a four-story steel frame structure under nine ground
motion records, that for low-rise frame structures, i.e. structures with insignifi-
cant higher mode effects, the pushover analysis provides adequate information
towards the structural performance. On the other hand, the second outcome
articulates that for high-rise buildings, the results of pushover analysis may be
imprecise. This is stemmed by investigating a twenty-story structure and a
multi-story wall structure that, respectively, demonstrate the underestimation
of the maximum story drift and the maximum base shear by pushover anal-
ysis. It is clearly stated that the pushover analysis can be performed for the
evaluation of all structures; however, for the structures where the higher modes
are prone to be dominant, the pushover analysis should be complemented with
another sophisticated analysis procedure, e.g. the time-history analysis [91].

An adaptive pushover analysis method was established by Bracci et al. [26].
The method was used to evaluate the response of a 1:3 gravity-designed RC
structure before and after the retrofitting procedure, which was performed by
means of concrete jacketing of the interior columns. The incremental story
shear demands is considered for the derivation of the most suitable lateral load
distribution pattern. Experimental results showed that by applying the lateral
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Figure 2.6: The capacity curves of the original model (a) and the retrofitted model
(b) in the study of Bracci et al. [26].

load distribution pattern obtained from the adaptive pushover analysis, more
consistent responses with respect to the experimental one is provided. Besides,
the adaptive pushover analysis successfully predicted the nonductile mechanism
of the frame as well as the effect of retrofitting technique. Figure 2.6 depicts
the capacity curves of the original and retrofitted models given by the adaptive
pushover method.

In the displacement-based framework, Borzi et al. [23] proposed a simpli-
fied approach for the pushover analysis of RC structures. The proposed ap-
proach assumes an elastic-perfectly-plastic behaviour for the structure. To this
end, the capacity curve is defined as a function of the collapse multiplier and
the displacement capacity. The displacement points in the pushover curve are
then linked to the levels of structural damage, namely light damage, significant
damage and collapse (Fig. 2.7). The method is then employed to simulate the
behaviour of poorly designed RC structures by considering different collapse
mechanisms. To validate the proposed method, a six-story gravity-designed
RC structure was evaluated by an FEM program and the results are compared
with the results of the proposed method (Fig. 2.8).

The static pushover analysis procedure is extensively used to investigate the
effectiveness of different retrofitting techniques of structures. A typical study
concerns the effect of different types of infillments on the global capacity and
response of RC frames. Particularly, the use of different materials (i.e. hollow
clay or masonry brick walls) with different structural arrangement (i.e. fully or
partially filled frame) is investigated [5, 6, 37, 59]. Altin et al. [5] employed
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three different strengthening techniques to rectify the inadequate lap splice
length in the columns of nonductile infilled RC frames. The pushover analysis
was then carried out and properly predicted the experimental capacity curves
of the frames. Nonetheless, there were discrepancies between the analytical and
experimental results on the initial stiffness and the post-ultimate load behaviour
of the frames. These flaws, as stated by the authors, were due to the difference
in the load application method and the shortcoming of the utilized software,
respectively.

Moreover, some studies concern the use of pushover analysis procedure on
the evaluation of the efficiency of other typical retrofitting techniques such as
FRP-reinforcement [60, 99, 112, 175], steel bracing [154, 167|, shear wall [17],
shape memory alloys [20, 173] and base isolators [144|. Here, it is not intended
to describe the retrofitting techniques in detail. A brief literature review is
given in Chapter 4 and 5 on the seismic assessment of FRP reinforced and
SMA reinforced structures, respectively.

2.3 Existing Finite Element Strategies

2.3.1 Distributed Plasticity

The idea of the distributed plasticity goes back to the model developed by
Takizawa [170] for the dynamic analysis of RC buildings with high inelasticity.
The model suggested a parabolic distribution of the flexural and shear stiff-
nesses along the element length. Its application on low-rise RC building was
accomplished by the author in [169]. Soleimani et al. [161]| developed a diffused
plasticity model with a floating plasticity zone that starts from the end sections
and spreads out to the mid-span as a function of loading level. In their model,
the mid-part of the beam always remains elastic and the plasticity is limited to
a finite length. Point hinges at the ends of the element simulate the rotations
of the beam/column interfaces. The main drawbacks of this model was the
lack of an independent hysteresis behaviour for the point hinges located at the
beam /column interfaces plus the problem of element state determination, i.e.
the determination of element resisting forces. The extension of the model is
carried out by Mulas and Filippou [126], where the nonlinear beam element of
Soleimani et al. is equipped with two nonlinear rotational springs that describe
the fixed end rotations following a hysteretic relation. The proposed FEM
strategy solves the problems that arise in the model of Soleimani et al. such as
the element state determination. A similar study was also conducted by Meyer
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et al. [124] on damaged concrete frames, where a mathematical model was pre-
sented to simulate the behaviour of RC members against severe cyclic loads. A
finite length of distributed plasticity was taken into account for unloading and
reloading. The advantage of the model with respect to already existing models
was that only the material data and geometry of the section were the inputs of
the model and no data calibration was required.

The distributed plasticity approach for more advanced proposed models,
involves the evaluation of the behaviour at fixed points along the element span.
These points are coincident with the quadrature points and depend on the
adopted integration rule. In order to obtain accurate results in the framework
of distributed plasticity, the use of finer meshes, higher order shape functions, or
more quadrature points along the element is required, which inevitably leads
to high computational complexity and time requirements. This issue is ad-
dressed in the pioneering work of Izzudin and Elnashai 78], who proposed an
adaptive analysis approach as an alternative to the traditional elasto-plastic
analysis of structural frames. The material nonlinearity is modelled through
an elasto-plastic cubic formulation on the basis of the "plane section remains
plane after deforming" hypothesis and also the neglection of shear and non-
uniform torsional strains. As the analysis starts, all the structural members
are modelled by elastic two-node quartic elements. In every loading step, the
plasticity condition is checked in a selected number of monitoring points. If
the plasticity condition is verified in a specific zone, an elasto-plastic cubic el-
ement is inserted in the plastic zone while the rest remains elastic, see Fig.
2.9. The main advantage of this mesh refinement process is that it consumes
much less computational time with respect to the traditional method where a
fine mesh is constructed for all the elements since the begining of the evalua-
tion. The authors later admitted, in [81], the necessity of adopting the layered
approach in the proposed adaptive analysis technique. The layered approach
includes the breakdown of the RC cross-section into steel layers and concrete
rectangular blocks, see Fig. 2.10. For the concrete, the confinement effect in-
duced by steel stirrups is taken into account by setting a confinement factor.
They also demonstrated that in order to obtain a preferable balance between
the numerical accuracy and computational efficiency, the need to use quartic
elastic elements, which allow representing a whole structural member with one
element, is essential. The application of the proposed adaptive technique in
nonlinear analysis of RC frames is performed in [85].

While the formulation of the distributed plasticity models are, in general, ei-
ther based on the displacement-based element [182, 183] or force-based element
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[35, 36, 172], some studies concern the implementation of a two-field mixed
formulation, catching the advantages of both formulations [3, 163]. Numerical
issues regarding the implementation of displacement-based and force-based dis-
tributed plasticity models are tackled by Calabrese et al. [31] who demonstrated
the exactness of the force-based formulation even in the presence of softening
and the impotence of displacement-based formulation for the inelastic analysis
(see also [178]). The latter has led to element mesh refinement in the applica-
tion of displacement-based elements. However, updatable shape functions, as
proposed by Panto et al. [134], where displacement shape functions are auto-
matically updated based on the degree of degradation of the element’s stiffness,
are able to improve the accuracy without element discretization.

To accurately describe the inelastic behaviour of the structural members un-
der different loading conditions in the framework of distributed plasticity, the
constitutive relations of the cross-sections are formulated based on the classical
plasticity theory, i.e. resultant of stresses and strains, or by using fiber model.
In the latter, which is indeed the most powerful approach, the responses of
the elements are obtained through integration of the responses of traced cross-
sections. The number of cross-sections depends on the number of quadrature
points. Each cross-section is discretized into a finite number of fibers, each of
which following the stress-strain constitutive law of a particular material, e.g.
in RC structures, steel reinforcement, unconfined or confined concrete (Fig.
2.11). Contrary to the classical models that are mainly developed for rectan-
gular sections, fiber models are able to capture the material and reinforcement
details of any arbitrary-shaped cross-section. The stiffness matrix and resist-
ing force vector of a generic cross-section are then determined by integrating
the responses of the fibers. An optimum number of fibers should be employed
for each cross-section from a balance between the accuracy and computational
efficiency [164]. In fiber models, concrete cracking and steel buckling are ac-
counted for. The plane sections assumption is considered by means of adopting
an Euler-Bernoulli beam theory. The fiber models are capable in accounting
the interaction between the axial force and bending moment, plus the coupling
effect of biaxial bending moments.

A force-based fiber model was proposed in the early study of Spacone and
Filippou [164]. The presented model was a refinement of an early version de-
veloped by Ciampi and Carlesimo [41] and enables the analysis of RC members
subjected to cyclic biaxial bending moments under varying axial load. The
model could also circumvent the numerical instabiities of the previous version,
which were induced by the material softening behaviour. Petrangeli et al. [141]
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Figure 2.11: The discretization of (a) an RC section and (b) a steel cross section in
the fiber approach.

incorporated the shear behaviour and its interaction with axial force and bend-
ing moment into a displacement-based fiber model. More studies on the fiber
models have been carried out by Izzudin et al. [82] and Démenz [54] on the
combination of the fiber model with adaptive nonlinear approach, by Rosati et
al. [153] on the limit state analysis of arbitrary shaped RC sections and more
recently by Zubydan and ElSabbagh [185] on the evaluation of Concrete-Filled
Steel-Tube (CFST) elements under axial and lateral loads.

In the sectional analysis of structures, the coupling between the biaxial
bending moments and axial force is of great importance, since the variation
of one (axial or flexure) may affect the performance of the other. While this
interaction was totally ignored in the earlier studies, e.g. in [124, 132, 161], more
recent studies have considered the effect of axial force on the ultimate moment
capacity of the sections. In the framework of classical plasticity, Attalla et
al. [10] developed a distributed plasticity model for steel frames that considers
the combination of bending moment and axial force for the construction of the
initial and full-plastic yield surfaces. For RC structures, Bousias et al. [24]
proposed a bounding surface that accounts the coupling between the bending
moments of the two directions and the axial force. In addition, the effect of
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bond slip and shear force are included by appropriately calibrating the model
parameters that depend on geometry and details of steel reinforcement. A
schematic representation of a bounding surface in the space of biaxial bending
moments and axial force is shown in Fig. 2.12.

More recently, Mazza [118] proposed a distributed plasticity model, which is
a generalization of a concentrated plasticity model, that exhibits the plasticity
evolution by means of the degradation of the flexural stiffness along the beam
element. The activation domain is defined in terms of axial force and biaxial
bending moments for the elastic part (central region) and plastic parts (end
regions with varying lengths of plasticity). The model is constructed by making
two hypotheses: (1) the plastic sections that are in the same plastic zone behave
identically and this behaviour is governed by the end sections; and (2) the
stiffness of a plastic zone is equal to the stiffness of the related end section.
The author verified the efficiency of the proposed model by comparing the
results of the numerical examples with the results of a fiber analysis. Figure
2.13 describes the distributed model of Mazza as well as the result of one of its
numerical applications.

In addition to the above-mentioned examples, many other analytical models
based on different modelling strategies have been established in the literature,
e.g. hysteresis modelling [151] or Mroz multisurface plasticity [66], to address



2.3 Existing Finite Element Strategies 33

a) c)

F increasing

N\v(=va) constant / b s
\/ (uy)

Fy increasing

_— \
(Ux)

@ Tubul tion A-A
@ @ ubular seczlon
:l L=406cm
E

et
<

i | : 60.96cm
mgp; | 77 mp, : ; Mip; A A
/M : A ‘ I 3.89cm

1200

N=const. 800

400

Base shear (kN)

-1200 IIIIIII|III|III;III|III|III[III
-6 -12 -8 4 0 4 8 12 16

Top displacement (cm)

Figure 2.13: The distributed plasticity model of Mazza [118]: (a) the element with
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illustration of the numerical example, and (d) the comparison of the results (LPM,
DPM and FM, respectively, stand for Lumped Plasticity Model, Distributed Plasticity
Model and Fiber Model).
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the plasticity activation domain with particular emphasis on the interaction
between axial force and bending moments.

2.3.2 Concentrated Plasticity

Unlike the distributed plasticity models, the concentrated plasticity (lumped
plasticity) models presume that the inelasticity is limited to the end regions of
the structural elements. This presumption is invoked by the fact that under
lateral excitation (e.g. earthquake or wind), the structural elements experience
larger values of bending moments at end regions. It should be noted here that
the term "plastic hinge", which is usually referred in the literature of concen-
trated plasticity models, is used to describe a section of structural element in
which a plastic bending occurs.

The concentrated plasticity models are constructed as a combination of
either parallel or series subelements. These models originate from the two-
component model of Clough and Johnston [43] characterized by a bilinear
moment-curvature relation. The model is constructed by connecting two beams
in parallel (Fig. 2.14(a)), one with elasto-plastic behaviour with plastic rota-
tional springs at extreme nodes, and the other with elastic behaviour. The
rotational springs are activated upon the excess of the end bending moments
over the yield moment. The stiffness of the element is additively composed of
the stiffness contribution of each beam. The multicomponent extention of the
model was also developed by Aoyama and Sugano |7]. The model, as depicted
in Fig. 2.14(b), consists of three elastic elements and two unique elasto-plastic
rotational springs with trilinear hysteresis behaviour. The unique character-
istic of the two rotational springs allows different level of concrete cracking
and reinforcement steel yielding at the two ends of the element. Due to the
lack of versatility in the hysteresis loop of the multicomponent beam models,
Giberson [68] developed a one-component beam element with rotational springs
attached to its ends in series (Fig. 2.14(c)). As shown by the author, the one-
component beam element is able to describe curvilinear hysteresis loop, hence
more appropriate for the hysteretic behaviour of RC members.

Many authors focused on the nonlinear constitutive behaviour of the hinge,
usually furnishing directly an explicit formulation in its hysteretic stress-strain
or load-deformation curve. Takeda et al. [168]| suggested a complex hystere-
sis load-deformation curve for the inelastic rotational springs of RC element.
The proposed hysteresis curve is defined in accordance with a trilinear primary
curve and follows a set of different loading-unloading-reloading conditions in-
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Figure 2.14: The early models of concentrated plasticity beam: (a) The two-
component model of Clough and Johnston, (b) the multicomponent model of Aoyama
and Sugano, and (c) the one-component model of Giberson.

cluding stiffness degradation in flexure, see Fig. 2.15. A similar study was also
carried out by Brancaleoni et al. [27]. On the basis of fixed-end rotations of RC
beam-column joints, Filippou et al. [63] formulated an analytical model for the
hysteretic behaviour of RC members accounting the degree of deterioration of
the bonding between concrete and steel, which may become significant under
lateral load reversals.

Many studies are specifically concerned with using plastic hinge method in
elasto-plastic analysis of steel frames [50, 79, 92, 93, 107, 143, 174, 176] and
some others address the steel-concrete composite structures [69, 70, 77, 97].
Within the context of steel frames and under the hypothesis of small strains,
Powell and Chen [143] developed a three-dimensional element, for the first time,
with generalized plastic hinges accounting the interaction of axial force, biaxial
bending moments and torsion. The element exhibits strain hardening while
stiffness degradation and rate dependence are ignored. The stiffness matrix
of the element is obtained by adding the stiffness of the elastic element and
the plastic hinges. The elasto-plastic stiffness matrix of the hinge is derived
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Figure 2.15: The primary load-deflection curve (a) and the hysteretic load-deflection
curve (b) in the model of Takeda et al. [168]. The points (P¢, D.) and (Py and Dy),
respectively, refer to cracking and yielding loads. Numbers identify different branches
of loading and unloading in the hysteretic curve.

intuitively based on the overall work done by the plastic hinge as

kegg’ k.
g’ (ke +kp)g’

where k. and k, are the matrices of initial stiffness and plastic stiffness of
the hinge, respectively, and g is a vector defining the direction of the plastic
increment on the yield surface. The yield surfaces follow the Mroz plasticity
theory for metals and are formed by taking into consideration the interaction
of axial force and bending moments plus the effect of torsion as
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where My, M, are bending moments about z and y axes respectively, T' is
torsion and F' is axial force. Symbols with w subscript represent the yield
strengths of each component.

A similar study is reported by Hilmy and Abel [73] for the dynamic analysis
of steel frames.

To overcome the problem of lack of axial force-bending moment coupling,
Lai et al. [96] developed a fiber plastic hinge model that simulates the stiffness
degradation and varying axial force. The model consists of one elastic element
and two inelastic elements at end regions. The latter is simulated using five
inelastic springs, four located at corners and one in the center of the section,
which is purely responsible for the compressive behaviour, see Fig. 2.16. The



2.3 Existing Finite Element Strategies 37

Inelastic
element

Elastic
element

Inelastic
element

Figure 2.16: The inelastic RC member proposed by Lai et al. [96].

five springs model simulated, in a more sophisticated manner with respect to
the classical plasticity, the interaction domain of axial force and bending mo-
ment. Other efforts include the interaction between shear and torque in the
evaluation of asymmetric structures [46] and also the inclusion of hardening
effect in bi-dimensional hinges for the analysis of steel structures under earth-
quake motions [87]. Some studies have considered the effect of involvement of
geometric nonlinearities in the plastic hinge models. White [176] investigated
the efficiency of different plastic hinge approaches contemplating the second-
order effects caused by geometric nonlinearities. In braced steel structures, a
number of plastic hinges may occur in the mid-span of braces due to buckling.
In the conventional analysis method, since the position of the plastic hinges
formed in the braces are not known in advance, through an inaccurate simplifi-
cation the position of plastic hinges were fixed exactly at the middle of braces.
This issue has been dealt with by Izzuddin and Elnashai [79]. They proposed
an elastic perfectly plastic model of hinges integrated in an adaptive analysis
FEM tool, which offers significant computational savings. The method follows
the same procedure of adaptive analysis for distributed plasticity in [78], as
described in Section 2.3.1, and includes the geometric nonlinearities caused by
buckling. Initially, the analysis begins with one element per member. When the
plastic hinge is detected in an element, the element is automatically subdivided
into two subelements in which finer mesh is implemented (see Section 2.3.3 for
a detailed discussion of the model). Although the capability of the proposed
plastic hinge method was confirmed by numerical examples, it was stated by
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the authors that the proposed method is only justifiable for the cases where the
material exhibits no plastic hardening and also the spread of plasticity along
the height and length of the elements is not considerable.

One major limitation of the concentrated plasticity models that needs to be
attended is the effect of zero inelastic length zone that may lead to an overesti-
mation of the ultimate strength of structures. A quasi-plastic-hinge approach
was developed by Attalla et al. [10] that accounts the spread of inelasticity
without the member discretization along the length and over the cross-section
in the space of combined bending moments and axial force. The gradual plas-
tification, as referred by the author, over the cross-section is performed by
calibrating the parameters of the inelastic strain models, i.e. the models of in-
elastic axial strain and inelastic curvature, using a fiber analysis program. The
inelastic axial strain and curvature are determined by dividing the element into
the elastic and elasto-plastic regions (Fig. 2.17) and thus integrating the re-
sponse of different regions. Based on the values of end bending moments, the
length of the plastic part is calculated as

() _ (M; — M,.)
T T (2.3)
and
) _ ( J re)
L Mi+Mj L (2.4)

where M,.. is the initial yield moment, which is a function of axial force.

Following the latter study, many studies have been carried out to implement
the quasi-plastic-hinge approach for the analysis of steel frames [104] and RC
frames [103] and also to improve its efficiency [19, 105].

A more favourable solution to the above limitation is to extend the zero
length plastic hinge to a finite inelastic region. The aim in this case is to
combine the accuracy of the distributed plasticity method with the computa-
tional efficiency of the concentrated plasticity method. Many experimental and
theoretical studies [13, 44, 138, 150, 158] have been reported to estimate the
effective length of plastic hinges. Paulay and Priestley [138] suggested

L, = 0.08z + 0.022dy f,, (2.5)

where d, and f, respectively, represent the diameter and the yield strength of
the longitudinal steel reinforcement, and z is the height of the section, as the
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Figure 2.17: The spread of inelasticity at the ends of a simply supported beam, as
illustrated by Attalla et al. [10].

effective plastic hinge length of RC beams and columns. Sheikh and Khoury
[158] estimated the length of plastic hinge of columns to be roughly equal to
the section depth. Bae and Bayrak [13] derived the following expression for the
plastic hinge length of RC columns

L, = h[(0. 3(P)+3(js)—01)(A)+025] > 0.25, (2.6)
Fo 9

where h is the depth of the section, A is the distance from the critical section
to the contraflexure point, % is the level of axial force and AS is the ratio
of longitudinal steel relnforcement in the section. An extended review on the
plastic hinge length is provided by Zhao et al. in [180]. Moreover, it has been
observed in the experimental studies of RC structures subjected to cyclic load-
ings that due to irreversible plastic strain in the reinforcing bars, the plastic
hinges evolved in RC beams elongate about 2-4% of the section depth [61, 62].
Analytical solutions have predicted the plastic hinge elongation based on dif-
ferent parameters such as longitudinal axial strain [100] and the variation of
interstory drift [115].

The generalized plastic hinge model of Alhasawi et al. [4] is an example of
plastic hinge models with the ability to elongate (or shorten) along the beam
axis. In this model, the plastic hinges are simulated using axial and rotational
springs to couple the axial force and bending moment in the plasticity evolution



40 State of Art

of the element. Material and geometry nonlinearities are included using a
co-rotational coordinate transformation technique. See [4, 16] for a detailed
description of co-rotating elements.

2.3.3 Improved Concentrated Plasticity Models

In the earlier models of beams with concentrated plasticity, the plastic hinges
are only allowed to evolve at the ends of the elements. However, in some
circumstances, the structure subjected to lateral excitation may experience
plastic hinges forming not only at the ends of its structural elements but along
its length. Conventionally, this case is addressed by adding internal nodes
in the mid-span of the element to divide it into several sub-elements so that
the presence of internal hinges is also accounted for [88, 108, 109]. Although
this treatment propounds the possibility of internal plastic hinges, the location
of internal plastic hinges should be specified a priori, which undoubtedly is
a controversial assumption. Moreover, additional nodes increase the number
of degrees of freedom (DOF) and, consequently, decreases the computational
efficiency. Here, two different models developed in the literature are discussed,
which are able to consider the presence of internal plastic hinges that are not
necessarily formed at the mid-span of the elements.

2.3.3.1 The adaptive plastic hinge model of Izzuddin and Elnashai
[79]

Izzuddin and Elnashai [79] proposed a plastic hinge model for steel beam that
includes geometric nonlinearities caused by buckling and neglects the effect of
strain hardening. The model is based on an elastic quartic formulation, which
allows representing a whole structural member with one element, possessing
eight local DOFs (Fig. 2.18). An extra DOF is provided in the mid-span of
the element that, as stated by the author in [80], improves the accuracy of the
solution to a large extent. The proposed plastic hinge, when activated, obeys
the rigid-perfectly plastic constitutive rule and its formation is merely governed
by the interaction between axial force and bending moment.

Initially, the analysis starts with all the elements modelled using one elastic
quartic element. In every step of the analysis, the plasticity is checked along
the element and if it is verified in a point, the element will be divided in
two sub-elements, with the intersection node located at the plastic point (Fig.
2.19), and also a finer mesh will be assigned to it for the rest of the analysis.
The main advantages of this process with respect to the non-adaptive models



2.3 Existing Finite Element Strategies 41

Imperfect
configuration

Imperfect
configuration

vl
vl
B>

Figure 2.18: The local DOFs in the elastic quartic element of Izzuddin and Elnashai
[79]: (a) in the z — y axis and (b) in the x — z axis. The variables with 4 superscript
are related to the initial imperfection, see [80].
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Figure 2.19: The element subdivision in the model of Izzuddin and Elnashai [80].

are high computational savings as well as the positions of the internal plastic
hinges that are specified through the analysis procedure and are not based on
a primary elastic analysis.

2.3.3.2 The refined plastic hinge model of Liu and Li [111]

This model is another plastic hinge model developed for steel structures that is
able to catch internal plastic hinges. The model considers geometric and ma-
terial nonlinearities by including the spread of plasticity over the cross-section,
the second-order effect of axial force, shear deformation, and also the initial
imperfection of the structural elements.

With reference to Fig. 2.20, an internal node C' is inserted along the ele-
ment to divide it into part @ and part b, respectively, with the lengths L, and
Ly. The incremental force-displacement relationship of part a and part b are,
respectively, expressed as

[dQq | [ ddq ]|

g | d6,

dQlc N [Kpa] d(slc ’ (27)
| dM ¢ | | dO1c |

and

_dQQC_ _d52c-

dMgC . d(92c

o | = En] | s | (2.8)
| dM, | | d6, |

where K, and K are the elasto-plastic stiffness matrices of part a and part
b, respectively.
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Figure 2.20: The beam element with mid-node C as the location of the internal
plastic hinge (the model of Liu and Li [111]).

Then, the two equations (2.7) and (2.8) are assembled to give the global
force-displacement relationship of the element as

dQq | [ddy]
dM1 del
dQq _ déo
M, = [K,] a6, (2.9)
dQlc + dQ2C ddC
_dMlc -+ dMQC_ _dgc_

Equation (2.9) can be partitioned into external and internal parts

dfe _ Kee Kei dée

i) 2l ). o1
with df, = [dQ; dM; dQs dMy]T, dfi = [dQic + dQac dMi. + dMa.]",
dé. = [d0y dB; dby dby)T and d@; = [d. db.|T.

Through the static condensation approach, since no external force is acting
at point C, i.e. [dfi} = [0], Eq. (2.10) is condensed as

(Ko — Ko K;;'KL) [doe] = [df.] . (2.11)
In this method, the position of the mid-node C' is set in accordance with

the position of the maximum bending moment along the element. Two typical
cases are investigated, beam with concentrated load acting on it, and beam
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with constant distributed load. In the case of beam with concentrated load,
the mid-node C is placed at the position of the concentrated load. In the case
of beam with constant distributed load, the position of the mid-node C' is not
fixed and is estimated by equating the equation of shear force to zero as
dM(X) _ M1 — M2

T:0—>x qL+;L’ (2.12)
where M; and M are the values of bending moment at the two ends and ¢ is
the magnitude of the constant distributed load.

For a mixed case, where a beam is subjected to both concentrated and
constant distributed loads, the beam is firstly divided into two parts with the
mid-node located at the point of the concentrated load. Afterwards, each part
is treated as a single beam with distributed loads and thus the positions of the
maximum bending moments are indicated by Eq. (2.12).

Similarly, Liu et al. [110] developed a curved beam-column element for steel
structures that follows the same static condensation approach of [111] and is
enriched with the feature of capturing any arbitrary located plastic hinge. In
this model also, the position of the internal plastic hinge should be estimated,
in advance, by means of an elastic analysis based on the maximum value of the
bending moment.

2.4 Conclusions

This chapter was devoted to an overview of the pushover analysis technique
and the existing plasticity models for beams. Due to the applicability of the
pushover analysis technique, it has received vast theoretical and even empirical
attentions by different researchers. Despite its approximate nature, since it
does not suffer from huge computational cost and complexity of its dynamic
counterpart, it presents a convenient analysis method in which novel plasticity
model can be readily incorporated.

Many distributed and concentrated plasticity models have been developed
through different mathematical expressions to capture the inelastic response
of structures subjected to severe loading conditions. While distributed plas-
ticity models are more appreciated in the literature thanks to their ability to
catch the material inelasticity rigorously, concentrated plasticity models have
attracted more applicants due to their simplicity and computational efficiency.
On the other hand, some studies have reported the overestimation of the ulti-
mate structural strength provided by the concentrated plasticity models. The
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inclusion of internal plastic hinges is a possible solution to overcome the in-
accuracy of the concentrated plasticity models. Although different models are
suggested in the literature that are able to capture internal plastic hinges, most
of them, to the knowledge of the writer, are formulated for steel structures. In
addition, in many cases, the location of the internal plastic hinge is based on
the maximum value of the bending moment. Even if this might be considered
adequate for steel and RC elements with uniform characteristics of the cross-
sections, however, it does not compass the cases showing non-uniformity, e.g.
RC beam with different longitudinal steel reinforcement distribution.

Consequently, albeit many plasticity models have been suggested in the lit-
erature to balance between the response precision and computability, i.e. com-
plexity and computation time, the need to adopt an efficient and applicable
plasticity model that evokes the advantages of both distributed and concen-
trated plasticity models and which can be easily incorporated into an FEM
procedure is still required.
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Chapter 3

Proposed FEM Procedure for
Nonlinear Analysis of RC
Framed Structures

3.1 Introduction

Based on the classical theory of structures, when in a ductile beam the maxi-
mum moment capacity of a section is reached, a sudden change in the slope of
the member occurs at that section through the formation of a plastic hinge. As
a result, slope discontinuity implies in the location of the plastic hinge. Hence-
forward, the section develops plastic rotation and its behaviour is characterized
in terms of moment-plastic rotation relation of the plastic hinge.

The integration of the static governing differential equation of the uniform
Euler-Bernoulli beam in the presence of slope discontinuities has been carried
out by Biondi and Caddemi [21, 22]. The authors demonstrated that the slope
discontinuity modelled through a Dirac’s delta distribution of the flexural stiff-
ness corresponds to the presence of an internal hinge with rotational spring.
The proposed closed form expression of the beam can offer the basis for effi-
cient treatment of lumped plasticity models.

In this Chapter, the closed form expression of the beam proposed by Biondi
and Caddemi [22] is implemented in an original FEM beam element where
plastic hinges can appear at any arbitrary position. The constitutive equations
of the beam are generated based on the associated elasto-plastic theory. The
yield function defining the section failure is of Bresler’s type [28], formulated

47
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considering the interaction of axial force and biaxial bending moments. More
specifically, the procedure presented by Fossetti and Papia is followed [65].

In this chapter, the work is devoted to the implementation of Biondi and
Caddemi’s basic idea in a finite element environment, adding a thermodynamic
counterpart for elasto-plastic materials and managing consistently and in an
efficient way the numerical evolution of plastic variables. Special attention
is directed to RC structures and a more appropriate activation domain for
plasticity evolution in such structures is coupled. In this sense, the work can
be interpreted as an extension and completion of Biondi and Caddemi’s one
[22].

With respect to other strategies available in the literature, the proposed
approach overcomes the problems linked with a mesh refinement and recovers
the computational time connected with the increase of DOFs or the use of higher
order shape functions. It also doesn’t need any static condensation of internal
DOFs. The model includes the possibility to overcome geometric limitations,
permitting to assign specific geometry and reinforcing steel bars distribution
to each section of an element. The proposed numerical examples, showing the
formation of internal plastic hinges in RC structures (to the best of author’s
knowledge, no such study is reported in the literature) can be considered as
novelty points as well.

The writer indicates that this chapter of the thesis is mostly taken from the
paper by Rezaee Hajidehi et al. [147].

3.2 The Theoretical Framework

3.2.1 Beam with Slope Discontinuities

Let us consider an Euler-Bernoulli beam with multiple slope discontinuities as
in Fig. 3.1. For the sake of simplicity, a two-dimensional beam is considered
in x-z plane. The flexural stiffness of the beam is defined by a constant value
Eyly with the superimposition of Dirac’s delta distribution as follows (see [21]
or [22]),

E(2)I(z) = Eoly (1 . 2%5@ - x)) (3.1)
=1

where v; represent the singularity intensities, x; are the relevant singularity
positions and 0 is the Dirac’s delta function. As reported in [29], according to
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Figure 3.1: Euler-Bernoulli beam with Dirac’s delta singularities in the flexural
stiffness and (b) its equivalent beam with rotational springs and internal hinges.

the distribution theory, I(z) is not defined at z;. Instead, its properties are
defined by integration after multiplication by test function. Thus, the inertia
moment does not take negative values at z;. In addition, as it will be shown
later, the v; parameters do not take on values greater or equal to 1.

According to the Euler-Bernoulli beam theory, the static governing differ-
ential equation of a uniform beam is written as

Vi(@) = —po(x);  My(z) =Vi(2), (3.2a)
ky(x) = fm’ (3.2b)
ka(2) = @y (@) py(a) = —ul(2), (3.2¢)

representing, respectively, the equilibrium, constitutive and compatibility equa-
tions. In the set of differential Eqgs. (3.2), V.(x) and M, (x) represent the shear
force and bending moment, respectively, x.(z), ¢, (z), and u,(x) represent the
curvature, slope and deflection functions, respectively, and the prime sign de-
notes the derivative with respect to coordinate x.
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The fourth-order differential equation of the Euler-Bernoulli beam, showing
multiple slope discontinuities, in terms of deflection can be immediately derived
by combining Eq. (3.1) and the set of Egs. (3.2) as

Bolo (1= Y 7idlw — @) Jul(@)]" = p(2). (3.3)
=1

The full integration of Eq. (3.3) leads to the following closed form expression
of the deflection u,(x) as

P ()
Eyly

uz(z) = c1 + cox + c3g1(z) + caga(z) +

n (2]
Vi Pz (xz) o o
g 1= ~4 Folp (x —x)U(x — x;), (3.4)

=1
where U(x — x;) represents the unit step function at z;, p[zk] (z) indicates a
primitive order of k of the external load function p,(z), ¢; are the integration
constants, and

_ 2 Vi _ .

gi(x) =a° +2 ;:1 = %A(x z)U(x — x;), (3.5a)
_ .3 Y o

g2(x) =2° +6 i—gl . ’y,-AIZ(x zi)U(x — x;). (3.5b)

With reference to Eqs. (3.2), the first and second derivatives of the deflection
function in Eq. (3.4), respectively expressed as

n

wy(r) = —c2 — 2c3 (93 + Z T _’Y;'AU(SU — xl))
i=1 '

n
2 Vi ) Dz
_ 2 " . 7)) —
304(3@ + Z . %AxZU(w x;) Fol,
=1

) ; A Byl V@) (36)
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and
P (x>)

Eolo

ky(x) = — (203 + 6cgx +

- (2]
E ps (i) i

- ? ’ —x;), (3.
i:1(03+664x+ Foly )1—%‘145@ x;), (3.7)

provide the complete kinematical outline of the element.

It can be demonstrated that the slope function ¢, () has jump discontinu-
ities at x;, whose values correspond to those obtained in presence of internal
hinges and rotational springs having stiffness equal to

1_’72'A

(2

kpi= Eoly. (3.8)

The parameter A, which appears in Egs. (3.4) to (3.8), is a constant, having
the unit of 1/length, that comes out in the case of a product of two Dirac’s
deltas both centered at x;, as defined by Bagarello [14]. Its value is always
2.013 independently on the element dimensions, and with the same unit as
the Dirac’s delta distribution, according to the physical meaning for what the
distribution is applied. It is immediate to understand from Eq. (3.8) that the
Dirac’s delta has the unit of the inverse of a length, while the v; parameters are
measured as a length. The parameter v; can range from 0 to %, with v, =0
and v; = % providing continuous beam without slope discontinuity and beam
with a pure hinge respectively.

3.2.2 Thermodynamics

The constitutive relation at a generic section x can be written in the classical
way as

Q = q’oqea (39)

where Q = [N M, M, M,]T is the vector of internal forces with IV representing
the axial force and M, M, and M, representing the moments about the three
axes of the local reference system, ®q is the sectional stiffness matrix at the
virgin state, and q° is the associated elastic strain vector.

The total strain vector g is assumed as the sum of the elastic part q¢ and
the plastic part qP,

q=q°+4q". (3.10)
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Since the inelastic flexural curvatures are only considered here, the inelastic
strain vector is expressed as

q" =00~k w217, (3.11)

where ) and k% are the plastic curvatures in x-y and x-z planes respectively.

Following the method of local state [101], it is possible to define a ther-
modynamic potential from which the state laws can be derived. Considering
an isothermal purely mechanical process without the inclusion of hardening or
softening effects, the specific Helmholtz free energy of an elasto-plastic section
is

e 1 eT (&
V(%) = 54" Pog". (3.12)

The instantaneous dissipation, expressed in the form of the Clausius-Duhem
inequality, reads

D:=Q"q-¥=Q"¢" >0, (3.13)

where additive decomposition (3.10) has been used. The dissipative mechanism
is driven by an activation function defined in the space of static variables.

A plastic condition is reached in the section when the following condition
holds,

?(Q) =0, (3.14)

with ¢P(Q) representing the limit function, which is explicitly defined in sub-
Section 3.2.3.

Assuming that the model belongs to the class of generalized standard ma-
terials [18], the theorem of maximum dissipation [101] provides the complete
set of evolution equations, by maximizing the dissipation function (3.13) with
respect to the static variables. Adopting the Lagrangian multiplier method, the
constrained maximization problem is equivalent to the following unconstrained
saddle-point problem,

min max L(Q) = QT¢" — \P¢P, (3.15)
Ao Q
where AP is the Lagrangian multiplier.

The Kuhn-Tucker conditions of the problem (3.15) provide the flow rule for

the plastic strain vector,
87L =0=g" = AP

oQ

09"

50" (3.16)
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under the following loading-unloading conditions,

PP <0, AP >0, \gP =0. (3.17)

3.2.3 Elasto-plastic Failure Surface

The evaluation of the ultimate capacity of reinforced concrete members sub-
jected to combined axial force and biaxial bending moments and the con-
struction of a suitable activation domain have been extensively investigated
[33, 45, 49, 94, 98, 156]. In order to verify a section under the actions of axial
force N and biaxial bending moments M, and M., the following expression is
used for constructing the three-dimensional failure surface of the RC section

28],
B B
M, M, B
(24 () - o

where My, and M, represent the ultimate moment capacities of the cross-
section, which are associated with the axial force N acting on the section. The
values of My, and M, are calculated based on the Theory of Limit States [135]
for an Euler-Bernoulli beam, under the following assumptions:

e plane sections before bending remain plane after bending,

e perfect bond exists between steel bars and concrete, i.e. there is no slip
at the interface between steel bars and concrete,

e stress-strain curves of the materials are adopted as those in Fig. 3.2,
e tensile strength of concrete is neglected,

e at ultimate strength, the maximum strain of the extreme compression
fiber is assumed equal to 0.35%, as suggested by Italian Building Code
[75].

For a detailed description of the procedure of calculating M,, and M, the
reader is referred to [145].

In Eq. (3.18), the exponent [ is a function of the cross-section’s character-
istics as well as the level of compression. The expression adopted here for the
evaluation of 5 has been taken from the work of Fossetti and Papia [65],

Br=12+02(%-1)<13

(3.19)
By =1+0.5|n—0.45]

B = P15z, with {
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Figure 3.2: The adopted stress-strain laws for steel reinforcement bars (a) and con-
crete (b) in the evaluation of ultimate moment capacities.

where h and b are the height and the width of the rectangular cross-section
respectively, and n = ﬁ is the level of compression of the section, with f.
as the nominal compressive strength of concrete.

The resulting failure surface is a convex hull, whose characteristic points in
the N — M, plane are defined as follows, see Fig. 3.3(a-b),

e point [Ny, Mp|, maximum positive axial force on the section,
e point [Ny, M;], failure of the section in pure bending,

e point [Ng, M|, balance point, in which the top fiber of the concrete
reaches its maximum strain and the tensile steel bars reach the yield-
ing strain,

e point [N3, M3], maximum compressive axial force on the section, i.e. yield-
ing of all steel bars in compression and crushing of concrete.

Along the loading process, when internal forces at a specific section furnish
a point inside the activation domain, then the behaviour is elastic. Otherwise,
plastic curvatures develop following the elasto-plastic flow rule (3.2.2). The
axial force plays the role of static variable in specifying the plastic resistance
of the section, see [145]. The activation domain is obtained by cutting the
failure surface with a plane orthogonal to the N axis. The correspondent two-
dimensional domain in the My, — M, plane is qualitatively shown in Fig. 3.3(c)
for different values of 5. In this plane, plasticity is treated as associative.
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Figure 3.3: The axial force-biaxial bending interaction surface: (a) typical Bresler’s
surface [28], (b) activation domain in the N — M, plane, and (c) normalized activation
domain in the M, — M, plane for varying values of the exponent (.
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Figure 3.4: A beam subjected to external forces.

3.2.4 Weak Form of Beam Equilibrium

Let us consider, in the Euclidean space R3 referred to the orthonormal frame
(O, 21, 19, 13), a framed structure composed by straight Euler-Bernoulli beams
geometrically modelled by their axes. We denote by x € [0, L] the local coor-
dinate along the beam’s axis of length L and introduce the local coordinate y
and 7 to orient the cross-section, see Fig. 3.4.

Assuming the hypothesis of small displacements, the beam configuration is
determined by the displacement vector @ = [ug uy u. @z @y ©.]", whose com-
ponents are the displacements and rotations along the three axes respectively.

Based on the Euler-Bernoulli beam theory, since the shear strains are ne-
glected, the flexural rotations are defined as

!/

oy =—ui(x), @ =uy(2) (3.20)

With reference to Eqgs. (3.20), the displacement vector @ can be rewritten
as

@ = Bu, (3.21)

where u = [uy uy u; @,]7 is the vector of independent displacements and

M 0 0 0
01 0 0
. 00 1 0
B=1 o o 1 (3.22)
d
00 -4 0
o &£ 0 of
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is the constraint operator.
The kinematic compatibility relations can be expressed in a compact form

as
q = Cu, (3.23)
where q = [e; Ky Ky #.]T is the vector of strains and
d
& 0 0 0
0 0 0
C = dx 3.24
0o 0 % o (3:24)
d2
0 4= 0 0

is the kinematic compatibility operator.

The beam is subjected to the distributed loads p = [py py P> ma my m.|T
and concentrated loads (Py, Pr) applied at the initial and final sections. As a
consequence, the constraint forces (Vp, V) are also acting on the initial and
final sections.

The principle of virtual displacement (PVD) states that for a body to be
in equilibrium, the total virtual work done by the external forces is equal to
the total work done by the internal forces for any kinematically admissible
configuration, i.e.

L L
/ ploudr + (Vo + Po) 610 + (Vi + Pr) duy, = / QToqdx. (3.25)
0 0
Substituting Egs. (3.21) and (3.23) in Eq. (3.25) yields
L
/ p! Boudx + (Vo + Py)T Boug + (Vi + Pp)T Bouy,
0
L
= / QT Céudz. (3.26)
0

Applying the additive decomposition of constraint matrix B and compatibility
matrix C,

1000 00 0 0
0100 00 0 0

. 0010 00 0 0

B=Bi+B:= |0 0 o1l Tlo 0 o ol (3.27)
0000 00 —-£ 0
0000 [02Z 0o o
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% 00 0 0 O 0 0

_ 10 00 % 0 0 0 0
C=C+Cy= 000 0 + 0 0 dc% ol (3.28)

0 00 0 0 £ 0 o

to Eq. (3.26) and subsequently integrating by parts, the indefinite and boundary
equilibrium equations of the Euler-Bernoulli beam are obtained as

(Cy—C)TQ+ (By—By)'p=0 inzel0,L], (3.29)

BV 4 P BT 1 om0 - o
{BE(VO + Po) 2 p(0)+(Cp" - C57)"Q(0) inz=0, (3.30)
2

I 27
(Vo +Po) +C;7 Q(0) =0

inx =1L, (3.31)

N ~ T

{B?(VL +P)+ B pr) - (¢! - chrQr) =0
T

Bg] (VL + PL) — Cg

"Qr) =0

where apex [k] means k-order integration of the relative matrix.

3.3 Finite Element Formulation of the Beam

3.3.1 The Shape Functions

The closed form expression of the beam’s deflection (3.4) contains integration
constants ¢; (with ¢ = 1,2,3,4) that have to be calculated by applying the
boundary conditions of the beam. The following boundary conditions can be
defined by assuming known values for nodal displacements u., and w,, and
nodal rotations ¢,, and ¢, for the initial and final nodes,

uz(0) = uy, Ulz(o) = —Py> u, (L) = Uzy), ulz(L) = —Pys- (3.32)

In the absence of external load p,(x), by imposing the boundary conditions
(3.32), the deflection function of the beam in Eq. (3.4) can be rewritten as

uz(x) = NZ1 (m)un + NZZ ($)<,0y1 + NZ3 (x)uZZ + NZ4 (x)gpyw (333)

where IV, represent the non-standard shape functions and are explicitly given
as, see [22],

_ 2f192(x) — 3L fogi ()
2f192(L) = 3L fagi (L)’

Ny (z) =1 (3.34a)
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f2g2(x) — 2L f391(x)

Ney(@) =2 = L2f192(L) —3Lfag1(L)’ (3.34)
_ 2figa(z) — 3L fog:1(z)

N (@) = 2f192(L) — 3L fagn (L)’ (3.34¢)

L (f2—2f)g2(x) — L(2f3 — 3f2)g1(x)
Ney() = L 2f192(L) — 3L fag1(L) 7 (3.344)

where f; are defined as:
fi=1+ % > - _’ny'A (%)H, j=1,2,3. (3.35)
i=1 v

To exemplify, the plots of non-standard shape functions in Eqs. (3.34) are
illustrated in Figs. 3.5 and 3.6 for a 500 cm long beam possessing, respectively,
one and three slope discontinuities. For the sake of comparison, the Hermitian
shape functions of the analogous sound beam are also included in Figs. 3.5 and
3.6.

On the basis of the assumption made for the inelastic strain vector (only
plastic curvatures are considered), the axial displacement and torsion are not
subjected to discontinuity and are interpolated using standard shape functions,

T

Ny (z)=1— % No(@) = 7 (3.36)

Finally, by collecting the displacements of the element nodes in the vector

d= [dl dQ}Ta with dy = [um Uy; Uz Py Pyr 9021]T and dy = [uﬂcQ Uyy Uzg Py Pyo (pZQ]Tv
the displacement function of the beam is obtained in the form

u(z) = N(z)d, (3.37)

where N (z) is the total shape function matrix of the beam, which is a collection
of non-standard and standard shape functions, and takes

N(z) = [Ni(z) Na(z)], (3.38)
with
N, 0 0 0 0 0
0 N, 0 0 0 N,
Ni@ =109 0 N,, 0 N, 0| (3:39)
0 0 0 N, 0 0

where j = 1,2 represents the number of initial and final nodes, respectively.
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Figure 3.5: Comparison between the shape functions of a sound beam (dashed line)
and the non-standard shape functions of a beam with one slope discontinuity (contin-
uous line) with x; = 200 cm associated with vy, = 0.4966.

3.3.2 Stiffness Matrix and Nodal Force Vector

Let us start by recalling the PVD expression in Eq. (3.25) in the absence of
boundary constraints,

L L
/ pldudr + PLoug + Pléay, = / Q7éq dx. (3.40)
0 0
The constitutive law (3.9) can be rewritten to include inelasticity as,
Q = @q, (3.41)

with ® = diag[E(x)S G(x)I;(z) E(x)ly(z) E(x)l.(x)] in which S and
G(x) are defined as the area of the section and the shear stiffness respectively.
Introducing it together with the kinematic constraint (3.21) in (3.40), the PVD
expression takes the following form

L L
/ p! Béudz + P(;‘F Béug + P Bouy, = / q ' ®qdx. (3.42)
0 0
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Figure 3.6: Comparison between the shape functions of a sound beam (dashed line)
and the non-standard shape functions of a beam with three slope discontinuities (con-
tinuous line) with z; = 100 cm, zo = 225 cm and x3 = 425 cm, associated with,
respectively, v; = 0.4940, v = 0.4960 and 3 = 0.4940.



62 Proposed FEM Procedure for Nonlinear Analysis

Linking Eq. (3.37) to Eq. (3.23), the strain vector can be written as
q = Bd, (3.43)
with
B =CN(x). (3.44)

Substituting the kinematic relations (3.37) and (3.43) into the PVD equa-
tion (3.40) yields

L L
5dT[/ BT®Bddzr — / NTBTpds — P| =0, (3.45)
0 0
with
P=N(0)BP,+ N(L)BP;. (3.46)

It should be noted from Eq. (3.45) that the nodal force vector P maintains
the equilibrium with the distributed load p when d = 0.

The beam element equilibrium equation in the classical form is easily ob-
tained from Eq. (3.45) as

kd = f + P, (3.47)

where k and f are the stiffness matrix and equivalent nodal force vector re-
spectively, owning the following expressions

L
k= / BT®B dz, (3.48a)
0

L
f= / NTBTpdz. (3.48b)
0

The stiffness matrix of the beam element in presence of slope discontinuities
can be derived in closed from, see [22]. In the case of a two-dimensional beam
in the x-z plane, the stiffness matrix of the beam is formulated as

Eonly
k=—"—
L3 fo
M foL2S fal?S T
S 0 0 —lep 0 0
0 12f1  6Lfy 0 —12f; 6L f,
0 6Lf, AL?fs 0 —6Lfy 2L2f, (3.49)
W L2S W L2S ) :
s = 0 LS 0 0
0 —12f1 —6Lf> 0 12f1 —6Lfp
0 6Lf, 2L°f. 0 —6Lf, 4L2[3(f1 — f2) + f3]]
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where

fa=4f1fo, fo=2fi — fo, fo=3f2—2f3, fo=4fifs—3f3. (3.50)

It is worth showing the vector of nodal forces f for the case where the vector
of distributed loads p is constant. By adopting the following substitutions

Hi = [J(-1+ Ay)(L — 2i)%U (L — a2), (3.51)
j=1
J#i
;= [(—1+ 4), (3.52)
i=1
and
1 n
D =12 6H1(2f1 — 3f2)L3 + Z Hz(fgL — 2f1xz)] , (353)
i=1
the force vector f is obtained as
L L?
f= p:}cE pz(L_h1)+my pz(7 —h2)+my(—L+h3)
T
L
Pay phi —my  psha—myhs| , (3.54)
where
6|1 PR
hi = 5| gHi(f1 = 2f2) L7 + ;Hi(L — ) (foL — 2f1xl-)] . (3.55a)
h = 22 i1T(3f 8f3)L* 3 Hi(L — 2;)(2fsL — 3fox) |, (3.55b)
2= |tz = o8 +Z; il — T 3 2%;) | .
h _ i 11'[-(]’ —2f)L3+Zn:H-(2fL—3f:r') (3.55¢)
3 = D |2 i\J2 3 = i 3 244) | 5 .




64 Proposed FEM Procedure for Nonlinear Analysis

2L 1
hy = — [— EHZ'(Gfl —15fy + 8f3)L4+

7 — 4Ly 3 i 7 ’ .
S TH(L a:)(2f L+6fix 3f2(L+x)> (3.55d)
=1
hs = % IL(f1 — 2f2 + f3)LP+
3, <2f3L 4610 — 3fa2(L + m) (3.55¢)
=1

The explicit expressions of k and f can be simply expanded for three-
dimensional case by adding the components of x-y plane without any additional
requirement.

3.4 FEM Procedure

To investigate the nonlinear response of reinforced concrete frames, the new
beam element has been inserted in a FE analysis program written in MAT-
LAB code. The complete FEM procedure involves mainly three stages: data-
gathering stage, incremental elastic stage, and incremental plastic stage. In
the data-gathering stage, information is collected about the geometry of the
structure, material properties, reinforcement configuration of the sections, and
FEM meshing. The stiffness matrices and force vectors of all elements are as-
sembled to construct the global ones. A static load pattern, e.g. distributed
load or nodal force, is set to run the pushover analysis. In the elastic stage of
the analysis, the load is applied to the model and incrementally increased until
the formation of the first plastic sections, for which the stresses are above the
yielding limit. At this point, the plastic stage of the FEM procedure, which
follows a Newton-Raphson scheme, begins. This stage constitutes the main
part of the FEM procedure and is illustrated in the flow chart of Fig. (3.7).

In the FEM procedure presented here, the full external load is applied at
each step rather than its increment. Once the load increment is assigned, the
global force vector F, ;1 is updated, while the global stiffness matrix K, is
set to the converged one from the previous step K,,. At this point, the global
equilibrium equation at iteration j = 1 of step n + 1,

K, 1 Upiy = Fyp, (3.56)
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Figure 3.7: Flowchart of the plastic stage in the FEM procedure.

is solved for the global vector of nodal displacements U} 41, by prescribing
the displacements and rotations of constrained nodes. It is necessary to note
here that since the presented FEM procedure is conditionally convergent, the
numerical accuracy and stability of the procedure are guaranteed by choosing a
sufficiently small load increment, which can also provide a good computational
efficiency.

A post-processing phase permits to calculate internal forces and displace-
ments of the structure. The model requires the assignment, for each structural
element, of a fixed number of evolution points. This choice depends on the
user’s preference based on the accuracy of the numerical results as well as the
time of evaluation. It should be remarked that the proposed numerical tool,
when just two evaluation points are fixed at the ends of the members, repre-
sents the classic lumped plasticity model, which is only able to capture the end
plastic hinges.

According to the level of axial force, dimensions of the cross-section and
the material properties, the moment capacities of the sections are evaluated
and condition (3.14), rewritten in the form of (3.18), is checked. If plasticity
is detected in a particular section, the closest point projection algorithm, as
described in Section 3.4.1, is used to calculate the "corrected" values of bending
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moments and plastic multiplier that makes the loading-unloading conditions
(3.17) again satisfied at the section level. The values of bending moments
at the plastic sections are corrected by calibrating the 7; parameters, which
represent singularity intensities in Eq. (3.1).

The evaluation of v; parameters involves the solution of a nonlinear system
of equations, which is provided in sub-Section 3.4.2. This system is numerically
solved by means of the classic iterative Newton-Raphson method. Having the
calibrated ~; parameters, the global stiffness matrix and the global force vector
of the structure are updated and used to calculate the global nodal displacement
vector UZ 41 if the global convergence condition

FIH - FJ | < tol, (3.57)
is not reached.

During the iterations, the plastic hinges positions are not memorized as long
as the condition (3.57) is not holding. When the model reaches a converged
state, plastic hinges become permanent. In this case, the global stiffness matrix
and global force and displacement vectors are memorized. In particular, the
global stiffness matrix is assigned for the first iteration of the next step. If
the number of iterations exceeds a limit value, the load increment is halved for
and the evaluation restarts for the same step. The procedure continues over
subsequent load increments; more plastic sections are found and the RC model
is modified to incorporate new formed hinges. The procedure stops when a
collapse mechanism occurs or when the target displacement is reached.

3.4.1 Closest Point Projection

The closest point projection method [159] is employed as the stress return
algorithm to rectify the state variables, so as to satisfy the loading-unloading
conditions. In the case of detecting a plastic section, the stress vector identifies
a point outside the activation domain. This point must be corrected back to
the limit surface to produce a null value for the activation function. Here,
the implicit Backward Fuler scheme is adopted. Assuming that the state of
the section is known at step m of the analysis, the constitutive relation (3.9),
including the decomposition of strains (3.10), can be written in a discretized
form as

Qn—H = (I)O(Qn + Aq - qg - qu)‘ (358)
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Defining the trial internal forces as

QM = &(g, + Aq — qb), (3.59)

and substituting the discrete counterpart of the flow rules (3.2.2),

OpP
AgP = AN — .
Eq. (3.58) can be rewritten as
Qni1 = Qi — A>\p'i’oa (3.61)

Q"

When the trial internal force vector makes the activation function positive,
the correction phase comes into the action and the following system is solved

trial _ AN P a¢p
{ nil = Qnt1 + 0%y (3.62)

¢p(Qn+1) =0

Linearizing the system of equations (3.62) around the solutions Q,,+; and
AN gives

rial _ (i . 007 XF YN catiad
{ P = Qi+ 0Q+ (OA+ ANDBGG + ANIB0GEOQ o

Qi) + 559Q =0

where §@Q and d A indicate the variation of the vector @ and the plastic multiplier
AMNP between two subsequent iterations and superscript ¢ refers to the iteration
number.

Expressing Eq. (3.63) in matrix form, one obtains

_ § %P DgP i S
w A g ] _[ent@il - au - awg] g
% oA _(bp(QnJrl)

Solving Eq. (3.64) for 6Q and ), the updated approximations of the above
unknowns in iteration ¢ + 1 are evaluated as

QL =QL,, +6Q (3.65a)

ANPTTE = AN G\ (3.65b)
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3.4.2 Calibration of v; Parameters

Calibration of v; parameters is an important part in the proposed FEM pro-
cedure. ~; parameters play a significant role in updating the global stiffness
matrix and global force vector during the iterative process. In addition, they
are responsible for keeping the values of bending moments of the plastic sections
inside the admissible range.

The calibration of +; parameters can be performed after the identification
of plastic sections and the correspondent bending moments. The general ex-
pression of the bending moment M, (x) in the case of two-dimensional problem
in x-z local reference system is obtained by substituting (3.7) into (3.2),

[z]

M, (z) = —Eoly (2@,(%) +6ea(yi) + 2 ;0(10)). (3.66)

where c3 and ¢4 are functions of 7; parameters and are determined after the
imposition of the boundary conditions (3.32), using the known values of nodal
displacements. After some mathematical manipulation, c3 and ¢4 are obtained
as

en(me) — —a192(L) + azgy(L) a
300 = S D6(D) — ea(Dgl (D)’ 0%
a191(L) — azg} (L) (3.67b)

40 = () — g2 (D)g, (D)’

where
(3] [3] [2}
. _ bz (0)—]7 Vi (xz> o
a1 = (y1 — py2) + Filo §:j1_%A Fol, U(L — z;),(3.68a)
and
(4] 4] (3]
e -y 0
as = (uz2 — uz1) + Tl + oL+ L Bolo +

e,
_Zl—fylA EU(IO)(L— DU(L — 7). (3.68b)

When a plastic section is detected at xg, the following function is built

2]
> (x
To(e0,7) = My(ao) + Eolo (2e5(2) +6ex()oo + Z-000) — 0, (3.69)
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where M, (z¢) is a known value.

In the case of formation of n plastic sections, Eq. (3.69) constitutes a non-
linear system I' = 0 of n equations with n unknowns ~;, which is solved by
means of a local iterative Newton-Raphson scheme where at iteration k+ 1 the
updated vector of +; parameters is calculated as

where
A% = _Jil(%k)r(fyik)v (371)
with
dr
= . 3.72
a0 (3.72)

3.5 Numerical Applications

Three two-dimensional numerical applications are included herein to show the
capabilities of the proposed FEM procedure. The aim of carrying out the
numerical applications is to reflect the following aspects:

e Validation of the program with an experimental test performed on an RC
frame.

e The geometry of the structure and the incremental load pattern can affect
the position of the plastic hinges.

e The variation of steel reinforcement configurations in a beam changes
the capacity of the sections and consequently affects the position of the
plastic hinges. This is likely to happen for the buildings that have been
designed based on old building provisions, by merely considering vertical
loads.

In the first example, an experimental two-dimensional portal frame is simu-
lated. For the second and third examples, respectively, a portal frame with an
inclined column, and a 2-story frame under horizontal seismic action is consid-
ered. In the latter cases, the cross-sections dimensions and steel reinforcements
have been designed in such a way to reproduce possible real cases.
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Material | Eg [MPa] | for [MPa] | fyq [MPa] [ v |
Concrete 22400 22 — 0.15
Steel 210000 — 450 0.30

Table 3.1: Material mechanical properties adopted for the numerical applications 2
and 3.
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Figure 3.8: Geometry and reinforcement details of the experimental test of Paul and
Agrawal [137].

All the structures have been meshed considering each structural element,
beam or column, as a single finite element with a fixed number of evaluation
points. The mechanical properties of concrete and steel reinforcements in the
second and third examples are reported in Table 3.1. All the analyses have
been performed under load control until the formation of a failure mechanism.

3.5.1 Simulation of an Experimental Test

In this example, the proposed numerical tool is validated by reproducing the
pushover experimental curve reported by Paul and Agrawal [137] for an RC
frame with geometry and reinforcement details as illustrated in Fig. 3.8. Me-
chanical properties of concrete and reinforcement steels are according to the
Indian Standard [74]. The concrete is of grade M20 with an elastic modulus
equal to 22400 MPa. FE-415 grade steel bars are used as the reinforcements.
The frame is pushed by a horizontal in-plane load applied through a hy-
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Figure 3.9: The comparison of pushover curves of the numerical (dashed line) and
experimental of Paul and Agrawal [137] (solid line).

draulic displacement controlled actuator on its top-left corner. The experimen-
tal load-displacement curve is plotted as a dashed line in Fig. 3.9.

The numerical model consists of three elements. Because of the simplicity
of the structure, the uniformity of the sections, and also the nature of the
applied incremental load, only two sample points are chosen at the ends of each
element.

The numerical load-displacement curve is plotted in Fig. 3.9 and is com-
pared with the experimental one. The model successfully predicts the initial
stiffness and ultimate load capacity of the experimental outcome. Obviously, as
it commonly happens for the lumped plasticity models, the model is not able
to reproduce the entire load-displacement curve as a fiber model does. The
evolution of the plastic hinges at corners is also demonstrated in Fig. 3.9.

3.5.2 RC Portal with One Inclined Column

The case under study consists in a two-dimensional RC frame, as depicted in
Fig. 3.10(a). In order to demonstrate the influence of structural geometry on
the evolution of plastic hinges, one column is inclined at 45 degrees. The geom-
etry and reinforcement details of the cross-sections are shown in Fig. 3.10(b).
The activation domains of the beam columns are provided in Fig. 3.11. For
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conducting the nonlinear analysis, the frame is subjected to incremental ver-
tical loads on its beam element. 25 evaluation points are fixed for the beam,
while two evaluation points are chosen for the columns, located at their ends.

Figure 3.12 shows the load-displacement curve of the nonlinear analysis.
The load levels, at which the plastic hinges are formed, are indicated on the
curve. At the end of the elastic branch, the first plastic hinge appears on the
leftmost section of the beam. The second hinge takes place again on the beam,
but 208 cm away from its right end. The last two hinges evolve at the base of
the columns, first on the left column and then on the right column. As soon
as the fourth plastic hinge appears in the structure, the collapse mechanism is
reached and the structure becomes unstable.

The diagrams of axial force and bending moment at the formation of the
first plastic hinges are shown in Fig. 3.13, where the positions of hinges are
also specified on the frame. The correspondent deformed shapes of the frame
are given in Fig. 3.14. Figure 3.15 shows the evolution of ~; parameters as
a function of the incremental distributed load p. As it is evident, after an
initiation, the values of ~; tend to the limit value 1/A.

3.5.3 2-Story Gravity-Designed Frame

This numerical example concerns a 2-story RC frame with one bay. Figure
3.16(a) shows the layout of the frame together with the applied loads. Constant
vertical loads are uniformly distributed over the beam elements. Monotonically
increasing horizontal loads are considered at the beam levels, having increasing
intensity with height. In the bottom story, the structural elements have 35 x 35
cm? sections, while in the top story, 30 x 30 cm? sections are assigned to
structural elements. Figure 3.16(b) displays the details of the cross-sections.
Steel reinforcements are designed considering the structure subjected to vertical
static loads only, to simulate the general case of existing structures built without
seismic provisions. 33 evaluation points are mapped on the beams, whereas 2
evaluation points are considered for the columns at the extreme nodes.

The aim of the current numerical application is to demonstrate that the
structural elements may end up with a bending moment diagram for which
their sections are not designed. As a result, the critical points of the structure
do not necessarily locate at expected sections and unanticipated plastic hinges
affect the stability of the structure.

The analysis is performed with increments of the force AF = 100 N, starting
from a zero horizontal force up to the force wherein the collapse mechanism is
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Figure 3.10: The RC frame of numerical example 2:
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Figure 3.11: The activation domain of the beam (dashed line) and columns (solid
line) in numerical example 2.
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Figure 3.12: The load-displacement curve of numerical example 2.
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Figure 3.14: The deformed shapes of the frame in numerical example 2.
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Figure 3.15: The evolution of v; parameters in numerical example 2.

formed. In the ultimate step of the analysis, 6 plastic hinges are generated in
the model, among which two are located inside the span of the beams. This is
due to the non-uniformity of the reinforcement distribution in the sections that
follows the old building regulations and leads to smaller activation domain in
the contraflexure points of the beams. In Fig. 3.17, the plastic hinge pattern
of the proposed model is compared with the results of a conventional analysis.
The conventional analysis is carried out employing a classic lumped plasticity
model. In this case, as it is shown in Fig. 3.17(b), the hinges are only allowed
to evolve at the ends of the elements, which has also influenced the evolution
pattern of plastic hinges. The load-displacement curves of both analyses are
plotted in Fig. 3.18, where also the results of an adaptive plastic hinge approach
and a force-based fiber model approach are given.

The result of the adaptive approach in Fig. 3.18 is obtained by modifying
the proposed FE procedure in order to include the adaptive mesh refinement
method proposed by Izzuddin and Elnashai in [79], see Section 2.3.3.1 for a brief
description of the adaptive approach. The adaptive approach, in the framework
of the proposed formulation, brings up more complexities to the model. The
latter is due to the fact that in the adaptive approach once the plasticity is
detected, the element is divided in two parts, which not only offers more degrees
of freedom to the model but also increases the number of evaluation points. This
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Figure 3.16: 2-story frame of numerical example 3: (a) geometry and (b) cross-
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Figure 3.17: The plastic hinge pattern of numerical example 3 for the proposed FE
model (a) and a conventional FE model (b).
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Figure 3.18: Comparison between the load-displacement curve of the proposed model
and other models in numerical example 3.
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Figure 3.19: Details of the fiber section built in OpenSees, including (a) the cross-
sections’ discretization and (b) the stress-strain constitutive law of the materials.

fact is confirmed in this numerical example as the adaptive approach is 33%
more computationally expensive with respect to the proposed approach.

The result of the force-based fiber model approach in Fig. 3.18 is obtained
through an analysis in the OpenSess code [119]|, which performs nonlinear anal-
ysis based on different plasticity frameworks using fiber sections. The cross-
sections of the elements are descritized into 400 rectangular fibers, see Fig.
3.19(a). Concrete and steel are modelled using the material models available
in the OpenSess library. More specifically, concrete is modelled by Concrete(02
material model, which considers the Kent-Scott-Park [86] behaviour in com-
pression and an elastic with linear softening behaviour in tension. Steel rein-
forcements are modelled by Steel02 material, which uses the Giuffre-Menegetto-
Pinto model [123], implementing an elasto-plastic law with hardening in both
tension and compression. The constitutive behaviour of the models are shown
in Fig. 3.19(b).

It is clear from Fig. 3.18 that the proposed model provides the same initial
stiffness and ultimate load of the force-based fiber model. The same is also
true for the adaptive approach. This confirms the efficiency of the proposed
model. On the other hand, the conventional analysis overestimates the overall
capacity of the structure and may not lead to an optimal retrofitting strategy
for the seismic assessment of existing structures. The comparison of the results
of numerical example 3 with the results of fiber model with different elements,
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Figure 3.20: Load-displacement curve of numerical example 3 including unloading
branches.

i.e. Force-Based Element, Displacement-Based Element and Beam With Hinges
is made in Chapter 4.

Numerical example 3 was re-run by using the proposed approach only to
show the behaviour of the model in unloading. Two unloading stations are con-
sidered, one after the formation of the second plastic hinge and the other before
the formation of the sixth plastic hinge. The load-displacement curve including
the unloading branches is shown in Fig. 3.20. The slope of the two unloading-
reloading branches furnishes information about the accumulated damage in the
structure concentrated at plastic sections. It is important to note that the ef-
fect of crack closure, i.e. plastic hinge in relaxed condition, is not necessary to
be taken into consideration in this numerical example, because the signs of the
bending moments associated with plastic sections remain unchanged during the
loading-unloading cycle. This possible effect is discussed later in Section 5.4.

The evolution of v; parameters is depicted in Fig. 3.21. It is immediate that
the hinges possessing growing values of v; parameters are disposed to become
perfect hinges as the analysis proceeds.
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Figure 3.21: Evolution of v; parameters in numerical example 3.

3.6 Conclusions

The implementation of the Euler-Bernoulli beam element endowed with multi-
ple slope discontinuities in a FE code is presented in this chapter. The enhanced
beam has been developed on the base of non-standard shape functions derived
from the closed form solutions suggested by Biondi and Caddemi [22].

The new Euler-Bernoulli beam element has been formulated in the frame-
work of lumped plasticity model and has been used to predict the structural
performance of RC structures where internal plastic hinges appear. Flow rules
are postulated on the basis of a thermodynamical approach considering an asso-
ciated plasticity theory. A Bresler’s type failure surface with a correction of the
exponent has been defined to control the development of plasticity. Inelastic
curvatures have been derived imposing the classic loading-unloading conditions.
For each step of the analysis, an elastic predictor-plastic corrector procedure is
followed. In the plastic steps, the latter is done using the closest point projec-
tion algorithm.

The model is validated by comparing its outputs with those obtained from
experimental test on a real RC frame. Other two numerical applications are
carried out to demonstrate how the evolution pattern of plastic hinges can
change in a structure depending on its geometry, the nature of the incremental
load, and the steel reinforcement distribution of the cross-sections.
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It is demonstrated that the proposed FEM permits the formation of plastic
hinges in any position of the beam, without suffering from the problem of
mesh refinement, as in the case of most diffused commercial softwares. It is
also observed that a conventional lumped plasticity model may overestimate
the overall capacity of the structure. The proposed model, instead, gives the
same results of an adaptive mesh refinement approach in a less computational
time and, moreover, achieves equal stiffness and ultimate load capacity of a
force-based fiber model.

The model can be interpreted as an example of Smart Displacement Based
(SDB) beam element, as originally proposed by by Panto et al. [134].



Chapter 4

Nonlinear Analysis of RC
Frames Retrofitted by FRP
Composites

4.1 Introduction

The application of Externally Bonded Fiber Reinforced Polymer (EB-FRP)
composites to RC structural members is nowadays a quite common retrofitting
technique that offers unique advantages compared to traditional techniques,
such as good immunity to corrosion, low weight, excellent mechanical properties
and easy adaptability to the shape of the element.

The EB-FRP technique has been proved to be capable in enhancing the
structural performance of RC structures, as it has found many different appli-
cations for strengthening various structural elements, such as beams, columns,
slabs and shear walls. The continuous increasing development of the EB-FRP
applications have drawn the attention to the study of the mechanical contri-
bution provided by FRP reinforcement for different failure mechanisms. In the
following, a brief literature review is presented addressing the use of EB-FRP
composite as a retrofitting technique for RC structures.

One of the first pilot studies on this topic was carried out by Mayo et
al. [116], who studied the application of EB-FRP composites for retrofitting
full-scale RC bridges. In the literature, particular attention is devoted to the
experimental investigation of RC flexural members externally strengthened us-
ing FRP composites. Kachlakev and McCurry [84] studied the effect of Carbon

83
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FRP (CFRP) and Glass FRP (GFRP) for, respectively, compensating flexural
and shear deficiencies of RC beams. Camata et al. [32] investigated the brittle
mechanism of RC beams and slabs flexurally strengthened with FRP compos-
ites. Both studies have shown that while higher load capacities are obtained
through the use of EB-FRP composite, lower ductilities are observed. This
observation, nevertheless, was not verified in the early study of Chajes et al.
[38], who investigated the effect of EB-FRP composites on the flexural capacity
of RC beams. To this end, RC beams externally bonded with FRP compos-
ites were four-point flexurally loaded up to the failure level and the results were
compared with the beams with additional steel reinforcements. It was shown by
the authors that higher flexural stiffness and capacity were obtained through
the use of FRP composites without any loss of ductility. In addition to the
study by Chajes et al. [38], Mahini and Ronagh [113] showed that a suitable
configuration of FRP composites is able to improve the ductility of a brittle RC
structure by means of modifying the plastic hinge pattern in a ductile manner.

As a complementary part of the experimental works, many numerical and
analytical studies are available in this field, while few of them have reported
the effect of EB-FRP composites on the behaviour of seismically deficient RC
structures. Zou et al. [184] studied a three-story gravity-designed RC frame
retrofitted by means of FRP wrapping of the columns. It was highlighted that
the FRP confinement is able to change the mode of failure of the structure by
allowing the formation of plastic hinges in the beams and increasing the strength
of the columns. Niroomandi et al. [129] performed nonlinear static pushover
analysis on EB-FRP retrofitted RC structure, which was primarily reinforced
by steel bracing. In their model, the moment-rotation relations of the joints,
before and after EB-FRP retrofitting, were obtained using FE analysis. The
pushover capacity curve of the analysis was then compared to the experimental
one of Mahini and Ronagh [114]. Tt was shown that the application of the EB-
FRP composite increases the structural ductility in a more efficient manner with
respect to steel bracing technique. A recent application of EB-FRP can also
be found in the work of Ronagh and Eslami [152], where an eight-story frame
whose beams and columns were flexurally strengthened by CFRP composites
was modelled. The results demonstrated the efficiency of EB-FRP retrofitting
in improving the lateral strength of the frame.

This Chapter is devoted to the modelling of RC frame flexurally retrofitted
by EB-FRP composites. The model is an extension of the FEM procedure
presented in Chapter 3. The FEM procedure is modified here to account the
presence of EB-FRP composites in RC sections.
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The case study regards the two-story gravity-designed RC frame presented
in Section 3.5.3. The frame is flexurally retrofitted by EB-FRP composites with
the aim to evaluate the efficiency of the EB-FRP retrofitting technique. It is
to be pointed out that the EB-FRP retrofitting here only concerns the flexural
strengthening of the beams, while retrofitting the joints or columuns is not the
intention of the current study.

The strength domains of the EB-FRP retrofitted sections are defined ac-
cording to Italian Guideline CNR-DT 200 R1 [76], which was the reference of
many studies in the literature (see e.g. Ombres [131] or Mohamed and Khattab
[125]).

To summarize, the novelty of this chapter of the thesis lies in the modifica-
tion of the RC failure domain of the model presented in Chapter 3 by taking
into consideration the effect of FRP composites using the method proposed by
CNR-DT 200 R1 [76].

The results achieved by the proposed FEM procedure are then compared
with those obtained using OpenSees code [119]. In particular, comparisons
are made with different element formulations available in OpenSees (e.g. Force-
Based Element, Displacement-Based Element and Beam With Hinges Element),
showing the sensitivity of these formulations to different parameters and the
efficacy of the proposed FEM procedure in assessing the lateral behaviour of
EB-FRP strengthened structures.

4.2 Analysis of EB-FRP Retrofitted RC Section

Past studies have demonstrated that in addition to the classic failure mechanism
of RC section, the following mechanisms (see e.g. Meier [122], Camata et al. [32],
El-Mihilmy and Tedesco [57|) should be considered for the EB-FRP retrofitted
RC beam:

e rupture of the FRP composite,
¢ interfacial debonding of the EB-FRP composite,
e debonding of the EB-FRP composite at the extreme sections.

These mechanisms, which are called the non-classic mechanisms, must be in-
corporated into the definition of the failure surface of the cross-section in order
to correctly predict the ultimate load designed for the element. For this to be
achieved, the analysis of the EB-FRP retrofitted RC section is performed by
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Figure 4.1: Strain distribution of the EB-FRP retrofitted RC section.

setting the ultimate strain of the FRP composite €4 equal to the strain value
given by the dominant failure case.

4.2.1 The Failure Surface

In an EB-FRP retrofitted RC section, the strain distribution diagram is mainly
divided into two regions, see Fig. 4.1. Based on the level of axial force NV
acting on the section, the region of neutral axis is determined, following by the
calculation of the exact location of the neutral axis, in an iterative procedure,
using the force equilibrium equation of the section. If the neutral axis falls
in region 1, the analysis continues by fixing the strain of the FRP composite
bonded to the tensile side of the section to the ultimate FRP strain. Since strain
compatibility is assumed between the adjacent components of the composite
section, the strain state of the other components can be calculated adopting a
linear distribution, see Fig. 4.1. On the other hand, if the neutral axis falls in
region 2, the analysis continues assuming the top fibers strain of the concrete
to be equal to the ultimate compressive strain, 0.35% as suggested by Italian
Building Code [75]. Hence the strain of the other components are calculated.
Afterwards, the ultimate resisting bending moment of the section M, in the x-
z plane, is computed by setting the moment equilibrium of the section around
the position of the neutral axis (for a more detailed discussion, the reader
is referred to the study of Rafiq and Southcombe [145]). At this point, the
generation of the failure surface follows the same procedure as described in
Section 3.2.3.
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4.2.2 The Ultimate Strain of FRP

As stated above, the ultimate strain of the FRP composite €74 depends on
the dominant failure mechanism. Here, the procedure presented by Italian
Guideline CNR-DT 200 R1 [76] is adopted for the calculation of e¢4. If the
section under analysis is located in the EB-FRP effective bond zone l.q (see
Eq. (4.1)), FRP rupture and end debonding of EB-FRP composite are the
existing failure mechanisms. While if the sections does not fall in l.4, FRP
rupture and EB-FRP composite interfacial debonding should be considered.
The effective bond zone of EB-FRP is calculated as

T2

leg = min { 5 Erts 200(mm) }, (4.1)

Sy
29rD\/T' 14

where s, = 0.25 mm is the ultimate slip, E's is the modulus of elasticity of FRP,
ty is the FRP thickness, ygp = 1.25 is a correction factor, and I';4, which is
called the fracture energy, takes the form

kyk
I‘fd = Fb,ig V fcmfctmv (42)

where F'C is the confidence factor of the concrete, kg is the correction factor
obtained from experimental results, fen and fe, are, respectively, the mean
values of the concrete compressive and tensile strength, and kj is a geometrical
coefficient that is calculated as (see Chen and Teng [40])

(4.3)

where by is the width of the EB-FRP composite.
Depending on the position of the section, the ultimate strain of FRP is
obtained as

€fd = min(%na , Efdd = @), (if section falls in l.q) (4.4a)
f Ey

Efd = min(iﬁna y Efddy = fgjj ), (if section does not fall in l.4) (4.4b)
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where €y, is the ultimate nominal strain of FRP for rupture, v, and 7, are the
material coeflicient and environmental factor respectively, and fi5 and f4q, are
defined as

1 2E:T
faa = Yid %7 (4.5a)
k Eys 2kpk
Faay = =1\ | L =222 Femn Fetm, (4.5b)
vrd\ ty FC

where vy 4 represents a partial safety factor, k, represents a load distribution
coefficient and ka2 represents a correction factor.

4.3 Numerical Application

The case under study is the two-story gravity-designed RC frame presented in
Section 3.5.3. In order to retrofit the frame, CFRP composites are selected
and applied to the top and bottom sides of the beam elements, see Fig. 4.2. It
should be noted that in this numerical application, only the mid-span of the
beams are retrofitted, i.e. the implementation of the FRP composites are done
in such a way to eliminate the possibility of hinge formation along the mid-
span of the beams by transferring them to beam/column joints. The stress-
strain constitutive behaviour and the mechanical properties of concrete and
steel are assumed as in numerical example 3.5.3, see Fig. 3.2 and Table 3.1.
The constitutive behaviour and material characteristics of FRP composites are
shown in Fig. 4.3.

To evaluate the lateral capacity of the EB-FRP retrofitted frame as well
as the effectiveness of the retrofitting technique, the proposed FEM procedure
of the previous Chapter is extended to analyse the EB-FRP retrofitted RC
sections. The rest of the FEM procedure is the same as described in Section
3.4.

4.3.1 Results of the Numerical Application

Figure 4.4 shows the evolution of plastic hinges in both bare and retrofitted
frames. In the case of retrofitted frame, the plastic hinges, as was expected, do
not evolve along the mid-span of the elements and are shifted to the beam /column
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Figure 4.2: EB-FRP retrofitted RC frame: (a) geometry and (b) cross-sections.
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Figure 4.3: Stress-strain constitutive behaviour and the mechanical properties of the
FRP composite in the EB-FRP retrofitted RC frame.

joints, leading to an overall increment of the lateral load capacity. The load-
displacement curves of the frames are depicted in Fig. 4.5. Since the first plas-
tic hinge forms at the right-end of the first floor beam, the load-displacement
curves of the frames are overlapped up to the load level where the second plastic
hinge, which is located along the mid-span (0.89 m from the left-end) of the
first floor beam, appears in the bare frame. On the other hand, for the EB-
FRP retrofitted frame, the second plastic hinge evolves at the left-end of the
first floor beam. This transference of the plastic hinges, which also occurs for
the second floor beam, not only increases the overall capacity of the EB-FRP
retrofitted frame, but also influences the pattern of the plastic hinge evolution,
see Figs. 4.4 and 4.6.

It is also important to observe the trend of 7; parameters as a function of
the lateral load F. As Fig. 4.6 demonstrates, the values of ~;, as the analysis
proceeds, tend to the limit values of 1/A.

4.3.2 Verification of the Results with OpenSees

The validation of the analyses results are carried out using OpenSees code.
In order to test the applicability of the proposed model, the comparisons are
made using different types of elements that are available in the OpenSees li-
brary. Force-Based Element (FBE) and Displacement-Based Element (DBE)
are implemented to spread the inelasticity along the elements. In the former,
the formulation is exact and is based on the equilibrium equations, the section
forces are calculated by interpolating the element basic forces, the precision of
the solutions mainly depends on the number of integration points, and con-
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Figure 4.4: The evolution pattern of plastic hinges in the bare and EB-FRP
retrofitted frames.
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Figure 4.5: Load-displacement curves of the bare and EB-FRP retrofitted frames.
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Figure 4.6: Evolution of ; parameters for bare frame (a) and EB-FRP retrofitted
frame (b).

sequently the local and global responses converge fast. While in the latter,
displacement shape functions are constructed in order to interpolate the dis-
placement along the element. Subsequently, stiffness matrix and force vector
are derived. In this case, the precision of the solution greatly depends on the
number of element’s mesh, which increases the computational cost and, as a re-
sult, entails slower convergence to the exact solutions. The pertinent properties
of FBE and DBE are demonstrated by Neuenhofer and Filippou [128] through
a comparative study. Beam With Hinges element, on the contrary, enforces
the inelasticity, in a finite length, at the extreme sections of the element. This
element is utilized to compare the results of the proposed model with a fiber
model in which inelasticity is limited to end segments.

In all OpenSees simulations performed here, the cross-sections of the el-
ements are discretized into 400 rectangular fibers. Concrete is modelled by
Concrete02 material model and steel reinforcements are modelled by Steel(02
material, see Fig. 3.19. Lastly, the FRP composite material is modelled with a
linear pure brittle material in tension.

To begin the comparison, the activation domains of the first floor beam
for the bare and EB-FRP retrofitted frames are built in OpenSees code and
the domains are compared with those of the proposed model, see Fig. 4.7.
The objective of this comparison is twofold: 1) to exhibit the effect of EB-
FRP retrofitting on the overall capacity of the sections and 2) to determine the
validity of the activation domains given by the proposed model. The comparison
shows a good agreement for bare and EB-FRP retrofitted sections. It should
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Figure 4.7: The activation domains of the first floor beam in the numerical applica-
tion.

be noted that for those values of axial force for which the concrete nonlinearity
plays a significant role in the ultimate resisting bending moment, a discrepancy
exists between the results of the proposed model and OpenSees simulation.
This discrepancy is due to the difference in the constitutive behaviour of the
concrete used in the proposed model and OpenSees simulations.

For the verification of the pushover analyses results, three different models
are built and simulated in OpenSees, each with a different type of element, i.e.
FBE, DBE and Beam With Hinges. The results plotted in Fig. 4.8 indicate that
the load-displacement curves of the proposed models are in good agreements
with those of OpenSees with distributed plasticity. In case of the OpenSees
model with Beam With Hinges elements, since plasticity is only concentrated
at extreme segments of the elements, the results of bare and EB-FRP retrofitted
frames are identical. This is because the model does not take into account the
different steel reinforcement distribution along the beam span, and the effect
of EB-FRP retrofitting. The comparisons in Fig. 4.8 reveals that the proposed
model, despite being based on the concentrated plasticity framework, is capable
of predicting the lateral capacity of RC frames, bare and EB-FRP retrofitted,
as well as the efficiency of the EB-FRP retrofitting technique. These, in general,
are only achievable by running fiber analysis with high computational cost.

Figures 4.9 and 4.10 depict the accuracy of the load-displacement curves
generated by FBE and DBE OpenSees models with different number of inte-
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Figure 4.8: The comparison of the load-displacement curves of the proposed model
with those of OpenSees with (a) FBE, (b) DBE and (c) Beam With Hinges elements.
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Figure 4.9: The load-displacement curves of FBE models with different number of
integration points for (a) bare and (b) EB-FRP retrofitted frames.

gration points (intps) and different number of sub-elements (elts), respectively.
The accuracy of the FBE models can be ameliorated by increasing the num-
ber of integration points, while in case of DBE models, acceptable accuracy
is indeed reachable by dividing the elements into a sufficient number of sub-
elements.

To better understand the accuracy and also the convergence of the OpenSees
solutions towards the exact ones, the error bars of the ultimate lateral load are
illustrated in Figs. 4.11 and 4.12 using the following expression

e(%) = 100’;; - 1), (4.6)

where F is the reference lateral load, defined as the ultimate lateral load of the
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Figure 4.10: The load-displacement curves of DBE models with different number of
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Figure 4.12: Ultimate lateral load error bars of FBE (a) and DBE (b) OpenSees
models for EB-FRP retrofitted frames.

model with 7 integration points in FBE models and 32 sub-elements in DBE
models.

As demonstrated in Fig. 4.11 and 4.12, regarding the computational cost,
the precision of FBE responses are significantly higher than those of DBE. In
case of FBE models, by merely assigning 3 integration points for the elements,
the responses become adequately accurate. On the contrary, for FBE mod-
els, at least 16 sub-elements are necessary to achieve reliable responses, which
significantly increases the computational cost.
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4.4 Conclusions

The FEM procedure presented in Chapter 3, based on the beam element with
multiple slope discontinuities, is modified here to account the effect of EB-
FRP retrofitting of RC frames. The procedure is validated making use of the
numerical application in Section 3.5.3, showing a two-story gravity-designed
RC frame. Here, only the mid-spans of the beams are EB-FRP retrofitted. For
the purpose of validation, the frame is modelled in OpenSees and the results
are compared with those of the proposed model. The following conclusions are
made:

1. Figure 4.7 demonstrated that the sectional analysis method, which is pre-
sented by Italian Guideline CNR-DT 200 R1 [76], is capable of estimating
the axial force-bending moment activation domain of the bare and EB-
FRP retrofitting RC sections.

2. The results of the pushover analysis, see Fig. 4.5, demonstrates the ef-
fect of retrofitting method on the overall lateral capacity of the frame.
It is observed that by merely strengthening the mid-spans of the beam
elements, not only the plastic hinges that are formed in the mid-spans
are shifted to the beam/column joints, but also the evolution pattern of
plastic hinges changes, see Fig. 4.4. It is also evident that the current
retrofitting strategy slightly increased the overall capacity of the simple
RC frame.

3. The results of the OpenSees simulations, see Fig. 4.8, validate the feasi-
bility of the presented FEM procedure. It was shown that the presented
FEM procedure, despite being constructed in the framework of concen-
trated plasticity, is an effective numerical tool to predict the overall lat-
eral capacity of RC frames. In general, the latter is only achievable in
distributed plasticity framework with high computational requirements,
which are alleviated by the proposed FEM tool.

4. Figures 4.9 and 4.10 reveal that in order to obtain reliable responses
using FBE and DBE models, respectively, sufficient number of integration
points and sub-elements should be selected. In the former, by assigning 3
integration points and in the latter by discretizing the element into 16 sub-
elements, see Figs. 4.11 and 4.12, the numerical errors become negligible.
The proposed model, although being formulated on the basis of stiffness
method, does not require any element discretization and gives acceptable
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results, as proved by OpenSees models, in a reasonable computational
time.
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Chapter 5

Nonlinear Analysis of RC
Frames Retrofitted by Shape
Memory Alloys

5.1 Introduction

Due to the unique thermomechanical properties of Shape Memory Alloys, they
have gained wide applicability in engineering and medicine and thus attract sig-
nificant research interest [133]. The spetacular effects, notably pseudoelastic-
ity and Shape Memory Effect (SME), result from reversible martensitic phase
transformation in which the material is converted between two solid phases,
namely austenite (parent phase), which is high-symmetric and is stable at high
temperatures, and martensite (product phase), which is low-symmetric and is
stable at low temperatures [165].

SME refers to the ability of SMA to revert its original configuration after
the heat induction. Assume a stress-free crystal in austenite phase. By de-
creasing the temperature of the crystal, the martensite phase is initiated in a
self-accommodated (or twinned) state, which contains different variants. As
the external mechanical load is applied, oriented (or detwinned) martensite is
obtained in which the martensite variants are rearranged into a unique direc-
tion. At this point, if the external mechanical load is released, the oriented
martensite remains and upon heating converts to austenite and restores the
original shape. This cyclic behaviour is presented in Fig. 5.1.

Now, suppose that SMA is heated above the finishing temperature of austen-

101
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Figure 5.1: The illustration of shape memory effect (left) and pseudoelasticity (right)
properties in shape memory alloys.

ite Ay, which is the temperature whereat the phase transformation from marten-
site to austenite finishes. In this case, by applying the external mechanical
load, the material experiences direct transformation from austenite to oriented
martensite. Similarly, upon unloading, direct transformation from oriented
martensite to austenite occurs. This phenomenon is called the pseudoelasticty
and is illustrated in Fig. 5.1.

Numerous constitutive models have been adopted to address various aspects
of the complex behaviour of SMAs, from atomistic to the macroscopic scale. A
detailed overview of the constitutive models of SMAs available in the literature
is beyond the scope of this Chapter, the reader is referred to recent reviewers
(e.g. Patoor et al. [136]; Lagoudas et al. [95]; Cisse at al. [42]).

This Chapter first presents a one-dimensional constitutive model of pseudoe-
lasticity in SMA. The model is indeed a one-dimensional small strain version
of the model developed by Stupkiewicz and Petryk [166]. Then, a gradient-
enhancement is introduced into the model followed by themomechanical for-
mulation and implementation into a finite element code. Using this model, the
true response of a nickel-titanium (NiTi) wire is studied in uniaxial tension.
In Section 5.4, the first introduced one-dimensional constitutive model is pro-
grammed into the FE code developed in Section 3 to investigate the effectiveness
of SMA brace retrofitting technique in RC structures. For the numerical appli-
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cation, the RC frame of Section 3.5.1 is modelled and the results are discussed.
Finally, conclusions are drawn in Section 5.6.

The writer indicates that Sections 5.2 and 5.3 of this chapter are mostly
taken from the paper by Rezaee Hajidehi and Stupkiewicz [148].

5.2 One-Dimensional Pseudoelasticity Model of SM A

The starting point here is a one-dimensional small-strain version of the three-
dimensional general model of pseudoelasticity developed by Stupkiewicz and
Petryk [166]. Despite the model is one-dimensional, in the notation V and V -
are used to denote the gradient and divergence, respectively. The reason is to
keep the structure of the model for the corresponding three-dimensional model
to be developed in the future.

The total strain € = e(u), where e(u) = Vu and u denotes the displacement,
is decomposed into its elastic €, and inelastic (transformation) e; parts,

€ =¢c+ ey, €t = Né, 0<n<1, (5.1)

where 17 denotes the volume fraction of martensite, and & is a model parameter.
Here, we rely on the assumption that, in the pseudoelastic regime, martensite
is fully oriented, and € is its transformation strain, which is defined as the
maximum transformation strain produced in a complete martensitic transfor-
mation.

The function specifying the Helmholtz free energy (per unit volume) in
isothermal conditions is adopted in the following form,

d(e,n) = ¢o + Adon + %E(e — n&)? + %H7}27 (5.2)

where ¢ is the free energy of austenite in a stress-free state, A¢q is the chemical
energy, FE is the Young’s modulus, and H is the parameter controlling the
hardening or softening associated with increasing 7. It is supposed here that
H is non-negative, H > 0, because for H < 0 a softening response is obtained,
as discussed in Section 5.3, and the problem becomes ill-posed.

The Helmholtz free energy functional ®[u, | is obtained by integrating ¢
over the body domain B,

Blu, 7] = /B ole(uw),m) AV, (5.3)
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and the potential energy is defined as
Elu,n] = @[u, ] + Qfu], (5.4)

where Q[u] is the potential energy of external loads, which are assumed conser-
vative.

In the incremental formulation, the rate-independent dissipation is governed
by the following dissipation potential,

AD(An) = fe|An|, fe>0, An =1 — 1, (5.5)

and its global counterpart,

ADMFiLADW—mmd% (5.6)

where f. is the critical driving force, and 7, is the martensite volume fraction
at the end of the previous step. Note that quantities without a subscript refer
to the current time instant ¢t = ¢,,41.

The incremental solution, i.e. the fields of displacement u and volume frac-
tion of martensite i at the current time step ¢,41, are determined by minimiza-
tion of the global incremental potential IT[u,n] (see Petryk [142]; Stupkiewicz
and Petryk [166]),

{u,n} = arg 173717? Iu, 7], (5.7)
where
Ifu, n) = E[u,n] — E[un, na] + ADn] + Z[n], (5.8)

and v is implicitly assumed to satisfy the Dirichlet boundary condition. The
last term in Eq. (5.8) enforces the physical constraint 0 <7 < 1 by employing
the indicator function Z[n],

0 ifo<n<l,

i (5.9)
+o00 otherwise.

I = /BI[OJ] (n)dV, Lo,y (n) = {

Because of the last two terms in the incremental potential (5.8), the minimiza-
tion problem (5.7) is non-smooth.

Following the standard argument, minimization of II[u,n] with respect to
the displacement field u, for a fixed field of 7, yields a stable equilibrium of
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the body, and the necessary condition for the minimum gives the equilibrium
equation in a weak form. In the absence of body force, the standard equilibrium
equation is obtained as,

V.o=0, o = E(e — né), (5.10)

where o is the stress. It is immediate to understand that in one-dimensional
setting, the equilibrium equation implies that the stress is constant.

Since the free energy ¢(e,7n) depends on 1 but not on its gradient, mini-
mization of II[u, n] with respect to the field of n, for a fixed displacement field u,
can be performed locally at each point. The corresponding local minimization
problem amounts to minimizing the incremental energy density 7(e,n) at fixed
&,

n = argmin(e,n),
n

with m(e,m) = ¢(e,m) — ¢(en, M) + AD(N — 1) + Ljg 11(n)-

(5.11)

It can be checked that the free energy function ¢(e,7) is convex in 7 when
H > —Fé. The remaining two terms of 7(g,n) are also convex, though non-
smooth, see Fig. 5.2. Accordingly, the minimum exists and satisfies the inclu-
sion 0 € Omz(n), where m.(n) = w(e,n) for given e, which can be rewritten in
the following form,

feoD(m),  D(n)=AD(n— 1)+ Iy, (5.12)
where f is the thermodynamic driving force,

0
f= —aj = —A¢o + o0& — Hn, (5.13)

and D(n) groups the non-smooth part of 7(g,n). Here, d(-) denotes the sub-
differential which is a generalization of the derivative to non-smooth functions
(Rockafellar [149]). Figure 5.2 shows the graphs of the non-smooth function
D(n) and its subdifferential 9D(n), see also Stupkiewicz and Petryk [166].
When the transformation proceeds with non-zero An, and the bound con-
straints are not active, i.e. 0 < 1 < 1, inclusion (5.11) yields the following

transformation criterion,

_A¢Uifc+Hn

f=+f. & of
€t

(5.14)
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Figure 5.2: Graphs of non-smooth part D(n), Eq. (5.12), of the incremental potential
7(e,n) (a) and its subdifferential (b).
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Figure 5.3: The stress-strain response resulting from the model in the case of com-
plete (a) and incomplete (b) transformation.

where o} (0;) is the transformation stress during forward (reverse) transfor-

mation with An > 0 (An < 0). The stress-strain response resulting from the
present one-dimensional model is illustrated in Fig. 5.3, in which the controlling
role of the parameter H over the stress-strain response of the model is apparent.

5.3 The True Response of SMA in Uniaxial Tension

It is commonly observed in the experiments that stress-induced pseudoelastic
response of SMAs is accompanied by softening behaviour and strain localiza-
tion. A typical example is the uniaxial tension of NiTi wires, strips and tubes
(e.g. Shaw and Kyriakides [157]; Sittner et el. [160]; Zhang et al. [179]; Sedmak
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Figure 5.4: The typical mechanical response of SMA in the experiment of Hallai and
Kyriakides [71]. The actual material response of NiTi has been revealed by extracting
it from the overall response of uniformly deforming laminate composed of NiTi and
steel sheets with hardening elasto-plastic response.

et al. [155]) in which transformation proceeds through nucleation and propa-
gation of macroscopic transformation fronts so that the deformation pattern
resembles Liiders bands, see Fig. 5.4.

At low loading rates, i.e. in nearly isothermal conditions, the fronts propa-
gate at an approximately constant load, thus a stress plateau is observed on the
apparent stress-strain curve. However, at high loading rates, the stress plateau
is not observed as a consequence of thermal hardening. The latter also influ-
ences the number of transformation fronts, as shown in Fig. 5.5. A detailed
study of the effect of loading rate on the transformation fronts and on stress
hysteresis in NiTi strips has been reported by Zhang et al. [179].

Implementation of the softening behaviour into a constitutive model usually
does not constitute a difficulty. However, solution of the boundary value prob-
lem is not immediate because the problem becomes ill-posed, which leads for
instance to pathological mesh sensitivity. One way to regularize the problem
is to enhance the model with non-local (Ahmadian et al. [1]) or gradient term
(Chang et al. [39]; Duval et al. [56]; Leon Baldelli et al. [102]). This introduces
a characteristic length into the model so that diffuse transformation fronts are
formed and a sharp transition from the transformed to non-transformed zone
is penalized.
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Figure 5.5: The transformation pattern in the experimental study of Zhang et al.
[179] for a tensile test with low strain rate, i.e. 3.3 x 1074571, (left) and high strain
rate, i.e. 3.3 x 1072571, (right).

Note that a kind of regularization, which has a clear physical basis, is intro-
duced by including the thermomechanical coupling and heat conduction. How-
ever, this regularization may be insufficient in nearly isothermal conditions, for
instance, in the case of propagation of an existing macroscopic transformation
front at a vanishingly small speed.

Here, a gradient-enhancement is introduced into the model presented in
Section 5.2. the main focus is a micromorphic regularization of the gradient-
enhanced model and its energy-based incremental formulation. To this end, a
new degree of freedom is introduced into the model that can be interpreted as
a micromorphic counterpart of the volume fraction of martensite . The micro-
morphic approach adopted here is similar to that of Maziére and Forest [117]
that has been developed for modelling of softening-hardening plasticity leading
to formation of Liiders bands in isotropic metals and alloys. The resulting mi-
cromorphic model is suitable for a direct finite element implementation based on
the incremental energy minimization approach combined with the augmented
Lagrangian treatment (see Stupkiewicz and Petryk [166]) of the resulting non-
smooth minimization problem. Finally, a thermomechanically coupled model
is formulated and implemented in a finite element code. Using this model, uni-
axial tension of a NiTi wire is simulated, and the effect of loading rate on the
localization pattern is studied.

Two models are discussed in this section. First, the gradient-enhanced ver-
sion of the local model developed in Section 5.2 is formulated. Next, the micro-
morphic regularization of the gradient-enhanced model is presented by intro-
ducing a micromorphic variable. Finally, the most essential thermomechanical
coupling terms are accounted for, thus leading to a coupled thermomechanical
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model.

5.3.1 Gradient-Enhanced Model

A possible approach to circumvent the ill-conditioning resulting from the soft-
ening response, when H < 0 in Eq. (5.2), is to enhance the model with a
gradient term. In the present context of pseudoelasticity in SMAs, it is natural
to formulate the gradient contribution in terms of 7, the volume fraction of
martensite. The free energy function is thus assumed in the following form,

byl V) = 8(e.0) + 5GIVP. (5.15)

The gradient term in Eq. (5.15) delivers regularization for the model and the G
parameter, which is a positive parameter, controls the degree of regularization.

The Helmholtz free energy functional ®4[u,n] of the gradient-enhanced
model and the corresponding potential energy &;[u, n] are defined as

Byfua = [ oylel)n IV, Efun] = Blun+ Ol (.16
The global incremental potential II,[w, 7], which takes the following form,

g [u, n] = Eglu, n] — Eglun, nn] + AD[n] + Z]n], (5.17)

is then minimized to yield the incremental solution in terms of the fields of u
and 7 at instant ¢,41,

{u, n} = argmin Ily[u, ). (5.18)

As before, the minimization with respect to the displacement, field u for fixed 7,
in the absence of body force, yields the standard equilibrium equation (5.10).

The free energy ¢4(e,n, Vi) depends on the value of n and its gradient V1.
Therefore, the minimization of I1,[u, n] with respect to the field of 1 can not be
performed locally as in the case of the local model, see Egs. (5.11) and (5.12).
However, a similar structure of the necessary condition for the minimum of
IT4[u, n] with respect to 7 is obtained,

fg € 9D(n), (5.19)

by introducing the thermodynamic driving force f,,

5
fa= —579 = [+ GV, (5.20)
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where

(5.21)

is the classical functional derivative of ®,, f is the driving force in the local
model, see Eq. (5.13), and V2 denotes the Laplacian operator, i.e. the second
spatial derivative in one-dimensional case. It should be noted that the differen-
tial inclusion (5.19) is accompanied by the homogeneous Neumann boundary
condition, V,n = 0, on the boundary of the body domain B.

Assuming that the transformation proceeds with An # 0 and also0 < n < 1,
the transformation stress in the gradient-enhanced model is obtained from the
inclusion (5.19) in the following form,

fo=tfe & of,=S00Efet Hn- GV

7 (5.22)

€t

5.3.2 Micromorphic Model

Direct implementation of the gradient-enhanced model of the previous section is
not straightforward because the transformation criterion (5.19), which governs
the evolution of 7, involves the Laplacian of n. To facilitate the finite element
implementation, a micromorphic regularization of the gradient-enhanced model
is performed here by introducing an additional variable 7, as a micromorphic
counterpart of 7, see Forest [64] for a general overview of the micromorphic
regularization approach.
The free energy function is thus adopted in the following form,

Sule .1, 90) = 9(e,m) + 5x(n — 1) + 3GV, (523
where, compared to ¢4(e,n, Vn) in Eq. (5.15), the gradient term is expressed
in terms of the new variable 7, and an additional term is introduced, which
penalizes deviation of n from 7, with x > 0 being the corresponding model
parameter.

The free energy functional ®,[u,n,7] and the corresponding potential en-
ergy Eulu,n,n) are now defined, respectively, as,

B, ,77] = /B bule(u), 0,7, V) AV, (5.24)
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and
SM [ua n, ﬁ] = @M[uv n, 77] + Q[u] (525)

Since a new degree of freedom is added to the problem, the minimization of the
global incremental potential

My fu, n, ) = Eulu,n, 7] = Eultin, 1n, Tn] + AD[n] + Z[n], (5.26)

is now performed with respect to fields of u, n and 7
{u, 7,7} = arg min 1L, [u, 7,7]. (5.27)

Again, for fixed n and 7, the local equilibrium equation (5.10) is found by
minimizing IT,[u, n, 7] with respect to the displacement field w.

As in the case of the local model, the free energy ¢,(e,n,7, V) is merely
dependent on 7 and not its gradient. As a result, the minimization of I, [u, 7, 7]
with respect to n can be carried out locally. This is, in fact, the main reason for
introducing the micromorphic regularization of the gradient-enhanced model.
For fixed € , 7 and V7, the local minimization problem reads

7 = argmin 7T,u(57 n,1, vﬁ)? (528)
n
where
ﬂ-ﬂ(sa m, 777 VT_]) = ¢M(57 7, 777 Vﬁ) - ¢M(€ﬂ> Mn, ’F/na vﬁn)
+AD(m = mn) + Lp,1(m).  (5.29)

Convexity of ¢,(e,n,7) and 7,(e,n,7, V7)) in n is ensured if H > A
The necessary condition for the minimum (5.28) is now

fu € dD(n), (5.30)

and is expressed in terms of the thermodynamic driving force f,,

_O%u

on
where f is given by Eq. (5.13). For An # 0 and 0 < 1 < 1, inclusion (5.30)
gives the following expression for the transformation stress,

Ago £ fe+ Hn+x(n—17
fu=tf & o, == = (n=1m)

fu= =f—x(mn—n), (5.31)

(5.32)
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Finally, minimization of II,[e,n, 7, V7] with respect to the fields of 7 yields
the following necessary condition,

511,
=0 (5.33)

where % is the functional derivative of II,,, see Eq. (5.21). Since II,, depends
on 7 only through ®,, thus

oI, 0P, B 9

_ - _ —7) = GV%% = 0. 5.34

57~ o7 x(n—1) 7 (5.34)

The micromorphic variable 7 is thus governed by the following differential equa-
tion,

7— Vi =, (= , (5.35)

G
X
where ¢ is internal length related to the averaging operation delivered by Eq.
(5.35). The Holmholtz-type equation (5.35) is the same as the one frequently
used for regularization of damage or softening plasticity within the so-called
implicit-gradient approach (Peerlings et al. [140]; Maziére and Forest [117]).

Equation (5.35) is accompanied here by the homogeneous boundary condi-
tion, V,,7 = 0 on the boundary of the domain B. The above Neumann type-
boundary condition together with Eq. (5.35) implies that [pndV = [57dV.
This property would not hold for a Dirichlet boundary condition, which might
be used, for instance, to define a non-transforming boundary.

From Eq. (5.34) it follows that x(n—7) = —GV?7, so that the term x(n—7)
in the expression (5.32) for the transformation stress O';:M can be replaced by
—GV?j. Now, when Y is sufficiently large, 77 gets close to 1 and therefore
V27 gets close to V2. It follows that, in the limit, the micromorphic model
is equivalent to the gradient-enhanced model, and in particular f, ~ f,, and
J;tu ~ atjfg. This property is demonstrated in a propagating phase transfor-
mation interface, i.e. the profiles of n and 7, shown in Fig. 5.6. Two different
cases are investigated, one with a low value of x and the other with a high
value of x. In the latter case, the two curves can be hardly distinguished, and
they approximately coincide with the solution of the gradient-enhanced model
(dashed lines in Fig. 5.6). The markers in Fig. 5.6 denote the finite element
solutions. For a detailed discussion of the gradient-enhanced and micromorphic
models and also the analytical solutions, the reader is referred to [148].
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Figure 5.6: Phase transformation interface in the micromorphic model: profiles of n
and 77 when x is small (a) and when x is large (b). The dashed lines correspond to
the analytical solution for the gradient-enhances model. £/\ represents the horizontal
position normalized by the thickness of the diffused interface (see [148]).

5.3.3 Thermomechanically Coupled Model

For extending the model to thermomechanically coupled one, the heat conduc-
tion and two most essential thermomechanical couplings are considered. Firstly,
the dependence of the chemical energy A¢y on the temperature is accounted
for, thus introducing dependence of the mechanical response on the tempera-
ture. Secondly, the latent heat of transformation, which is associated with the
exothermic and endothermic nature of, respectively, forward and reverse trans-
formations, and the dissipated energy are introduced into the heat equation as
a source term, so that inhomogeneous deformation results in the temperature
inhomogeneity and in heat conduction. Note that other couplings, including
thermal expansion and temperature-dependence of material constants, which
are secondary effects, are neglected in the present model.

The free energy density of a pure austenite phase in a stress-free condition,
¢4, and that of a pure martensite phase, ¢, are defined as (Raniecki et al.
[146])

¢5 = ¢o(T) +ug —T'sg, ¢ = ¢o(T) +ug' — T'sg’s (5.36)

where u§ and ug' are the internal energy densities of, respectively, austenite
and martensite phases in the reference state, i.e. in the stress-free condition at
T =Ty, s§ and si* are the entropies of, respectively, austenite and martensite
phases in the reference state, and ¢o(T) = pc(T — Ty — T log(T/Tp)), where T
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and Ty are the current and reference temperatures, respectively, and pc is the
specific heat per unit volume.

The chemical energy, A¢g, that appears in Eq. (5.2) is then obtained as a
linear function of temperature,

Apo(T) = o5 — g = —Au” + As™T = As™ (T — T), (5.37)
where Au* = uf —ug® > 0, As* = s§ —sg* > 0, and T} = % is the trans-
formation (equilibrium) temperature. It follows that the chemical energy Agy
increases with increasing temperature, for instance, during forward transfor-
mation (7 > 0), which is exothermic. In non-isothermal conditions, the trans-
formation stress will thus increase (decrease) during forward (reverse) transfor-
mation, see Eqs. (5.13), (5.22) and (5.32).

The local heat source results from the latent heat of transformation and
mechanical dissipation. Specifically, the volumetric heat source ¢, is expressed
as,

Gy = AS™T7 + fe|n|, (5.38)

where a superposed dot denotes the time derivative. The first term, which
corresponds to the latent heat of transformation, controls the exothermic and
endothermic reactions of the forward (with n > 0) and reverse (with 7 < 0)
transformations, respectively. Finally, the local heat equation takes the form,

pc=T = ¢, + V2T, (5.39)

where k is the thermal conductivity.

5.3.4 TUniaxial Tensile Response of a NiTi Wire

5.3.4.1 Finite element implementation

The coupled thermomechanical problem at hand is governed by the minimiza-
tion problem (5.27) (the mechanical part) and by the heat equation (5.39) (the
thermal part). As discussed in Section 5.3.2, the incremental potential (5.26)
is non-smooth in the local variable n, however the corresponding minimiza-
tion can be performed locally, e.g. at each Gauss point in the finite element
implementation. Here, following Stupkiewicz and Petryk [166], the augmented
Lagrangian method is used to transform the non-smooth constrained minimiza-
tion in terms of 1 to a smooth constrained saddle-point problem in terms of 7
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and a single Lagrange multiplier that treats both the non-smooth dissipation
function and the bound constraints on 7. For details the reader is referred to
Stupkiewicz and Petryk [166].

The complete problem involves three global fields (u, 7, T). In the fi-
nite element discretization, the displacement field u is approximated using
piecewise-quadratic shape functions, while 77 and T are approximated using
piecewise-linear shape functions. The resulting discrete finite element equa-
tions are solved in a monolithic manner using the Newton method. Computer
implementation has been performed using the AceGen/AceFEM system (Ko-
relc [89]; Korele and Wriggers [90]). In particular, the automatic differentiation
(AD) technique implemented in AceGen has been used to automatically derive
the exact algorithmic tangent.

5.3.4.2 Problem description

The uniaxial response of a NiTi wire under tension is studied as an application
of the model developed. The main focus of this numerical example is to show the
suitability of the proposed micromorphic formulation to describe nucleation and
propagation of macroscopic transformation fronts. Having this modelling tool,
the effect of the loading rate on the force-displacement response, transfromation
pattern and temperature field is also studied. Material parameters have been
adopted such that the model predictions are qualitatively comparable to the
experimental results of Zhang et al. [179]. It should be noted here that the aim
of the numerical example presented here is not to reproduce the exact results of
Zhang et al. [179] but to simulate them in a qualitative manner. This is because
the present one-dimensional model is a significant simplification compared to
the experimental setup of Zhang et al. [179].

The one-dimensional wire model is sketched in Fig. 5.7. The total elonga-
tion of the wire is prescribed according to 0(t) = L&(t), where L = 30 mm is
the length of the wire, and the average strain rate & is assumed constant during
loading and unloading. To trigger the strain localization in the wire, the tem-
perature of the wire at both ends is fixed and equal to the initial temperature
Ty = 296 K. Material parameters E = 35 GPa, H = —2.2 MPa, f. = 6.8 MPa,
€ = 0.049, T; = 244 K, As* = 0.24 MPa/K have been calibrated such that the
isothermal response of the model approximates the experimental one (Zhang
et al. [179]) reasonably well. Parameters p = 6500 kg/m3, ¢ = 440 J/(kg K)
and k = 18 W/(m K) assume the values typical for NiTi (e.g. Armattoe et al.
[8]). The gradient-related parameters, namely G = 0.014 Pa m? and y = 116
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Figure 5.7: Uniaxial tension of a NiTi wire: problem setup and the predicted stress-
average strain response corresponding to three representative average strain rates. The
dashed line depicts the isothermal, homogeneous softening response.

MPa have been adopted such that sufficient regularization is obtained and that
the model produces macroscopic transformation fronts with a reasonable thick-
ness A (here A\ = 0.25 mm has been taken). A relatively fine finite element
mesh of 600 elements has been used in the computations so that the element
size h = 0.05 mm is sufficiently small with respect to the interface thickness,
A = 5h.

5.3.4.3 Results and Discussion

Although the computations have been carried out for eleven strain rates, the
results obtained for three representative strain rates, namely & = 3.3 x 10~*
s, 6=33x10"3s"!and £ =3.3 x 1072 s~! are discussed in detail. Figure
5.7 compares the corresponding stress-strain curves. The elastic branches at
the point at which the transformation initiates are identical for all curves. For
the case with the lowest strain rate (¢ = 3.3 x 107* s71), the thermal effect
is not much pronounced, and the stress-strain curve is close to the isothermal
case, particularly during loading. For higher loading rates, the stress plateau
is no longer observed during loading and significant hardening is predicted as
a result of the increase in temperature during forward transformation. The
effect of loading rate on the unloading branch is more complex. This is due to
the inhomogeneity of temperature and development of complex transformation
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patterns (see [148]).

The detailed results of individual simulations are depicted in Fig. 5.8. The
first, second and third columns show the stress-strain curves, the transformation
patterns and the temperature fields. The dashed curves in the stress-strain
diagrams represent the experimental results obtained by Zhang et al. [179]. For
the transformation pattern in the middle column, the vertical axis represents
the position on the wire, the horizontal axis represents the normalized time, and
the color intensity represents the volume fraction of martensite. Similarly, for
the temperature field, the color represents the relative temperature 8 =T — T}
as a function of position and time.

The predicted effect of the loading rate on the stress-strain response shows
a good agreement with the experiment. At higher loading rates, the stress
predicted during reverse transformation is visibly lower than in the experiment
so that the area of the hysteresis loop is overpredicted. A possible reason for
the discrepancy is that in the model the transformation is completed upon load
removal while in the experiment it is not necessarily completed. The present
simple constitutive model is not able to capture this feature.

The middle column in Fig. 5.8 illustrates the effect of loading rate on the
pattern and evolution of austenite and martensite domains. The general feature
is that the number of domains increases with increasing loading rate. It can be
seen that the transformation pattern and the number of domains during forward
and reverse transformations are different. This is due to the prior history and
non-uniform temperature at the beginning of the unloading stage.

By examaining in detail the density plots of austenite and martensite pat-
terns of all eleven computations conducted in this study, an exponential rela-
tionship between the number of domains and the average strain rate can be
derived. In addition, it was found out that the average stress hysteresis, which
is calculated as the area of the hysteresis loop divided by the transformation
strain €, exhibits the maximum at the strain rate of about 2 x 1072 s~!. For
space reasons, the plots of these results are not shown here, the reader is referred
to [148].

Summarizing, despite its simplicity, the present model is capable of repro-
ducing several thermomechanical effects that accompany uniaxial tension of
NiTi in a wide range of strain rates. In particular, the proposed micromor-
phic model proves efficient in modelling nucleation and evolution of complex
transformation patterns induced by a softening mechanical response.
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Figure 5.8: Detailed results of representative average strain rates: stress-strain re-
sponse (left), transformation pattern represented by 7 (middle), relative temperature
field (right). The predicted stress-strain response (solid lines) is compared to the ex-
perimental results of Zhang et al. [179] (dashed lines). The solid lines superimposed
on the counter plots in the middle and right columns depict the stress as a function
of the normalized time. Further discussion of these results is provided in [148].
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5.4 SMA in Civil Structures

5.4.1 Introduction To Passive Structural Control

The re-centring capability and damping capacity of SMA have made these
materials an attractive retrofitting choice for civil structures. These features,
which are in fact associated with the unique properties of SMA, namely SME
and pseudoelasticity, come from the capacity of the material that can transform
mechanical energy into thermal energy, which allows to control the vibration
of the structure and absorb seismic forces [133]. The method of controlling
the structures using the re-centring and damping properties of SMA is called
passive control. More expensive control strategies by SMA, i.e. active and
semi-active techniques, rely on an external source that supplies energy to the
controlling devices. The applications of different SMA controlling strategies in
civil structures have been reviewed by many authors (e.g. Desroches and Smith
[48]; Alam et al. [2]; Janke et al. [83]; Song et al. [162]; Auricchio et al. [11]),
see also Dong et al. [53] for an overview on the applications of SMA in bridges.

5.4.2 SMA Bracing Systems

By taking the advantages of the re-centring and damping properties of SMA,
not only a large amount of the energy of the structure during earthquake exci-
tations can be dissipated, but also the structural elements are forced to restore
their initial state after the excitations, thereby the relative displacements and,
as a result, stresses in structural elements are reduced to a large extent. One of
the main applications of the passive control SMA devices is in the form of SMA
braces, which have been widely used in retrofitting existing RC and steel struc-
tures (e.g. Dolce et al. [51]; Cardone et al. [34]; Dolce et al. [52]). Experimental
findings show that, although the ordinary steel bracing system provides high en-
ergy dissipation to structures, the re-centring capability of SMA braces, which
permits the structure to restore its initial configuration even after large inelas-
tic deformations, has made them excellent candidates for seismic retrofitting
of framed structures. Figure 5.9 demonstrates the combination of these two
characteristics, namely energy dissipation and re-centring, in an idealized con-
stitutive behaviour of SMA. It should be noted that the great versatility of
SMA allows to obtain different functionality based on the particular engineer-
ing or research purposes, i.e. from largely dissipating to fully re-centring, by
changing the elements of the material at the time of manufacturing.

The operation of SMA braces is simple and is based on the martensitic phase
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Figure 5.9: The combination of re-centring and energy dissipation in the idealized
behaviour of SMA.

transformation. When the frame structure is subjected to seismic actions, SMA
braces are activated and use the mechanical energy of horizontal motions for
forward phase transformation. During the unloading process, the mechanical
load is released and the reverse phase transformation (from martensite phase
to austenite phase) is induced, which enforces the structure to recover its initial
configuration.

One of the first applications of SMA braces in civil structures was reported
by Ohi [130], where steel structures were retrofitted by SMA braces. The results
demonstrated that under cyclic loading, SMA braces are able to recover their
original shapes even after large strain of 5%.

5.4.3 Previous Researches on SMA Bracing Systems

The most common types of SMA bracing systems utilized for retrofitting framed
structures, either are constructed using SMA thin wires, i.e. self-centring SMA
devices, or are formed using large diameter SMA bars, i.e. Buckling-Restrained
Braces (BRBs). In the former type, steel braces are equipped with SMA wires,
so that a hybrid device is constructed in which a combination of high energy
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dissipation (steel part) and re-centring capability (SMA wire part) is achieved.
These devices are constructed in such a way that the SMA wire is always loaded
in tension regardless of whether the brace is in tension or in compression. In
the latter type, the SMA bars are equipped with rigid members to prevent the
from buckling during compression allowing them to yield in both tension and
compression.

Dolce et al. [52] investigated the effectiveness of different bracing systems,
showing different energy dissipating and re-centring capacities, on low-ductile
RC frames. The kernel components of the SMA braces consisted of pre-tensioned
NiTi wires that were installed differently in three different configurations in
order to provide different combinations of re-centring and energy dissipating
capacities. The 1/3 scale bare and retrofitted RC frames were tested using
shake table simulator and the results were compared to each other. The results
demonstrated that the SMA braces are able to provide structural performances
at least comparable with those obtained by steel braces. In addition, by taking
the advantages of the re-centring capability of the SMA braces, no substitution
of the bracing system is needed even after a strong earthquake.

Another type of hysteretic damper SMA bracing system was proposed by
Tamai and Kitagawa [171]. The brace was made up of SMA and ordinary steel
braces, which were anchored together using couplers, and was fastened to the
frame by tension bolts. The system was designed in such a way that buckling
was prevented even for high slenderness ratios and was capable of exhibiting
significant fatigue toughness and energy dissipation under cyclic loading tests.
Similar experimental studies aimed at exposing the potential of SMA bracing
systems are carried out adopting different designs and arrangements of SMA
braces (e.g. Han et al. [72]; Cardone et al. [34]; Dolce et al. [52]; Zhu and Zhang
[181]).

As the application of SMA bracing systems in retrofitting framed structures
has gained considerable interests due to their feasibility and effectiveness, many
researchers have proposed theoretical and numerical models to understand in
detail the behaviour and benefits of using such systems. Auricchio et al. [11]
explored the possibility of implementing large diameter NiTi bars as a bracing
system for three- and six-story steel structures. Two different bracing systems
were considered, i.e. buckling-restrained steel and SMA braces. For the latter,
a uniaxial constitutive model proposed by Auricchio and Sacco [12], for the
pseudoelasticity of SMA in small strain regime, was considered. The results
indicated a significant reduction of the residual drifts for the case with SMA
bracing system, which ensured the structural re-centring. Similar studies were
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Figure 5.10: A cantilever beam with one open and one closed cracks. The solid arrow
shows the direction of loading and the dashed arrow shows the direction of unloading.

conducted in [120] and [121] for low- and mid-rise steel framed structures, using
the same constitutive behaviour for SMA braces as in the study of Auricchio et
al. [11]. Both studies reported smaller maximum inter-story and residual drifts.

5.5 Application of SMA Braces in RC Framed Struc-
tures

The re-centring capability of the SMA braces during unloading allows the pos-
sibility of crack closure effect, which is an important phenomenon because of
its strong influence on the cyclic response of structures. Note that the term
"crack" is used here instead of plastic hinge so that the physical description
of the situation will not be obscured. During the unloading stage, the reverse
phase transformation of SMA braces initiates, which enforces the framed struc-
ture to regain its initial configuration. As a result, some of the open cracks
generated in the beam/column elements tend to close. When the crack closure
occurs in a generic section, since the fracture surfaces are in complete contact
with each other, the punctual reduction of stiffness caused by concentrated
damage is eliminated and the beam/column behaves as an uncracked element
without slope discontinuities. This situation is schematically illustrated in Fig.
5.10 for a cantilever beam in which one open and one closed crack are detected
as a result of loading-unloading cycle.

To account for the effect of switching crack, which by definition exhibits an
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abrupt change between the open and closed conditions, the flexural stiffness of
the beam in Eq. (3.1) is modified as (see Caddemi et al. [30]),

E(x)[(x) = E(]Io (1 — Z bl’}/zd(l‘ - ZL‘Z>>, bi = (5.40)

=1

1 open crack
0 closed crack

where b; represents the state of the crack in section 1.

The incipient condition of crack closure in a cracked section, i.e. the state of
b; parameter at section ¢, is determined by the sign of the bending moment. To
this end, the values of bending moments in the cracked section ¢ are constantly
monitored during the cyclic loading, so that the exact instant at which the
bending moment sign changes can be captured. When a crack encounters in
section ¢ at instant ¢, the sign of the bending moment at that instant is used as
an indicator of the crack presence. During the analysis, if the sign of the bending
moment changes, the crack switches from an open state to a closed state, see
Bovsunovsky and Surace [25] for an overview of the crack closure effect on the
response of different structural elements. The crack closure condition at cracked
section ¢ can be written in the following form,

sign(M(x;, ty)) # sign(M(zi, tym)), (5.41)

where ¢, represents the instant at which the crack state of section i is being
investigated. Similarly, the crack opening condition takes,

sign(M(x;, t,)) = sign(M (zi, ty,)). (5.42)

In what follows, the application of SMA braces in RC framed structures is
discussed. The flag-shaped constitutive model of pseudoelastic SMA developed
by Stupkiewicz and Petryk [166] is characterized by different parameters so that
the constitutive model can be readily incorporated into the FEM procedure
proposed in Chapter 3. The FEM procedure is thus improved in order to run
cyclic analysis on RC frames and is also modified by incorporating the crack
state function so that the crack closure effect is taken into consideration during
the unloading phase of the analysis.

For the numerical application, steel and SMA braces are designed and used
to retrofit the RC frame structure presented in Section 3.5.1. Finally, the results
are compared and discussed.



124 Nonlinear Analysis of SMA Retrofitted RC Frames

| Param. | of [MPa] | of [MPa] | off [MPa] | off [MPa] | E°MA [GPa] | & |
| Value | 410 | 540 | 370 | 240 | 35 | 4% |

Table 5.1: Material parameters of SMA braces for the numerical application.

5.5.1 Adopted Constitutive Model

Here, the constitutive model of pseudoelastic SMA developed by Stupkiewicz
and Petryk [166] and presented in Section 5.2 is characterized by four parame-
ters indicating the starting and finishing stresses of forward and reverse trans-
formations, see Fig. 5.11(a). Theses characteristic parameters are as follows:
the starting stress of forward transformation, ag , the finishing stress of forward
transformation, ag, the starting stress of reverse transformation, ag, and the
finishing stress of reverse transformation, 0{3. The model assumes the same
modulus of elasticity ESMA in fully austenitic and fully martensitic states (for
the sake of not confusing the moduli of elasticity of the materials, the modulus
of elasticity F in Eq. (5.2) is renamed as E°M4 in this part of the thesis). Table
5.1 provides the material parameters of SMA braces, which are set according
to the experimental observations (see e.g. [179] and [47]). It should be pointed
out that the material parameters of SMA braces are obtained by calibrating
the parameters that are associated with the pseudoelastic model presented in
Section 5.2, see Eq. (5.2).

For the steel braces, elasto-plastic constitutive law with linear hardening is
considered, see Fig. 5.11(b). Material parameters E**¢! = 200 GPa, o, = 250
MPa and strain hardening ratio b = 9% are adopted. To prevent the breakdown
of steel braces during the analysis, a wide range of inelastic deformation (very
ductile behaviour), i.e. €, = 15¢,, is assumed.

It should be noted that in this study the steel and SMA braces are assumed
as large diameter bars that can yield under compressive loads without buckling.
However, in the simple numerical example below, only one tensile brace is
considered. The primary reason for this is to focus on the main goal of this
study, which is to highlight the advantages of SMA braces over steel braces in
cyclic loading. To do this, the constitutive models of steel and SMA braces
are incorporated into the proposed FEM procedure (see Chapter 3.4) so that
the effect of these retrofitting braces on the performance of RC frames can be
evaluated.
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Figure 5.11: Stress-strain behaviour of the SMA braces (a) and steel braces (b).

5.5.2 Numerical Example

In this numerical example, the RC frame presented in Section 3.5.1 is modified
by placing one brace element in tension. The brace element is pin-connected
at either ends so that only the axial deformations are allowed to develop. At
first, the steel braced frame is designed in such a way to increase the ultimate
lateral load of the frame to a certain degree, as well as to ensure the yielding
of the brace element before the formation of plastic hinges in the beam-column
elements. The layout of the braced RC frame is sketched in Fig. 5.12.

The SMA braced frame should be designed in such a manner to be com-
parable with steel braced frame. For this purpose, the SMA brace is designed
to exhibit the same elastic stiffness as the steel brace and also to yield (start
martensitic transformation) at the same load level of steel brace. According to
these two considerations, the following relations hold,

ASMA o o
Asteel —f — ASMA = el (5.43)
O3 Og
FSMA 4SMA

Lsteel (5.44)

9

SMA _ steel SMA __
K =K — L T [psteel gsteel

where A and L represent the cross-sectional area and length of the brace and
K is the axial stiffness of the brace.
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Figure 5.12: The layout of the model in the numerical example: the steel braced
frame (a) and the SMA braced frame (b).

By using Eqs. 5.43 and 5.44, the required length LM* = 18 cm and cross-
sectional area ASMA = 123 mm? are calculated for the SMA brace. Since the
required length of the SMA brace is obtained less than the one of the steel brace,
it is assumed that the SMA brace consists of two SMA segments connected to
each other by a rigid connector (see e.g. [121] and [9]).

The nonlinear analysis of the frames consists of one cycle of loading and
unloading. For both cases (steel and SMA braced frames), a target displacement
0 = 1.34 cm of the control node (the intersection node of the beam and the
left column) is set as the limit for the loading stage of the analysis. This
target displacement corresponds to the lateral load level at which the phase
transformation of the SMA brace completes. Once the target displacement is
reached, the incremental lateral load changes its direction and the unloading
stage begins, as illustrated in Fig. 5.13.

To check the validity of the results, the frame is modelled and analysed in
OpenSees and the results are compared with results of the FEM procedure.
The OpenSees simulations are performed using force-based elements for beam
and columns. Concrete02 material and Steel02 material are used for concrete
and steel reinforcements, respectively. The steel and SMA braces are mod-
elled through Stee0l material with hardening ratio b = 9%, and SelfCentring
material, respectively.



5.5 Application of SMA Braces in RC Framed Structures 127

a) b)
F
—>
¢
EA
F, 0;=1.34 cm
0.5 1

3
Normalized time 9
Figure 5.13: The force-normalized time diagram of the loading-unloading (a) and

the evolution of plasticity in the frame (b). ¢ = 1.34 cm corresponds to the load at
which the loading stage finishes and unloading stage begins.

5.5.3 Results and Discussion

The evolution of plasticity in the frames during nonlinear analysis is Shown in
Fig. 5.13 (b). Since the material and geometric properties of the SMA brace
are defined so that both frames have the same natural period, the plasticity
evolution turns out to be the same for both frames. It is demonstrated that,
as the brace elements were designed, the first plasticity appears in the braces
followed by the evolution of plastic hinges in the beam/column elements. It
should be noted here that for the SMA brace, the term "plasticity" refers to
the initiation of the phase transformation.

The loading-unloading force-displacement curves of the frames are depicted
in Fig. 5.14. As mentioned earlier, the force-displacement curves nearly coin-
cide with each other during the loading stage, both giving a lateral force of
F; = 74 kN for é; = 1.34 cm. During the unloading stage, both curves follow
the same path up to the point where the reverse phase transformation in SMA
brace initiates. Indeed, the key difference between the SMA brace and tradi-
tional steel brace lies in the reverse phase transformation of SMA brace, which
enforces the SMA braced frame to recover its original configuration. While in
the case of steel braced frame, the unloading branch always follows the same
path, which consequently leads to a higher energy dissipation. These charac-
teristics, namely re-centring and energy dissipation, are also observable in the
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Figure 5.14: Loading-unloading force-displacement curves of steel braced frame (a)
and SMA braced frame (b). The dashed lines depict the fiber analysis results obtained
from OpenSees.

stress-strain diagrams of the braces, see Fig. 5.15. These results show a good
agreement with the fiber analysis results obtained from OpenSees.

Figure 5.16 provides the dissipated energy, calculated as the area enclosed
in the loading-unloading force-displacement curves in Fig. 5.15, as well as the
residual displacement of the control node. Large permanent displacement is
seen for steel braced frame, while thanks to the re-centring capability of the
SMA brace, almost no permanent displacement is visible for the SMA braced
frame. On the other hand, due to the wide loading-unloading loop of the
steel brace, a higher amount of energy is dissipated by the steel braced frame
compared to the SMA braced frame.

5.6 Conclusions

The purpose of this chapter of the thesis is to study the behaviour of shape
memory alloys and their application in RC frames. The starting point here is
the small strain one-dimensional model of pseudoelasticity in SMA developed
by Stupkiewicz and Petryk [166].

In the first part of this chapter, a micromorhpic framework has been devel-
oped for modelling of formation and propagation of Liiders bands and strain
localization that occurs in the actual response of SMAs exhibiting softening.
The resulting micromorphic model is suitable for a direct finite element im-
plementation. The displacement field and the micromorphic counterpart of the
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Figure 5.15: Stress-strain curves of steel brace (a) and SMA brace (b). The dashed

lines depict the fiber analysis results obtained from OpenSees.
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volume fraction of martensite constitute the global unknowns that are governed
by respective global equations which express mechanical equilibrium and aver-
aging of the local volume fraction of martensite. A coupled thermomechanical
model has also been developed and used for a finite element study of the effect
of loading rate on the pseudoelastic response and transformation pattern in
a NiTi wire. Despite the simplicity of the constitutive model, its predictions
show a good agreement with the experiment.

In the second part of this chapter, the application of SMA braces in retrofitting
reinforced concrete frames is investigated. To this end, the pseudoelastic SMA
model of Stupkiewicz and Petryk [166] is incorporated into the proposed FEM
procedure (see Chapter 3) and the resulting numerical tool is utilized for eval-
uating the effect of SMA brace on the performance of a simple RC frame. The
model is also rerun using traditional steel brace and the results are compared
with the results of SMA braced frame. It was demonstrated that the SMA brace
can successfully reduce the residual displacements that occur during loading, as
a result of the re-centring capability of such materials. The difference between
the amounts of dissipated energies during loading-unloading cycle reveals the
superiority of steel braced frame in absorbing the energy of the horizontal ac-
tion. However, this weakness of SMA braces can be circumvented by using steel
segments in SMA bracing system. In addition, as mentioned earlier, the damp-
ing capacity of the SMA braces can be increased at the time of manufacture
based on the expected functionality.



Chapter 6

Final Remarks

6.1 General Conclusions

In many countries, reinforced concrete structures are traditionally constructed
prior to the development of seismic design codes and are prone to severe struc-
tural damages when subjected to earthquake ground motions. In addition to so-
cial and financial losses associated with extensive earthquake damages of these
structures, some of these structures represent important cultural heritages that
have to be preserved. This necessitates the need for retrofitting or strengthen-
ing such structures in order to comply with modern seismic standards, thus to
extend their service life.

To effectively plan the retrofitting process of existing structures, nonlinear
analysis should be carried out, which allows to identify the critical zones of
existing structures using distributed or lumped plasticity approaches. Having
an efficient numerical tool, it is also possible to evaluate the performance and
reliability of the retrofitting techniques employed.

As for the primary objective of this thesis, an original finite element tool for
nonlinear analysis of reinforced concrete framed structures has been developed,
based on Euler-Bernoulli hypothesis with the potential of capturing multiple
slope discontinuities (plastic hinges) appearing at any position along the beam
element. The developed numerical tool does not suffer from the computational
difficulties arising due to plastic hinge formation, such as mesh refinement,
increase of DOFs, and using higher order shape functions. In the framework of
distributed plasticity, the proposed FEM model can be regarded as a model with
Smart Displacement Based (SDB) beam elements with the ability of updating
displacement shape functions during the nonlinear analysis.

131
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Three numerical applications were attempted in Chapter 3 to demonstrate
the efficiency of the developed numerical tool. In the first numerical example
(see Section 3.5.1), the results of an experimental test were reproduced with the
aim of validating the predictions of the numerical tool. In the second and third
examples (see Sections 3.5.2 and 3.5.3, respectively), two special but practical
cases, i.e. an RC frame with an inclined column, and a gravity-designed RC
frame, respectively, were discussed in order to show that the typical response
of the framed structures may be inhibited by an alternation in the geometry
and steel reinforcements distribution of the structural elements.

The secondary objective of this thesis was to determine the reliability of
different retrofitting techniques employed on RC frames by the use of the de-
veloped numerical tool. Two modern retrofitting techniques were considered,
namely externally bonded reinforced polymer composites as additional rein-
forcement (see Chapter 4) and shape memory alloy braces (see Chapter 5).

For the former, the developed numerical tool was extended to account the
effect of EB-FRP composites on the ultimate capacity of RC sections and con-
sequently on the overall response of the RC frame. It was demonstrated that
through this extension, the above effect is taken into consideration by the nu-
merical tool and the results are in a good agreement with the fiber analysis
results.

Two studies with different scales were conducted in Chapter 5, both using
the same one-dimensional model of pseudoelasticity in SMA. First, a gradient-
enhanced model of pseudoelasticity in SMAs was developed with the ability to
simulate the true behaviour of SMAs, notably NiTi wire, in tension. In the sec-
ond study, the application of SMA braces in RC frames was investigated. The
retrofitting technique employed here consisted of strengthening a simple RC
frame with one SMA brace to observe the behaviour of the retrofitted frame in
loading-unloading condition. The one-dimensional pseudoelastic model of SMA
was incorporated into the developed numerical tool. With this improvement of
the developed numerical tool, the re-centring capability of SMA braces can be
modelled and its effect on the response of RC frames under loading-unloading
condition can be observed.

In overall, the presented FEM tool, although based on concentrated plas-
ticity, is able to provide a rather good estimation of the structural response of
RC frames. Its flexibility enables the user to supplement different retrofitting
strategies and evaluate the effectiveness of such strategies on RC frames.
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6.2 Future Developments

This thesis represents the first attempt to develop FEM numerical tool based
on concentrated plasticity elements with the possibility of having multiple slope
discontinuities. After the positive reply obtained from the numerical applica-
tions presented in this thesis, the numerical tool proved to be suitable to be
extended to other types of damages such as those caused by shear forces, besides
being completed by the inclusion of axial discontinuities.

The current numerical tool is formulated for nonlinear static analysis and
in this study it only dealt with two-dimensional problems. The extension of
the numerical tool to dynamic problems and three-dimensional simulations is
straightforward and will be another future direction to pursue.

The incorporation of other retrofitting techniques, e.g. the use of SMA bars
in RC beams, into the numerical tool or investigating more complex and special
RC structures, such as industrial RC frames, could also be considered as another
future applications in this area.

Last but not least, the concept of weak hinge, in which the sharp disconti-
nuity in a point is regularized and is introduced in a finite zone in the vicinity
of the plastic section of the element, offers another possible direction for future
research.
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